

Trabajo de Integración Curricular

Optimización de las herramientas moleculares para la identificación de insectos de la familia Tabanidae del marcador molecular COI.

Autor: Uwe Jens Nickelsen Cordovez

Director: Sarah Martin Solano Ph.D.

31 de Agosto de 2023

UNIVERSIDAD DE LAS FUERZAS ARMADAS - ESPE DEPARTAMENTO DE CIENCIAS DE LA VIDA Y DE LA AGRICULTURA **CARRERA DE BIOTECNOLOGÍA**

Índice de Contenidos

Familia Tabanidae

Orden: Diptera

Figura 1: Ciclo de vida de moscas pertenecientes a la familia Tabanidae

(Banerjee et al., 2015; Mullens, 2019)

Introducción

Distribución

Distribución global a excepción de la Antártida

Alrededor de 4 300 especies

> Descritos 133 géneros

Especies de tábanos en Ecuador

Pangoninae: Tribu Pangonini (1 género, 15 especies) y Shonini (4 géneros, 31 especies). Chrysopsinae: Tribu Chrysopsini (1 género, 7 especies). Tabaninae: Tribu Diaclorini (25 géneros, 111 especies) y Tabanini (3 géneros, 40 especies).

Figura 2: Localidades de estudio del único repertorio nacional de tábanos en Ecuador (Buestán et al., 2012)

(Capinera, 2008; Buestán et al., 2012)

Introducción

204 especies descritas

Aparición recurrente de nuevas especies

> Zonas biogeográficas compartidas con:

Colombia - Perú – Venezuela - Brasil

PCR Barcoding

(Shashank el at., 2022; BOLD Systems: Taxonomy Browser—Tabanidae, 2023)

Introducción

Aporte mundial

- Centro de Genómica de Biodiversidad: 7915
- Extraído de GenBank, NCBI: 1359
- Instituto Nacional de Biodiversidad, Costa Rica: 856
- Royal Ontario Museum: 182
- Universidad McGill, Museo Entomológico Lyman: 161
- Museo Argentino de Ciencias Naturales, Bernardino Rivadavia: 103
- Universidad de Manitoba, Museo de Entomología Wallis Roughley: 94
- Instituto Noruego de Investigación de la Naturaleza: 89
- Universidad de Guelph: 78
- Museo Finlandés de Historia Natural, Museo Zoológico: 66
- Otros: 546

Figura 5. Aportes de secuencias del gen COI de tábanos

PCR Barcoding Tabanidae

Figura 6. Aportes de secuencias del gen COI de tábanos, recuperado de BOLD Systems

(BOLD Systems: Taxonomy Browser—Tabanidae, 2023)

Introducción

Encontrado 11,449 registros publicados, con 11,449 registros con secuencias, formando 946 BIN (clústeres), con muestras de 53 países, depositado en 56 instituciones.

Canada: 5900 Costa Rica: 2100 Unspecified*: 779 Brazil: 331 United States: 283 South Africa: 271 Thailand: 182 Mexico: 163 Australia: 162 Norway: 161 Others: 1117

> **Figura 7**. Aportes de secuencias del gen COI de tábanos

Figura 8: Detección de DNA de hemoparásitos en tábanos

> Requerimiento de especialización para su taxonomía tradicional

Afección a especies de interés productivo

> Ausencia de técnicas moleculares ya establecidas en el país

Afecciones

(Alvarado, 2022; Jumbo, 2021; Mullens, 2019; Wiesenhütter, 1975)

Justificación del problema

Identificación taxonómica precisa

Estrategias para control especieespecíficas

Aplicación de estrategias en un contexto internacional

Objetivo General

• Optimizar las herramientas moleculares para la identificación de insectos de la familia Tabanidae del marcador molecular COI.

Objetivos específicos

- Estandarizar un protocolo de extracción de ADN mediante variaciones en los pasos críticos del proceso para la posibilitar la identificación de los insectos muestreados.
- Establecer el protocolo de PCR Barcoding con la aplicación del marcador molecular COI para aplicarlo en ADN de insectos de la familia Tabanidae.
- Inferir la filogenia de la familia Tabanidae mediante las secuencias del gen COI disponibles en bases de datos para relacionarlo a la taxonomía morfológica descrita sobre especies presentes en el país.

Objetivos e Hipótesis

Hipótesis

El marcador molecular COI permite la identificación a nivel de especie para los insectos de la familia Tabanidae.

Ho: El marcador molecular COI no permite la identificación a nivel de especie para los insectos de la familia Tabanidae.

Objetivos e Hipótesis

Muestreo

Provincias de muestreo:	P
Pastaza	
Pichincha	and the second
Manabí	
Orellana	
Napo	m
Sto. Domingo de los Tsáchilas	
Imbabura	SX XX
Cotopaxi	X
Tungurahua	

Figura 8. Trampa para tábanos

(Flores-Pacheco et al., 2018)

Materiales y Métodos

Figura 9. Trampa NZI

Muestreo total: 60 moscas

Determinación morfológica

Figura 10. Características morfológicas para distinción de especies pertenecientes a la familia Tabanidae. Tomado de: (Burger, 2008)

- ✤ Ojos compuestos prominentes.

- Cuerpo aplanado

(Banerjee et al., 2015; Mullens, 2019; Burger, 2008)

Materiales y Métodos

Figura 11. Tabanomorfos. A) Rhagionidae. B) Tabanidae. Tomado de: (Mullens, 2019)

Antenas cortas compuestas compuestas de tres segmentos

Ala característica de Tabanomorpha, con celda distal y cinco celdas marginales

Extracción de ADN total

(Gutiérrez-López et al., 2015)

Materiales y Métodos

Análisis Estadístico

Variable	Opción	Composición
Buffer de Lisis Reactivo de separación de fases	Buffer 1	50 mM Tris-HCl, 20mM EDTA, 100 mM NaCl, 1% SDS
	Buffer 2	50 mM Tris-HCl, 50mM EDTA, 100 mM NaCl, 1% SDS
	Buffer 3	50 mM Tris-HCl, 20mM EDTA, 400 mM NaCl, 1% SDS
	Cloroformo/ Alc. Isoamílico	Proporción Cloroformo/Alc. Isoamílico 24:1
	NaCl	NaCl 5M llevado a 1.1M en el volumen final

Tabla 1: Parámetros variados en el protocolo de extracción de ADN.

(Shashank et al., 2022; Gutiérrez-López et al., 2015; Mullens, 2019)

Materiales y Métodos

Análisis supuesto de normalidad: Shapiro-Wilks Alpha: 0.05 Q-Q Plot

Análisis supuesto de homogeneidad e independencia: Diagrama de dispersión PRED vs RDUO

> ANOVA para análisis de significancia de los tratamientos

Test de Tukey con Alpha: 0.05 para selección del mejor tratamiento

Diagramas de Caja y Bigotes para representación gráfica

Protocolo de PCR

Cebado	r		Secuencia		Proceso	Temperatura	Tiempo	Ciclos																												
TY-J-146	0	FAC AAT [·]	TTA TCG CCT AAA	CTT CAG CC	Desnaturalización inicial	95°C	5 minutos	1																												
C1-N-232	ACT GTA AAT ATA TGA TGA GCT CA		ACT GTA AAT ATA TGA TGA GCT		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TO		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TG		ACT GTA AAT ATA TGA TG		Desnaturalización	95°C	30 segundos	35
Tabla 2: Cebadores recuperados de: (Lessard et al., 2013). TAQ PRESICIÓN (ABM)			Hibridación	X °C	60 segundos	35																														
Reactivos	Unidad	Stock	Concentración Final	Volumen (μL)	Extensión	72°C	90 segundos	35																												
H2O	μL	N/A	-	-	Extensión final	72°C	5 minutos	1																												
Buffer	Х	5.00	1.00	5.00	Mantenimiento.	4°C	-	-																												
TY-J-1460	μM	10.0 0	0.25	0.63	Tabla 4: Condiciones de reacción.	5' 3'	3' • 5'																													
C1-N-2329	μM	10.0 0	0.25	0.63	5' 3' 5'	3' 3' 5' 5' 5'	3' 3'																													
MgSO4	mM	25.0 0	-	-	5'	3' 3' 5' 3'	5' 5'	Introduction Introduction Introduction Introduction Introduction I																												
dNTP	mM	40.0 0	0.80	0.50	3' 5'	3' 3' 3'	3' 5' 3'	Turne Turne Turne Turne																												
Таq	U/µL	5.00	0.50	0.10	3'	3' 5'	5'																													
ADN	ngr/ul	-	-	2.00		5'••••••••••••••••••••••••••••••••••••	••••• 5'	American American American Tables Tables Tables Tables																												
			Total	25.00		3'	5'																													

 Tabla 3: Mastermix establecida para PCR.

(Lessard, 2013)

Materiales y Métodos

INNOVACIÓN PARA LA EXCELENCIA

Análisis Bioinformático

Fragmentos del gen COI de 659 pb

Selección de 60 secuencias

59 especies de tábanos 1 Musca domestica

Análisis Neighbor Joining 1000 bootstraps

Modelo Tamura-Nei con escala de divergencia 0.02%

(Jumbo, 2021; Shashank et al., 2022; Lessard et al., 2013)

Materiales y Métodos

A C T T G C A T T AACTTGCAT

Molecular Evolutionary **Genetics** Analysis

Muestreo

Figura 13. Estructura ala de Tabanidae

 Tabla 5: Muestras recolectadas

Figura 14. Muestras de Tabanidae recolectadas y un ejemplar de Rhagionidae

(Capinera, 2008; Buestán et al., 2012)

Clasificación de muestras

Muestra	Sexo
J1	Ŷ
J2	Ŷ
J3	o^
J4	Ŷ
01	Ŷ
M1	Ŷ
Sf	Ŷ
S1	Ŷ
S2	Ŷ
P1	Q

 Tabla 6: Sexo de las muestras
 recolectadas

Figura 15. Tábanos hembra identificadas del grupo muestreado

(Capinera, 2008; Buestán et al., 2012)

Resultados y discusión

Separación de ojos como característica base de determinación de sexo post-mortem

Extracción

Figura 16. Protocolo de Gutiérrez-López et al., (2015) para extracción de ADN de *Musca domestica*

Figura 17. Gradiente de cantidad inicial del buffer de lisis (350 μ L, 600 μ L y 850 μ L) y RNAsa (3 μ L y 6 μ L)

Fijación de 6 µL de RNAsa posterior a la primera incubación

850 μL del buffer de lisis para molienda de la muestra

Extracción

Figura 18. Variación en el protocolo de extracción de ADN

Buffer de Lisis	Agente de separaci ón	Repetició n	Pureza (A260/A280)	Pureza (A260/A230)	Concentración ng/µL	Promedio
		R1	1.739	0.9126	288.6	
	Τ1	R2	1.763	1.078	337.6	225 2 1 90
	11	R3	2.01	1.081	148.1	233.3±00
D1		R4	1.971	1.098	166.9	
DT		R1	1.958	1.486	182.9	
	то	R2	1.896	1.434	299.5	220 6 + 120
	ΙZ	R3	2.02	1.478	227.8	228.0±43.9
		R4	2.023	1,581	204.2	
		R1	1.834	0.8994	323.1	
	Τ1	R2	1.821	0.9019	298.4	$215 \ A + 21 \ A$
	11	R3	1.853	0.9714	277.8	515.4±51.4
60		R4	1.88	0.9206	362.2	
DZ		R1	1.975	1.362	635.9	
	то	R2	1.969	1.369	570.1	601 8 1 22 2
	١Z	R3	1.96	1.367	606.8	004.8±23.3
		R4	2.012	1.383	606.6	
		R1	2.028	1.487	584.7	
	Τ1	R2	2.076	1.636	819.4	721.2 107.1
	11	R3	1.992	1.447	673.9	/31.2±10/.1
60		R4	2.091	1.684	846.7	
B3		R1	1.935	1.217	300	
	тэ	R2	1.968	1.236	653.7	202 775 + 150 2
	12	R3	1.915	1.19	305.6	595.775±150.2
		R4	1.905	1.14	315.8	

Tabla 7: Cuantificación de ADN obtenido de cada tratamiento

Análisis de datos

Variable	n	D.E.	W*	P (Unilateral D)
RDUO Concentración	24	87.35	0.95	0.5053

Tabla 8: Prueba de Shapiro-Wilks para comprobar normalidad

Cumplimiento de los supuestos de normalidad, homogeneidad e independencia

Interacción significativa entre el buffer de lisis y el agente de separación de fases sobre la concentración resultante de ADN

Efecto significativo del buffer de lisis de manera individual

Tabla 9: ANOVA de los tratamientos

Resultados y discusión

259,93

Figura 20: Diagrama de dispersión de datos

	SC	gl	F	p-valor
	853446.8	5	17.51	<0.0001
	458088	2	23.49	<0.0001
ses	1989.26	1	0.2	0.6569
	393369.6	2	20.17	<0.0001
	175505.4	18		
	1028952	23		

Análisis de datos

Tabla 10: Test de Tukey; Alfa=0.05para los Buffers de Lisis

Test de Tukey; Alfa=0.05

11:

Tabla

para la interacción de tratamientos

Buffer de Lisis	Agente de separación de fases	Medias			
B1	P2	228.6	A		
B1	P1	235.3	А		
B2	P1	315.38	A		
B2	P2	393.78	А	В	
B3	P2	604.85		В	С
B3	P1	731.18			С

Resultados y discusión

Figura 21. Diagrama de Caja y Bigotes de la concentración de ADN en función del buffer de lisis empleado

Figura 22. Diagrama de Caja y Bigotes de la concentración de ADN en función de la interacción de tratamientos

Tratamiento aplicado a tábanos

Muestra	Pureza (A260/A280)	Pureza (A260/A230)	Concentraciones de DNA (ng/µL)	
J1	1,843	1,244	1261	M1000pb
J2	1,7	0,9968	1039	
J3	1,859	1,321	1312	
J4	1,799	1,397	203,3	
M1	1,848	1,85	200,8	30
01	1,914	1,339	201,3	60
P1	1,414	1,054	2709	10
Sg	1,683	1,125	2971	
S1	1,841	1,223	1637	
S2	1,719	1,34	3008	
Rhag	1,93	1,24	252,4	

Tabla 12: Cuantificación de ADN obtenido en la aplicación del protocolo sobre tábanos.

Mayor cantidad de DNA

Muestras más grandes

J1

(Banerjee et al., 2015)

Resultados y discusión

Figura 23. Electroforesis de 200ng/µL de las muestras de ADN extraídas

Edad de las muestras Mayor grado de degradación

> INIVERSIDAD DE LAS OVACIÓN

Optimización del protocolo de PCR

Figura 24. Gradiente de temperatura

Figura 25. Gradiente de Sulfato de Magnesio

Figura 26. Gradiente de concentración de ADN

Eficiencia de los protocolos propuestos

Muestra	Variables	Extracción de ADN	PCR	
Musca	Relación	24/24	4/5	
domestica	Rendimiento	100%	80%	
	Relación	10/10	7/9	
Tabanidae	Rendimiento	100%	77.77%	

Tabla 13: Cálculos de eficiencia de los protocolos propuestos.

Figura 28. Protocolo aplicado sobre DNA de tábanos selectos

Análisis filogenético

ESPECIE	BIN	ESPECIE	BIN
Atylotus fulvus	FIDIP892-12	Tabanus albocirculus	ASIND4023-12
Atylotus horvathi	GBMNF29841-22	Tabanus autumnalis	CROTA005-20
Atylotus insuetus	LYMAB918-15	Tabanus bromius	GBMNE30325-21
Atylotus rusticus	CROTA037-20	Tabanus defilippii	ASIND4054-12
Atylotus sublunaticornis	FIDIP2957-12	Tabanus dorsifer	ASIND4062-12
Atylotus thoracius	LYMAB917-15	Tabanus dorsilinea	GBMNB24904-20
Bolbodimyia galindoi	ASIND3728-12	Tabanus erebus	ASIND4067-12
Bolbodimyia philipi	ASIND3730-12	Tabanus lacajaensis	ASIND4074-12
Chlorotabanus inanis	TTDFW1097-11	Tabanus longus	GBMNF29915-22
Chrysops auroguttatus	ASIND3614-12	Tabanus nigrovittatus	BBDIT209-11
Chrysops costaricensis	ASIND4240-12	Tabanus occidentalis	ASIND4091-12
Chrysops mexicanus	ASIND3630-12	Tabanus pruinosus	ASIND4126-12
Chrysops parallelogrammus	CROTA003-20	Tabanus pungens	ASIND4155-12
Chrysops shermani	BBDEC417-09	Tabanus rupium	CROTA017-20
Chrysops sordidus	SSGBC112-14	Tabanus sackeni	GBMNF29989-22
Dichelacera crocata	ASIND3766-12	Tabanus stygius	GBMNF30002-22
Dichelacera fasciata	ASIND3771-12	Tabanus sublongus	GBMNF30009-22
Dichelacera hartmanni	ASIND3772-12	Tabanus tergestinus	CROTA019-20
Dichelacera melanosoma	ASIND3783-12	Tabanus xenorhynchus	ASIND4198-12
Dichelacera princessa	ASIND3787-12	Musca domestica	BBDIT1076-11
Dichelacera regina	ASIND3789-12	Hybomitra kaurii	FIDIP213-11
Dichelacera scapularis	ASIND3805-12	Hybomitra liorhina	CNWBG2878-13
Dichelacera subcallosa	ASIND3809-12	Hybomitra sexfasciata	FIDIP3702-13
Dichelacera submarginata	ASIND3819-12	Leucotabanus canithorax	ASIND3991-12
Haematopota americana	ACT059-07	Leucotabanus cornelianus	ASIND3996-12
Haematopota italica	CROTA035-20	Leucotabanus flavinotum	ASIND4003-12
Haematopota italica	GMGMB035-14	Philipotabanus elviae	ASIND3890-12
Haematopota scutellata	CROTA036-20	Philipotabanus inauratus	ASIND3899-12
Hybomitra arpadi	ZMBN696-17	Philipotabanus medius	ASIND4242-12
Hybomitra borealis	ZMBN337-16	Philipotabanus pallidetinctus	ASIND3940-12

Tabla 14: Especies seleccionadas y su BIN de BOLD Systems.

(Jumbo, 2021; Shashank et al., 2022; Lessard et al., 2013; BOLD Systems: Taxonomy Browser— Tabanidae, 2023)

Análisis filogenético

(Jumbo, 2021; Shashank et al., 2022; Lessard et al., 2013; BOLD Systems: Taxonomy Browser-Tabanidae, 2023)

	ASIND3819-12 Dichelacera submarginata COI-5P
	ASIND3771-12 Dichelacera fasciata COI-5P
99	ASIND3766-12 Dichelacera crocata COI-5P
	ASIND3809-12 Dichelacera subcallosa COI-5P
89	ASIND3805-12 Dichelacera scapularis COI-5P
	ASIND3783-12 Dichelacera melanosoma COI-5P
	ASIND3787-12 Dichelacera princessa COI-5P
Ĩ	ASIND3789-12 Dichelacera regina COI-5P
51	ASIND3772-12IDichelacera hartmannilCOI-5P

• Se estandarizó un protocolo de extracción manual de ADN, encontrando que el buffer de lisis compuesto por 50 mM de Tris-HCI, 20mM de EDTA, 400 mM de NaCI y SDS 1% funciona en sinergia con el cloroformo/alcohol isoamílico 24:1 (F:20.17; p<0.0001), obteniendo concentraciones óptimas de ADN (731.2±107.1 ng/uL) dentro del rango de pureza (A260/A280) aceptable.

• El ADN extraído de las muestras de tábano selectas permitió la amplificación de fragmentos del gen COI circundantes a los 824 pb descritos teóricamente, realizado mediante un protocolo de PCR optimizado en función de los parámetros críticos de sensibilidad (contenido de magnesio y temperatura de hibridación de los cebadores).

• El presente estudio propone un sistema de PCR Barcoding utilizando el marcador molecular COI para la identificación de especies de tábanos mediante un análisis por el método de Neighbor-Joining, donde se puede identificar especies de tábanos y agruparlas en función de la similitud de sus secuencias.

Conclusiones

CDE FG

Se sugiere siempre realizar una inspección estereomicroscópica de las muestras a trabajar ya que muchas pueden ser confundidas con tábanos a simple vista, además, se recomienda utilizar muestras frescas de tábanos (dentro de un año desde su recolección).

Trabajar con el insecto completo proporcionará una mayor cantidad de ADN, sin embargo, se puede utilizar partes de este como patas o cabeza en caso de requerir del cuerpo para análisis morfológicos.

Es recomendable siempre trabajar con versiones compatibles de los programas bioinformáticos, para así evitar confusión o incluso pérdida de información utilizada; considerando la información recopilada, el análisis realizado en este trabajo se podría repetir con las secuencias de especies descritas en Ecuador.

Recomendaciones

RES

ACADÉMIE DE RECHERCHE ET D'ENSEIGNEMENT SUPÉRIEUR

"Establecimiento de protocolos para el uso de herramientas moleculares en el análisis de la diversidad de insectos de la familia Tabanidae (vectores de enfermedades hemotrópicas)"

Grupo de Investigación en Sanidad Animal y Humana

GISAH

Agradecimientos

• Sarah Martin Solano, Ph.D. Cristina Cholota, Magister (C).

• Laboratorio de Biotecnología Animal – ESPE Labotorios de Investigación – IASA Proyecto BruTryp

• Familia y amigos

