"Con el poder de tu mente, tu determinación, tu instinto y la experiencia, puedes volar muy alto"

- Ayrton Senna-

Universidad de las Fuerzas Armadas ESPE-L Departamento de Energía y Mecánica Carrera de Ingeniería Automotriz

"Diagnóstico avanzado de los sistemas electrónicos de potencia y carrocería de vehículos de procedencia europea"

Autor:

Casa Casa, Henry Alexander

Director:

Ing. Erazo Laverde, Washington Germán

Latacunga, marzo de 2024

ÍNDICE DE CONTENIDO

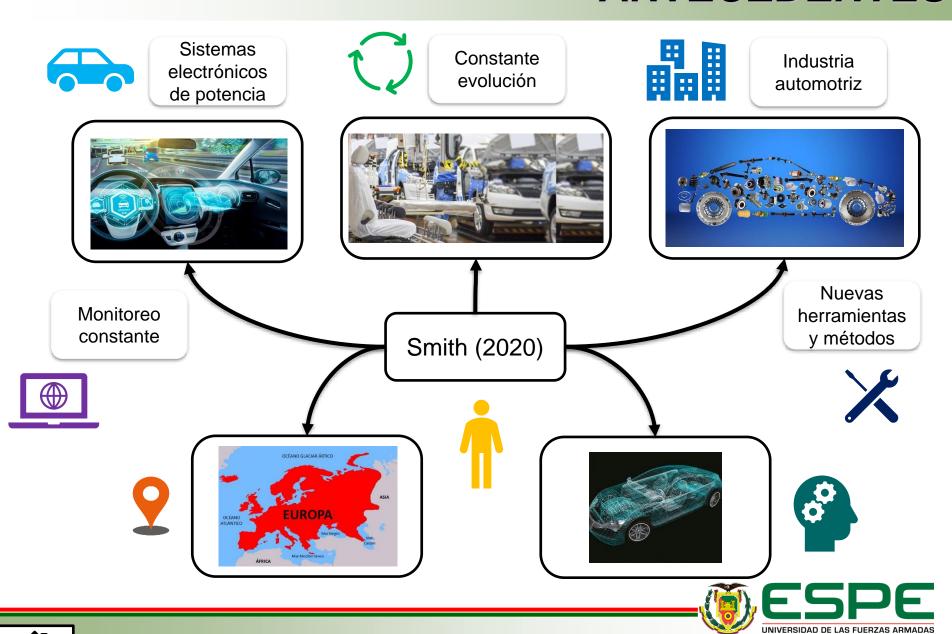
- □ Antecedentes
- □ Planteamiento del problema
- □ Descripción resumida del proyecto
- ☐ Justificación e importancia
- □ Objetivos del proyecto
 - □ Objetivo General
 - □ Objetivos Específicos
- □ Metas
- ☐ Hipótesis

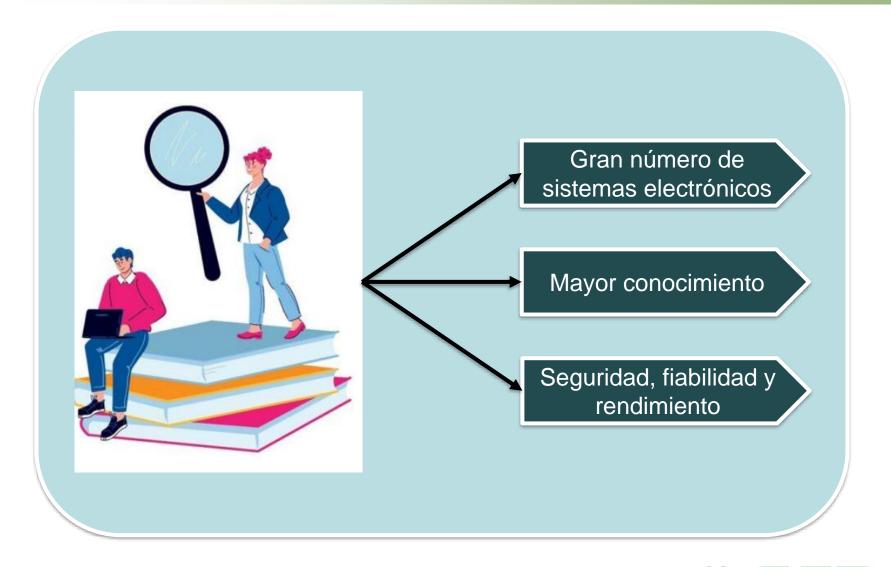
ÍNDICE DE CONTENIDO

- □ Marco teórico
 - □ Redes multiplexadas
 - □ Definición
 - □ Ventajas
 - □ Componentes
 - □ Topología de redes
 - □ En estrella
 - ☐ En anillo
 - □ Lineal
 - □ Gateway
 - □ Protocolos de comunicación
 - □ CAN
 - MOST
 - □ FLEXRAY

ÍNDICE DE CONTENIDO

- ☐ Marco teórico
 - ☐ Estandarización de protocolos
 - □ Líneas de datos para el diagnóstico
 - □ Unidades de control en el automóvil
- □ Análisis para la obtención de datos.
 - □ Caracterización del Vehículo
 - ☐ Topología de la red del vehículo
 - Obtención de datos
 - □ Diagrama en Livewire
- □ Conclusiones
- □ Recomendaciones


MARCO METODOLÓGICO


ANTECEDENTES

INNOVACIÓN PARA LA EXCELENCIA

PLANTEAMIENTO DEL PROBLEMA

Descripción resumida del proyecto

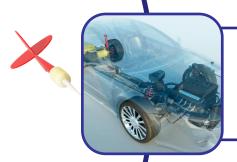
JUSTIFICACIÓN E IMPORTANCIA

La justificación para implementar el diagnóstico avanzado en las redes de comunicación del automóvil de procedencia europea se basa en la creciente complejidad de estos vehículos y la necesidad de garantizar su rendimiento, seguridad y confiabilidad. Esto se debe a la integración de sistemas electrónicos sofisticados y a la creciente demanda de funcionalidades.

OBJETIVOS

OBJETIVO GENERAL

Desarrollar el proceso de diagnóstico avanzado de los sistemas electrónicos de potencia y carrocería de vehículos de procedencia europea.

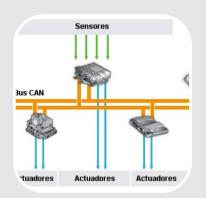


OBJETIVOS

Investigar información referente a protocolos de comunicación en vehículos de procedencia europea.

Definir los sistemas de control electrónico de tracción y confort.

Definiciones de PID's – DTCs en el sistema de control tracción y confort.


METAS

Diagnosticar en tiempo real

Registrar módulos encontrados

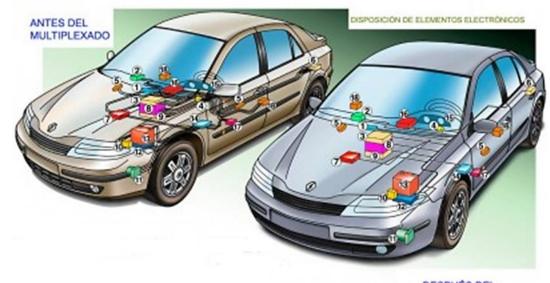
Realizar los diagramas de acuerdo a la red encontrada

HIPÓTESIS

HIPÓTESIS

¿Desarrollar el proceso de diagnóstico avanzado de los sistemas electrónicos de potencia y carrocería de vehículos de procedencia europea permitirá establecer procesos de verificación efectiva que garanticen la operación y el confort adecuado del vehículo?

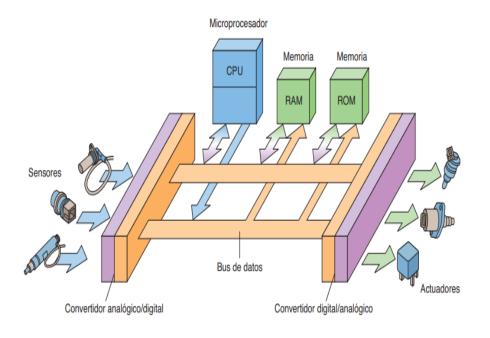
MARCO TEÓRICO

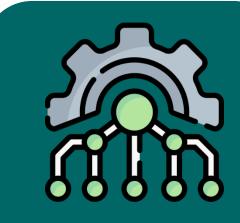


Redes multiplexadas

- ✓ Incremento de la fiabilidad
- ✓ Reducción del cableado
- ✓ Múltiple utilización de sensores

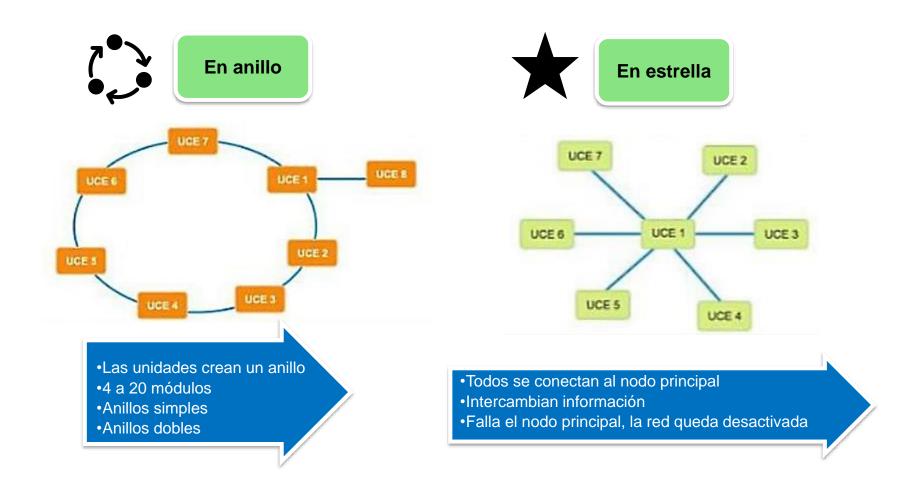
Interconexiones que existen entre computadoras (ECU) o módulos electrónicos del vehículo.


DESPUÉS DEL MULTIPLEXADO



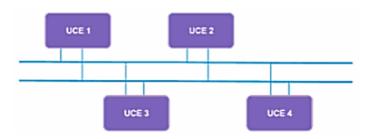
Redes multiplexadas

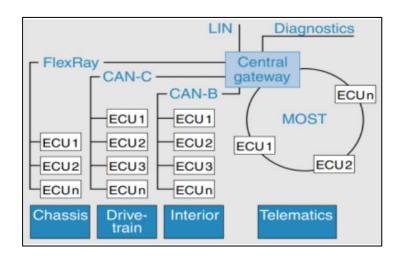
Componentes de una red multiplexada automotriz



- Emisores y receptores
- Cableado
- Bus de datos
- Sensores y actuadores
- Puerto de diagnóstico
- Protocolo de comunicación

Topología de redes multiplexadas

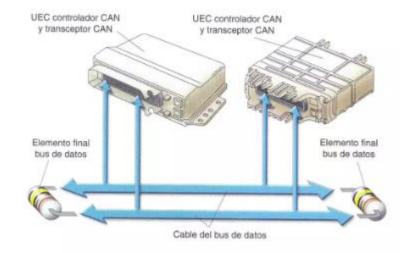


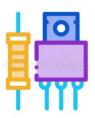

Topología de redes multiplexadas

- •El elemento central es un línea de comunicación
- •Fácil agregar suscriptores
- •No ocurre nada si falla un nodo

- Proporcionar comunicación
- •Unión de redes
- Traductor

Protocolos de comunicación


CAN (Controller Area Network)



- o Can High: Tracción
- o Can Low: Confort

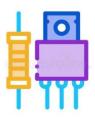
- ✓ Tolerancias a fallos
- ✓ Alta velocidad de transmisión de datos
- ✓ Bajo consumo de energía
- ✓ Costo reducido
- √ 30 módulos
- ✓ Multimaestro

- Controlador CAN
- Transceptores CAN
- Nodos
- Cableado
- Terminadores

Velocidad de transmisión oscila entre 500 kbit/s hasta 1 Mbit/s

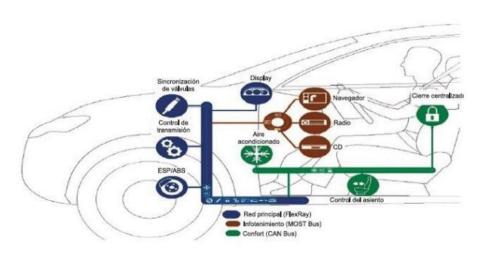
Protocolos de comunicación

MOST (Media Oriented Systems Transport)


 Datos de navegación a una velocidad de hasta 150 Mbit/s

- Sistemas de información y entretenimiento
- Transmitir datos de alta calidad a largas distancias
- Configuración en anillo
- Fibra óptica

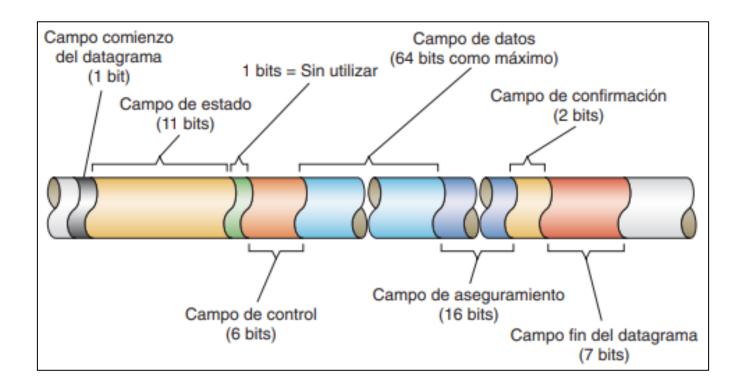
- Controlador de la red
- Transceptor óptico
- Dispositivos



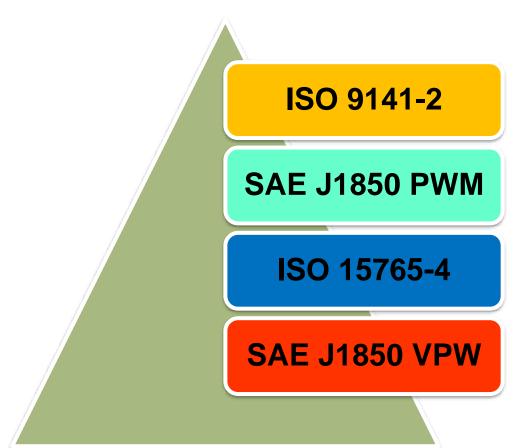
Protocolos de comunicación

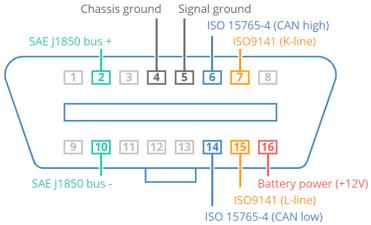
 Velocidad de transmisión máxima de 10 Mbit/s

- Utiliza un par de cables trenzados
- Soporta hasta 20 nodos conectados a la misma red
- Configuración en estrella



Transmisión de datos


 Protocolo de enlaces compuesto por 7 secciones



Estandarización de protocolos

Línea de datos para el diagnóstico

Códigos DTC

Primer Dígito

- B Carrocería
- C Chasis
- P Motor
- U Red

Segundo dígito

- 0 Genérico SAE
- 1 Fabricante

Tercer dígito

- 1 Medición de combustible y aire
- 2 Circuito del inyector
- 3 Sistema de encendido
- 4 Control auxiliar de emisiones
- 5 Control de velocidad del vehículo
- 6 Circuito de salida del computador
- 7 y 8 -Transmisión

Cuarto y quinto dígito

• Descripción de falla

Unidades de control en el automóvil

PCM: Control electrónico del tren motriz (Conjunto motor y transmisión).

TCM: Control electrónico de la transmisión.

ABS: Control electrónico sistema de Frenos Antibloqueo

EHPS: Módulo de control del sistema asistencia electrohidráulica.

EPS: Dirección asistida eléctrica

SRS: Unidad de control del Airbag

ADAS: Sistema de ayuda y asistencia a la conducción

HVAC: Unidad de control del climatizador

IPM: Módulo de fusibles electrónicos.

IPC: Módulo de control del cuadro de instrumentos.

DDM: Módulo de la puerta del conductor.

BCM: Control electrónico de la carrocería.

 FECHA ÚLTIMA REVISIÓN: 13/12/11
 CÓDIGO: SGC.DI.260
 VERSIÓN: 1.0

Descripción del equipo y vehículos utilizados

Caracterización del scanner y vehículos utilizados

Launch Thinkcar Thinktool Full

Vehículos utilizados

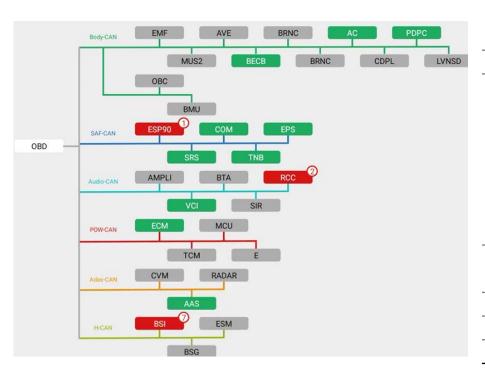
Marca	Modelo	Año	
BMW	320i	2017	Q
Peugeot	3008	2020	
Peugeot	208	2023	Q
Skoda	Fabia	2012	
Skoda	Fabia	2018	
Suzuki	Vitara	2021	
Suzuki	S-Croos	2022	
Volkswagen	Beetle	2010	
Volkswagen	Virtus	2022	Q

ANÁLISIS DE RESULTADOS

Peugeot 208 2023

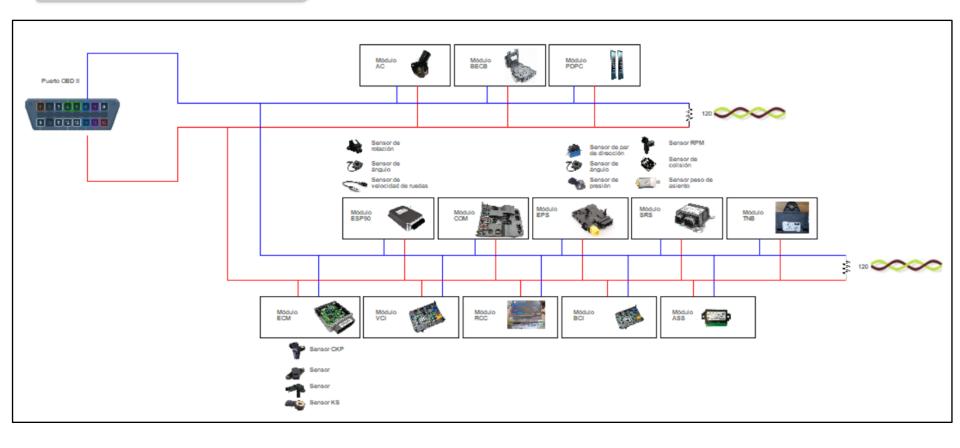
Características Generales

Motor	3 cilindros en línea / 1.199 cc
D	Potencia 75 CV
Potencia y par	Par máximo de 118 Nm
Consumo	17.2 km/l
Velocidad máxima	174 km/h
Tipo de transmisión	Manual de 5 velocidades
Tipo de dirección	Electro asistido


Pines de comunicación

• 6 y 14: CAN

Topología de la Red



Líneas	Módulos	Descripción	
	AC	Refrigeración	
Body-CAN	BECB	Caja estado de carga batería	
, ,	PDPC	Platina de puerta conductor	
Líneas	Módulos	Descripción	
	ESP90 ECU del ESP o ABS		
SAF-CAN	СОМ	Módulo de conmutación bajo volante de	
		dirección	
	TNB	Los cinturones de seguridad no están sujetos a la	
		unidad de LED	
	SRS	Cojín inflable (Airbag)	
	EPS	Dirección asistida eléctrica	
	RCC	Unidad de navegación de audio	
Audio-CAN	VCI	Mandos sobre el volante de dirección	
POW-CAN	ECM	Calculador motor	
Adas-CAN	AAS	Ayuda al estacionamiento	
H-CAN	BSI	Interfaz BSI (Bult-in systema)	

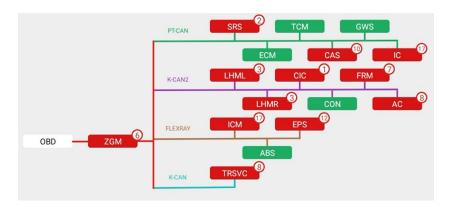
Esta red CAN mantiene velocidades de comunicación de 1 kbit/s a 1Mbit/s.

Diseño en Livewire

BMW 320i 2017

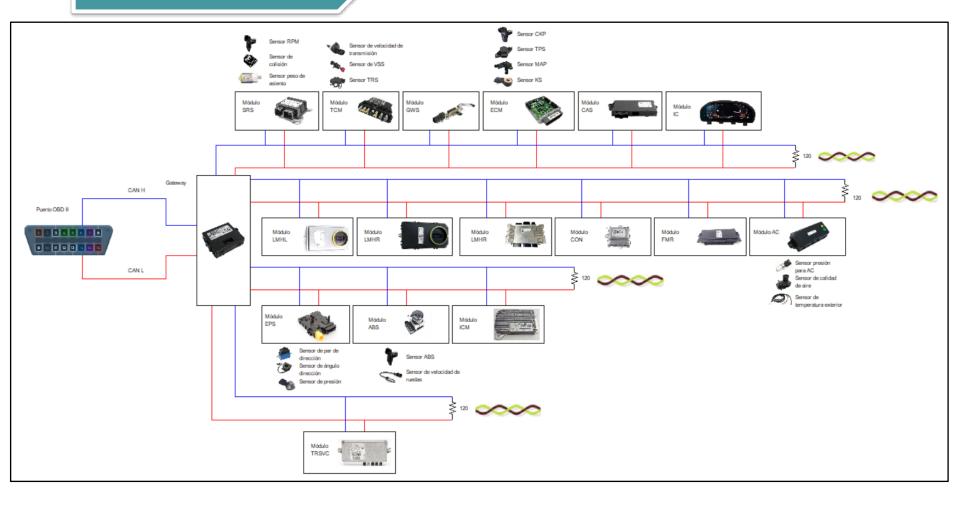
Características Generales

Motor	4 cilindros turbo / 1.998 cc
D.I	Potencia 184 CV
Potencia y par	Par máximo de 290 Nm
Consumo	7.3 l/100 km
Velocidad máxima	235 km/h
Tipo de transmisión	Automática de 8 velocidades
Tipo de dirección	Eléctrica


Pines de comunicación

• 6 y 14: CAN

Topología de la Red



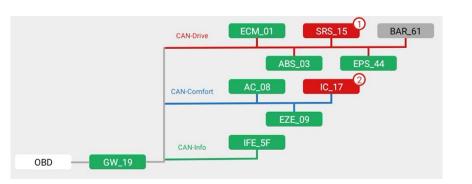
SRS Sistema de Sujeción Suplementario Inflable - AIRBAG/SGM-SIM TCM Módulo de Control de Transmisión
AIRBAG/SGM-SIM TCM Módulo de Control de Transmisión PT-CAN GWS Interruptor de selector de velocidades ECM Módulo de Control de motor CAS Sistema de acceso al coche IC Racimo de Instrumentos LHML Módulo de luz principal LED, izquierda CIC Ordenador de información K-CAN2 FRM Módulo del hueco de los pies LHMR Módulo de luz principal LED, derecha CON Módulo de control
AIRBAG/SGM-SIM TCM Módulo de Control de Transmisión PT-CAN GWS Interruptor de selector de velocidades ECM Módulo de Control de motor CAS Sistema de acceso al coche IC Racimo de Instrumentos LHML Módulo de luz principal LED, izquierda CIC Ordenador de información K-CAN2 FRM Módulo del hueco de los pies LHMR Módulo de luz principal LED, derecha CON Módulo de control
PT-CAN GWS Interruptor de selector de velocidades ECM Módulo de Control de motor CAS Sistema de acceso al coche IC Racimo de Instrumentos LHML Módulo de luz principal LED, izquierda CIC Ordenador de información K-CAN2 FRM Módulo del hueco de los pies LHMR Módulo de luz principal LED, derecha CON Módulo de control
ECM Módulo de Control de motor CAS Sistema de acceso al coche IC Racimo de Instrumentos LHML Módulo de luz principal LED, izquierda CIC Ordenador de información K-CAN2 FRM Módulo del hueco de los pies LHMR Módulo de luz principal LED, derecha CON Módulo de control
CAS Sistema de acceso al coche IC Racimo de Instrumentos LHML Módulo de luz principal LED, izquierda CIC Ordenador de información K-CAN2 FRM Módulo del hueco de los pies LHMR Módulo de luz principal LED, derecha CON Módulo de control
LHML Módulo de luz principal LED, izquierda CIC Ordenador de información K-CAN2 FRM Módulo del hueco de los pies LHMR Módulo de luz principal LED, derecha CON Módulo de control
LHML Módulo de luz principal LED, izquierda CIC Ordenador de información K-CAN2 FRM Módulo del hueco de los pies LHMR Módulo de luz principal LED, derecha CON Módulo de control
CIC Ordenador de información K-CAN2 FRM Módulo del hueco de los pies LHMR Módulo de luz principal LED, derecha CON Módulo de control
K-CAN2 FRM Módulo del hueco de los pies LHMR Módulo de luz principal LED, derecha CON Módulo de control
LHMR Módulo de luz principal LED, derecha CON Módulo de control
CON Módulo de control
AC Aire Acondicionado
ICM Gestión de Chasis Integrado
FLEXRAY EPS Dirección Asistida Eléctrica
ABS Sistema de Freno de Anti-bloqueo
K-CAN TRSVC Cámara de visión total
GATEWAY ZGM Módulo central de Gateway
GATEWAY ZGM Módulo central de Gateway

Diseño en Livewire

Volkswagen Virtus 2022

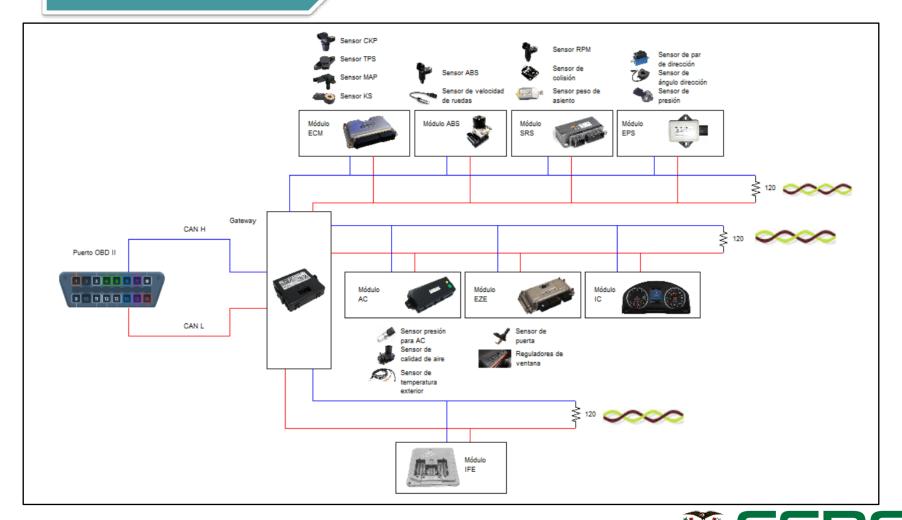
Características Generales

Motor	4 cilindros en línea / 1.598 cc
Data a sia wasa	Potencia 110 CV
Potencia y par	Par máximo de 155 Nm
Consumo	14 km/l
Velocidad máxima	210 km/h
Tipo de transmisión	Manual de 5 velocidades
Tipo de dirección	Asistida eléctrica


Pines de comunicación

• 6 y 14: CAN

Topología de la Red


Líneas	Módulos	Descripción	
CAN - Drive	ECM_01	Electrónica del motor	
	SRS_15	Airbag	
	ABS_03	Electrónica de los frenos	
	EPS_44	Dirección asistida	
CAN – Confort	AC_08	Electrónica del aire acondicionado/calefacción	
	IC_17	Cuadro de instrumentos	
	EZE_09	Centralita eléctrica electrónica	
CAN – Info	IFE_5F	Electrónica de información 1	
GATEWAY	GW-19	Interfaz de diagnosis para bus de datos	

Esta red CAN mantiene velocidades de comunicación de 1 kbit/s a 1Mbit/s.

Diseño en Livewire

CONCLUSIONES

Se desarrollo el diagnóstico, garantizando su eficacia y fiabilidad en diferentes temas como, confort y seguridad con respecto a vehículos de otra procedencia.

El protocolo FLEXRAY se utiliza principalmente en vehículos de gama alta y en aplicaciones que requieren tiempos de respuesta extremadamente rápidos y alta integridad de datos, algunos de los modelos que utilizan este protocolo son: BMW, Audi, Mercedes-Benz y Porsche.

Se definió los sistemas de control electrónico de tracción como: ECU, ABS, SRS, TCM y confort: AC, AAS, IC entre otros. Estos módulos existen generalmente en todos los vehículos de esta procedencia, que son fundamentales en la industria automotriz para garantizar un rendimiento óptimo, seguridad y comodidad para los conductores y pasajeros.

Recomendaciones

Antes de utilizar un escáner automotriz, se asegura de recibir la formación adecuada sobre su funcionamiento y las diversas funciones que ofrece. La capacitación puede ser proporcionada por fabricantes, instituciones educativas o mediante programas de certificación.

Se sugiere que el software del escáner esté siempre actualizado para garantizar la compatibilidad con los últimos modelos de vehículos y las últimas funciones de diagnóstico.

Tome en cuenta que, después de eliminar los DTCs desconectar la batería y volver a realizar una prueba de diagnóstico para observar si el código de error fue borrado con éxito.

