

UNIVERSIDAD DE LAS FUERZAS ARMADAS - ESPE

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE PETROQUÍMICA

Obtención de celulosa microbiana, como subproducto de un hongo kéfir, para el desarrollo de biopelículas.

Autora:

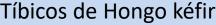
García Caicedo, Katherine Nicole

Director:

Msc . Sayavedra Delgado, Jonathan Javier


Latacunga

CONTENIDO



INTRODUCCIÓN

Fuente renovable

Kéfir considerado como biomasa.

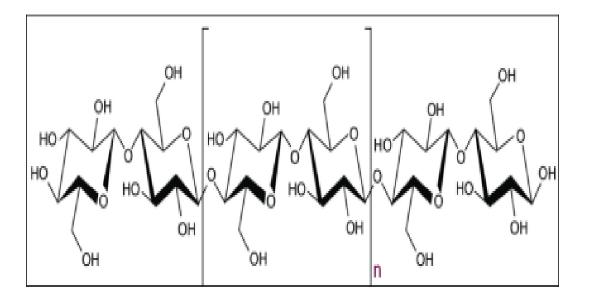
→ Celulosa Microbiana
Es un polímero presenta
cristalinidad e hidrofilia.

Tíbicos de Kéfir

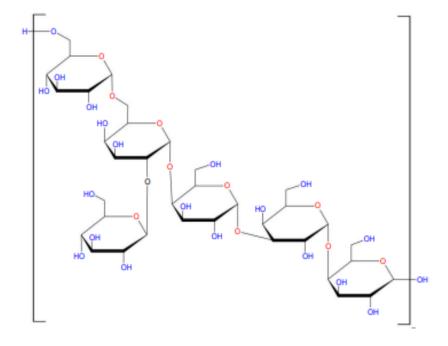
Fuente para obtener

celulosa microbiana.

Fermentación


Proceso donde se formará la matriz polimérica. **Desarrollo de Biomateriales**

Aplicación nanotecnología, biomedicina e industria alimentaria.



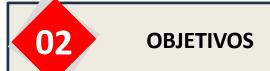
INTRODUCCIÓN

Figura 1 *Estructura química de la celulosa .*

Figura 2 *Estructura química del kéfir .*

CONTENIDO

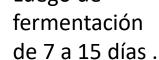
OBJETIVOS


Objetivo General		Obtener celulosa microbiana, como subproducto de un hongo kéfir, para el desarrollo de biopelículas.
	1.	Optimizar el proceso para obtener celulosa microbiana, mediante revisión bibliográfica y experimentación; para obtener la mayor cantidad en peso de celulosa.
Objetivo Z. Específicos Evaluar los efectos de la proporción de la propor		Analizar las biopelículas, mediante pruebas estructurales y mecánicas.
		Evaluar los efectos de la proporción de celulosa microbiana, estabilizante, y plastificante en propiedades fisicoquímicas de la biopelícula formada.
	4.	Determinar una aplicación innovadora y potencial a partir del biomaterial obtenido para la evaluación potencial en el ámbito comercial.

CONTENIDO

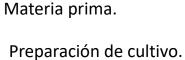
Proceso obtención de celulosa.

- Tíbicos de kéfir.
- Medio (agua)
- Fuente de C.
- Fuente de N.

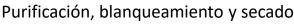


NaOH a 0.5M

Empleo de Cl al 5%


03

Extraer de


Luego de fermentación

cultivo CM.

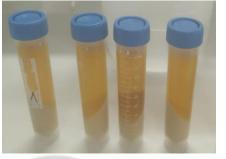
Extracción de celulosa.

Purificación, blanqueamiento y secado.

Secado a 45°C por 24h.

Obtención de Celulosa

- Agregar medio
- Agregar fuentes.
- Cubrir cultivo.
- Etapa de fermentación


Proceso obtención kefirán.

03

Refrigerar a -20°C durante 8 h

- Tíbicos de kéfir

- Medio (leche)

- Fuente de C
- Fuente de N

1

Activar tíbicos.

Agragar madia

02

- Agregar medio -
- Agregar fuentes.
- Cubrir cultivo.
- Etapa de fermentación.

Centrifugar el caldo a 4000 rpm por 40 min.

Recoger

sobrenadante.

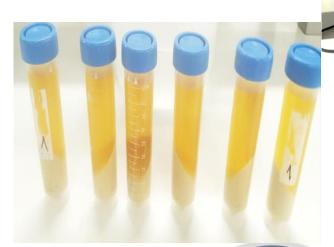
Obtención de kefiran.

Materia prima.

Preparación de cultivo.

Centrifugación.

Precipitación.



en

METODOLOGÍA

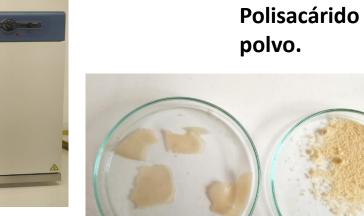
Proceso obtención kefirán.

Centrifugar el refrigerado.

Recoger el precipitado.

06

Disolver precipitado


Precipitar con etanol

Realizar nuevamente

con agua a 80°C.

Paso 4 y 3.

Secado a 45°C por 48 h.

kefiran.

Centrifugación.

Disolución.

Secado.

Obtención de

INNOVACIÓN PARA LA EXCELENCIA

METODOLOGÍA

Proceso formación de Biopelículas. KEFIRAN. Materia prima. CELULOSA. Pesar materia prima y aditivo Agregar materia prima ,aditivo y agua destilada. Agitar solución a 4000 rpm durante 30 min. Agregar plasficante. Secar durante 12h a 45°C

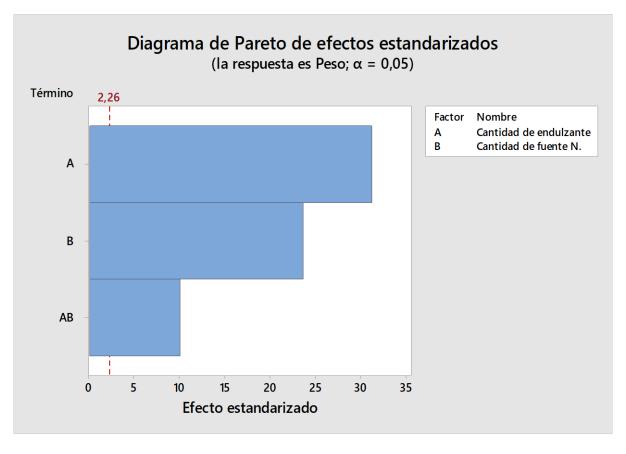
CONTENIDO

Tabla 1Diseño de factores y niveles de estudio utilizados.

Factores	Nive	les de est	tudio
	-1	0	+1
Cantidad de Endulzante	40	60	80
(gr).			
Cantidad de fuente de N	5	15	25
(gr).			

Diseño experimental- Cultivo de celulosa.

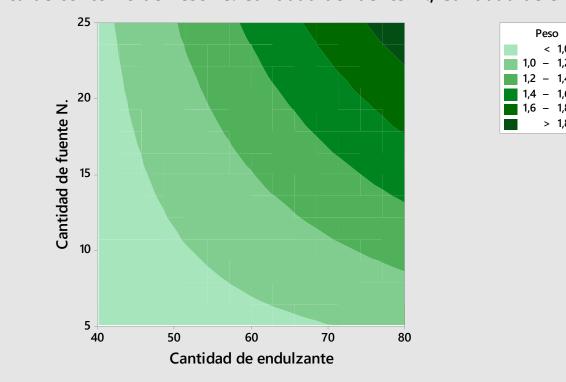
Figura 3 *Cultivo de hongo kéfir*


Tabla 2 *Rendimiento de celulosa y polisacárido kefiran.*

Rendimiento	Porcentaje
Celulosa microbiana	2,31%
Kefiran	90%

Nota. Se realizó varios cultivos para obtendrá mayor cantidad de celulosa

Figura 4Diagrama de Pareto sobre las variables de cultivo.

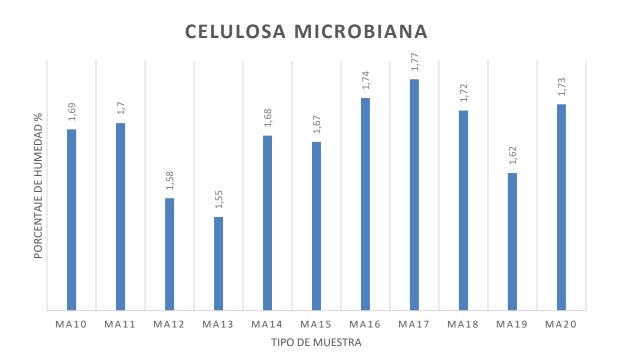


Nota. El gráfico de Pareto las variables significativas y su interacción en el estudio.

Gráfica de Contorno

Gráfica de contorno peso en seco de celulosa en relación a los factores de cultivo.

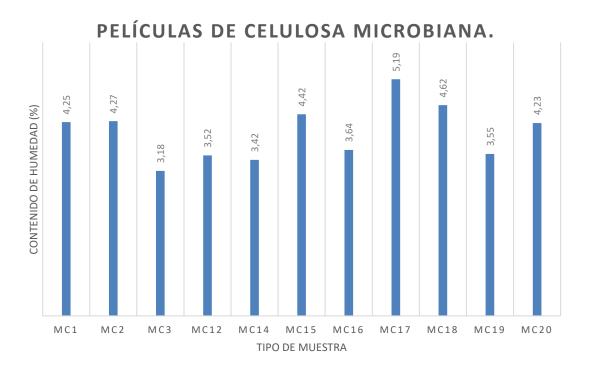
Gráfica de contorno de Peso vs. Cantidad de fuente N.; Cantidad de end



Nota. El gráfico de contorno muestra la relación de factores con la variable de respuesta

Figura 6

Diagrama de barras del contenido de humedad en la película de celulosa microbiana.



Nota. El gráfico respecto al contenido de humedad de películas de celulosa microbiana.

Análisis de contenido de humedad.

Figura 7

Diagrama de barras del contenido de humedad en la película de celulosa microbiana.

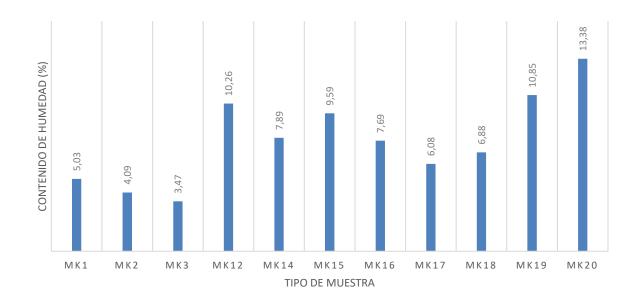

Nota. El gráfico respecto al contenido de humedad de biopelículas de celulosa microbiana.

Figura 8

Diagrama de barras del contenido de humedad en la película kefiran.

PELÍCULAS DE POLISACÁRIDO KEFIRAN.

Nota. El gráfico respecto al contenido de humedad de película kefiran.

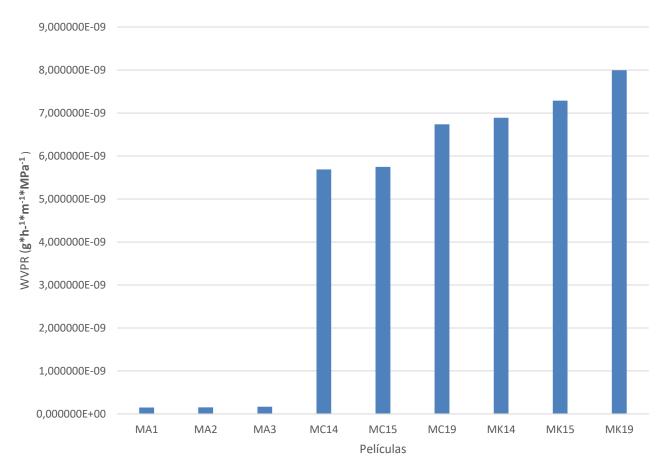

Análisis de contenido de humedad.

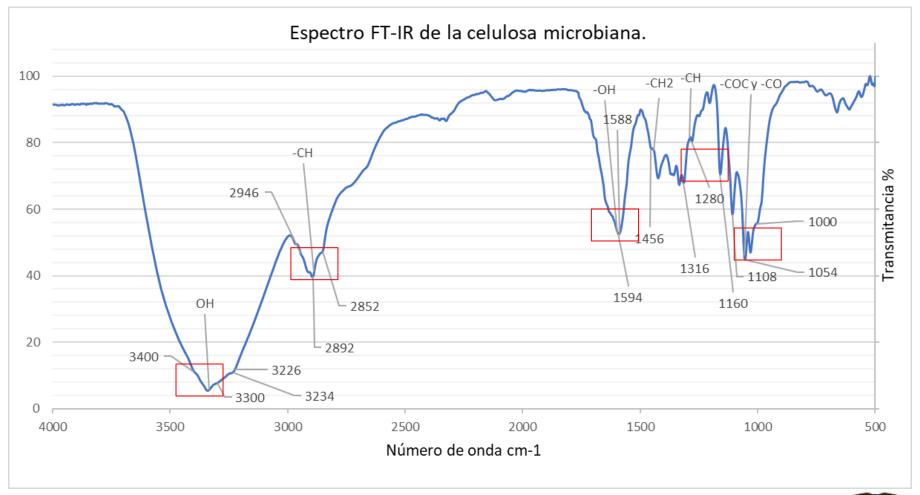
Tabla 3Análisis de humedad de muestras de celulosa, película de celulosa y kefiran.

Muestra	Contenido %
MA1_0	1,69
MA1_2	1,58
MA1_3	1,55
MC14	5,689540E-09
MC15	5,74895E-09
MC19	6,739540E-09
MK14	6,891120E-09
MK15	7,289420E-09
MK19	7,995120E-09

Figura 9Diagrama de barras del análisis de permeabilidad al vapor de agua

Nota. El gráfico respecto a la cantidad de absorción de agua de las películas

Análisis de permeabilidad al vapor de agua.


Tabla 4Datos de las diferentes películas , con su valor de permeabilidad.

Muestra	WVPR (g*h-1*m ⁻ 1*MPa ⁻¹
MA1	1,506780E-10
MA2	1,53680E-10
MA3	1,663685E-10
MC14	5,689540E-09
MC15	5,74895E-09
MC19	6,739540E-09
MK14	6,891120E-09
MK15	7,289420E-09
MK19	7,995120E-09

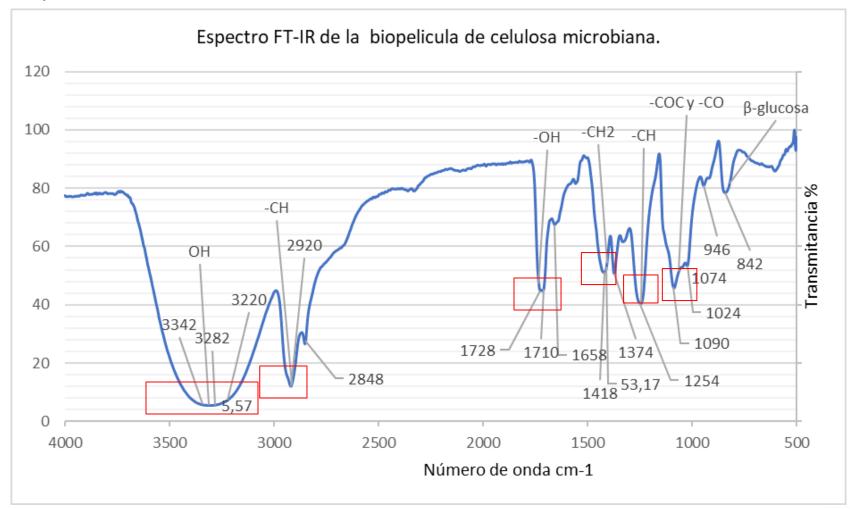
gura 12 FTIR — Película de celulosa MA

Figura 12 *FTIR de celulosa microbiana.*

Nota. Resultado del análisis por espectroscopía FT-IR de película de celulosa CMA.

Tabla 6 *Números de onda obtenidos en el espectro FT-IR de la celulosa microbiana MA*

FTIR - Celulosa microbiana


Apariencia	Referencia (cm-1)	Experimental (cm-1)	Grupos principales celulosa
Fuerte, amplia	3400 – 3200	3400	Identifica vibraciones de tensión de grupos O – H
Fuerte	2950–2850	2892	Identifica vibraciones de tensión asimétrica . C –H
Media y alta	1750–1650	1594	Identifica vibraciones de flexión O – H y agua.
Débil y alta	1456 – 1300	1456	Identifica la flexión –CH2
Débil y media	1300 – 1280	1280	Identifica la flexión –CH
Débil y media	1160 – 980	1054	Bandas de estiramiento C-O-C y CO

Nota. Bandas características para los principales grupos funcionales de la celulosa obtenidos de (Avcioglu et al., 2021)

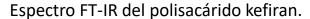
Figura 13 *FTIR de biopelícula celulosa microbiana MC15*

FTIR – Pelicula de biopelícula de celulosa

Nota. Resultado del análisis por espectroscopía FT-IR de biopelícula de celulosa.

Tabla 7 *Números de onda obtenidos en el espectro FT-IR de la biopelícula de celulosa MC15*

FTIR -Biopelícula de celulosa


Apariencia	Referencia (cm-1)	Experimental (cm-1)	Grupos principales celulosa
Fuerte, amplia	3400 – 3200	3342	Identifica vibraciones de tensión de grupos O – H
Media, débil	2950–2850	2920	Identifica vibraciones de tensión asimétrica . C –H
Alta y media	1645–1450	1728	Identifica vibraciones de flexión O – H y agua.
Débil y alta	1456 – 1300	1418	Identifica la flexión –CH2
Débil y alta	1300 – 1280	1254	Identifica la flexión –CH
Media	1160 – 980	1090	Bandas de estiramiento C-O-C y CO


Nota. Bandas características para los principales grupos funcionales de biopelícula de celulosa obtenidos de (Avcioglu et al., 2021)

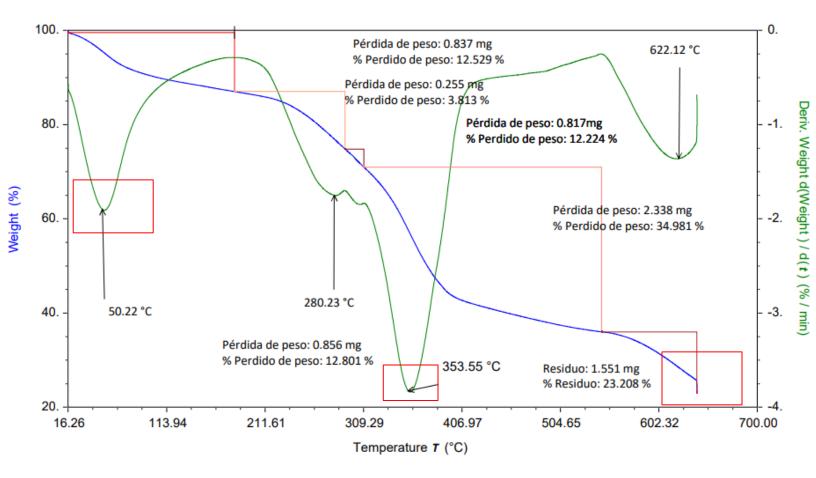
Figura 14 *FTIR de kefiran*

FTIR – de polisacárido Kefiran

Nota. Resultado del análisis por espectroscopía FT-IR de polisacárido de kefiran

FTIR –Biopelícula de kefiran

Tabla 15 *Números de onda obtenidos en el espectro FT-IR de polisacárido de kefiran MK15.*


Apariencia	Referencia (cm-1)	Experimental (cm-1)	Grupos principales celulosa
Media, amplia	3000 – 3600	3398	Identifica vibraciones intramolecular de modos de estiramiento. O – H
Fuerte	3000–2800	2918	Identifica modos de estiramiento simétrico y antisimétrico. C –H
Fuerte, alta	1750–1580	1740	Identifica modo de flexión (agua). O–H
Débil y alta	1500 – 1300	1462	Identifica la flexión –CH
Débil y alta	1200 – 900	1000	Bandas de estiramiento C-O-C , CO y CH

Nota. Bandas características para los principales grupos funcionales kefiran obtenidos de (Marangoni Júnior et al., 2020)

Figura 12 *Análisis termogravimétrico TGA de la muestra MCA1*

TGA Celulosa Microbiana A

TGA – Pelicula Celulosa (CMA1)

Tabla 9 *Resumen de IR-celulosa microbiana.*

Etapa	Rango (°C)	Pérdida %w
1,2 y 3	16.26 – 309.29	12,529%, 3,813% 12,224%
4	309.29 – 553.49	34,981%
5	553.49 – 650	23,208
		Residuo

Nota. La imagen presenta los resultados obtenidos para los puntos de degradación la película de celulosa.

Figura 16Análisis termogravimétrico TGA de la muestra MC15

TGA de Biopelícula (MC15)

Tabla 10 *Resumen de análisis IR-MC15*

Deriv. We	Etapa	Rango (°C)	Pérdida %w
Deriv. Weight d(Weight) / d(†) (% / min)	1 y 2	16,26 – 309,29	17,385% y 15,674 %
)/d(t)(%/	3	309.29 – 400	55,931%
min)	4	400 a 650	3,333
•			
			Residuo

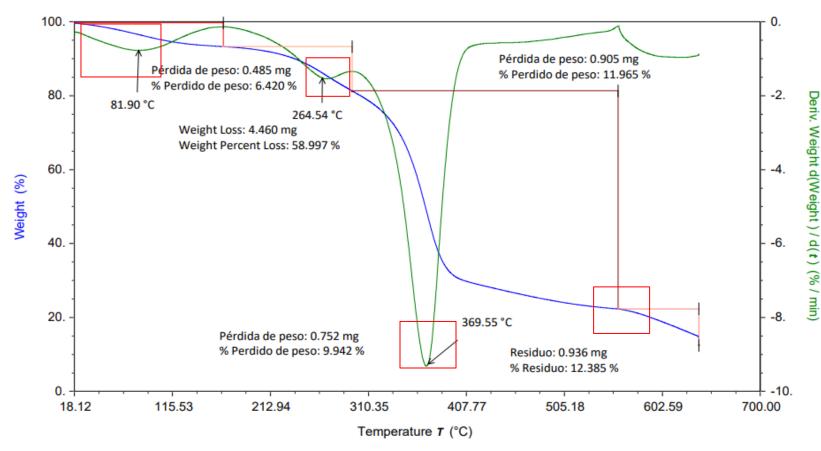

Nota. La imagen presenta los resultados obtenidos para los puntos degradación la película de celulosa.

Figura 17 *Análisis termogravimétrico TGA de la muestra*

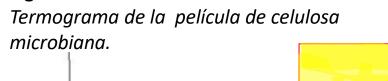
MK15

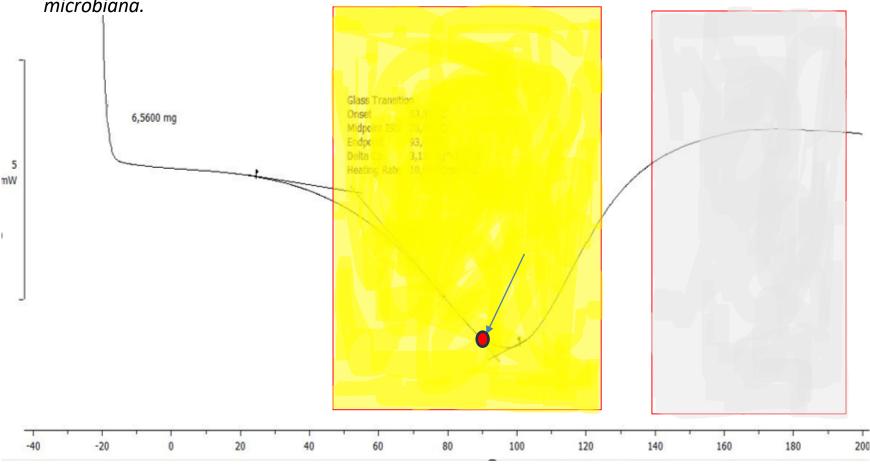
Película de kefiran

Nota. La imagen presenta los resultados obtenidos para los puntos degradación la película de celulosa.

TGA – Película Kefiran

Tabla 11 *Resumen de análisis IR-kefiran 15.*

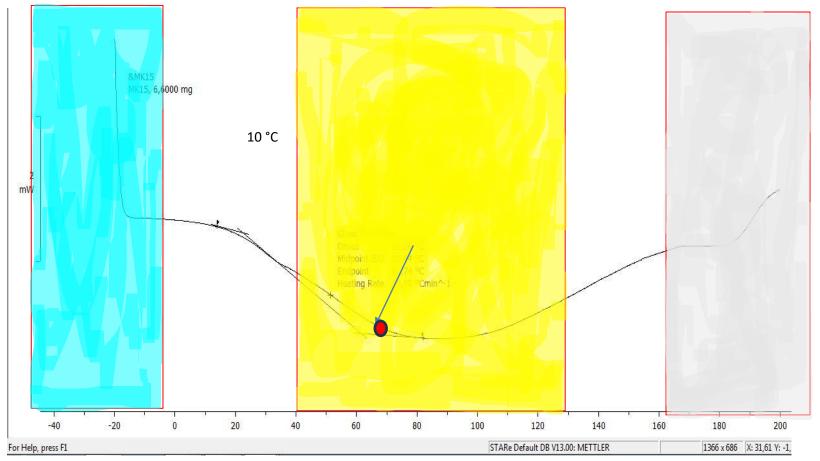

Etapa	Rango (°C)	Pérdida %w
1	18,1 – 147,7	6,420%
2	147,7 – 245,6	11,965%
3	245,6– 537,7	58,997%
4	537,7 – 650	12,385%


Película	Ceniza
CMA	23,208
CM15	3,33
CK15	12 385

UNIVERSIDAD DE LAS FUERZAS ARMADAS

Figura 9

- Temperatura de transición vítrea
- Temperatura de degradación.

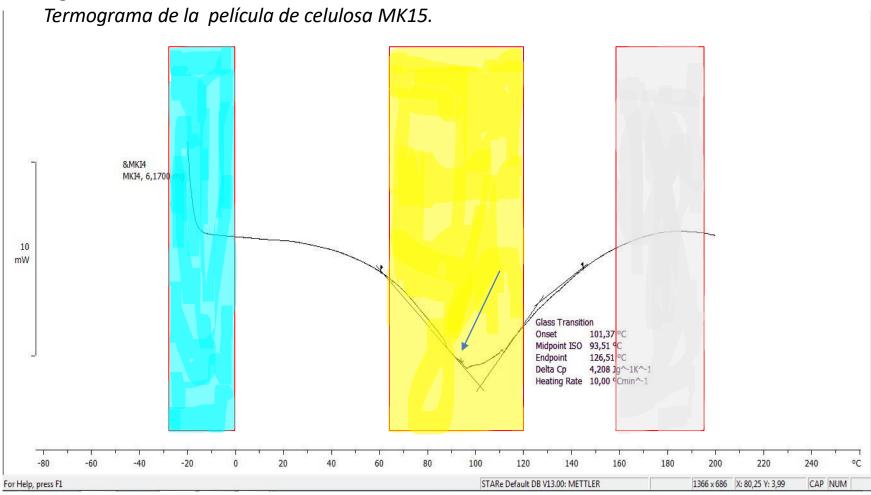

Tabla 12 Resumen de análisis termogravimétrico.

Etapa	Temperatura (°C)	
1	78,5	
2	220	

Nota. La figura muestra los resultados del análisis DSC con respecto a la celulosa microbiana.

Figura 18 *Termograma de la película de celulosa MC15.*

- Temperatura de transición vítrea.
- Temperatura de degradación.


Tabla 13 *Resumen de análisis termogravimétrico*

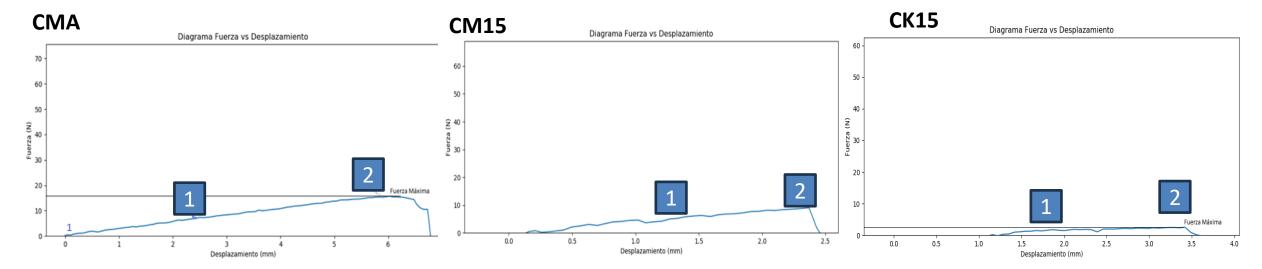
Etapa	Temperatura (°C)	
1	53,44	
2	220	

Nota. La figura muestra los resultados del análisis DSC con respecto a la biopelícula de celulosa microbiana.

Figura 19

Temperatura de transición vítreaTemperatura de degradación.

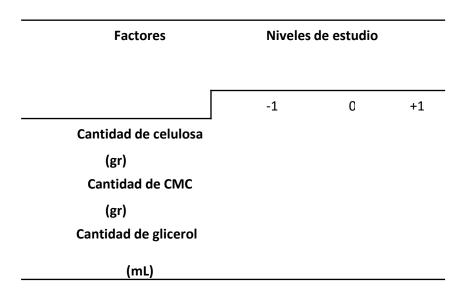
Tabla 14 *Resumen de análisis termogravimétrico*


Etapa	Temperatura (°C)	
2	93,51- 126,51	
3	200	

Nota. La figura muestra los resultados del análisis DSC con respecto a la película de kéfir.

Figura 15
Gráfica de resistencia a la tracción de la películas..

Muestra	Espesor(mm)	Área (mm^2)	Fuerza (N)	Elongación (%)	Esfuerzo (Mpa) Máximo.
MCA	0,19	2	14,57	5,20	7,3 Mpa
MC15	0,33	4,2	10,17	12,77	2,4 Mpa
MK15	0,38	4	55,53	35	14 Mpa



Nota. La figura muestra los resultados del ensayo de tracción en función de la fuerza aplicada y desplazamiento de las muestras de ensayo.

Tabla 5

Factores y variables significativas evaluadas para el desarrollo de biopelículas.

Figura 10 *Gráficos de Contorno película celulosa MC15.*

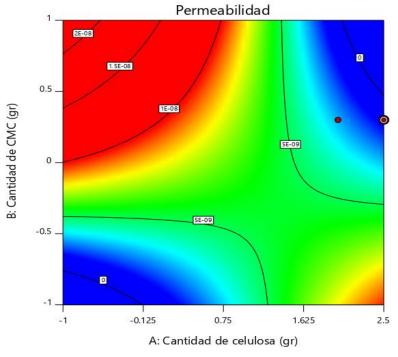
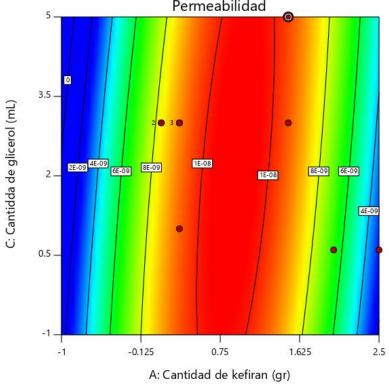



Figura 11
Gráficos de Contorno- kefiran MK15
Permeabilidad

Nota. El gráfico de contorno muestra la relación de factores con la variable de respuesta

CONTENIDO

CONCLUSIONES

- Los cultivos realizados a una temperatura de 25°C con 80 gr de sacarosa en un medio de 800 mL y 25 gr cáscaras de piña que fue la fuente nitrógeno, se obtuvo valores mayores en peso de celulosa microbiana seca con un valor promedio de 1,85 g y un rendimiento total de proceso de 2,3125 %, revelando una producción baja en función al tiempo de fermentación del caldo de cultivo ; por tanto en este trabajo se realizó de forma alternativa un polisacárido que revela altos rendimientos 85% y gran potencial.
- En el análisis de espectroscopia infrarroja IR, permitió identificar los picos característicos de los componentes conformacionales de la estructura de CM evidenciando bandas típicas de absorción infrarroja a 3400 cm-1, 3300 cm-1 y 3234 cm-1 indican picos característicos de la celulosa microbiana e indican vibraciones de estiramiento OH. Las bandas a 2846 cm-1, 2892 cm-1 y 2945.74 cm-1 corresponde a la presencia de CH de estiramiento; además de que los valores obtenidos son similares a los revisados por bibliografía.
- El diseño experimental desarrollado en función del análisis de varianza y gráfica de contorno para el proceso de obtención de celulosa microbiana y biopelículas, posibilita la identificación de los tratamientos deseables en función a los valores comparativos de pruebas físicas, mecánicas y estructurales.
- La búsqueda de fuentes alternativas marca una necesidad regente de la demanda de biomateriales, a partir de ello se desglosan una variedad de aplicaciones entre las más interesantes y viables partiendo de la celulosa microbiana es en el área alimenticia en el empaque de alimentos.

RECOMENDACIONES

- Se recomienda activar los inóculos de kéfir, para que el cultivo inicie con éxito y se logre la secreción la celulosa microbiana en la superficie del caldo de fermentación.
- Realizar el cultivo a una temperatura constante de 30°C, debido a que a tal temperatura el proceso de fermentación se acelera permitiendo la formación de celulosa microbiana en menor tiempo.
- Especificar las cantidades de fuente carbono y fuente de nitrógeno para asegurar un mayor rendimiento en peso de celulosa.
- Es aconsejable realizar pruebas de microcopia electrónica de barrido, con el de evidenciar y analizar las cualidades estructurales de la estructura de la celulosa microbiana.

Pracias!

