

Diseño mecánico y simulación computacional de un sistema de armado de vigas tipo

H con proceso de soldadura GMAW para la empresa SEDEMI SCC.

Gallardo Pavón, Marcela Rubí y Molina Cárdenas, Jossue Sebastián

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Mecánica

Trabajo de integración curricular, previo a la obtención del título de Ingeniero Mecánico

Ing. Abatta Jácome, Lenin Rómulo MSc.

13 de marzo del 2024

Plagiarism and AI Content Detection Report

TESIS FINAL GALLARDO MOLINA.pdf

Scan details

Scan time:	Total Pages:	Total Words:
February 26th, 2024 at 21:36 UTC	165	41086

Plagiarism Detection

	Types of plagiarism		Words	
	ldentical	0.2%	101	
0.9%	Minor Changes	0.4%	145	
	🔵 Paraphrased	0.3%	125	
	Omitted Words	0%	0	

<u>-</u>Q Plagiarism Results: (13)

AI Content Detection

		Text coverage		Words
		🔵 Al text	0%	0
C	0%	 Human text 	100%	41086
			<u>Learr</u>	n more

④ 4. Perfiles (comprimido)	0.3%
https://acerocenter.com.ec/wp-content/uploads/2022/08/4perfiles-comprimido_compressed.pdf	
ES IL RF PE Perfiles Canales Norma: NTE INEN 1623 ASTM A123 Descripción Son perfiles angulares	
estructurales de acero negro y galvaniz	

A Vigas IPE Quito Ecuador Perfiles IPE 100, 160, 200, 300, etc.	0.2%
Wigas IFL Quito Ecuador Fermes IFL 100, 100, 200, 500, etc.	0.270
https://www.importaceros.com/ecuador-quito/viga-ipe/	
02 2486 287 099 789 8777 info@importaceros.com.ec ¡Llamar Ahora! Búsqueda de productos TIE	
Wigas IPN: características, ventajas y aplicaciones del perfil estructural d	0.2%

http://alsimet.es/es/noticias/vigas-ipn-perfil-estructural-hierro Skip to content Skip to navigation Comercialización de metales férricos y no férricos, corte a medida y acabad...

🌐 Repositorio Digital - EPN: Diseño y simulación de operaciones de un siste	0.2%
https://bibdigital.epn.edu.ec/handle/15000/20638	

Skip navigation ...

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Mecánica

Certificación

Certifico que el trabajo de integración curricular: "Diseño mecánico y simulación computacional de un sistema de armado de vigas tipo H con proceso de soldadura GMAW para la empresa SEDEMI SCC" fue realizado por los señores Gallardo Pavón, Marcela Rubí y Molina Cárdenas, Jossue Sebastián ; el mismo que cumple con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, además fue revisado y analizada en su totalidad por la herramienta de prevención y/o verificación de similitud de contenidos; razón por la cual me permito acreditar y autorizar para que se lo sustente públicamente.

Sangolquí, 13 de marzo del 2024

3

MSc. Lenin Rómulo Abatta Jácome C. C: 1723180707

Departamento de Ciencias de la Energía y Mecánica Carrera de Ingeniería Mecánica

Responsabilidad de Autoría

Nosotros, **Gallardo Pavón, Marcela Rubí**, con cédula de ciudadanía n°1750435792 y **Molina Cárdenas, Jossue Sebastián**, con cédula de ciudadanía n°1750179523, declaramos que el contenido, ideas y criterios del trabajo de integración curricular: **Diseño mecánico y simulación computacional de un sistema de armado de vigas tipo H con proceso de soldadura GMAW para la empresa SEDEMI SCC** es de nuestra autoría y responsabilidad, cumpliendo con los requisitos legales, teóricos, científicos, técnicos, y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, respetando los derechos intelectuales de terceros y referenciando las citas bibliográficas.

Sangolquí, 13 de marzo del 2024

Gallardo Pavón Marcela Rubí C. C: 1750435792

Molina Cárdenas Jossué Sebastián C. C: 1750179523

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Mecánica

Autorización de Publicación

Nosotros Gallardo Pavón, Marcela Rubí, con cédula de ciudadanía n°1750435792 y Molina Cárdenas, Jossue Sebastián, con cédula de ciudadanía n°1750179523, autorizamos a la Universidad de las Fuerzas Armadas ESPE publicar el trabajo de integración curricular: Diseño mecánico y simulación computacional de un sistema de armado de vigas tipo H con proceso de soldadura GMAW para la empresa SEDEMI SCC en el Repositorio Institucional, cuyo contenido, ideas y criterios son de nuestra responsabilidad.

Sangolquí, 13 de marzo del 2024

5

Gallardo Pavón Marcela Rubí C. C: 1750435792

Molina Cárdenas Jossué Sebastián C. C: 1750179523

Dedicatoria

Dedico este trabajo de titulación con profundo cariño a las personas que me han apoyado a lo largo de mi vida.

A la mujer más valiente y amorosa que conozco, mi madre Hilda, quien con su esfuerzo y apoyo incondicional me ha brindado la posibilidad de culminar esta fase tan importante en mi vida. Su amor y consejos no solo han sido una fuente constante de fortaleza, sino que también me han permitido superar los obstáculos y momentos difíciles del camino.

A mi padre, Marcelo, quien desde el cielo ha sido siempre un ángel cuya influencia perdura en cada parte de mi vida.

A mi hermano Elvis y su esposa Diana, quienes han sido parte esencial de mi formación. Su ejemplo, apoyo, orientación y presencia han sido un regalo invaluable; su influencia ha marcado una huella profunda en mi corazón.

A mi hermano Carlos, que me ha ayudado en los momentos más duros y frustrantes de esta etapa con su cariño y paciencia.

Dedico este trabajo también a mis primos, Yadira, Richar, Luis, Washo y Marco, quienes han sido mi ejemplo, me han servido de modelo y me han inspirado para alcanzar mis objetivos.

Finalmente, a mi abuelita Maruja y mi tía Magui, quienes, a pesar de ya no estar físicamente conmigo, son y serán un ejemplo eterno de fortaleza y perseverancia.

Gallardo Pavón Marcela Rubí

Dedicatoria

Mis abuelos, Mamá Olga y Papá Pepe, han sido siempre mi fuente inagotable de apoyo y conocimiento, y a ellos dedico este trabajo de grado. Su amor inquebrantable, su tolerancia y sus sacrificios me han permitido terminar esta etapa académica, y por ello les estoy agradecido.

A mi hermano Alex y mi madre Marlene. Por su confianza en mí y apoyo en todas mis decisiones. Su constante aliento y comprensión han sido pilares fundamentales que me han impulsado a alcanzar este logro.

Finalmente, deseo dedicar este trabajo a todas las personas que han confiado en mí, en particular a mis tíos y tías, y de manera especial a mi tía Paty, así como a todos mis primos.

Molina Cárdenas Jossue Sebastián

Agradecimiento

Quiero dar las gracias sinceramente a todos los que me han ayudado de manera significativa a terminar esta tesis.

En primer lugar, agradezco a Lenin Abatta, mi director de tesis, por su orientación experta, paciencia y dedicación a lo largo de este proyecto. Sus valiosos aportes fueron fundamentales para dar forma a este trabajo.

Mi mejor amigo y compañero de tesis, Jossue Molina, por su colaboración excepcional y dedicación. Además, quiero agradecer por la amistad sincera que me ha brindado a lo largo de toda la carrera y en mi vida personal. Jossue ocupará siempre un lugar especial en mi corazón.

A mi familia, en particular a mi madre Hilda, por su amor, apoyo constante y comprensión durante los desafíos académicos. Su respaldo ha sido mi mayor fortaleza.

Agradezco de manera muy especial a mi hermano Elvis, quien ha desempeñado el papel de un padre en mi vida con su apoyo incondicional y dedicación. Cada sacrificio que ha realizado y cada muestra de paciencia que me ha brindado reflejan una entrega excepcional. Su generosidad y cariño han sido una guía constante en mi camino, y estoy profundamente agradecida por ser una de mis mayores fuentes de inspiración. Gracias, Elvis, por ser más que un hermano para mí.

A mis tíos, Pepe, Georgina, Mario y Washo, agradezco su constante apoyo en cada paso de este camino. Su aliento ha sido fundamental.

Agradezco a los ingenieros Javier Ávalos y Alexander Loya, cuyo respaldo y confianza han sido esenciales para el éxito de este proyecto.

Por último, me gustaría expresar mi gratitud a todos los que han contribuido a hacer

posible este logro, ya sea directa o indirectamente. Este trabajo no habría sido posible sin su colaboración y apoyo.

Gallardo Pavón Marcela Rubí

Agradecimiento

A todas las personas que han colaborado en la elaboración de esta tesis quiero transmitirles mi más sincero agradecimiento. Su invaluable ayuda y sus esfuerzos han mejorado tanto mi experiencia académica como personal.

Quiero empezar expresando mi gratitud a mi tutor, Lenin Abatta, por sus consejos, tolerancia y compromiso. Sus acertados consejos y críticas fueron cruciales para el crecimiento y la realización de este trabajo.

Agradezco a mi compañera en este trabajo y mi mejor amiga, Marcela Gallardo, por sus valiosas aportaciones, compartir su conocimiento y, sobre todo, por su amistad constante a lo largo de mi etapa universitaria. Espero sinceramente contar con su amistad en el futuro.

Un agradecimiento especial a toda mi familia por su constante apoyo y paciencia durante este viaje, especialmente a mis abuelos Olga y Pepe, así como a mis tíos y primos. Su apoyo y cariño han sido mi mayor fuente de inspiración. Quiero dar las gracias sinceramente a mi hermano Alex y a mi madre Marlene. Aunque vivimos lejos, nunca han dejado de preocuparse por mi salud y mi bienestar. Su apoyo infalible queda demostrado por sus esfuerzos para que nunca me falte de nada.

También quiero reconocer la contribución de todos mis amigos y compañeros en la universidad. Sus conversaciones, sugerencias y ánimo fueron un impulso esencial.

Finalmente, deseo expresar mi agradecimiento a SEDEMI, con un reconocimiento especial para Javier Ávalos y Alexander Loya. . Además, agradezco la disposición constante de ambos para colaborar y proporcionar orientación siempre que se trató de asuntos relacionados con la empresa.

Molina Cárdenas Jossue Sebastián

Índice de Contenidos

Resumen	34
Abstract	35
Capítulo I: Generalidades	36
Antecedentes	36
Definición del problema	37
Objetivos	38
Objetivo General	38
Objetivos Específicos	38
Alcance del proyecto	39
Justificación del proyecto	39
Área de influencia	42
Capítulo II: Marco teórico	43
Investigación - Trabajos previos	43
Miembros estructurales	49
Descripción de los procesos de fabricación de miembros estructurales tipo I	52
Laminación de miembros estructurales tipo I	52
Conformación mediante soldadura de miembros estructurales tipo I	53

Sistema de soldadura	56
Posiciones de soldadura	58
Parámetros de soldadura	62
Sistemas constitutivos	66
Identificación de sistemas que se diseñan	66
Sistemas de alimentación	66
Sistemas de nivelación y elevación	68
Sistema de transporte	69
Verificación del nivel del piso	71
Capítulo III: Metodología	73
Investigación de requisitos	73
Necesidades del cliente	73
Especificaciones técnicas	74
Parámetros de diseño	75
Planteamiento de alternativas	76
Alternativa 1. Solución horizontal: Posición 2F, alma horizontal	77
Alternativa 2. Solución vertical: Posición 2F, alma vertical	78
Análisis y evaluación de alternativas	79
Criterios de evaluación	79

Evaluación y selección de la mejor alternativa 8	35
Levantamiento del área de ubicación de la máquina 8	8
Diseño detallado 9)1
Cargas requeridas del sistema 9)1
Diseño de elementos de la zona de armado9)3
Diseño del eje motriz para los rodillos de transporte)4
Selección de rodamientos para el rodillo motriz de transporte11	14
Diseño del eje para los rodillos locos de transporte11	18
Diseño del rodillo de transporte por rigidez12	21
Selección del motor y reductor de velocidad12	23
Diseño del eje del rodillo vertical12	27
Selección del cilindro neumático de presión de patines13	31
Diseño del sistema de transmisión por cadena para mesas trans-	
portadoras13	36
Diseño de las chavetas para el sistema de transmisión14	17
Selección de rieles y patines15	51
Diseño de rueda que soporta el posible volteo del patín	56
Selección de cilindro neumático para rueda que soporta el posible	
volteo del patín16	33

	Diseño de la rueda que eleva el alma164
	Selección del cilindro neumático para los elevadores del alma166
	Diseño de la compuerta para alineación de flejes166
	Selección del cilindro neumático para la compuerta173
Diseño	de elementos de la zona de soldadura176
	Selección de rieles y patines
	Diseño del eje motriz para el rodillo de la zona de soldadura185
	Selección del motor y reductor de velocidad187
	Diseño del sistema de transmisión por cadena188
	Diseño de las chavetas para el sistema de transmisión para la
	zona de soldadura190
	Diseño de la rueda que posiciona el alma191
	Selección del cilindro neumático elevador y presionador del alma
	en la zona de soldadura195
	Diseño de la rueda que posiciona el patín
	Selección del cilindro neumático para posicionador de patín y an-
	torchas198
Diseño	de elementos de la zona de post - soldadura200
	Diseño de los brazos rotadores para la zona de post - soldadura200
	Selección del cilindro neumático para brazos rotadores de viga208

Simulación de elementos críticos, conexiones y estructuras	210
Simulación de estructuras	210
Simulación del bastidor de la zona de transporte y armado	210
Simulaciones de los bastidores de la zona de soldadura	220
Simulación del bastidor de la zona de post - soldadura	227
Simulación de elementos críticos	231
Simulación del brazo rotador de la zona de post-soldadura	231
Simulación del eje motriz	239
Simulación del tubo cedulado del rodillo motriz.	241
Simulación del bastidor para antorchas	244
Simulación de la placa de la compuerta	247
Simulación de placa base y conexiones	250
Capítulo IV: Resultados	256
Zona de transporte y armado	256
Zona de soldadura	258
Zona de post - soldadura	260
Solución Total	261
Capítulo V: Costos y análisis de productividad	263
Costos	263

Análisis de productividad	
Capítulo VI: Conclusiones y recomendaciones	273
Conclusiones	273
Recomendaciones	
Referencias	
Apéndice A	279
A.1 Rodillo loco de transporte	279
A.2 Rodillo vertical	291
A.3 Rodillo motriz de la zona de soldadura	
Apéndice B	
B.1 Chaveta de unión entre el motoreductor y el rodillo de la zona de arm	ado312
B.2 Chaveta de unión entre rodillos de la zona de soldadura	
B.3 Chaveta de unión entre el motoreductor y el rodillo de la zona de solo	ladura314
Apéndice C	
C.1 Cilindro neumático para rueda que soporta el posible volteo del patín	315
C.2 Cilindro neumático para los elevadores de alma	
C.3 Cilindro neumático para la compuerta	
C.4 Cilindro neumático presionador de patines de la zona de soldadura	
C.5 Cilindro neumático para posicionador de patín y antorchas	

C.6 Cilindro neumático para elevador y posicionador del alma en la zona de soldadura	
	326
C.7 Cilindro neumático para brazos elevadores y rotadores	328
Apéndice D	330
D.1 Rueda elevadora de alma	330
D.2 Rueda posicionadora de alma	333
D.3 Rueda posicionadora de patín	337
Apéndice E	342
E.1 Selección de motor y reductor de la zona de soldadura	342
Apéndice F	345
F.1 Sistema de transimsión en cadena de la zona de soldadura	345
Apéndice G	350
Apéndice H	359
Apéndice I	359
Apéndice J	359
Apéndice K	359

Índice de Tablas

Tabla 1	Tabla de equivalencias entre miembros estructurales H de distintos estánda-	
res		50
Tabla 2	Parámetros de soldadura GMAW	65
Tabla 3	Especificaciones técnicas de la máquina	75
Tabla 4	Resumen de dimensiones que se podrá fabricar	75
Tabla 5	Mecanismos y equipos utilizados en la zona de armado	82
Tabla 6	Mecanismos y equipos utilizados en la zona de soldadura	82
Tabla 7	Mecanismos y equipos totales	83
Tabla 8	Movimientos utilizados en la zona de armado	83
Tabla 9	Movimientos utilizados en la zona de soldadura	84
Tabla 10	Movimientos totales utilizados	84
Tabla 11	Tabla resumen para la evaluación de criterios de las soluciones horizontal y	
vertical		85
Tabla 12	Matriz de priorización de criterios de evaluación	85
Tabla 13	Matriz de priorización del criterio costo	86
Tabla 14	Matriz de priorización del criterio mecanismos y equipos utilizados	86
Tabla 15	Matriz de priorización del criterio movimientos utilizados	86
Tabla 16	Matriz de priorización del criterio elección específica de SEDEMI	87

Tabla 17	Matriz de resultados	87
Tabla 18	Datos recopilados del nivel del suelo	90
Tabla 19	Coeficientes de fricción entre distintos materiales	99
Tabla 20	Parámetros en el factor de la condición superficial de Marin, ecuación (6-19)	104
Tabla 21	Factores de confiabilidad ke correspondientes a 8 desviaciones estándar por-	
centuales	del límite de resistencia a la fatiga	105
Tabla 22	Valores orientativos para el factor de seguridad estática S ₀ - para cargas con-	
tinuas y/u	ocasionales- rodamientos de bolas	117
Tabla 23	Especificaciones técnicas de rodamientos de bolas con chumacera	117
Tabla 24	Motores trifásicos Weg	126
Tabla 25	Reductores Weg	126
Tabla 26	Fuerza obtenida con el cilindro seleccionado	135
Tabla 27	Factores de servicio para transmisiones por cadenas	137
Tabla 28	Determinación del número de dientes	140
Tabla 29	Interpolación para determinación del número de dientes	140
Tabla 30	Selección de la catalina conductora	143
Tabla 31	Selección de la catalina conducida	143
Tabla 32	Selección de la cadena	144
Tabla 33	Valores recomendados para chavetas	148

Tabla 34	Tipo y serie de guía lineal seleccionada	.153
Tabla 35	Tipo de precisión	.154
Tabla 36	Tipo de precarga en la guía	.154
Tabla 37	Ejemplos de aplicación de grados de precarga	.155
Tabla 38	Especificaciones de las guías lineales HIWIN	.156
Tabla 39	Selección de rodamiento de pasador para rueda de volteo de patín	.161
Tabla 40	Resultados de los elementos diseñados y seleccionados de la zona de trans-	
porte y ar	mado	.256
Tabla 41	Resultados de los elementos diseñados y seleccionados de la zona de sol-	
dadura		.258
Tabla 42	Resultados de los elementos diseñados y seleccionados de la zona de post	
- soldadur	a	.260
Tabla 43	Costos de elementos y equipos comprados	.265
Tabla 44	Costos de elementos que se fabricarán	.265
Tabla 45	Costos total	.266
Tabla 46	Tiempos del proceso manual del armado de vigas	.266
Tabla 47	Cantidad de mano de obra del proceso manual	.267
Tabla 48	Datos de cilindros neumáticos para cálculos de tiempos	.267
Tabla 49	Datos de motores para cálculos de tiempos	.267
Tabla 50	Tiempos del proceso semiautomático del sistema de armado de vigas	.268

Tabla 51	Cantidad de mano de obra del proceso semiautomático	269
Tabla 52	Cantidad de vigas producidas diariamente	270
Tabla 53	Vigas diarias producidas en un mes	271
Tabla 54	Interpolación para determinación del número de dientes	346

Índice de Figuras

Figura 1	Volumen de la demanda mundial de acero de 2019 a 2021	36
Figura 2	Zona de armado y transporte aproximada	40
Figura 3	Zona de soldadura aproximada	41
Figura 4	Zona de post-soldadura aproximada	42
Figura 5	Solución presentada por Jesús Pino	44
Figura 6	Solución presentada por Leping Liu, Mingdong Zhong y Qizheng Dong	45
Figura 7	Solución presentada por Noceda Rodríguez	46
Figura 8	Solución presentada por Basuri Fernández y Bolaños Naranjo	47
Figura 9	Solución presentada por Placencia Morillo y Rivera Carrera	48
Figura 10	Tipos de formas H según AISC	49
Figura 11	Tipos de formas H disponibles localmente	50
Figura 12	Proceso de laminación de miembros estructurales tipo I	52
Figura 13	Proceso de corte de miembros estructurales tipo I	53
Figura 14	Proceso de armado de miembros estructurales tipo I	54
Figura 15	Proceso de soldadura de miembros estructurales tipo I	55
Figura 16	Esquema de soldadura GMAW	57
Figura 17	Posiciones de soldadura en placas	58
Figura 18	Posiciones de soldadura en tuberías	59

Figura 19	Posición 1F para soldadura de vigas	60
Figura 20	Posición 2F, alma vertical	61
Figura 21	Posición 2F, alma horizontal	62
Figura 22	Penetración del cordón relacionada con la variante primaria	64
Figura 23	Transmisión de cadena	67
Figura 24	Cilindro neumático estandarizado	68
Figura 25	Mesa de rodillos	70
Figura 26	Verificación del nivel del suelo	72
Figura 27	Denominación de un miembro estructural "I"	76
Figura 28	Modelo 3D de la alternativa 1	77
Figura 29	Modelo 3D de la alternativa 2	78
Figura 30	Peso aproximado de la máquina de la solución horizontal en Inventor	80
Figura 31	Peso aproximado de la máquina de la solución vertical en Inventor	81
Figura 32	Puntos de referencia del nivel del suelo en "Garita 3"	89
Figura 33	Desnivel del suelo	90
Figura 34	Distribución por áreas tributarias	94
Figura 35	Carga distribuida de un rodillo de transporte	96
Figura 36	D.C.L. del eje de rodillo motriz de transporte	97
Figura 37	Resultados de reacciones en eje del rodillo motriz de transporte. Plano Y-Z	100

Figura 38	Diagrama de momento flector en el plano Y-Z en el eje del rodillo motriz de	
transporte		101
Figura 39	Resultados de reacciones en eje del rodillo motriz de transporte. Plano X-Z.	102
Figura 40	Resultados de reacciones en eje del rodillo loco de transporte. Plano Y-Z	102
Figura 41	Factor geométrico de concentración de esfuerzos K_t para un eje con filete	
de hombro e	n flexión	107
Figura 42	Factor geométrico de concentración de esfuerzos K_t para un eje con filete	
de hombro e	n torsión	107
Figura 43	Diseño del eje del rodillo motriz realizado con el acelerador de diseño de	
Inventor		111
Figura 44	Deflexiones del eje de rodillo motriz obtenidas con el acelerador de diseño	
de Inventor .		112
Figura 45	Pendientes del eje de rodillo loco obtenidas con el acelerador de diseño de	
Inventor		113
Figura 46	D.C.L. del eje de rodillo loco de transporte	118
Figura 47	Cargas distribuidas en el rodillo loco de transporte	120
Figura 48	Deflexión en una viga simplemente soportada con carga uniformemente	
distribuida		121
Figura 49	Distribución por áreas tributarias para los rodillos verticales	127
Figura 50	D.C.L. del eje del rodillo vertical	129

Figura 51	Fuerzas en el eje del rodillo vertical	130
Figura 52	Peso del mecanismo de rodillo vertical	132
Figura 53	Especificaciones del cilindro neumático seleccionado	135
Figura 54	Gráfica para determinar el número de cadena a utilizar	139
Figura 55	Solución del sistema de transmisión	144
Figura 56	Solución de la transmisión en cadena entre rodillos transportadores	147
Figura 57	Variables de las chavetas	147
Figura 58	Cargas que actúan en los patines y rieles	152
Figura 59	Área tributaria de patín para cálculo de la carga del patín sobre la rueda	157
Figura 60	D.C.L. fuerza de volteo de patín	158
Figura 61	Diseño de pasador con acelerador de diseño de Inventor	160
Figura 62	Peso del mecanismo que desplaza la rueda de volteo	163
Figura 63	Reacciones del sistema elevador del alma	164
Figura 64	Caso 1: Análisis de compuerta	167
Figura 65	Caso 2: Análisis de compuerta	170
Figura 66	D.C.L. del pasador que gira la compuerta	171
Figura 67	Peso de la compuerta	172
Figura 68	Diámetro ideal del pasador de la compuerta	173
Figura 69	D.C.L. cilindro neumático de la compuerta	174

Figura 70	Distribución por áreas tributarias de la zona de soldadura	176
Figura 71	D.C.L. de la zona de soldadura	177
Figura 72	D.C.L. de la zona de soldadura para que no resbale la viga	179
Figura 73	Peso del mecanismo presionador de patín en la zona de soldadura	181
Figura 74	D.C.L. de las fuerzas que actúan sobre los patines	182
Figura 75	Momentos admisibles en rieles y patines HIWIN	185
Figura 76	D.C.L. del eje del rodillo motriz de la zona de soldadura	186
Figura 77	Solución del sistema de transmisión	189
Figura 78	Solución de la transmisión en cadena entre rodillos verticales	190
Figura 79	D.C.L. de la rueda superior que posiciona el alma	192
Figura 80	D.C.L. de la rueda inferior que posiciona el alma	193
Figura 81	Fuerza de empuje para cilindro posicionador y presionador del alma	195
Figura 82	Peso del mecanismo de antorchas	196
Figura 83	D.C.L. de la rueda que posiciona el patín	197
Figura 84	Fuerza de empuje para cilindro posicionador de patín y antorcha	199
Figura 85	Distancia de separación entre brazos	201
Figura 86	Áreas tributarias de la zona de post - soldadura	201
Figura 87	Fuerzas en los brazos rotadodres	203
Figura 88	Resultados de reacciones en el brazo rotador	203

Figura 89	Diagrama de momento flector en el brazo rotador	.204
Figura 90	Inercia del perfil C100X50X6	.207
Figura 91	D.C.L. del cilindro neumático para brazos rotadores	.208
Figura 92	Peso aproximado del brazo rotador	.209
Figura 93	Diseño geométrico del bastidor de la zona de transporte y armado	.211
Figura 94	Definición de malla de la zona de transporte	.212
Figura 95	Definición del material	.212
Figura 96	Lista de perfiles creados	.213
Figura 97	Modelado de la estructura de la zona de transporte	.214
Figura 98	Cargas sobre la estructura de la zona de transporte	.216
Figura 99	Asignación de grados de libertad en la estructura	.217
Figura 100	Resultados de demanda capacidad	.218
Figura 101	Resultado de la deflexión más crítica	.219
Figura 102	Resultado de los modos de vibración	.220
Figura 103	Diseño geométrico del bastidor móvil de la zona de soldadura	.221
Figura 104	Resultados de demanda capacidad del bastidor móvil de la zona de solda-	
dura		.222
Figura 105	Resultado de la deflexión más crítica en el bastidor móvil de la zona de	000
soldadura		.223

Figura 106	Diseño geométrico del bastidor fijo de la zona de soldadura	224
Figura 107	Resultados de demanda capacidad del bastidor fijo de la zona de soldadu-	
ra		225
Figura 108	Resultado de la deflexión más crítica en el bastidor fijo de la zona de sol-	
dadura		226
Figura 109	Resultado de los modos de vibración	.227
Figura 110	Diseño geométrico del bastidor de la zona de post - soldadura	228
Figura 111	Resultados de demanda capacidad del bastidor de la zona de post - sol-	229
aadara		0
Figura 112	Resultados de deflexión máxima del bastidor de la zona de post - soldadura	230
Figura 113	Resultado de los modos de vibración	231
Figura 114	Modelo 3D del brazo rotador	232
Figura 115	Árbol de la simulación en Inventor	232
Figura 116	Material para los brazos rotadores	233
Figura 117	Asignación de cargas sobre el perfil C del brazo rotador	234
Figura 118	Asignación de restricciones sobre brazo rotador	235
Figura 119	Creación de la malla	235
Figura 120	Configuración del análisis de convergencia	236
Figura 121	Ejecución de la simulación	237
Figura 122	Esfuerzo de Von Misses	.237

Figura 123	Deflexiones	.238
Figura 124	Convergencia de la simulación	.239
Figura 125	Modelo 3D del eje motriz	.239
Figura 126	Esfuerzo de Von Misses	.240
Figura 127	Deflexiones	.240
Figura 128	Convergencia de la simulación	.241
Figura 129	Modelo 3D del tubo cedulado del eje motriz	.242
Figura 130	Esfuerzo de Von Misses	.242
Figura 131	Deflexiones	.243
Figura 132	Convergencia de la simulación	.244
Figura 133	Modelo 3D del bastidor para antorchas	.244
Figura 134	Esfuerzo de Von Misses	.245
Figura 135	Deflexiones	.246
Figura 136	Convergencia de la simulación	.247
Figura 137	Modelo 3D de la placa de la compuerta	.247
Figura 138	Esfuerzo de Von Misses	.248
Figura 139	Deflexiones	.249
Figura 140	Convergencia de la simulación	.250
Figura 141	Configuración del proyecto	.251

Figura 142	Configuración de la geometría de la conexión	.252
Figura 143	Asignación de cargas en la conexión	.252
Figura 144	Configuración de operaciones	.253
Figura 145	Resultados de la simulación de la placa base	.254
Figura 146	Resultados de la tensión equivalente de la placa base	.255
Figura 147	Resultados de la zona de transporte y armado	.257
Figura 148	Resultados de la zona de soldadura	.259
Figura 149	Resultados de la zona de post - soldadura	.261
Figura 150	Resultado final del sistema de armado de vigas tipo H con proceso de	
soldadura G	MAW para la empresa SEDEMI SCC	.262
Figura 151	Peso total de la máquina	.264
Figura 152	Cantidad de vigas producidas vs Número de días	.270
Figura 153	Resultados de reacciones en eje del rodillo loco de transporte. Plano X-Z	.280
Figura 154	Diagrama de momento flector en el plano X-Z en el eje del rodillo loco de	
transporte		.280
Figura 155	Resultados de reacciones en eje del rodillo loco de transporte. Plano Y-Z	.281
Figura 156	Diagrama de momentos en eje del rodillo loco de transporte. Plano Y-Z	.281
Figura 157	Diseño del eje de rodillo loco realizado con el acelerador de diseño de	
Inventor		.285

Figura 158	Deflexiones del eje de rodillo loco obtenidas con el acelerador de diseño	
de Inventor		.286
Figura 159	Pendientes del eje de rodillo loco obtenidas con el acelerador de diseño de	
Inventor		.287
Figura 160	Especificaciones técnicas de rodamientos de bolas con diámetro interno	
de 25 mm		.290
Figura 161	Resultados de reacciones en eje del rodillo vertical de transporte Plano Y-Z.	.292
Figura 162	Diagrama de momento flector en el plano Y-Z en el eje del rodillo vertical	
de transporte	Э	.292
Figura 163	Diseño del eje de rodillo vertical realizado con el acelerador de diseño de	
Inventor		.295
Figura 164	Deflexiones del eje de rodillo vertical obtenidas con el acelerador de diseño	
de Inventor		.296
Figura 165	Pendientes del eje de rodillo vertical obtenidas con el acelerador de diseño	
de Inventor		.297
Figura 166	Especificaciones técnicas de rodamientos de bolas con diámetro interno	
de 25 mm se	egunda opción	.300
Figura 167	Resultados de reacciones en eje del rodillo motriz de la zona de soldadura	
Plano X-Z		.303
Figura 168	Diagrama de momento flector en eje del rodillo motriz de la zona de solda-	
dura Plano X	۲-Z	.304

Figura 169	Resultados de reacciones en eje del rodillo motriz de la zona de soldadura	
Plano Y-Z		.305
Figura 170	Diagrama de momento flector en eje del rodillo motriz de la zona de solda-	
dura Plano Y	-Z	.305
Figura 171	Diseño del eje del rodillo motriz de la zona de soldadura realizado con el	
acelerador d	e diseño de Inventor	.308
Figura 172	Deflexiones del eje de rodillo motriz de la zona de soldadura	.309
Figura 173	Pendientes del eje de rodillo motriz de la zona de soldadura	.310
Figura 174	Carrera del cilindro neumático elevador de la compuerta	.319
Figura 175	Especificaciones del cilindro neumático seleccionado	.324
Figura 176	Fuerza teórica de cilindros de carrera corta	.325
Figura 177	Especificaciones del cilindro neumático seleccionado para el elevador y	
presionador	del alma	.327
Figura 178	Fuerza teórica del cilindro	.327
Figura 179	Diseño del pasador del elevador del alma con acelerador de Inventor	.331
Figura 180	Selección de rodamiento para la rueda elevadora del alma	.332
Figura 181	D.C.L. del pasador de la rueda posicionadora inferior	.333
Figura 182	Diseño de pasador del posicionador de alma con acelerador de diseño de	
Inventor		.334
Figura 183	Selección de rodamiento de pasador para rueda posicionadora de alma	.335

Figura 184	D.C.L. del pasador de la rueda posicionadora inferior	.338
Figura 185	Diseño de pasador del posicionador de patín con acelerador de diseño de	
Inventor		.339
Figura 186	Selección de rodamiento de pasador para rueda posicionadora de alma	.340
Figura 187	Reductores Weg	.344
Figura 188	Medición del nivel del suelo. Estaca C0	.350
Figura 189	Medición del nivel del suelo. Estaca A2	.351
Figura 190	Colocación de estacas	.352
Figura 191	Manguera de nivel	.353
Figura 192	Manguera de nivel 2	.354
Figura 193	Medición del nivel del suelo. Estaca A1	.355
Figura 194	Medición del nivel del suelo. Estaca A4	.356
Figura 195	Medición del nivel del suelo. Estaca B0	.357
Figura 196	Medición del nivel del suelo. Estaca B4	.358

Resumen

Con el objetivo de abordar la creciente demanda de vigas tipo H en SEDEMI SCC, que actualmente se fabrican a mano debido a sus dimensiones únicas, este proyecto de grado se enfoca en el diseño y simulación de un sistema automatizado para el ensamblaje de vigas. Después de un análisis exhaustivo de los requisitos de SEDEMI, se ha seleccionado la opción de soldadura en posición 2F, con el alma en posición horizontal, ya que se adapta mejor a sus necesidades específicas.

Una vez definida la opción, se procedió al diseño detallado mediante memorias de cálculo para los componentes de la máquina, simulación de elementos críticos, bastidores y conexiones, garantizando que cada elemento permanezca dentro de su límite de fluencia. El resultado es una máquina optimizada dividida en tres zonas: transporte y ensamblaje, soldadura y pos-soldadura, con un costo aproximado de 36,148.85 dólares. Considerando el aumento proyectado en la productividad, de 6 a 16 vigas diarias, esta opción se considera altamente factible y beneficiosa para SEDEMI SCC.

Esta solución no solo mejora la eficiencia del proceso de fabricación, sino que también reduce la dependencia de la mano de obra y minimiza los errores de producción, lo que resulta en una operación más rentable y confiable para la empresa.

Palabras clave: Diseño, viga tipo H, productividad, sistema de armado de vigas.

Abstract

To address the growing demand for H-beams at SEDEMI SCC, which are currently manufactured by hand due to their unique dimensions, this degree project focuses on the design and simulation of an automated system for beam assembly. After a thorough analysis of SEDEMI's requirements, the 2F welding option, with the web in a horizontal position, has been selected as it best suits their specific needs.

Once the option was defined, a detailed design was carried out using calculation memories for the machine components, simulation of critical elements, frames, and connections, ensuring that each element remains within its creep limit. The result is an optimized machine divided into three zones: transport and assembly, welding, and post-welding, with an approximate cost of 36,148.85 dollars. Considering the projected increase in productivity, from 6 to 16 beams per day, this option is considered highly feasible and beneficial for SEDEMI SCC. This solution not only improves the efficiency of the manufacturing process but also reduces labor dependency and minimizes production errors, resulting in a more profitable and reliable operation for the company.

Key words: Design, H-beam, Productivity, Beam assembly system.

Capítulo I: Generalidades

Antecedentes

Las vigas tipo H, también conocidas como vigas de perfil en I o vigas de alma abierta, son componentes estructurales cruciales utilizados en los sectores de la construcción y la ingeniería civil. Estas vigas son utilizadas para soportar cargas pesadas, como techos, pisos, puentes, edificios y estructuras industriales.

Como se ve en la Figura 1, la demanda de este tipo de vigas ha aumentado últimamente en todo el mundo, según (Statista Research Department, 2022). En especial en América central y del sur se nota, un incremento en la demanda de 38.8 a 50.7 millones de toneladas métricas de acero, lo que significa que es un potencial mercado que se puede desarrollar y mejorar.

Figura 1

Volumen de la demanda mundial de acero de 2019 a 2021

Nota. La fotografía fué tomada de (Statista Research Department, 2022).
El peso es una consideración clave en la fabricación de estructuras metálicas; unos materiales más ligeros se traducen en menores costos, mayor facilidad de transporte e instalación, mayor resistencia y mayor eficiencia energética.

Al momento de producir estas vigas en diversas empresas como SEDEMI, SAURUS, Aceros Arequipa, Cimex, Metalex, entre otras, buscan reducir costos y tiempos para mejorar su productividad.

El tiempo es un factor determinante al hablar de productividad, si se reduce el tiempo y se consiguen los mismos resultados sin afectar la calidad del producto esta empresa obtendrá excelentes resultados y disminuirá sus costos.

Definición del problema

Actualmente en la empresa SEDEMI. SCC para el armado de vigas con peraltes menores a 250 mm, espesores de alma menores a 6 mm y ancho de patín menores a 120 mm se utiliza un proceso manual en el que se necesitan: 2 armadores, 2 soldadores y 4 ayudantes. Con estas condiciones el proceso logra obtener diariamente 6 vigas diarias.

La demanda de mercado actual que tiene SEDEMI ha incrementado para vigas con las características antes mencionadas, esto se debe a que, el peso de las vigas es un factor primordial en la competencia de contratos de estructuras a nivel nacional. Debido a esto, se necesita incrementar el número de vigas armadas por día; automatizando el proceso.

Con el fin de aumentar la productividad en el actual proceso de ensamblaje de la empresa, se propone diseñar mediante simulación computacional los sistemas esenciales para la realización de un sistema de ensamblaje de vigas mediante soldadura GMAW.

Se estima que, con la máquina a diseñar, se logrará una mejora significativa en el proceso de armado de vigas, obteniendo una producción diaria aproximada de 16 unidades.

Para esto, la máquina realizará automáticamente la alineación, nivelación de patines y alma, con esto se reducirá el tiempo y trabajo actual que los operadores realizan en la zona de armado, además se prevé que, para la zona de soldadura, se tenga un flujo continuo de ensamblaje de vigas.

Además, la mano de obra también se reduciría a 2 operadores y 2 ayudantes; los 2 ayudantes se encargarán de ubicar los flejes en la máquina con ayuda de puentes grúa, 1 operador supervisará a los 2 ayudantes y controlará la máquina en la zona de armado y post-soldadura, finalmente el otro operador controlará la máquina en la zona de soldadura.

Objetivos

Objetivo general

Diseñar un sistema de armado de vigas tipo H con proceso de soldadura GMAW, para obtener una capacidad de producción de al menos 12 vigas diarias en la empresa SEDEMI.

Objetivos específicos

- Realizar un estudio de la productividad en el proceso de ensamblaje de vigas tipo H en la empresa SEDEMI SCC.
- Realizar el levantamiento de la ubicación de los componentes de la máquina en sitio.
- Diseñar y simular computacionalmente una máquina ensambladora de vigas tipo H y mecanismos complementarios.
- Desarrollar planos de conjunto, subconjunto, de taller y montaje de los elementos estructurales y mecánicos de la máquina.
- Realizar una evaluación de los gastos implicados en la construcción futura de la

máquina de ensamblaje de vigas.

Alcance del proyecto

Para dar respuesta a las necesidades y espacios de la planta de SEDEMI, el objetivo del proyecto es realizar el diseño y simulación computacional de un sistema de ensamblaje de vigas que incluya zona de transporte y armado, zona de soldadura y zona de post - soldadura para vigas de peraltes inferiores a 300 mm y espesores de patín inferiores a 12 mm. Para ello, es necesario el levantamiento de espacios antes de la creación de planos de ensamblaje, conjunto y subconjunto en los que se detallan todos y cada uno de los componentes del sistema.

Para respaldar este diseño, se realizarán cálculos justificativos basados en normas y estándares de diseño, y se seleccionarán elementos normalizados con especificaciones técnicas apropiadas. Además, se llevarán a cabo simulaciones computacionales de los elementos críticos del sistema de ensamblaje. Finalmente, se incluirá un análisis de costos para determinar el presupuesto aproximado para construir el sistema de ensamblaje.

Justificación del proyecto

SEDEMI ahorrará costos y aumentará la producción gracias a la solución de ensamblaje de vigas que se diseñará. Se prevé que el diseño del sistema de armado de vigas potencie la fabricación de vigas, aumentando la capacidad diaria de producción de 6 vigas a al menos 12 vigas. Además, el trabajo realizado por los operadores se facilitaría. Se soluciona el problema causado por el cuello de botella en las zonas de armado y soldadura.

SEDEMI al tener la posibilidad de desarrollar y fabricar una máquina a medida, puede adaptarla a sus necesidades específicas considerando los parámetros, requerimientos y

funcionalidades deseadas. La opción de comprar la máquina de armado de vigas queda descartada ya que el precio superaría el doble del costo de una máquina con similares características fabricada por SEDEMI, esto sin considerar los gastos adicionales de transporte e impuestos de importación.

Además, una máquina comprada no tendría la facilidad de ajustar las medidas que requiere la empresa, en comparación con una máquina diseñada para satisfacer los requerimientos deseados en la compañía.

Se sugiere el diseño de un sistema semiautomático de ensamblaje de vigas, en el que la cantidad de trabajadores necesarios se reduzca a la mitad y se fabriquen al menos 12 vigas al día, en un impulso por aumentar la productividad y disminuir la mano de obra en el proceso.

El sistema de ensamblaje de vigas contará con 3 zonas:

Zona de transporte y armado:

Figura 2

Zona de armado y transporte aproximada

Nota. La fotografía fué tomada del video de Youtube (Corimpex, 2019)

En esta zona se posiciona los flejes que forma el alma y patines, el sistema debe contar con todos los mecanismos necesarios para la elevación, alineación y nivelación de los elementos que conformarán la viga I, además de contar con una mesa transportadora de rodillos que desplace la viga armada. Para el armado se necesita que se realice manualmente una primera soldadura en el inicio de la viga, de tal forma que al ingresar en la zona de soldadura los elementos que conforman el alma y patines queden fijos. Como se representa en la Figura 2.

Zona de soldadura:

Figura 3

Zona de soldadura aproximada

Nota. La fotografía fué tomada del video de Youtube (Corimpex, 2019)

En esta sección la viga ingresa armada, se necesitará un sistema de tracción que desplace la viga a la velocidad de avance requerida en la soldadura. También son necesarios sistemas de alineación, presión y fijación de patines y alma, para evitar el desplazamiento de los elementos al ingresar en esta zona. Como se ve en la Figura 3.

Zona de post-soldadura:

Zona de post-soldadura aproximada

Nota. La imagen fué tomada del video de Youtube (Corimpex, 2022)

En esta zona, se necesita un sistema que realice el volteo de la viga para poder realizar la soldadura de los cordones restantes y tener la viga completa. También será necesario una mesa transportadora de rodillos para poder desplazar la viga soldada. Como se ilustra en la Figura 4.

Área de influencia

El proyecto de integración curricular se enmarca en el campo del diseño de máquinas, centrándose específicamente en la optimización y desarrollo de una línea de soldadura de vigas tipo H. El área de influencia de este proyecto abarca las disciplinas de ingeniería mecánica y diseño industrial, con el propósito de ofrecer soluciones eficientes y personalizadas a las necesidades de la empresa SEDEMI. La meta fundamental es proporcionar a SEDEMI el diseño de una máquina para armado de vigas tipo H que se ajuste de manera precisa a sus requerimientos, mejorando así la productividad y eficiencia en el proceso de fabricación.

Capítulo II: Marco teórico

Investigación - Trabajos previos

En el campo de diseño y construcción de líneas de ensamblaje de vigas, diversas empresas, tales como Corimpex, Deuma, CMA y FRIENDSHIPMACHINERY CO., LTD, han demostrado experiencia en ofrecer soluciones integrales. No obstante, resulta relevante resaltar que, en la mayoría de las situaciones, las medidas de las vigas fabricadas por estas empresas están limitadas a un solo tipo predefinido. Esta restricción impide la implementación de maquinaria que pueda adaptarse a medidas de vigas personalizadas, una característica clave para satisfacer las necesidades específicas de empresas como SEDEMI.

Este proyecto se centra en superar esta limitación, proponiendo un enfoque innovador que permita el diseño de un sistema de ensamblaje de vigas tipo H personalizada, brindando de esta manera una solución que es más versátil y se puede adaptar mejor a las necesidades del mercado de SEDEMI.

A nivel internacional:

Solución presentada por Jesús Pino

Nota. La imagen fué tomada de (Pino Solis, 2022)

Se ha obtenido el diseño del sistema electromecánico para la producción de vigas de acero en Metal Sur del Perú E.I.R.L. La solución se muestra en la Figura 5. Es importante destacar que el costo de esta máquina asciende a 32,839.40 dólares. La solución propuesta abarca dimensiones de vigas con peraltes que van desde 1200 mm hasta 2300 mm (Pino Solis, 2022).

Solución presentada por Leping Liu, Mingdong Zhong y Qizheng Dong

Nota. La imagen fué tomada de (Liu et al., 2011)

Se desarrolló el diseño de una máquina automática de corte y soldadura para vigas (Liu et al., 2011). La solución obtenida se presenta en la Figura 6. Posteriormente, esta máquina fue configurada y sometida a pruebas. Los resultados experimentales demuestran que el diseño de la máquina es adecuado para una aplicación práctica.

Solución presentada por Noceda Rodríguez

Nota. La imagen fué tomada de (Noceda Rodriguez, 2020)

Se diseñó una máquina que permite soldar vigas curvas mediante el proceso SAW para mejorar la productividad en la industria metalmecánica, logrando mejoras en el factor de operación y la eficiencia de deposición en soldadura (Noceda Rodriguez, 2020). La máquina resultante se muestra en la Figura 7. A nivel local:

Figura 8

Solución presentada por Basuri Fernández y Bolaños Naranjo

Nota. La imagen fué tomada de (Basuri Fernández y Bolaños Naranjo, 2016)

En 2016, (Basuri Fernández y Bolaños Naranjo, 2016), se diseñó una máquina de las mismas características, aunque con una diferencia fundamental en la posición de soldadura, siendo en este caso con la viga ubicada en forma vertical, como una "I", tal como se representa en la Figura 8. Cabe destacar que, en este estudio, se desarrolló una solución integral únicamente para la fase de soldadura. Además, se diseñó una máquina armadora y enderezadora de perfiles I de acero destinada a patines con dimensiones variables, abarcando anchos desde 100 mm hasta 400 mm y peraltes de 200 mm hasta 700 mm. Es

relevante señalar que el costo total de la máquina asciende a 20,608.30 dólares,

proporcionando una alternativa económica y funcional para la fabricación de vigas tipo H.

Figura 9

Solución presentada por Placencia Morillo y Rivera Carrera

Nota. La imagen fué tomada de (Placencia Morillo y Rivera Carrera, 2020)

Posteriormente, se llevó a cabo el diseño de una máquina similar para la empresa SAURUS ECUADOR CIA LTDA ilustrada en la Figura 9, manteniendo la característica de la posición vertical de la viga durante el proceso de soldadura. En este caso, las dimensiones de la viga fueron extendidas para adaptarse a las necesidades específicas de la empresa, permitiendo peraltes de hasta 1000 mm y anchos de patín de hasta 500 mm. Además, se realizó un estudio detallado del costo para fabricar e instalar el sistema, resultando en un valor final de 40,011.00 dólares (Placencia Morillo y Rivera Carrera, 2020).

Miembros estructurales

Existen diversas clasificaciones en cuanto a las formas de los miembros estructurales. Este texto se enfocará en los miembros estructurales de tipo H, es decir, vigas en forma de I o vistas desde otro ángulo como H.

En el libro AISC Manual (AISC, 2017) se mencionan algunas formas de los perfiles tipo H y son:

Figura 10

Tipos de formas H según AISC

Las formas de W que se muestran en la Figura 10 tienen superficies de patines inferior y superior paralelas.Las formas de S, ubicadas en la parte derecha de la Figura 10, representan las vigas de tamaño estándar en la AISC.

Por otro lado, las formas de HP se caracterizan por ser más pesadas y gruesas que las vigas W y S. Finalmente, las formas de M son miembros con forma de H, no obstante, son diferentes a las formas ya mencionadas W, S y HP. Es importante señalar que en Ecuador no se disponen de las formas mencionadas

anteriormente. Para abordar esta limitación, existen tablas de equivalencias que comparan

formas de diferentes estándares, como se ilustra en la Tabla 1 de Aceroscol.

Tabla 1

Tabla de equivalencias entre miembros estructurales H de distintos estándares

PERFIL WF Norma Astm	PERFIL S Norma Astm	PERFIL HEA NORMA DIN	PERFIL HEB NORMA DIN	PERFIL IPE NORMA DIN	PERFIL IPN NORMA DIN	PERFIL HD Norma Astm
WF 6 x 9	S6x12,2	HEA A 120		IPE 160, IPE 180	IPN 140	
WF 6 x 12		HEA 120, HEA A 140		IPE 180	IPN 160	
WF 6 x 15		HEA 140, HEA A 160				
WF 6 x 20		HEA 160, HEA A 180				
WF 6 x 25		HEA 180	HEB 160			
WF 8 x 13				IPE A 200, IPE 200	IPN 200	
WF 8 x 15				IPE 200, IPE A 200	IPN 200	
WF 8 x 18	58×18,4			IPE 220, IPE A 240		0
WF 8 x 21		HEA 180		IPE 240		
WF 8 x 24		HEA A 200, HEA 200		IPE 240		1
WF 8 x 28		HEA 200, HEA A 200	HEB 160		6	
WF 8 x 31		HEA 220	HEB 180		-	
WF 8 x 35		HEA 220, HEA A 240	HEB 180			
WF 8 x 40		HEA 240	HEB 200		5	
WF 8 x 48			HEB 220			
WF 8 x 58			HEB 240			HD 210 x 87

EQUIVALENCIAS ENTRE PERFILES WF – S – HEA – HEB – IPE – IPN – HD

Nota. La tabla fué tomada de (ACEROSCOL, 2018)

Figura 11

Tipos de formas H disponibles localmente

Nota. La imagen fué tomada de (Import Aceros, 2023)

Si examinamos la disponibilidad local de vigas en relación con las formas, podemos identificar las siguientes:

- Viga HEB: representada en la Figura 11 es un tipo de perfil laminado en forma de H.
 Sus caras exteriores e interiores de las alas son paralelas entre sí y, a su vez, son perpendiculares al alma, por lo que las alas tienen espesor constante. (Import Aceros, 2023)
- Vigas IPE: son vigas de uso estructural que se utilizan principalmente en el sector industrial, edificación de estructuras, el comercio y la construcción en general. Las vigas IPE van desde IPE 80 hasta IPE 600. Dependiendo de dicha designación, estos elementos estructurales soportarán un peso determinado. (Import Aceros, 2023)
- Vigas IPEA: es una variante más liviana de la viga IPE. Esta viga es muy parecida a la viga IPR y viga W por lo que puede ser utilizada como sustituto de ambas, ya que sus medidas, desempeño y propiedades son prácticamente iguales. (Import Aceros, 2023)
- Vigas IPN: es un perfil cuya sección tiene una forma de doble "T", también llamado "Sección en I con alas inclinadas", "Perfil I normal" o "Doble T normal", y su espesor se denomina "normal". Las caras exteriores de las alas son perpendiculares al alma y las interiores tienen un 14 % de inclinación, Por lo tanto, su espesor disminuye hacia los bordes. (Import Aceros, 2023)

Cabe destacar que el proveedor menciona que todas las vigas se pueden suministrar en acero ASTM A36 y ASTM A572 Gr. 50, con longitudes comerciales de 6 y 12 metros.

Descripción de los procesos de fabricación de vigas tipo I

La obtención de miembros estructurales tipo I se realiza a través de distintas técnicas, siendo las principales la laminación y la conformación mediante soldadura. Estos métodos ofrecen opciones variadas para la fabricación de perfiles, cada uno con sus propias ventajas y características distintivas.

Laminación de miembros estructurales tipo I

Figura 12

Proceso de laminación de miembros estructurales tipo I

Nota. La imagen fué tomada de (Manufacturing guide, 2020)

La laminación utiliza rodillos para formar los perfiles de manera uniforme, como se ve en la Figura 12. A continuación se describe el proceso. En este proceso, la pieza de trabajo [1], generalmente una barra en bruto, inicialmente pasa por un par de rodillos [2] para formar una viga gruesa. Posteriormente, la barra se desplaza a través de un par de rodillos multiusos [3], que cuentan con rodillos horizontales y verticales ajustables según el perfil deseado. Un rodillo [4] que asegura la paralelidad de las superficies superior e inferior de la viga. Finalmente, la viga atraviesa otro par de rodillos multiusos [5] que dan la forma definitiva al perfil. (Manufacturing guide, 2020)

Conformación mediante soldadura de miembros estructurales tipo I

La conformación mediante soldadura implica la unión de elementos mediante procesos de soldadura, lo que permite la personalización de las dimensiones y formas de los perfiles según las necesidades del proyecto. Los miembros estructurales tipo I se conforman mediante la soldadura de tres elementos: dos planchas de acero de igual dimensión, que se colocan de manera paralela y se denominan patines, y otra plancha que se coloca perpendicular a estos, llamada alma. Para lograr la obtención de este miembro estructural, se lleva a cabo una serie de procesos, que son:

Figura 13

Proceso de corte de miembros estructurales tipo I

Nota. La imagen fué tomada de (Chapelsteel, 2022)

• Corte de planchas: En este proceso, se lleva a cabo el corte de las planchas que

conformarán los elementos estructurales, tanto el alma como los patines, con las dimensiones necesarias para la fabricación. En muchas ocasiones, este procedimiento se realiza de manera automática mediante máquinas como las cortadoras por plasma, la cual se muestra en la Figura 13.

Figura 14

Proceso de armado de miembros estructurales tipo I

Nota. La imagen fué tomada de (ACAT, 2022)

Proceso de soldadura de miembros estructurales tipo I

Nota. La imagen fué tomada de (Directindustry, 2023)

- Armado de elementos estructurales: En esta etapa, se presentan dos opciones: el proceso manual, que implica el uso de mano de obra para colocar las chapas en las posiciones requeridas, generalmente con la ayuda de matrices; o el proceso semiautomático, donde una máquina se encarga de posicionar las chapas metálicas según lo necesario para iniciar el proceso de soldadura, como se ilustra en la Figura 14.
- Soldadura de elementos estructurales: En este paso, se lleva a cabo la unión de los elementos alma y patines mediante el proceso de soldadura, que puede ser GMAW, SAW o FCAW, dependiendo de las dimensiones de la viga y la selección adecuada del proceso. Al igual que en la etapa de armado, esta soldadura puede realizarse de forma

manual, con la participación de un operador y su equipo de soldadura; de forma semiautomática; o de forma automática, con la asistencia de máquinas que ejecutan el proceso, como se ilustra en la Figura 15. La diferencia entre un proceso y otro radicará en la precisión, ya que una máquina siempre presentará una mayor precisión que un proceso manual.

Al completar estos procesos, se logra la obtención del miembro estructural tipo I.

Sistema de soldadura

Este proyecto se centra específicamente en el proceso de soldadura GMAW, también conocido como soldadura por arco de gas metálico.

Es un proceso que usa un arco entre un electrodo continuo de metal de aporte y el charco de la soldadura. El proceso se lleva a cabo con una protección proveniente de un gas suministrado externamente y sin la aplicación de presión. (Cary, 1992)

En la figura 16 se muestra el esquema de soldadura GMAW.

Este sistema consta de una fuente de alimentación, una antorcha de soldadura con un electrodo de alambre, una fuente de gas protector y un mecanismo de alimentación de alambre.

Esquema de soldadura GMAW

Nota. La imagen fué tomada de (Air Liquide , 2023)

- La fuente de alimentación actúa como el suministro eléctrico principal, proporcionando la corriente necesaria para el arco de soldadura.
- La antorcha de soldadura, equipada con un electrodo de alambre continuo, es responsable de dirigir y mantener el arco entre el electrodo y el material base.
- La fuente de gas protector crea un ambiente sin oxígeno alrededor del arco y del charco de fusión, evitando la oxidación del metal. El tipo de gas utilizado varía según la aplicación y el material a soldar.
- El alambre de soldadura, que sirve como electrodo, se alimenta de manera continua desde un carrete a través de la antorcha de soldadura. La velocidad de alimentación del

alambre y la corriente eléctrica son controladas para lograr la soldadura deseada. (Cary y Helzer, 2005)

En conjunto, estos componentes trabajan de manera sincronizada para lograr una soldadura efectiva y de alta calidad. La soldadura GMAW es adaptable y tiene varios usos, como la construcción de estructuras metálicas y el mantenimiento de componentes metálicos. Funciona con una gran variedad de metales y proporciona una excelente calidad de soldadura y tasas de deposición.

Posiciones de soldadura

Según el ASME IX (ASME, 2021), se tienen diferentes posiciones de soldadura. Estas se diferencian dependiendo de la posición de la antorcha de soldadura y del soldador.

Figura 17

Posiciones de soldadura en placas

En el caso de las placas, como se ve en la Figura 17, las posiciones 1F y 1G corresponden a la posición plana, la 2F y 2G a la posición horizontal, la 3F Y 3G a la posición

vertical, mientras que las posiciones 4F y 4G se refieren a la soldadura en posición sobre cabeza. Aunque existen ciertas diferencias en la disposición de los elementos dependiendo de si se trata de una junta a tope o de filete, las posiciones de la antorcha de soldadura son las mismas.

Figura 18

Posiciones de soldadura en tuberías

En el caso de las tuberías, como se ve en la Figura 18, en la posición 1G, la tubería rota mientras la antorcha de soldadura se mantiene en posición plana. En la posición 2G, el soldador gira y la antorcha se mantiene horizontal. La posición 5G es algo compleja, ya que la soldadura de tuberías, por necesidad, requiere rodear la circunferencia de un tubo, pasando por posiciones de subida planas, verticales y horizontales. Finalmente, en la posición 6G es necesario pasar por todas las demás posiciones con un movimiento suave. Se trata de unir dos tuberías en un ángulo de 45 grados, lo que añade un reto adicional al proceso.

Para comprender las alternativas de diseño de la máquina que se desarrollará, es fundamental comprender tres posiciones:

Posición 1F, de soldadura: En esta posición, la viga se encuentra girada de manera que el patín forma un ángulo de 45° con la base como se ilustra en la Figura 19, y la antorcha o pistola de soldadura está en una posición vertical. En esta opción, es preferible que la antorcha de soldadura se desplace a lo largo de la viga para formar los cordones. Es importante señalar que en esta configuración solo se realiza un cordón de soldadura a la vez. Para obtener una viga completa se requiere que el carro de soldadura pase por cada vértice, es decir 4 veces.

Figura 19

Posición 1F para soldadura de vigas

 Posición 2F, alma vertical: En esta configuración, el patín descansa sobre la base, mientras que el alma se encuentra en posición vertical, formando un ángulo de 90° con el patín, como se indica en la Figura 20. Las antorchas de soldadura se sitúan a 45° en ambos lados del alma, permitiendo la soldadura de 2 cordones simultáneamente. Luego, la viga se gira para soldar los otros 2 cordones y completar la viga.

Figura 20

Posición 2F, alma vertical.

 Posición 2F, alma horizontal: En la opción con alma horizontal, los patines se encuentran en posición vertical, mientras que el alma está orientada horizontalmente como se observa en la Figura 21. Para esta alternativa, se requiere un sistema de nivelación del alma y un sistema de presión de patines para ajustar las dimensiones necesarias en las vigas. Las antorchas de soldadura se colocan a 45° en ambos extremos del alma, lo que permite obtener 2 cordones de soldadura simultáneamente. Luego, es necesario voltear la viga y soldar los 2 cordones restantes para obtener una viga completa.

Posición 2F, alma horizontal

Parámetros de soldadura

De acuerdo a (Cary, 1992), durante el proceso de soldadura, existen ciertos factores que pueden afectar el resultado final. Se puede aumentar o disminuir el voltaje, la velocidad de desplazamiento a lo largo de la unión, la longitud del arco, entre otros. Cuando todas las variantes se encuentren en equilibrio, el soldador obtendrá un arco de corrida suave y depositará metal de alta calidad.

Las variantes de soldadura pueden dividirse en tres tipos; variantes primarias ajustables, secundarias ajustables y variantes preseleccionadas.

Las variantes primarias ajustables modifican directamente las características de la soldadura. Estas son; la velocidad de desplazamiento, el voltaje del arco, y la corriente de soldadura, las cuales pueden medirse fácilmente y ajustarse continuamente. Estas variantes influyen en la profundidad de penetración, la amplitud del reborde, la altura del reborde, la tasa de deposición, la estabilidad del arco, entre otros. Se sugieren valores específicos a estas variantes ajustables primarias, las cuales normalmente se incluyen en los programas de soldadura que se encuentran en manuales o libros.

Las variantes secundarias ajustables también pueden ser modificadas continuamente. Ocasionan un cambio en la variante primaria, lo cual a su vez ocasiona un cambio en la formación del trabajo de soldadura. Estas variantes suelen ser más difíciles de medir y controlar con exactitud.

Por último, las variantes preseleccionadas no pueden modificarse de manera continua; en su lugar, se ajustan por etapas o pasos específicos durante el proceso de soldadura. Estas variantes deben ser preseleccionadas y permanecen fijas durante la soldadura. Algunos ejemplos de estas variantes incluyen el tamaño del electrodo, tipo de electrodo, polaridad de la corriente de soldadura, entre otros.

Existe una interdependencia entre las variantes primarias; es decir, una pequeña modificación en uno de estos parámetros puede afectar al otro.

Esto se puede notar en la siguiente ecuación, donde una variación en estos parámetros afecta directamente la energía del arco.

$$Q = \frac{IE}{v}$$
(1)

Donde:

Q= energía del arco en J/mm

I= corriente del proceso en amperios (A)

E= voltaje del arco en volts (V)

v= velocidad de avance de la soldadura en cm/min.

Penetración del cordón relacionada con la variante primaria

Nota. La imagen fué tomada de (Cary, 1992)

Se puede analizar un ejemplo de la importancia de las variantes primarias en función de la penetración de la soldadura como se muestra en la Figura 22.

La profundidad de la penetración incrementa conforme la corriente también lo hace, la relación entre estas dos caracterísiticas es casi lineal, y es la más efectiva para controlar esta característica. En cuanto a la velocidad de desplazamiento, se observa una relación similar a la mencionada anteriormente. Sin embargo, la velocidad de desplazamiento no debe ser utilizada como control principal, ya que, por razones económicas, generalmente se busca soldar a la máxima velocidad posible. Finalmente, se puede observar que la relación con el voltaje es no lineal. Se evidencia un voltaje óptimo cuando la penetración es máxima;

cualquier aumento o disminución del voltaje con respecto a este punto resulta en una

reducción de la penetración.

Para el desarrollo de la máquina es importante conocer los parámetros sugeridos por los programas de soldadura, para garantizar que la ejecución del proceso sea adecuada.

Tabla 2

Ga.	Espesor del material		Tipo de soldado ta)	Diametro del electrodo		Corriente de soldadura	Voltaje dei arco Elec.	Alimentación de alambre	Velocidad desplazamiento	Fluio de gas
	in	mm		in	mm	amperios-CD	Pos.	ipm	ipm	CO, CFH
18	0.050	1.3	Filote	0.045	1.1	280	26	350	190	20-25
			renura cuadrada	0.045	1.1	270	25	340	180	20-25
16	0.063	1.6	Filete	0.045	1.1	325	26	350	150	30-35
			renura cuadrada	0,045	1.1	300	28	350	140	J0-35
14	0.078	2.0	Filete	0.045	1.1	325	27	360	130	30-35
			ranura cuedrada	0.045	1.1	325	29	3650	110	30-35
			ranura cuedrada	0.045	1.1	330	29	350	105	30-35
11	0.125	3.2	Filete	1/16	1.6	380	28	210	85	30-35
			ranura cuadrada	0.045	1.1	350	29	380	100	30-35
3/16	0.188	4.8	Filete	1/16	1.6	425	31	260	75	30-35
			ranura cuadroda	1/16	1.6	425	30	320	75	30-35
			ranura cuadrada	1/16	1.6	375	31	260	70	30-35
1/4	0.250	6.4	Filete	5/64	20	500	32	185	40	30-35
			ranura cuadrada	1/16	1.6	475	32	340	55	30-35
3/8	0.375	9.5	Filete	3/32	24	550	34	200	25	30-35
			ranura cuadrada	3/32	24	575	34	160	40	30-35
1/2	0.500	127	Filete	3/32	24	625	36	160	23	30-35
			ranuro cuadrada	3/32	24	625	35	200	33	30-35

Parámetros de soldadura GMAW

Nota. La tabla fué tomada de (Cary, 1992)

Cary proporciona valores recomendados de los parámetros mencionados en uniones

a tope en aceros de mediana y baja aleación, como se indica en la Tabla 2.

Sistemas constitutivos

Identificación de sistemas que se diseñan

Sistemas de alimentación

Dentro de estos sistemas de alimentación es necesario la selección de motores, cadenas de transmisión y reductores de velocidad.

Un motor trifásico es un dispositivo electromecánico que transforma energía eléctrica de un suministro trifásico en energía mecánica rotativa. Para este proyecto, se requiere enfocarse en la selección de motores mediante catálogos de proveedores locales, asegurando así la compatibilidad con las necesidades específicas. Además, se requiere considerar la selección de un reductor de velocidad, este componente es esencial en diversas aplicaciones industriales y maquinaria, ya que permite adaptar la velocidad de un sistema mecánico a los requisitos específicos de una carga, mejorando la eficiencia y aumentando la durabilidad de los componentes.

Transmisión de cadena

Nota. La imagen fué tomada de (Dinalserg, 2023)

Por otro lado, la cadena de transmisión como la que se muestra en la Figura 23 es un sistema mecánico compuesto por eslabones interconectados que transmiten movimiento y potencia entre componentes mecánicos, como motores y dispositivos de salida. Este mecanismo es utilizado en aplicaciones industriales y de transporte para transferir fuerza y movimiento de un lugar a otro a través de la conexión de piñones, ruedas dentadas u otras formas de engranajes, (Mabie y Reinholtz, 1991). Existen diversos tipos de cadenas de transmisión, y su selección depende de la aplicación específica y de los requisitos de transmisión de potencia.

La selección estratégica de los sistemas permite aprovechar el uso de tecnologías existentes y la optimización de los recursos.

Sistemas de nivelación y elevación

La nivelación es un factor fundamental para garantizar que los componentes de la máquina y las vigas terminadas cumplan con los requisitos dimensionales y tolerancias necesarias. Para cumplir con este objetivo se ha diseñado sistemas presionadores para los elementos estructurales.

Por otro lado, la elevación se convierte en un componente esencial para ajustar la altura de los diversos componentes durante el proceso de ensamblaje. Este proceso incluye la elevación de flejes u otros elementos para facilitar la colocación precisa de otros componentes en la estructura.

Figura 24

Cilindro neumático estandarizado

Nota. La imagen fué tomada de (SKF, 2006)

Para el sistema de nivelación y elevación se utiliza cilindros neumáticos de vástago estandarizados como se ilustra en la Figura 24, los cuales "son actuadores neumáticos para realizar movimientos lineales. La energía aplicada al émbolo se transfiere a las piezas que deben moverse empleando un vástago" (FESTO, 2023).

Además, se integran otros elementos específicos, como guías lineales o cilindros guiados, diseñados para mejorar la precisión global de los sistemas.

Los cilindros guiados son actuadores con barras de guía y guías lineales, son accionamientos neumáticos que pertenecen a los equipos "infatigables" de la automatización industrial. Tienen una amplia variedad de usos en aplicaciones como la elevación, prensado, tracción, presión, apriete, detención, retención, corte, separación y muchas más, se caracterizan por una estabilidad especialmente elevada. (FESTO, 2023)

Por otra parte, las guías lineales son dispositivos mecánicos diseñados para proporcionar un movimiento lineal preciso y sin fricción a lo largo de un eje específico. Comúnmente utilizadas en maquinaria industrial, sistemas de automatización y herramientas de precisión, estas guías permiten un desplazamiento suave y controlado de componentes lineales, contribuyendo a la precisión de los sistemas.

Estos elementos no solo contribuyen a la estabilidad y control, sino que también son esenciales en la optimización de la precisión de los ajustes durante el proceso de ensamblaje. Este enfoque integral garantiza no solo la alineación precisa de los elementos, sino también la eficiencia global del sistema de nivelación y elevación en la máquina ensambladora de vigas.

Sistema de transporte

El transporte de flejes y vigas terminadas normalmente se realiza mediante el uso de mesas de rodillos mostrados en la Figura 25, ya que representan un sistema eficiente y versátil en diversas aplicaciones industriales para el desplazamiento controlado de cargas. Este sistema consta de una serie de rodillos en paralelo a lo largo de la mesa, lo que permite un movimiento ligero de los objetos sobre la superficie, además asegura una distribución uniforme del peso de la carga y minimiza la fricción, de esta manera contribuye a un transporte fluido y eficaz (McGuire, 2009).

Mesa de rodillos

Nota. La imagen fué tomada de (Dinalserg, 2023)

Estas mesas cuentan con rodillos locos y de ser necesario con rodillos motrices para impulsar el movimiento de las vigas. Este diseño facilita la manipulación de materiales pesados y el flujo continuo de la producción.

Normalmente, los rodillos que conforman la mesa son seleccionados a partir de catálogos según sus aplicaciones. Sin embargo, para este proyecto, se requiere un enfoque distinto: el diseño personalizado de estos rodillos. La empresa tiene la necesidad de fabricar sus propios rodillos, lo que implica la tarea de diseñar el eje motriz, determinar el diámetro óptimo, seleccionar los rodamientos adecuados y verificar la resistencia de los tubos cedulados que componen cada rodillo.

Este enfoque de diseño personalizado es fundamental para asegurar que los rodillos cumplen con las especificaciones de precisión requeridas por la empresa. La atención minuciosa a cada detalle, desde el eje motriz hasta la resistencia de los tubos, contribuye al control total sobre el rendimiento y la durabilidad de estos componentes cruciales para el transporte de flejes y vigas terminadas.

Verificación del nivel del piso

La verificación del nivel del piso en entornos industriales desempeña un papel crítico en la presición de la máquina y su integridad estructural. Este proceso busca determinar la horizontalidad del suelo, asegurando una base estable para la instalación de maquinaria y equipos. La nivelación precisa no solo optimiza el rendimiento de la maquinaria, sino que también contribuye a la seguridad y durabilidad de las operaciones industriales. Diversos métodos se utilizan para llevar a cabo esta verificación, entre ellos, el empleo de niveladores láser, instrumentos de medición de inclinación y métodos tradicionales como niveles de burbuja. Uno de los métodos más comunes y eficaces para la verificación del nivel del piso es el uso de una manguera de agua. Este método básico consiste en una manguera transparente llena de líquido. Su aplicación implica colocar cada extremo de la manguera en puntos específicos marcados por estacas, como se muestra en la figura 26. Este proceso se repite en múltiples puntos del suelo a verificar, garantizando así la horizontalidad consistente. "El uso de este dispositivo se basa en el principio según el cual, en condiciones de presión atmosférica, la superficie libre de columnas de agua comunicantes se estabiliza a la misma altura, sobre la misma línea horizontal" (FAO, s.f.).

Verificación del nivel del suelo

Nota. La imagen fué tomada de (Valparaíso, 2023)
Capítulo III: Metodología

Investigación de requisitos

Necesidades del cliente

Las necesidades del cliente son cruciales para comprender las características técnicas del producto y entender el propósito del diseño.

A través de una reunión con el Jefe de producción de SEDEMI, se identificaron las siguientes demandas en la máquina:

- La conformación de las vigas en la máquina debe realizarse mediante el proceso de soldadura GMAW.
- Capacidad de ensamblar vigas con patines de longitudes de ancho variables, abarcando desde 100 mm hasta 250 mm, y espesores que varíen entre 6 mm y 12 mm.
- Ser capaz de ensamblar vigas con almas de longitudes de ancho variables, abarcando desde 88 mm hasta 276 mm, y espesores que varíen entre 3 mm y 10 mm.
- La longitud de la viga debe estar dentro de un rango, siendo la longitud mínima de 2 metros y la máxima de 6 metros.
- Se solicita que la capacidad de producción diaria de vigas sea de al menos 12 unidades.
- Se requiere que la cantidad de operadores necesarios para la máquina sea de 4 personas.
- No hay limitaciones de espacio para la máquina.

- Se requiere el diseño de tres zonas específicas: la zona de transporte y armado, la zona de soldadura y la zona de post-soldadura.
- La viga deberá desplazarse a una velocidad de aproximadamente 700 mm/min en la zona de soldadura y de 1500 mm/min en la zona de transporte y armado.
- Debe funcionar de manera continua durante 8 horas al día.
- Debe operar utilizando energía eléctrica y, preferiblemente, incorporar sistemas neumáticos.
- La estructura y componentes de la máquina debe estar conformada por elementos que puedan adquirirse fácilmente en el mercado nacional.

Especificaciones técnicas

Las especificaciones técnicas se derivan directamente de los requisitos del cliente, Por lo tanto, es esencial elaborar una lista de características técnicas cuantificables para cumplir con las demandas establecidas por el cliente, en este caso, SEDEMI. Estas especificaciones técnicas se establecen en la Tabla 3.

Tabla 3

Especificaciones técnicas				
Concepto	ncepto Descripción			
Función	La máquina debe ser capaz de ensamblar miembros estructura- les en forma de "H" con diversas dimensiones.			
Carga útil	La máquina debe ser capaz de resistir la carga de 4047 N, que es el peso de la viga más grande que se puede ensamblar.			
Tiempo de funcionamiento	La máquina debe tener la capacidad de trabajar 8 horas por día.			
Energía	Energía eléctrica y preferiblemente sistemas neumáticos.			
Capacidad de producción diaria	\geq 12 unidades			
Velocidad de avance- zona de transporte y armado	1500 mm/min			
Velocidad de avance- zona de soldadura	700 mm/min			

Especificaciones técnicas de la máquina

Parámetros de diseño

Los parámetros de diseño están ajustados a las dimensiones de los miembros

estructurales en forma de "I". A partir de los requisitos del cliente, se detallan las dimensiones

que la máquina podrá fabricar, las cuales se resumen en la Tabla 4.

Tabla 4

Resumen de dimensiones que se podrá fabricar

Dimensiones de miembros estructurales "l"				
Denominación Rango				
Peralte H(mm)	100-300			
Ancho del patín a _p (mm) 100-250				
Ancho del alma a _a (mm)	88-276			
Espesor del alma e _a (mm) 3-10				
Espesor del patín e _p (mm)	6-12			
Longitud L (m) 2-6				

La denominación de la tabla 4 se ilustra en la figura 27

Figura 27

Denominación de un miembro estructural "I"

Planteamiento de alternativas

Para el diseño de la máquina, existen tres posibilidades que dependerán de la posición de soldadura, como se explicó anteriormente. Sin embargo, SEDEMI ha priorizado dos alternativas: la posición de soldadura 2F, con el alma vertical, y la posición de soldadura 2F, con el alma horizontal.

La máquina con la posición de soldadura 1F ha sido descartada, ya que implica el uso de un carro de soldadura que suelda la viga, y por razones de productividad, se requiere que sea la viga la que se desplace.

Alternativa 1. Solución horizontal: Posición 2F, alma horizontal

Figura 28

Modelo 3D de la alternativa 1

En esta opción, los patines se disponen en forma vertical mientras que el alma se encuentra en posición horizontal. En la zona de transporte y armado, se colocan los flejes, por lo cual se requieren sistemas de presión y nivelación tanto para el alma como para los patines. Una vez que los flejes están adecuadamente posicionados, se llevan a cabo puntos de soldadura en los vértices de la viga.

En la zona de soldadura, se requieren sistemas que ajusten la antorcha de soldadura, así como sistemas de elevación y presión para mantener la posición de la viga que fue previamente armada, incluyendo el ajuste del alma y los patines. El modelo 3D de la alternativa 1 se presenta en la Figura 28.

Alternativa 2. Solución vertical: Posición 2F, alma vertical

Figura 29

Modelo 3D de la alternativa 2

En esta alternativa, en la zona de armado, se coloca el patín en posición horizontal sobre la mesa. Con la ayuda de un sistema de elevación y nivelación, se ajusta el alma, ubicándola verticalmente en la mitad del patín. Una vez en esta posición, se realizan puntos de soldadura en los vértices de la viga.

En la zona de soldadura, se requiere un sistema de alineación del patín, así como un sistema de presión y nivelación del alma. Además, se necesita un sistema que posicione las antorchas en los vértices de la viga previamente armada.

El modelo 3D de la alternativa 2 se presenta en la figura 29.

Análisis y evaluación de alternativas

Para la evaluación de alternativas y su selección se ha realizado el modelado 3D aproximado de las zonas de armado y soldadura como se muestran en las Figuras 28 y 29, la zona de post-soldadura no se tomará en cuenta porque es la misma para las 2 alternativas.

Criterios de evaluación

Los criterios de evaluación son:

 Costo: En el cálculo del costo, se considerará el peso aproximado de la estructura utilizando la información proporcionada por el software Inventor. Dado que el modelo 3D generado es un diseño conceptual y no se cuentan con especificaciones detalladas de motores, cilindros neumáticos y otros equipos necesarios que deben ser adquiridos, se duplicará el costo resultante del cálculo mencionado. Además, se tendrá en cuenta que el costo comercial por kilogramo de acero armado para grandes empresas es de 1,90 dólares.

Para la alternativa 1, según el programa Inventor 2020, el peso aproximado de todo el sistema de armado y soldadura es el que se muestra en la Figura 30.

Figura 30

Peso aproximado de la máquina de la solución horizontal en Inventor.

I ENSAMBLAJE_TOTAL_ZONA_ARMADOYSOLDADURA iProperties						
General Resumen Proyecto Estado Personalizadas Guardar Propiedades físicas						
Material						
		\sim	Actualizar			
Densidad	Precisión so	licitada	Portapapeles			
7,852 g/cm^3	Baja	~				
Propiedades generales						
Incluir soldaduras ficticias		Incluir anulaciones de	CTDAD			
Masa 5551,168 kg (Erro	or 🏊 x	-7518,800 mm (Err				
			1			
Área 196278746,247 n	nm Y	466,722 mm (Error				
Volumen 706971262,316 n	n r 🖬 Z	385,951 mm (Error]			
Propiedades de inercia*						
Principal	Global	Centro de	gravedad			
Momentos principales						
I1 1717537258,10 I2	1.3231479755	B I3 1.3247425	0145			
Rotación a principal						
Rx 40,84 gr (Error Ry	0,13 gr (Error	Rz -0,12 gr (E	FITOR I			
*I os valores no refleian la masa	o el volumen anu	lados por el usuario				
2	d					
ц.	Close	Cancel	Apply			

Nota. La imagen fué tomada del software Inventor

El costo total para la alternativa 1 es:

$$Costo_{alt1} = 2 \cdot \frac{Costo}{kg} \cdot Peso_{aprox}$$
(2)

$$Costo_{alt1} = 2 \cdot 1,90 \frac{\$}{kg} \cdot 5551,168 \text{ kg}$$

Costo_{alt1} = 21904, 44 \$

El peso aproximado para la alternativa 2 según el software Inventor, se muestra en la

Figura 31.

Figura 31

Peso aproximado de la máquina de la solución vertical en Inventor.

I RODILLO MOTRIZ ENSAMBLE iProperties				
General Resumen Proyecto Estado Personalizadas 0	Guardar Propiedades físicas			
Material				
	 Actualizar 			
Densidad Precisión solicitada	Portapapeles			
7,852 g/cm^3 Baja	~			
Propiedades generales	laciones de CTDAD			
Centro de	gravedad*			
Masa 2726,300 kg (Error X 172,563	3 mm (Error			
Área 116601592,369 mm Y -4850,8	46 mm (Erre			
Volumen 347223093.686 mm 🕅 7 -178.33	20 mm (Error			
Propiedades de inercia*				
Principal Global	Centro de gravedad			
I1 6.79098296714 I2 919388884,283 I3	6.82306155233			
Rotación a principal				
Rx -0,84 gr (Error I Ry -38,00 gr (Error Rz	1,96 gr (Error ri			
*Los valores no reflejan la masa o el volumen anulados por	el usuario			
Cerrar	Cancelar Aplicar			

Nota. La imagen fué tomada del software Inventor

El costo total para la alternativa 2 es:

Costo_{alt2} = 2 · 1, 90
$$\frac{\$}{\text{kg}}$$
 · 2726, 30 kg
Costo_{alt2} = 10359, 94 \$

 Mecanismos y equipos utilizados: Se lleva a cabo el conteo de los mecanismos que utiliza cada máquina para ejecutar todo el proceso de armado y soldadura. Se contará el número de tornillos de potencia, cilindros neumáticos, motores, reductores, servomotores y otros equipos.

Para la zona de armado se detalla el número de mecanismos y equipos en la Tabla 5.

Tabla 5

Descripción	Solución horizontal	Solución vertical
Tornillos de potencia	13	6
Cilindros neumáticos o hidráulicos	12	17
Motoreductores	3	2
Garras magnéticas	0	8
Servomotores	13	6
Total	41	39

Mecanismos y equipos utilizados en la zona de armado

En la Tabla 6 se muestra el número de mecanismos y equipos utilizados en la zona de

soldadura.

Tabla 6

Mecanismos y equipos utilizados en la zona de soldadura

Descripción	Solución horizontal	Solución vertical	
Tornillos de potencia	12	8	
Motoreductores	2	1	
Servomotores	12	8	
Total	26	17	

Finalmente se tiene la Tabla 7 que resume el número total de mecanismos y equipos

utilizados en las dos alternativas.

Tabla 7

Mecanismos y equipos totales

Descripción	Solución horizontal	Solución vertical
Zona de armado	41	39
Zona de soldadura	26	17
Total	67	56

Movimientos utilizados: Se registra el número de movimientos realizados por las

máquinas, tanto en la zona de soldadura como en la zona de armado. El número de

movimientos se relaciona directamente con el tiempo que tomará fabricar la viga.

Además, esta cifra también guarda relación con la potencia necesaria de la máquina

para llevar a cabo el trabajo. En la Tabla 8 se presenta la cantidad de movimientos

empleados en la zona de armado.

Tabla 8

Movimientos utilizados en la zona de armado

Descripción del movimiento	Solución horizontal	Solución vertical
Ubicar flejes en mesas	2	2
transportadoras	5	2
Elevar alma	1	1
Elevar patines	2	0
Empujar patín	1	2
Fijar y alinear elementos para	3	2
puntos de soldadura	5	2
Transportar viga	1	1
Total	11	8

En la Tabla 9 se detalla la cantidad de movimientos utilizados en la zona de soldadura.

Tabla 9

Movimientos utilizados en la zona de soldadura

Descripción del movimiento	Solución horizontal	Solución vertical
Transportar viga	1	1
Presionar patín	1	1
Nivelar alma	3	2
Presionar alma	2	1
Posicionar antorchas	2	2
Total	9	7

Finalmente, en la Tabla 10, se presenta el número total de movimientos realizados en

ambas zonas.

Tabla 10

Movimientos totales utilizados

Zona	Solución horizontal	Solución vertical
Armado	11	8
Soldadura	9	7
Total	20	15

Elección específica de SEDEMI: Representa la opción preferida de SEDEMI,

seleccionada debido a requisitos técnicos y estratégicos particulares. Aunque pueda ser más desafiante o costosa, esta elección se alinea directamente con los objetivos y requisitos fundamentales de la empresa. Para cuantificar este criterio, se asignará el

valor de 1 a la opción elegida por SEDEMI y 0 para la no escogida.

Entonces según la opción preferida por SEDEMI se tiene:

Solución horizontal: 1

Solución vertical: 0

Se genera la Tabla resumen 11, la cual se empleará para la evaluación de criterios entre las alternativas 1 y 2.

Tabla 11

Tabla resumen para la evaluación de criterios de las soluciones horizontal y vertical

N°	Criterio	Solución horizontal	Solución vertical
1	Costo (\$)	21904,44	10359,94
2	Mecanismos y equipos utilizados	67	56
3	Movimientos utilizados	20	15
4	Elección específica de SEDEMI	1	0

Evaluación y selección de la mejor alternativa

Para seleccionar la mejor alternativa, se emplearán matrices de priorización con la

siguiente escala de evaluación: 1 (mucho menos importante), 3 (menos importante), 5 (igual

de importante), 7 (más importante) y 9 (mucho más importante).

Matriz de priorización de criterios:

Se genera la matriz de priorización mostrada en la tabla 12, en función de la

importancia asignada a cada criterio.

Tabla 12

Matriz de priorización de criterios de evaluación

	Costo	Mecanismos utilizados	Movimientos	Elección específica de SEDEMI	Total	Porcentaje
Costo		7	7	3	17	28 %
Mecanismos utilizados	3		3	1	7	12%
Movimientos	3	7		1	11	18%
Elección específica de SEDEMI	7	9	9		25	42%
				Total	60	100 %

Ahora se lleva a cabo la evaluación correspondiente de criterios utilizando la Tabla 11.

La Tabla 13 muestra la evaluación correspondiente al criterio de costo.

Tabla 13

Matriz de priorización del criterio costo

Costo	Solución horizontal	Solución vertical	Total	Porcentaje
Solución horizontal		3	3	30 %
Solución vertical	7		7	70 %
		Total	10	100 %

En relación al criterio de mecanismos utilizados, se presenta la información detallada

en la Tabla 14.

Tabla 14

Matriz de priorización del criterio mecanismos y equipos utilizados

Mecanismos utilizados	Solución horizontal	Solución vertical	Total	Porcentaje
Solución horizontal		3	3	30 %
Solución vertical	7		7	70 %
		Total	10	100 %

Referente al criterio de movimientos utilizados, la Tabla 15 proporciona la evaluación

correspondiente.

Tabla 15

Matriz de priorización del criterio movimientos utilizados

Movimientos utilizados	Solución horizontal	Solución vertical	Total	Porcentaje
Solución horizontal		3	3	30 %
Solución vertical	7		7	70 %
		Total	10	100 %

La Tabla 16 refleja la evaluación del criterio de elección específica de SEDEMI.

Tabla 16

Matriz de priorización del criterio elección específica de SEDEMI

Elección específica de SEDEMI	Solución horizontal	Solución vertical	Total	Porcentaje
Solución horizontal		9	9	90 %
Solución vertical	1		1	10 %
		Total	10	100 %

La Matriz de resultados final se presenta en la Tabla 17.

Tabla 17

Matriz de resultados

Criterio	Costo	Mecanismos utilizados	Movimientos	Elección específica de SEDEMI	Total	Porcentaje	Posiciones
Alternativas Porcentaje	28%	12%	18%	42%			
Solución horizontal	3	3	3	9	6	55 %	1
Solución vertical	7	7	7	1	5	45%	2
				Total	60	100 %	

De acuerdo con los resultados presentados en la Tabla 17, se debe optar por la opción de posición 2F con alma horizontal, ya que ha obtenido un 55% de importancia según los criterios analizados y se sitúa en la primera posición.

Aunque la solución vertical implica menos mecanismos y movimientos, no es suficiente para descartar la solución horizontal. El criterio más importante en esta elección es la preferencia específica de SEDEMI.

Levantamiento del área de ubicación de la máquina

Como parte de los requisitos de la empresa, el área donde se prevé ubicar la máquina está sujeta a la disposición de SEDEMI. Para llevar a cabo la determinación del desnivel en el área designada, denominada "Garita 3", se emplea el método de verificación de nivel con manguera, el cual fue mencionado previamente.

A continuación se detalla el proceso:

- Colocar estacas de referencia: Identificar los puntos en el suelo donde se realizará la verificación del nivel e iniciar el procedimiento colocando estacas en las esquinas y a lo largo del lindero del terreno, garantizando una profundidad adecuada para asegurar estabilidad durante el proceso de nivelación.
- Preparación de la manguera de nivelación: La manguera de agua se llena con cuidado, previniendo que se generen burbujas en el interior. La colaboración de otra persona facilita el proceso y reduce el riesgo de derrames durante la nivelación.
- Marcación de la referencia: Una vez que la estaca está en su posición, se establece un punto de referencia desde donde se toman el resto de medidas.
- 4. Nivelación entre estacas: La manguera se posiciona en la primera estaca y se extiende hasta la segunda, utilizando el agua en la manguera para transferir el nivel de la primera estaca a la segunda. Antes de efectuar la marca, se permite que el agua se estabilice para evitar mediciones incorrectas.
- 5. Repetición del proceso: Repetir estos pasos en diferentes ubicaciones a lo largo del área a verificar, abarcando así la totalidad del espacio.

- 6. Mediciones horizontales y demarcación de linderos: Una vez que todas las marcas están establecidas, se procede a realizar mediciones horizontales para lograr la demarcación precisa de los linderos del terreno. Este método asegura un procedimiento formal y eficiente para la nivelación del terreno.
- Registro de resultados: Documentar los resultados para evaluar cualquier desviación del nivel horizontal y tomar medidas correctivas según sea necesario.

Figura 32

Puntos de referencia del nivel del suelo en "Garita 3"

En la figura 32 se muestra un esquema de los puntos donde se colocaron las estacas

para medir el nivel del suelo.

La siguiente tabla se muestran los valores en [mm] obtenidos en cada punto:

Tabla 18

Número de	A0	A1	A2	A3	A4	B0	B4	C0
medida	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	1197	1185	1205	1185	1198	1197	1205	1190
2	1190	1186	1206	1186	1199	1198	1206	1191
3	1200	1185	1204	1185	1200	1196	1205	1190
4	1200	1185	1200	1186	1198	1197	1205	1190
5	1200	1186	1203	1186	1198	1196	1206	1191
Promedio	1197	1185	1204	1186	1199	1197	1205	1190
Desnivel	7	5	13	5	8	6	15	0

Datos recopilados del nivel del suelo

Se puede representar gráficamente el desnivel del suelo, como se muestra en la

Figura 33.

Figura 33

Desnivel del suelo

El desnivel del suelo promedio es de 9 [mm]. Esta diferencia puede atribuirse a salpicaduras de pintura, acumulación de suciedad, entre otros, como se ilustra en las

imágenes del Anexo G. Dado que el desnivel del suelo es mínimo, se sugiere colocar placas de nivelación en la estructura de la máquina.

Diseño detallado

Una vez definida la mejor alternativa, que consiste en la solución en posición 2F con alma horizontal, es necesario realizar los cálculos respectivos para asegurarse que ningún elemento exceda el límite de fluencia. El primer paso es obtener la carga requerida en este sistema.

Cargas requeridas del sistema

En la opción horizontal, se identifican diferentes zonas, cada una con movimientos específicos. Las cargas máximas deben calcularse para cada parte de la máquina.

De acuerdo con las especificaciones de las vigas a producir, se establecen las dimensiones máximas tanto del patín como del alma:

Ancho de patín (a_p) : 250 mm

Peralte de la viga (H): 300 mm

Espesor máximo del patín (ep): 12 mm

Espesor máximo del alma (ea): 10 mm

Longitud máxima de la viga (L): 6 m

Ancho del alma (a_a): 276 mm

Carga máxima del patín

La carga máxima se calcularía como el peso del patín más grande, que se determina mediante el siguiente cálculo:

Se requiere calcular el volumen del patín máximo.

$$V_{\text{patin}} = a_{\text{p}} \cdot e_{\text{p}} \cdot L \tag{3}$$

$$V_{patin} = 0.018 \text{ m}^3$$

Según (Material mundial, 2022), la densidad del acero es:

$$\rho_{acero} = 7850 \ \frac{\text{kg}}{\text{m}^3}$$

De acuerdo con la definición de densidad, finalmente se obtiene el peso del patín:

$$p_{p} = V_{patin} \cdot \rho_{acero} \tag{4}$$

Carga máxima del alma

De igual manera, el peso del alma se calcula como:

$$V_{alma} = a_a \cdot e_a \cdot L \tag{5}$$

 $V_{alma} = 0.017 \text{ m}^3$

Entonces, el peso del alma es:

$$p_a = V_{alma} \cdot \rho_{acero} \tag{6}$$

Carga máxima de la viga.

Para determinar la carga máxima, es necesario sumar el peso total de la viga, que corresponde al peso del alma más el de los dos patines que conforman el miembro estructural.

$$C_{\text{total}} = p_a + 2 \cdot p_p \tag{7}$$

C_{total} = 4046, 185 N

Diseño de elementos de la zona de armado

En la zona de transporte y armado, específicamente para los elementos de la mesa de transporte, SEDEMI ha solicitado que se duplique la carga máxima. Este pedido tiene como objetivo asegurar el diseño, ya que en esta área los operarios no siempre son cuidadosos, lo que podría generar golpes y movimientos bruscos en la máquina.

En consecuencia, se obtiene lo siguiente:

Para el patín máximo:

$$C_{\text{patintya}} = 2 \cdot p_a \tag{8}$$

$$C_{patintya} = 2 \cdot 1385, 68 \text{ N} = 2771.359 \text{ N}$$

Para el alma máxima:

$$C_{almatya} = 2 \cdot C_{total} \tag{9}$$

Para la viga máxima:

$$C_{dtotal} = 2 \cdot C_{total} \tag{10}$$

Se ha decidido fabricar dos tipos de rodillos: los rodillos locos, que contarán con rodamientos internos, manteniendo su eje fijo; y los rodillos motrices, que requerirán rodamientos externos con chumaceras.

Se generarán dos memorias de cálculo distintas para cada tipo de rodillo. Los rodillos locos, al no generar torque, difieren de los rodillos motrices, que producirán un torque determinado por el motoreductor.

Diseño del eje motriz para los rodillos de transporte.

Para los componentes como el eje y el rodillo de esta área, se lleva a cabo un diseño basado en la resistencia a la fatiga, para ello es necesario considerar la carga que cada elemento deberá soportar en función de las especificaciones máximas de la viga. Se considera que la viga será soportada por 10 rodillos con una separación de 600 mm entre centros.

Distribución por áreas tributarias para los rodillos de transporte

Figura 34

Distribución por áreas tributarias

Para la carga distribuida, se toma una distancia de separación L_s entre el patín y el alma de al menos 5 mm.

Longitud total L_{sep} que ocupan los flejes sobre los rodillos

$$L_{sep} = a_a + 2 \cdot e_p + 2 \cdot L_s \tag{11}$$

Área tributaria

$$A_{\text{trib}} = 600 \text{mm} \cdot L_{\text{sep}}$$
(12)

$$A_{trib} = 186000 \text{ mm}^2$$

Carga distribuida por unidad de área

$$q_{d} = \frac{C}{A_{trib}}$$
(13)

Donde:

C es la carga puntual.

A es el área donde se aplica la carga.

$$q_{dtotal} = 4.437 \cdot 10^{-4} \frac{\text{kgf}}{\text{mm}^2}$$

Carga distribuida lineal

Para calcular la carga distribuida lineal, se multiplica la carga distribuida q_d por el área tributaria y dividiendo por la longitud en la que se aplica dicha carga distribuida.

$$q = \frac{q_d \cdot A_{trib}}{L}$$
(14)

$$q_{1rod} = 0.266 \frac{kgf}{mm} = 2,609 \frac{N}{mm}$$

Fuerza puntual

La fuerza puntual se obtiene al multiplicar la carga distribuida lineal por la longitud en la cual se aplica dicha fuerza.

$$F = q \cdot L \tag{15}$$

Figura 35

Carga distribuida de un rodillo de transporte

En la Figura 35 se muestra la carga distribuida q_{1rod} sobre el rodillo motriz de

transporte.

Carga puntual

Para obtener la carga puntual se multiplica la carga distribuida lineal por la longitud en

donde se aplica la carga.

Es necesario considerar el caso más crítico en donde un solo rodillo sea capaz de mover el peso de la viga más grande.

Se define la fuerza puntual que ejerce la viga de mayores dimensiones sobre el rodillo

motriz:

$$F_{vg1} = C_{dtotal}$$
(16)

$$F_{va1} = 825.192 \text{ kgf} = 8092.369 \text{ N}$$

A continuación se detallan las fuerzas que intervienen en el rodillo motriz mediante un diagrama de cuerpo libre, presentado en la Figura 36.

Figura 36

D.C.L. del eje de rodillo motriz de transporte

Donde:

F_{vg1}= Peso que soporta el rodillo motriz.

N= Fuerza normal que soporta el rodillo motriz.

fr= fricción que genera el rodillo motriz con la viga.

F_{tq}= Fuerza tangencial que genera el movimiento de la viga.

Para determinar la fuerza tangencial que actúa sobre el rodillo, es necesario calcular

la fuerza de fricción entre el rodillo y la viga. Al realizar un análisis estático, se obtiene:

$$\sum F_y = 0 \tag{17}$$

$$\mathsf{N} - \mathsf{F}_{\mathsf{vg1}} = \mathsf{0} \ \mathsf{N} = \mathsf{F}_{\mathsf{vg1}}$$

$$\sum F_{X} = 0 \tag{18}$$

$$F_{tq} - fr = 0$$

Además, por definición, se sabe que:

$$fr = \mu \cdot N \tag{19}$$

Se usa el coeficiente estático de fricción porque está estrechamente correlacionado con la fuerza necesaria para empezar un movimiento de deslizamiento.

El coeficiente de fricción requerido es entre acero-acero, dado que tanto los rodillos como la viga a fabricar son de acero. El valor necesario de este coeficiente se presenta en la tabla 19.

$$\mu_{\rm C} = 0,74$$
 (20)

Finalmente, la fuerza tangencial resulta:

$$F_{tg} = \mu_{c} \cdot N \tag{21}$$

 $F_{tg} = 5988, 353 \text{ N}$

Tabla 19

Materiales	Coef. de Fricción Estático µ _c	Coef. de Fricción Dinámico $\mu_{\rm d}$
Acero - Acero	0.74	0.57
Aluminio - Acero	0.61	0.47
Cobre - Acero	0.53	0.36
Latón - Acero	0.51	0.44
Cinc - Hierro colado	0.85	0.21
Caucho - Concreto	1.0	0.8
Madera - Madera	0.25-0.5	0.2
Vidrio - Vidrio	0.94	0.4
Cobre - Vidrio	0.68	0.53
Hielo - Hielo	0.1	0.03
Teflón - Teflón	0.04	0.04
Teflón - Acero	0.04	0.04

Coeficientes de fricción entre distintos materiales

Nota. La imagen fué tomada de (Serway, 2017)

Diseño por resistencia mecánica

Se realiza el diseño a fatiga del eje motriz. Para ello, es necesario determinar dos

valores fundamentales: el torque máximo y el momento flector máximo.

El torque necesario viene dado por la siguiente expresión:

$$T_{\text{nec}} = \frac{F_{\text{tg}} \cdot d}{2}$$
(22)

Donde:

d = 73mm es el diámetro aproximado del rodillo.

Para calcular el momento de flexión máximo, es necesario analizar las cargas sobre

el eje motriz en los dos planos X-Z y Y-Z.

Análisis en el plano Y-Z

En este plano, la carga que actúa es la carga distribuida que soporta cada rodillo

q_{1rod}.

Es necesario obtener las reacciones y los diagramas de momento flector de cada caso para determinar el momento flector máximo. Para esto, se utiliza la herramienta en línea de SkyCiv.

En la Figura 37 se representa el eje junto con la carga y sus respectivas reacciones.

Las reacciones en los apoyos A y B son:

Figura 37

Resultados de reacciones en eje del rodillo motriz de transporte. Plano Y-Z

Nota. La imagen fué tomada de Skyciv

El diagrama de momentos en el eje Y se presenta en la Figura 38

Figura 38

Diagrama de momento flector en el plano Y-Z en el eje del rodillo motriz de transporte

El momento máximo se produce en x=270 mm.

 $M_{maxx} = 68.741 \text{ Nm}$

Análisis en el plano X-Z

En este plano, la carga distribuida que actúa es la fuerza tangencial sobre el rodillo motriz q_{ta} .

$$q_{tg} = \frac{F_{tg}}{I_{sep}}$$
(23)
$$q_{tg} = 19.317 \frac{N}{mm}$$

La carga y las reacciones que se producen en el eje se representan en la Figura 39.

Las reacciones en los apoyos A y B son las siguientes:

Figura 39

Resultados de reacciones en eje del rodillo motriz de transporte. Plano X-Z

El diagrama de momentos en el eje y se presenta en la Figura 40

Figura 40

Nota. La imagen fué tomada de Skyciv

El momento flector máximo también se produce en x=270 mm.

Para el diseño del eje motriz es necesario obtener el momento flector resultante máximo.

Para calcularlo, se utiliza la siguiente ecuación:

$$M_{max} = \sqrt{M_{maxx}^2 + M_{maxy}^2}$$
(24)

Además, se debe considerar el torque máximo generado por el sistema de transmisión.

El valor máximo de torque es:

$$T_{max} = T_{nec} = 218.575 \text{ Nm}$$

Para los rodillos de la mesa transportadora, se utilizará materia prima disponible en SEDEMI, Por lo tanto, se realizarán con acero de transmisión AISI 1018. Según la hoja técnica del proveedor Serviacero (Serviacero, 2022), sus propiedades mecánicas son las siguientes:

$$S_{ut} = 440 \text{ MPa}$$
 (25)

Se debe realizar el análisis de fatiga del eje, para lo cual se requiere calcular los

siguientes factores:

Factor de superficie:

Según la ecuación 6-19 de (Budynas, 2018), se calcula como:

$$k_a = a \cdot S_{ut}^b \tag{27}$$

Donde Sut es la resistencia mínima a la tensión y los valores de a y b se encuentran

en la tabla 20.

Tabla 20

Parámetros en el factor de la condición superficial de Marin, ecuación (6-19)

	Fa	Exponente	
Acabado superficial	<i>S_{ut}</i> , kpsi	S _{ut} , MPa	b
Esmerilado	1.34	1.58	-0.085
Maquinado o laminado en frío	2.70	4.51	-0.265
Laminado en caliente	14.4	57.7	-0.718
Como sale de la forja	39.9	272.	-0.995

Nota. La tabla fué tomada de (Budynas, 2018)

Como el eje será maquinado, los valores de a_1 y b_1 son, respectivamente: 4,51 y

-0,265.

El factor de superficie resulta:

$$k_{a1} = 0,899$$

Factor de tamaño:

$$k_{\rm b} = 1,24 \cdot d^{-0,107} \tag{28}$$

Donde d corresponde al diámetro del eje y se encuentra en el rango

2,79 mm $\leq d \leq$ 51 mm.

Asumiendo un diámetro de 50 mm para el eje motriz, el factor de tamaño es:

$$k_{b1} = 0.818$$

Factor de confiabilidad:

Se puede obtener de la Tabla 21.

Tabla 21

Factores de confiabilidad ke correspondientes a 8 desviaciones estándar porcentuales del límite de resistencia a la fatiga

Confiabilidad, %	Variación de transformación z _a	Factor de confiabilidadr <i>k_e</i>
50	0	1.000
90	1.288	0.897
95	1.645	0.868
99	2.326	0.814
99.9	3.091	0.753
99.99	3.719	0.702
99.999	4.265	0.659
99.9999	4.753	0.620

Nota. La tabla fué tomada de (Budynas, 2018)

Tomando una confiabilidad del 99,9 % se tiene el factor:

Los demás factores, carga k_c y temperatura k_d se considerarán como 1. De esta forma, el esfuerzo admisible debido a la fatiga se determinará a partir de:

$$S_{e1} = 0, 5 \cdot S_{ut} \cdot k_{a1} \cdot k_{b1} \cdot k_c \cdot k_d \cdot k_{e1}$$
⁽²⁹⁾

Finalmente se obtiene:

Factores de concentración de esfuerzo:

Para el cálculo de los factores de concentración de esfuerzo Kt y Kts, se utilizará la

Figura G-2 y G-3 de (Norton, 2011) que se ilustra en la Figura 41 y en la Figura 42.

Figura 41

Factor geométrico de concentración de esfuerzos K_t para un eje con filete de hombro en flexión

Nota. La imagen fué tomada de (Norton, 2011)

Figura 42

Factor geométrico de concentración de esfuerzos K_t para un eje con filete de hombro en torsión

Nota. La imagen fué tomada de (Norton, 2011)

Para calcular el valor del parámetro D/d, nos referimos a la página 347 de (Budynas, 2018), donde se sugiere que los hombros entre cojinetes deben mantenerse en un rango de relación D/d entre 1.2 y 1.5.

Se escoge un valor intermedio de 1.3.

$$\frac{\mathsf{D}}{\mathsf{d}} = 1,3 \tag{30}$$

Para obtener los coeficientes A y B, se realiza una interpolación, resultando:

El radio r_m se ajusta a 2 mm y el diámetro del hombro del cojinete d_mes 40 mm.

Finalmente con la siguiente ecuación mostrada en la Figura 41 se obtiene el factor Kt.

$$K_{t} = A \cdot \left(\frac{r}{d}\right)^{b}$$
(31)
$$K_{t1} = 1,919$$

Para kts

Entonces se obtiene:

$$K_{ts} = A \cdot \left(\frac{r}{d}\right)^{b}$$
(32)

 $K_{ts} = 1,694$
Según la ecuación 4.11b de (Norton, 2011), el factor k_f y k_{fs} pueden calcularse de la siguiente manera:

$$k_{f} = 1 + q_{1} \cdot (k_{t} - 1)$$
(33)
$$k_{f1} = 1,715$$

$$k_{fs} = 1 + q_{2} \cdot (k_{ts} - 1)$$
(34)
$$k_{fs} = 1,54$$

De acuerdo con la expresión 4.17 de (Norton, 2011), para el factor $k_{\rm fsm}$ se debe cumplir la siguiente condición:

si k_{fs} ·
$$\tau_{max} < S_{sy}$$

k_{fsm} = k_{fs}

El esfuerzo de torsión máximo con el diámetro supuesto es:

$$r = \frac{d_1}{2}$$

$$r = 25 \text{ mm}$$

$$J = \frac{\pi}{2} \cdot r^4$$

$$J = 6.136 \cdot 10^5 \text{ mm}^4$$

$$\tau_{max} = \frac{T_{max} \cdot r}{J}$$
(36)

$$\tau_{max}$$
 = 8.906 MPa

 $k_{fs} \cdot \tau_{max}$ = 13, 715 MPa

$$S_{sy} = 0.58 \cdot S_y = 214, 6 \text{ MPa}$$

Debido a que la condición se cumple:

$$k_{\rm fsm} = k_{\rm fs} = 1.54$$

Para este análisis, se utilizará un factor de seguridad n de 2.

Finalmente, se obtiene el diámetro mínimo con la ecuación 6.6a de (Norton, 2011), de acuerdo con el método ASME.

$$\mathsf{D}_{\mathsf{m}} = \left(\frac{32 \cdot \mathsf{n}}{\pi} \cdot \left(\frac{3}{4} \cdot \left(\mathsf{k}_{\mathsf{f}\mathsf{S}\mathsf{m}} \cdot \frac{\mathsf{T}_{\mathsf{max}}}{\mathsf{S}_{\mathsf{y}}}\right)^2 + \left(\mathsf{k}_{\mathsf{f}} \cdot \frac{\mathsf{M}_{\mathsf{max}}}{\mathsf{S}_{\mathsf{e}}}\right)^2\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} \tag{37}$$

 $D_m = 52.921 \text{ mm}$

Con esto, el diámetro ideal del eje sería de 53 mm.

$$D_m = 53 \text{ mm}$$

Para verificar este resultado con otro criterio, se realiza el diseño del eje con el acelerador de Inventor, obteniendo un diametro ideal de 47,7566 mm, como se muestra en la Figura 43.

Figura 43

Diseño del eje del rodillo motriz realizado con el acelerador de diseño de Inventor

Nota. La imagen fué tomada del software Inventor

Por lo tanto, el diametro de 53 mm es adecuado.

Diseño por rigidez

Para el diseño por rigidez es necesario garantizar que se cumplan las deflexiones

admisibles.

Utilizando el acelerador de diseño de Inventor, se obtienen los resultados presentados

en la Figura 44 en cuanto a las deflexiones.

Figura 44

Deflexiones del eje de rodillo motriz obtenidas con el acelerador de diseño de Inventor

Nota. La imagen fué tomada del software Inventor

 $def_{max} = 205,918 \ \mu m = 0,206 \ mm$

Para la deflexión permisible de flexión según (Jiang, 2019), se tiene el criterio de

0,00051.

Donde I es la longitud entre rodamientos, para el eje analizado se tiene:

Por lo tanto, la deflexión admisible en este caso es:

$$def_{adm} = 0,0005 \cdot I$$
 (38)

 $def_{adm} = 0,248 \text{ mm}$

Como $def_{max} < def_{adm}$, el diseño del eje es adecuado.

Además es necesario verificar las pendientes admisibles. Según (Jiang, 2019), para un eje que cuenta con un rodamiento rígido de bolas, la pendiente permisible se establece en $\theta_{adml} = 0,005$ rad.

Empleando el acelerador de diseño de Inventor, se obtienen los resultados que se muestran en la Figura 45.

Figura 45

Pendientes del eje de rodillo loco obtenidas con el acelerador de diseño de Inventor

Ángulo de flexión, Plano YZ

Nota. La imagen fué tomada del software Inventor

$$\theta_{maxl} = 0,07716 \text{ deg} = 0,001 \text{ rad}$$

Como $\theta_{maxl} < \theta_{adml}$, el diseño del eje es adecuado.

Debido a que el eje motriz operará a velocidades muy bajas, no se realiza el análisis de la velocidad crítica.

Para calcular el diámetro interno de los rodamientos, se aplica la ecuación 30. Como resultado, se obtiene el diámetro del rodamiento:

$$d_{rod} = 40.769 \text{ mm}$$

Dado que no existen diámetros internos de rodamientos con esa dimensión, se adopta el valor de:

Además es necesario calcular el diámetro para la chaveta que conecta el eje motriz y su catalina, por lo cual se vuelve a aplicar la ecuación 30, obteniendo:

Se prefiere dejar el valor en un número entero, por lo cual:

Requisitos de rendimiento y condiciones de funcionamiento

Para esta aplicación, es necesario considerar que el rodamiento debe ser capaz de soportar la carga, operar a una velocidad baja y resistir temperaturas que oscilan entre medias y altas.

Por lo tanto, se optará por utilizar un rodamiento rígido de bolas de una hilera, ya que cumple con las características necesarias para la aplicación mencionada

Teoría sobre la vida y fiabilidad de los rodamientos

Selección en función de la capacidad de carga estatica.

Se emplea este método que se presenta en el catálogo de rodamientos SKF, debido a que es adecuado cuando los rodamientos operan a velocidades muy bajas (n < 10 rpm) y experimentan movimientos oscilantes extremadamente lentos, lo cual se ajusta precisamente a las condiciones de este caso específico (SKF, 2006).

Factor de seguridad estático

Es necesario las reacciones que actúan en los rodamientos que fueron calculadas previamente.

Se opta por utilizar las reacciones en A, ya que son las más críticas para el cálculo del factor de seguridad estático.

$$F_r = \sqrt{R_{ay}^2 + R_{ax}^2}$$
 (39)
 $F_r = 3082, 36 \text{ kN}$
 $F_a = 0 \text{ N}$

A continuación, se calcula la carga estática equivalente del rodamiento P₀. Para ello,

se requieren los coeficientes X_0 y Y_0 , los cuales se obtienen del catálogo SKF y son:

$$X_0 = 0, 6$$
 (40)

$$Y_0 = 0,5$$
 (41)

Con esta información, se calcula la carga estática equivalente utilizando la ecuación proporcionada por (SKF, 2006).

$$P_0 = X_0 \cdot F_r + Y_0 \cdot F_a$$
 (42)
 $P_{01} = 1849,416 \text{ N}$

Debido a que $P_{01} < F_r$, se considera:

$$P_{01} = F_r = 3,082 \text{ kN}$$

Para asegurar que el rodamiento cumpla con la carga máxima, es necesario calcular el factor de seguridad estática S₀, Este factor debe superar el valor especificado en la Tabla 22.

Adoptando un enfoque conservador, considerando que no se experimentará un movimiento continuo del rodamiento, y con una certeza baja en el nivel de carga, el factor de seguridad estático $S_0 \ge 2$. Se escoge como primera opción el rodamiento SY30TF/VA201.

Tabla 22

Valores orientativos para el factor de seguridad estática S_0 - para cargas continuas y/u ocasionales- rodamientos de bolas

tabla 1 -	Valores orientativos	nara el factor	de coguridad e	etática co — para	cargae continuae	/u ocasionales
tapla 1 -	valores orientativos	para el lactor	de seguridad e	statica s ₀ – para	cargas continuas	y/u ocasionales

Certeza del nivel de carga	Movimiento continuo Aceptación de deformac	ión permanente	
	Sí	Algunas	No
Certeza alta Por ejemplo, carga por gravedad y sin vibración.	0,5	1	2
Certeza baja Por ejemplo, pico de carga.	≥ 1,5	≥ 1,5	≥ 2

Nota. La tabla fué tomada de (SKF, 2006)

Primera iteración: Rodamiento SY30TF/VA201

Tabla 23

Especificaciones técnicas de rodamientos de bolas con chumacera.

Dim	nensi	iones	н									Capacidad de carga	Masa	Designaciones Unidad de rodamiento Y con	
d	A	в	н	H1	H ₂	J	L	N	N ₁	G	s ₁	C ₀		jaula de chapa jaula enteriza de acero de grafito de ti corona	po
mm	1											kN	kg		
20	32	31	64	33,3	14	97	127	20,5	11,5	10	18,3	6,55	0,57	SY 20 TF/VA201 SY 20 TF/VA2	28
25	36	34,1	70	36,5	16	102	130	19,5	11,5	10	19,8	7.8	0,73	SY 25 TF/VA201 SY 25 TF/VA2	28
30	40	38,1	82	42,9	16,5	117,5	152	23,5	14	12	22,2	11,2	1,10	SY 30 TF/VA201 SY 30 TF/VA2	28
35	45	42,9	93	47,6	19	126	160	21	14	12	25,4	15,3	1,45	SY 35 TF/VA201 SY 35 TF/VA2	28
40	48	49,2	99	49,2	19	135,5	175	24,5	14	12	30,2	19	1,80	SY 40 TF/VA201 SY 40 TF/VA2	28
45	48	49,2	107	54	20,6	143,5	187	22,5	14	12	30,2	21.6	2,20	SY 45 TF/VA201 SY 45 TF/VA2	28
50	54	51,6	114	57,2	22	157	203	26	18	16	32,6	23,2	2,70	SY 50 TF/VA201 SY 50 TF/VA2	28
55	60	55,6	127	63,5	23,8	171,5	219	27,5	18	16	33,4	29	3,60	SY 55 TF/VA201 SY 55 TF/VA2	28
60	60	65,1	139,7	69,9	26	190,5	240	29	18	16	39,7	36	4.45	SY 60 TF/VA201 SY 60 TF/VA2	28

Nota. La imagen fué tomada de (SKF, 2006)

En la tabla 23, se encuentra el valor de la capacidad de carga estática del rodamiento

C₀, valor utilizado para calcular el factor de seguridad estático S₀:

$$S_0 = \frac{C_0}{P_0} \tag{43}$$

$$S_0 = 6.164$$

Considerando que el factor de seguridad es superior a 2, se puede utilizar este rodamiento con confianza, ya que satisface los criterios de carga estática requeridos.

Diseño del eje para los rodillos locos de transporte.

En el diseño del eje para el rodillo loco de transporte, se consideran las cargas representadas en el diagrama de cuerpo libre (D.C.L.) de la Figura 46.

Figura 46

Donde:

F_{1rod}= Peso que soporta el rodillo loco.

N_{vigal}= Fuerza normal que soporta el rodillo loco.

fr_{vigal}= fricción que genera el rodillo loco con la viga.

F_{tgl}= Fuerza tangencial que genera el movimiento de la viga.

En relación al peso que soporta el rodillo loco, este fue calculado en la sección de diseño del eje motriz de transporte, considerando áreas tributarias, y es:

F_{1rod} = 809, 237 N

Es necesario calcular la fuerza tangencial del rodillo loco de transporte. Para lograrlo, se lleva a cabo un análisis estático, tal como se ilustra a continuación:

$$\sum F_{y} = 0$$
(44)

$$N_{vigal} - F_{1rod} = 0$$

$$N_{vigal} = F_{1rod}$$

$$\sum F_{x} = 0$$
(45)

Se utiliza el coeficiente de fricción estático μ_{C} de la ecuación 19 y la ecuación 20. Finalmente, la fuerza tangencial resulta:

 $F_{tal} - fr_{viaa} = 0$

Para un cálculo más aproximado a la realidad, se transforman las cargas puntuales en cargas distribuidas como se muestra en la Figura 47. Este procedimiento se realiza dividiendo las mismas para la longitud que ocupan los flejes sobre los rodillos L_{sep}.

La carga distribuida del peso de la viga sobre un rodillo loco es:

$$q_{1rod} = 2,61 \frac{N}{mm}$$

La carga distribuida de la fuerza tangencial del rodillo loco resulta de la ecuación 15.

$$q_{tgl} = 1,932 \frac{N}{mm}$$

Figura 47

Cargas distribuidas en el rodillo loco de transporte

Para determinar el diámetro del eje y el tamaño del rodamiento, se aplica el mismo procedimiento utilizado en el eje del rodillo motriz, adaptando los cálculos según las nuevas cargas.Para obtener información más detallada, se recomienda consultar el Anexo A.1.

Los resultados obtenidos son los siguientes:

El diámetro del eje es $D_{rl} = 30$ mm.

El rodamiento seleccionado es: 6305-2Z.

Diseño del rodillo de transporte por rigidez.

Para el rodillo, no es necesario llevar a cabo un diseño basado en la resistencia mecánica; lo que se debe verificar son las deflexiones permitidas, es decir, realizar un diseño por rigidez. Dado que no se cuentan con datos específicos sobre la deflexión permisible en rodillos, se tomará como aproximación la deflexión permitida en el eje.

Figura 48

Deflexión en una viga simplemente soportada con carga uniformemente distribuida

Nota. La imagen fué tomada de (Mott, 2006)

En la Figura 48, se puede obtener la fórmula para la deflexión bajo una carga uniformemente distribuida. En nuestro problema, se conoce la carga uniformemente distribuida que representa la carga máxima que puede soportar el rodillo, la deflexión admisible, y las dimensiones I, a y x. Por lo tanto, la variable de inercia es la que debe despejarse para obtener el valor del diámetro exterior mínimo que debe tener el rodillo.

$$I = \frac{w}{24 \cdot E \cdot y_{max}} \cdot \left(\frac{2 \cdot x^3}{I} \cdot (I-a)^2 - (x-a)^4 + \frac{x}{I} \cdot \left((I-a)^4 - 2 \cdot I^2 \cdot (I-a)^2\right)\right)$$
(46)

Datos:

a=110 mm

E= 200 GPa

La carga máxima que soportará un rodillo es la carga del rodillo motriz. Por lo tanto, se debe calcular la carga resultante entre q_{1rod} y q_{to}.

$$w = \sqrt{q_{tg}^2 + q_{1rod}^2}$$

$$w = 19,493 \frac{N}{mm}$$
(47)

Según los diagramas de momento flector, el momento máximo se produce en x=270 mm.

Para determinar la deflexión máxima admisible, se aplicará el mismo criterio utilizado en el diseño del eje motriz.

 $y_{max} = def_{adml} = -0,248 mm$

Reemplazando todos los valores en la ecuación 46, se obtiene un valor para la inercia de:

Dado que ya se cuenta con un valor para el diámetro interno del tubo, que debería ser aproximadamente igual al diámetro externo del rodamiento es decir $d_i = d_{rodl} = 62$ mm, se puede utilizar la ecuación 48 de la inercia de un tubo circular, para calcular el diámetro externo aproximado del tubo.

$$I_{\text{tubo}} = \frac{\pi}{64} \cdot \left(d_0^4 - d_i^4 \right) \tag{48}$$

Despejando do se obtiene:

$$d_{o} = \sqrt[4]{\frac{64 \cdot I_{tubo}}{\pi} + d_{i}^{4}}$$

$$\tag{49}$$

Con las dimensiones proporcionadas, se realiza una búsqueda en tubos normalizados y se selecciona aquel que cumpla con los diámetros aproximados obtenidos mediante el cálculo de la inercia.

Para tuberías normalizadas, se identifica un tubo que cumple con las especificaciones:

Tubo de 2 1/2 in SCH 80 con las siguientes especificaciones:

 $d_i = 2.322in = 58.98 \text{ mm}$ $d_0 = 2.875in = 73.02 \text{ mm}$

Selección del motor y reductor de velocidad.

Se calcula la velocidad de avance, velocidad angular y se determina la potencia necesaria.

Velocidad de avance

El valor de la velocidad de avance fue proporcionado por el departamento de producción de la empresa, basándose en la capacidad de las máquinas disponibles en SEDEMI.

$$v_{avance} = 0.025 \frac{m}{s}$$

El diámetro del rodillo es de 73 mm, que equivale al diámetro externo de una tubería

de 2 1/2"SCH 80.

$$d = 73 mm$$

 $r = \frac{d}{2}$

Velocidad angular

Con esta información es posible calcular la velocidad angular del rodillo, el proceso se detalla a continuación:

$$\omega = \frac{V_{\text{avance}}}{r}$$
(50)

$$\omega$$
 = 6,654 rpm

Potencia necesaria

Para la determinación de la potencia necesaria, se tiene en cuenta el torque, el cual

está compuesto por un par resistente y un par inercial, como se muestra a continuación:

Torque resistente

El torque resistente es igual al torque necesario, previamente calculado en la ecuación 23.

$$T_{resis} = T_{nec} = 218,575 \text{ Nm}$$

Torque inercial

$$T_{iner} = m \cdot a_{c} \cdot r \tag{51}$$

Donde:

m= masa.

 a_c = aceleración.

r= radio.

$$a_{c} = \frac{v_{avance} - v_{o}}{t_{transporte}}$$

$$a_{c} = 5.934 \cdot 10^{-4} \frac{m}{s^{2}}$$

$$m = \frac{C_{dtotal}}{2}$$

$$m = 412,596 \text{ kg}$$
(52)

Se obtiene:

Debido a que el torque inercial es muy pequeño, se lo considera despreciable.

Finalmente, se determina la potencia necesaria para el motor:

$$\mathsf{P}_{\mathsf{nec}} = \mathsf{T}_{\mathsf{resis}} \cdot \omega \tag{53}$$

Basándose en estos resultados, se procede a la selección del motor y reductor, con ayuda de las tablas 24 y 25. Se toma como referencia el catálogo de un proveedor local (WEG, s.f.), optando por seleccionar motores con 1800 RPM, ya que es el valor de revoluciones más bajo disponible:

Entonces, se selecciona un motor con las siguientes especificaciones:

Potencia:0,5 hp

Tension:220 V

Tabla 24

Motores trifásicos Weg

MOTOR WEG TRIFASICO IE2 1800RPM													
POTENCIA	CODIGO	CARCASA	EJE mm	TENSION									
1/4	14690438	63	11	230/460									
1/3		63	11	230/460									
1/2	14159736	71	14	220/380/440									
3/4	14159778	71	14	220/440									
1	11962873	80	19	220/380/440									

Nota. La imagen fué tomada de (WEG, s.f.)

Tabla 25

Reductores Weg

CODIGO	POTENCIA	REDUCTOR	MOTOR	i	TORQUE OPERACIÓN	FS
550004	0.5 / 0.75 (HP)	50	71	50	66 / 98	1,1 / 0,7
541104	0.75 / 1 / 1.5 (HP)	50	80	7,5	21 / 27 / 41	3,5 / 2,6 / 1,8
541105	0.75 / 1 / 1.5 (HP)	50	80	10	27 / 35 / 52	2,6 / 2 / 1,3
541106	0.75 / 1 / 1.5 (HP)	50	80	15	38 / 50 / 75	2 / 1,5 / 1
541107	0.75 / 1 / 1.5 (HP)	50	80	20	49 / 65 / 96	1,5 / 1,1 / 0,8
541109	0.75 / 1 / 1.5 (HP)	50	80	40	83 / 110 / 163	0,9 / 0,7 / 0,5
541017	0.5 / 0.75 (HP)	63	71	60	78 / 115	1,7 / 1,1
541016	0.5 / 0.75 (HP)	63	71	100	107 / 158	1,1 / 0,7
541094	0.75 / 1 / 1.5 (HP)	63	80	30	69 / 91 / 135	2,3 / 1,7 / 1,1
541093	0.75 / 1 / 1.5 (HP)	63	80	40	87 / 115 / 171	1,6 / 1,2 / 0,8

Nota. La imagen fué tomada de (WEG, s.f.)

Así también, se elige un reductor de velocidad que cumple con las siguientes

características:

Potencia:0,5 hp

Motor: 71

Reductor: 63

Relación de transmisión i: 100

Torque de operación: 107 Nm

Se utilizará un reductor con una relación de transmisión de 100, por lo que la velocidad de entrada sería:

Diseño del eje del rodillo vertical.

En el diseño de este elemento se tiene en cuenta el peso de los dos patines y el alma de la viga en sus dimensiones más grandes, ademas se considera que la viga será soportada por dos rodillos verticales con una separación de 600 mm. Por ello se toma la carga de diseño calculada en la ecuación 7.

C_{total} = 4046, 185 N

Distribución de áreas tributarias para los rodillos verticales de transporte Figura 49

Distribución por áreas tributarias para los rodillos verticales

Área tributaria

Carga distribuida por unidad de área

Al considerar la ecuación 13, se obtiene:

$$q_{dtotal2} = 0.003 \ \frac{N}{mm^2}$$

Carga distribuida lineal

Considerando la ecuación 14 se obtiene:

$$q_{2rod} = 1.32 \frac{\text{kgf}}{\text{mm}}$$

Carga puntual

De la ecuación 15 se obtiene:

F_{2rod} = 3236.948 N

En la figura 50, se detallan las fuerzas que intervienen en el rodillo vertical mediante

un diagrama de cuerpo libre:

Figura 50

D.C.L. del eje del rodillo vertical

Donde:

w= Peso de cada elemento.

N= Fuerza normal.

fr= fricción que genera el rodillo con la viga.

F₁= Fuerza de empuje.

Sumatoria de fuerzas:

$$w_{dis} = w1 + w2 + w3$$

 $w_{dis} = 330,077 \text{ kgf}$
 $F_N = N1 + N2 + N3$
 $\sum F_y = 0$ (54)
 $F_N - w_{dis} = 0$

$$F_{N} = w_{dis}$$

$$F_{N} = 330.077 \text{ kgf}$$

$$\sum F_{x} = 0 \qquad (55)$$

$$F_{1} - f_{r} = 0$$

$$F_{1} = f_{r}$$

Sustituyendo la ecuación 19 y utilizando el coeficiente de fricción estático definido en la ecuación 20.

Finalmente se obtiene,

A continuación en la figura 51, se presentan las fuerzas que actúan en el eje del

rodillo vertical

Figura 51

Fuerzas en el eje del rodillo vertical

Se sigue el mismo procedimiento utilizado en el rodillo motriz para calcular el diámetro del eje, la selección de rodamientos y los diámetros del rodillo. Para obtener detalles adicionales, se puede consultar el Anexo A.2. Los resultados obtenidos para este

rodillo son los siguientes:

Diámetro del eje $D_{rv} = 30 \text{ mm.}$ Rodamiento seleccionado: **61905-2RS1**. Tubo cedulado seleccionado: Tubo de 1 $\frac{1}{2}$ in SCH 80. Diámetro interno del tubo: d_i = 38, 1 mm. Diámetro externo del tubo: d_o = 48, 26 mm.

Selección del cilindro neumático de presión de patines.

La selección del cilindro neumático implica el cálculo de la fuerza de empuje, la velocidad de desplazamiento del vástago, el diámetro del émbolo necesario y, finalmente, la verificación del pandeo del vástago.

Fuerza de empuje

Para seleccionar un cilindro neumático, es necesario conocer la fuerza de empuje necesaria para mover la viga y el peso del mecanismo del rodillo vertical.

La fuerza del rodillo vertical se calculó en la sección de diseño del eje de rodillo vertical.

F₁ = 244, 257 kgf = 2395, 341 N

Se debe agregar a la fuerza del rodillo vertical el peso aproximado del mecanismo del rodillo vertical que se muestra en la Figura 52.

Figura 52

Peso del mecanismo de rodillo vertical

Nota. La imagen fué tomada del software Inventor

 $W_{mecrv} = 23,459 \text{ kgf} = 230,054 \text{ N}$

La fuerza de empuje entonces resulta:

$$F_{empujerv} = W_{mecrv} + F_1$$
(56)

Velocidad de desplazamiento del vástago

La carrera del cilindro se obtiene restando el peralte de la viga máxima al peralte de la

viga mínima, y sumándole un espacio de holgura.

$$H_{max} = 300 \text{ mm}$$

$$H_{min} = 100 \text{ mm}$$

$$c_{\text{vastagorv}} = H_{\text{max}} - H_{\text{min}} + 30 \text{ mm} = 230 \text{ mm}$$
(57)

Para estimar el tiempo, se considera que el avance es de la longitud total en 10 segundos, basado en videos de máquinas similares y asegurando el tiempo disponible para cada viga.

$$t_{rv} = 10 \text{ s}$$

$$v_{rv} = \frac{c_{vastaorv}}{t}$$

$$v_{vastagorv} = 0,023 \frac{m}{s}$$
(58)

Determinación del diámetro del émbolo necesario

La presión de operación de los cilindros neumáticos en SEDEMI, según datos del departamento de producción, es de 9 bar. Sin embargo, se decide utilizar una presión de 6 bar, según el catálogo de Festo, con el fin de obtener un factor de seguridad, como se muestra en la siguiente ecuación:

$$P_{discil} = 6 bar$$

$$f_{scn} = \frac{P_{opSEDEMI}}{P_{discil}} = 1,5$$
(59)

Con esto, el diámetro necesario del cilindro se obtiene a partir de la definición de presión, como se indica a continuación:

$$\mathsf{P}_{\mathsf{discil}} = \frac{\mathsf{F}_{\mathsf{empujerv}}}{\mathsf{A}_{\mathsf{cilrv}}} \tag{60}$$

$$A_{cilrv} = \frac{\pi \cdot D_{emrv}^2}{4}$$
(61)

Reemplazando la ecuación 61 en 60 y despejando el diámetro se obtiene:

$$\mathsf{D}_{\mathsf{emrv}} = \sqrt{\frac{4 \cdot \mathsf{F}_{\mathsf{empujerv}}}{\pi \cdot \mathsf{P}_{\mathsf{cilrv}}}} \tag{62}$$

$$D_{emrv} = 74,641 \text{ mm}$$

Al no disponer del diámetro exacto obtenido, se elige el más cercano disponible en el catálogo.

$$D_{emrv} = 80 \text{ mm}$$

Se elige, en consecuencia, el cilindro neumático siguiente con las especificaciones

mostradas en la Figura 53.

Figura 53

Cilindro normalizado DSBC, ISO 15552 Hoja de datos Función DIN VDMA Amortiguación elástica Diámetro 32 ... 125 mm Amortiguación PPV Carrera d Ó D 1 ... 2800 mm Amortiguación PPS www.festo.com . ₽₽= Especificaciones técnicas generales Diámetro del émbolo 32 40 50 63 80 100 125 Forma constructiva Émbolo/vástago/camisa perfilada Modo de operación De doble efecto G1/4 Conexión neumática G1/8 G1/4 G3/8 G3/8 G1/2 M10x1,25 M16x1,5 Rosca del vástago M12x1,25 M16x1,5 M20x1,5 M20x1,5 M27x2

Especificaciones del cilindro neumático seleccionado

Nota. La imagen fué tomada de (FESTO, 2022)

Según el proveedor, con una presión de 6 bares, se tienen las fuerzas mostradas en

la tabla 26.

Tabla 26

Fuerza obtenida con el cilindro seleccionado

Fuerzas [N] y energía de impacto [J]							
Diámetro del émbolo	32	40	50	63	80	100	125
Fuerza teórica a 6 bar, avance	483	754	1178	1870	3016	4712	7363
Fuerza teórica a 6 bar, retroceso	415	633	990	1682	2721	4418	6881
Energía máx. de impacto en las posiciones finales							
DSBC	0,41)	0,7	1,0	1,3	1,8	2,5	3,3
DSBCL/-U/-T1/-T3/-T4	0,21)	0,35	0,5	0,65	0,9	1,25	1,65
DSBCL1	0,1	0,2	0,3	0,4	0,9	1,25	1,65

Nota. La tabla fué tomada de (FESTO, 2022)

La fuerza que se muestra es mayor a la necesaria, por lo tanto, cumple con los

requisitos establecidos.

Verificación de pandeo

Partiendo de la fuerza de compresión aplicada sobre el cilindro, en este caso

F_{empujerv}, con el objetivo de verificar la ausencia de pandeo, se debe cumplir la siguiente condición:

$$F_{pandeo} \ge F_{compression}$$

Para calcular la fuerza de pandeo, de acuerdo con el catálogo del proveedor, se utiliza la siguiente expresión:

$$F_{\text{pandeo}} = \frac{\pi^2 \cdot E \cdot I}{L_p^2 \cdot F.S.}$$
(63)

Reemplazando los datos del cilindro y considerando un factor de seguridad de 3, se obtiene:

Se verifica que se cumple con la condición, por lo tanto, no existe pandeo.

Diseño del sistema de transmisión por cadena para mesas transportadoras.

Como se indicó en el análisis de la potencia del motor, se necesita que la velocidad angular del rodillo alcance los 7 rpm. Los motorreductores comerciales suelen tener una velocidad mínima de 18 rpm, por lo que se requiere un sistema de transmisión por cadenas para lograr la velocidad deseada.

Datos de diseño:

 $v_{salida} = 7 \text{ rpm}$

$$P_{transmitida} = P_{nec} = 0,204 \text{ hp}$$

Se necesita el factor de servicio que se determina en función de la Tabla 27.

Se escoge un factor de servicio con choque moderado y se sabe que el tipo de

impulsor será un motor eléctrico.

Tabla 27

Factores de servicio para transmisiones por cadenas

		Tipo de impuls	or
Tipo de carga	Impulsor hidráulico	Motor eléctrico o turbina	Motor de combustión interna con transmisión mecánica
Uniforme (agitadores, ventila-			
dores, transportadores con carga ligera y uniforme)	1.0	1.0	1.2
Choque moderado (máquinas			
dores pesados, mezcladoras de			
alimento y molinos) Choque pesado (prensas de troque-	1.2	1.3	1.4
lado, molinos de martillos, trans portadores alternos, acciona-	-		
mientos de molino de rodillos)	1.4	1.5	1.7

TABLA 7-8 Factores de servicio para transmisiones por cadenas

Nota. La tabla fué tomada de (Mott, 2006)

$$f_{s} = 1, 3$$

Con esto, la potencia de diseño es:

$$\mathsf{P}_{\mathsf{dis}} = \mathsf{f}_{\mathsf{s}} \cdot \mathsf{P}_{\mathsf{transmitida}} \tag{64}$$

Debido a la carga, se necesita una transmisión de cadena con 2 hileras. Según (Mott,

2006), página 286, la potencia debe dividirse por un factor de 1.7.

$$\mathsf{P}_{\mathsf{dis}} = \frac{\mathsf{P}_{\mathsf{dis}}}{1,7} \tag{65}$$

La relación de transmisión viene dada por la ecuación:

$$R_{\text{transmision}} = \frac{V_{\text{entrada}}}{V_{\text{salida}}}$$
(66)

 $R_{transmision} = 2,571$

Para determinar el número de cadena, se hace uso de la Figura 54 del catálogo SYL

KANA (SYL, 2020).

Figura 54

Gráfica para determinar el número de cadena a utilizar

Nota. La imagen fué tomada de (SYL, 2020)

La cadena seleccionada es: Cadena doble de rodillos número 40, con paso de 1/2 in. Para seleccionar el número de dientes de la catalina conductora, es necesario realizar una interpolación entre los valores de velocidad de entrada y potencias indicadas en la Tabla

28.

Tabla 28

Determinación del número de dientes

TABLA 7-5 Capacidades en caballos de fuerza - Cadena simple de rodillos número 40

Núm. de	0	.500 p	ulgada	s de pa	aso				Vel	locidad	mínii	na de	giro de	la cat	arina,	rev/mi	n								
dientes	10	25	50	100	180	200	300	500	700	900	1000	1200	1400	1600	1800	2100	2500	3000	3500	4000	5000	6000	7000	8000	9000
11	0.06	0.14	0.27	0.52	0.91	1.00	1.48	2.42	3.34	4.25	4.70	5.60	6.49	5.57	4.66	3.70	2.85	2.17	1.72	1.41	1.01	0.77	0.61	0.50	0.00
12	0.06	0.15	0.29	0.56	0.99	1.09	1.61	2.64	3.64	4.64	5.13	6.11	7.09	6.34	5.31	4.22	3.25	2.47	1.96	1.60	1.15	0.87	0.69	0.57	0.00
13	0.07	0.16	0.31	0.61	1.07	1.19	1.75	2.86	3.95	5.02	5.56	6.62	7.68	7.15	5.99	4.76	3.66	2.79	2.21	1.81	1.29	0.98	0.78	0.00	
14	0.07	0.17	0.34	0.66	1.15	1.28	1.88	3.08	4.25	5.41	5.98	7.13	8.27	7.99	6.70	5.31	4.09	3.11	2.47	2.02	1.45	1.10	0.87	0.00	
15	0.08	0.19	0.36	0.70	1.24	1.37	2.02	3.30	4.55	5.80	6.41	7.64	8.86	8.86	7.43	5.89	4.54	3.45	2.74	2.24	1.60	1.22	0.97	0.00	
16	0.08	0.20	0.39	0.75	1.32	1.46	2.15	3.52	4.86	6.18	6.84	8.15	9.45	9.76	8.18	6.49	5.00	3.80	3.02	2.47	1.77	1.34	0.00		
17	0.09	0.21	0.41	0.80	1.40	1.55	2.29	3.74	5.16	6.57	7.27	8.66	10.04	10.69	8.96	7.11	5.48	4.17	3.31	2.71	1.94	1.47	0.00		
18	0.09	0.22	0.43	0.84	1.48	1.64	2.42	3.96	5.46	6.95	7.69	9.17	10.63	11.65	9.76	7.75	5.97	4.54	3.60	2.95	2.11	1.60	0.00		
19	0.10	0.24	0.46	0.89	1.57	1.73	2.56	4.18	5.77	7.34	8.12	9.66	11.22	12.64	10.59	8.40	6.47	4.92	3.91	3.20	2.29	0.09	0.00		
20	0.10	0.25	0.48	0.94	1.65	1.82	2.69	4.39	6.07	7.73	8.55	10.18	11.81	13.42	11.44	9.07	6.99	5.31	4.22	3.45	2.47	0.00			
21	0.11	0.26	0.51	0.98	1.73	1.91	2.83	4.61	6.37	8.11	8.98	10.69	12.40	14.10	12.30	9.76	7.52	5.72	4.54	3.71	2.65	0.00			
22	0.11	0.27	0.53	1.03	1.81	2.01	2.96	4.83	6.68	8.50	9.40	11.20	12.99	14.77	13.19	10.47	8.06	6.13	4.87	3.98	2.85	0.00			
23	0.12	0.28	0.56	1.08	1.90	2.10	3.10	5.05	6.98	8.89	9.83	11.71	13.58	15.44	14.10	11.19	8.62	6.55	5.20	4.26	3.05	0.00			
24	0.12	0.30	0.58	1.12	1.98	2.19	3.23	5.27	7.28	9.27	10.26	12.22	14.17	16.11	15.03	11.93	9.18	6.99	5.54	4.54	0.87	0.00			
25	0.13	0.31	0.60	1.17	2.06	2.28	3.36	5.49	7.59	9.66	10.69	12.73	14.76	16.78	15.98	12.68	9.76	7.43	5.89	4.82	0.00				
26	0.13	0.32	0.63	1.22	2.14	2.37	3.50	5.71	7.89	10.04	11.11	13.24	15.35	17.45	16.95	13.45	10.36	7.88	6.25	5.12	0.00				
28	0.14	0.35	0.67	1.31	2.31	2.55	3.77	6.15	8.50	10.82	11.97	14.26	16.53	18.79	18.94	15.03	11.57	8.80	6.99	5.72	0.00				
30	0.15	0.37	0.72	1.41	2.47	2.74	4.04	6.59	9.11	11.59	12.82	15.28	17.71	20.14	21.01	16.67	12.84	9.76	7.75	6.34	0.00				
32	0.16	0.40	0.77	1.50	2.64	2.92	4.31	7.03	9.71	12.38	13.68	16.30	18.89	21.48	23.14	18.37	14.14	10.76	8.54	1.41					
35	0.18	0.43	0.84	1.64	2.88	3.19	4.71	7.69	10.62	13.52	14.96	17.82	20.67	23.49	26.30	21.01	16.17	12.30	9.76	0.00					
40	0.21	0.50	0.96	1.87	3.30	3.65	5.38	8.79	12.14	15.45	17.10	20.37	23.62	26.85	30.06	25.67	19.76	15.03	0.00						
45	0.23	0.56	1.08	2.11	3.71	4.10	6.08	9.89	13.66	17.39	19.24	22.92	26.57	30.20	33.82	30.63	23.58	5.53	0.00						
		Tip	o A	0					Tipo B										Tij	po C					
	Tipo Tipo Tipo	A: Lubr B: Lubr C: Lubr	icación icación icación	manua en bañ con ch	l o por o o cor orro de	goteo disco aceite																			

Fuente: American Chain Association, Naples, FL

Nota. La tabla fué tomada de (Mott, 2006)

La interpolación que satisface la potencia de diseño se muestra en la Tabla 29, donde

la solución es de 18 dientes para la catalina conductora.

Tabla 29

Interpolación para determinación del número de dientes

Velocidad(RPM)	Potencia (hp)
10	0,09
18	0,159
25	0,22

Entonces, se elige una catalina con un número de dientes N1 de 18, con una

capacidad de 0.159 hp a 18 rpm, mediante interpolación. A esta velocidad, se requiere una lubricación tipo A (manual o por goteo), según lo recomendado en (Mott, 2006).

Dist
$$N_1 = 18$$

La cantidad necesaria de dientes para la rueda grande se determina utilizando la relación de transmisión:

$$N_2 = N_1 \cdot R_{transmision}$$
 (67)
 $N_2 = 46,286 \text{ dientes}$

Al no contar con ese número de dientes en las catalinas comerciales, se utiliza el más cercano.

$$N_2 = 45$$
 dientes

Con esto, la velocidad de salida esperada es:

$$n_2 = v_{entrada} \cdot \left(\frac{N_1}{N_2}\right)$$
(68)

$$n_2 = 7, 2 \text{ rpm}$$

Ahora se determinan ciertos parámetros geométricos importantes:

Diámetros de paso de las catalinas:

El paso de la cadena p es de $\frac{1}{2}$ in.

$$\mathsf{D}_1 = \frac{\mathsf{p}}{\sin\left(\frac{180\deg}{\mathsf{N}_1}\right)} \tag{69}$$

D₁ = 73, 136 mm

$$D_2 = \frac{p}{\sin\left(\frac{180 \text{deg}}{N_2}\right)}$$
(70)

Distancia entre centros:

Tomando la sugerencia de (Mott, 2006), se tiene una distancia de 30 pasos.

$$C = 30 \cdot p \tag{71}$$

Longitud de cadena necesaria en pasos:

L = 2 * C +
$$\frac{N_2 + N_1}{2}$$
 + $\frac{(N2 - N1)^2}{4 \cdot \pi^2 \cdot C}$ (72)
L = 92 pasos = 1, 168 m

$$L = 92 \text{ pasos} = 1,168 \text{ m}$$

Distancia teórica entre centros:

$$C_{t} = \frac{1}{4} \cdot \left(L - \frac{N_{2} + N_{1}}{2} + \sqrt{\left(L - \frac{N_{2} + N_{1}}{2} \right)^{2} - \frac{8 \cdot (N_{2} + N_{1})^{2}}{4 \cdot \pi^{2}}} \right)$$
(73)

 $C_t = 28,485 \text{ pasos} = 366,332 \text{ mm}$

Se seleccionan los elementos del sistema de transmisión mediante el catálogo de KANA (SYL, 2020).

Tabla 30

Selección de la catalina conductora

No.	No. Pitch	Out		SIN	IGLE E	з түр	E			DOL	BLE	втү	ΡE		SING	YPE	No.	
of Tooth	Dia.	side	Bore	(BD)	Hu	ıb	Approx.	Mate-	Bore	(BD)	Hu	ıb	Approx.	Mate-	Bore (BD)	Approx.	Mate-	of
ieeui	(F.C.D.)	(OD)	Stock	Max.	HD	HL	(kg)	rials	Stock	Max.	HD	HL	(kg)	rials	Stock	(kg)	rials	reeur
9	1.462	1.67	0.35	0.63	*1.102	0.866	0.11								0.35	0.05		9
10	1.618	1.84	0.39	0.71	* 1. 260	0.866	0.14		0.51	0.63	1. 102	1.378	0.28		0.39	0.05		10
11	1.775	2.00	0.43	0.79	* 1. 417	0.866	0.19		0.51	0.63	1. 181	1.378	0.30		0.43	0.09		11
12	1.932	2.17	0.43	0.87	* 1. 575	0.866	0.22		0.55	0.79	1.378	1.378	0.34		0.43	0.10		12
13	2.089	2.33	0.55	0.79	1.457	0.866	0.23		0.55	0.87	1.535	1.378	0.40		0.55	0.12		13
14	2.247	2.49	0.55	0.98	1.654	0.866	0.28		0.55	0.98	1.693	1.378	0.47		0.55	0.14		14
15	2.405	2.65	0. 55	1. 10	1.811	0.866	0.34		0. 55	1. 10	1.850	1. 378	0. 55	040	0. 55	0. 16		15
16	2.563	2.81	0.55	1. 18	1.969	0.866	0.40		0.55	1. 18	1.969	1.378	0.65	ш.	0.55	0.18		16
17	2.721	2.98	0.55	1.26	2. 126	0.866	0.46	140	0.55	1.26	2. 126	1. 378	0.75	SA	0.55	0.20		17
18	2.879	3.14	0.55	1.38	2.244	0.866	0.51	10	0.55	1.50	2.323	1.378	0.85		0.55	0.23		18

Nota. La tabla fué tomada de (SYL, 2020)

Catalina conductora seleccionada segun la Tabla 30: NK40- DOUBLE B TYPE 18

dientes.

Tabla 31

Selección de la catalina conducida

No. Pitch	Out		SIN	GLE E	З ТҮР	Έ			DOL	JBLE	втү	ΡE		SING	LEAT	YPE	No.	
of	Dia.	side	Bore	(BD)	Hu	ıb	Approx.	Mate-	Bore	(BD)	H	ub	Approx.	Mate-	Bore (BD)	Approx.	Mate-	of
ieeui	(F.C.D.)	(OD)	Stock	Max.	HD	HL	(kg)	rials	Stock	Max.	HD	HL	(kg)	rials	Stock	(kg)	rials	leeui
40	6.373	6.65	0.67	1.77	2.677	1.102	1.70		0.91	2.60	3.937	1.969	3.60		0.71	1.20		40
41	6. 532	6.81	0.71	1.89	2.874	1.260	2.00								0.71	1.20		41
42	6.691	6.97	0.71	1.89	2.874	1.260	2.05		0.91	2.48	3.661	1.969	4.00		0.71	1.25		42
43	6.850	7.13	0.71	1.89	2.874	1.260	2.10	-						(q	0.71	1.30		43
44	7.009	7 28	0.71	1.89	2 874	1 260	2 17	9						Ē	0.71	1.35		44
45	7.168	7.45	0.71	1.89	2.874	1.260	2.25	4	0.91	2.48	3.661	1.969	4.60	B	0.71	1.40		45
48	7.645	7.93	0.71	1.89	2.874	1.260	2.45	leide	0.91	2.48	3.661	1.969	5.00	Weld	0.71	1.63		48
50	7.963	8.23	0.71	1.89	2.874	1.260	2.60	3	0.91	2.48	3.661	1.969	5.50	-	0.71	1.80		50

Nota. La tabla fué tomada de (SYL, 2020)

Catalina conducida seleccionada segun la Tabla 31: NK40- double B TYPE 45 dientes.

Solución de la transmisión de cadena

Cadena seleccionada según la Tabla 32: ANSI B29. Número 40- 2 hileras.

Tabla 32

Selección de la cadena

ANSI	Chain	Inner	Roller				Link Plate		Approx.	Tensile	ANSI
Chain	Pitch	Width	Dia.	d	L1	L2	Thickness	C	Weight	Strength	Chain
Number	Р	W	D				Т		(lbs./ft)	Ave.(lbs.)	Number
25	1/4	1/8	*.130	.090	.34	.37	.030		.084	875	25
25-2	1/4	1/8	*.130	.090	.59	.63	.030	.252	.163	1750	25-2
25-3	1/4	1/8	*.130	.090	.84	.88	.030	.252	.246	2625	25-3
35	3/8	3/18	* .200	.141	.50	.56	.050		.210	2100	35
35-2	3/8	3/18	* .200	.141	.90	.96	.050	.399	.450	4200	35-2
35-3	3/8	3/18	* .200	.141	1.31	1.36	.050	.399	.680	6300	35-3
40	1/2	5/16	.312	.156	.67	.72	.060		.410	4000	40
40-2	1/2	5/16	.312	.156	1.24	1.29	.060	.566	.800	8000	40-2
40-3	1/2	5/16	.312	.156	1.80	1.85	.060	.566	1.200	12000	40-3
40-4	1/2	5/16	.312	.156	2.37	2.42	.060	.566	1.600	16000	40-4
41	1/2	1/4	.306	.141	.57	.65	.050		.260	2400	41
50	5/8	3/8	.400	.200	.83	.89	.080		.680	6600	50
50-2	5/8	3/8	.400	.200	1.55	1.60	.080	.713	1.320	13200	50-2
50-3	5/8	3/8	.400	.200	2.26	2.31	.080	.713	1.980	19800	50-3

1. *Chains are rollerless - dimension shown is bushing diameter. Offset link of #25 is two pitch type.

Nota. La tabla fué tomada de (SYL, 2020)

La Figura 55 resume la solución obtenida para esta transmisión en cadena.

Figura 55

Solución del sistema de transmisión

Ahora se calcula la velocidad, fuerza tangencial y torque esperados.
Cálculo de velocidad, fuerza tangencial y torque

De la catalina conductora:

Velocidad tangencial:

Se tiene de dato:

$$w_{ent} = 18 \text{ rpm}$$

 $r_{ent} = \frac{D1}{2} = 36,568 \text{ mm}$

Se muestra la ecuación 74, la cual establece la relación entre la velocidad lineal y la velocidad angular.

$$\mathbf{v} = \mathbf{W} \cdot \mathbf{r} \tag{74}$$

La velocidad de entrada resulta:

$$v_{ent} = 0,069 \frac{m}{s}$$

El torque de entrada es el que viene dado del catálogo del reductor de velocidad que se muestra en la Tabla 25.

Fuerza tangencial:

Se obtiene dividiendo el torque de entrada para el radio de entrada:

$$F_{tg} = \frac{T_{ent}}{r_{ent}}$$
(75)

De la catalina conducida:

Se tiene de dato:

$$w_{sal} = 7 \text{ rpm}$$

 $r_{sal} = \frac{D2}{2} = 91,031 \text{ mm}$

La velocidad lineal se calcula con la ecuación 50.

$$v_{sal} = 0,067 \frac{m}{s}$$

Finalmente el torque de salida resulta al despejarlo en la ecuación 75.

Sistema de transmisión en cadena entre el rodillo motriz y los rodillos siguientes.

Es necesario emplear un sistema de transmisión en cadena entre los rodillos de la mesa transportadora para ayudar en la tracción de la viga.

Dado que la potencia transmitida y la velocidad angular son iguales, se utiliza el mismo sistema de transmisión de cadena de doble hilera número 40. La única diferencia radica en que los diámetros de las catalinas conductora y conducida son idénticos.

En consecuencia, se emplea la misma catalina conducida de 18 dientes. En este caso, una catalina actuará como conductora y la otra como conducida, ambas con 18 dientes.

La Figura 56 ilustra la solución de la transmisión de cadena entre los rodillos transportadores.

Solución de la transmisión en cadena entre rodillos transportadores

Diseño de las chavetas para el sistema de transmisión.

En el diseño de las chavetas, se tienen en cuenta las siguientes variables para las

dimensiones de la chaveta, que se ilustran en la figura 57

Figura 57

Variables de las chavetas

Nota. La imagen fué tomada del software Inventor

Chaveta de unión entre rodillos

El diametro del eje motriz d_{ch} , fue calculado previamente.

De acuerdo con el Prontuario de Máquinas de (Larburu Arrizabalaga et al., 2011), en la Tabla 33, se recomiendan valores para la sección de la chaveta.

Tabla 33

117		0.0000.000	100 200	0.001	178-25 Mg	CHAN	/ETERO	al loss son						
Diámetro del eje d		Sección			Ancho	Coloria	Profu	Chaflán						
		de la	Nomi-		Clase de a	ajuste del e	1.30.1	Eie	h.	Cubo	h.	R.		
		chaveta	nal	Li	bre	No	ormal	Ajustado					-	
Más de	hasta	b×h	101	Eje h9	Cubo D10	Eje N9	Cubo Js 9	Eje y cubo P9	Nomi- nal	Toler.	Nomi- nal	Toler.	Mín.	Máx.
10 12 17	12 17 22	4×4 5×5 6×6	4 5 6	+0,030	+ 0,078 + 0,030	0 -0,030	±0,015	-0,012 -0,042	2,5 3 3,5	+0,1	1,8 2,3 2,8	+0,1	0,08 0,16 0,16	0,16 0,25 0,25
22	30	8×7	8	+0.036	+0.098	0	100000	_0.015	4		33	000000	0 16	0.25
30	- 38	10×8	10	0	+0,040	-0,036	±0,018	-0.051	5	in the second se	3.3		0.25	0.40
38	44	12×8	12	(080)	out of Articula	C stat on this	SO kontra	to prese up	5	1.	3.3	No. 1008	0.25	0.40

Valores recomendados para chavetas

Nota. La tabla fué tomada del software Inventor

Para el diámetro del eje motriz se sugieren las siguientes dimensiones:

Se calcula la fuerza ejercida sobre la chaveta:

$$F = \frac{2 \cdot T_{sal}}{d}$$
(76)

Falla por cizallamiento

Es necesario determinar la longitud mínima de la chaveta para ser capáz de transferir el par de torsión. En este plano el área se define como:

$$A = I \cdot b \tag{77}$$

Esfuerzo cortante

Por definición, el esfuerzo se puede calcular de la siguiente manera:

$$\tau = \frac{\mathsf{F}}{\mathsf{A}} \tag{78}$$

Además, tambien se lo puede explesar como:

$$\tau_{\text{adm}} = \frac{S_{\text{sy}}}{F.S.}$$
(79)

Al igualar las dos expresiones 78 y 79, y reemplazar el área, se obtiene la siguiente expresión para determinar la longitud mínima de la chaveta:

$$I = \frac{F \cdot F.s.}{b \cdot S_{sy}}$$
(80)

Las chavetas se realizarán con acero A572, segun la hoja técnica del proveedor Cia. General de Aceros (General, 2023), sus propiedades mecánicas son:

$$S_y = 50 \text{ ksi}$$

De acuerdo con la ecuación 5.21 del libro diseño en ingenieria mecánica de Shigley (Budynas, 2018), la resistencia a la fluencia cortante se determina de la siguiente manera:

El factor de seguridad recomendado para cargas variables es de 2.5 a 4, por lo cual:

Finalmente, reemplazando los valores obtenidos en la ecuación 80, la longitud mínima de la chaveta determinada por una falla de cizallamiento es de:

$$I_c = 26,646 \text{ mm}$$

Falla por aplastamiento

En este plano, se define el área de análisis como:

$$A = I \cdot h$$

De forma similar al análisis de falla por cizallamiento, al igualar las expresiones que definen al esfuerzo de aplastamiento, el esfuerzo admisible y reemplazar el área, se obtiene la ecuación

$$I = \frac{F \cdot F.s.}{h \cdot S_{sy}}$$
(81)

La longitud mínima necesaria, determinada por una falla de aplastamiento es de:

Se debe elegir la longitud mayor; no obstante, considerando el ancho del engranaje, se prefiere seleccionar esta longitud para la chaveta, ya que es mayor que la longitud mínima necesaria.

$$I_{c1} = 50 \text{ mm}$$

Chaveta de unión entre el motoreductor y el rodillo

El cálculo de la chaveta de unión entre el motorreductor y el piñón sigue el mismo procedimiento, con la única variación siendo el torque transmitido. Para obtener información más detallada, se puede consultar el Anexo B.1.

Las dimensiones de la chaveta resultan: Largo de la chaveta $I_{c2} = 35$ mm. Ancho de la chaveta $b_{c2} = 8$ mm. Profundidad de la chaveta $h_{c2} = 7$ mm.

Selección de rieles y patines.

Para los cilindros neumáticos presionadores de patín, es necesario utilizar rieles y patines HIWIN, ya que estos contribuirán a que el rodillo vertical se desplace con una fricción mínima.

Las cargas que afectan a los patines que se muestran en la Figura 58, se obtienen de las reacciones generadas por el peso del mecanismo del rodillo vertical W_{mecrv} , el cual ya fue calculado anteriormente.

Cargas que actúan en los patines y rieles

Nota. La imagen fué tomada del software Inventor

Las reacciones R_{ayp} y R_{byp} serán las mismas, entonces:

$$R_{ayp} = R_{byp} = \frac{W_{mecrv}}{2}$$
(82)

Por lo tanto la carga efectiva P es igual a las reacciones.

Ahora se seguirá el procedimiento dado en (HIWIN, 2020), para la selección de rieles

y patines.

El primer paso consiste en seleccionar un tipo y serie de patín. Se opta por el ilustrado en la Tabla 34, debido a que cumple con las condiciones de montaje adecuadas para este diseño.

Tabla 34

Tipo	v serie	de	guía	lineal	se	leccior	nada
	/		3				

(1) Tipos	sy Series											
Tabla 2-1	Tipos y Series											
Serie	Montaje	Carga	Cuadradros	Con Brida								
	Altura	ou.gu	Roscados	Roscados	Pasantes	Ambos						
	Alto	Pesada	HGH-CA		-							
HG	7110	Super Pesada	HGH-HA	-	-	-						
110		Pesada	HGL-CA	HGW-CA	HGW-CB	HGW-CC						
	Bajo	Super Pesada	HGL-HA	HGW-HA	HGW-HB	HGW-HC						
EG	Baio	Media	EGH-SA	EGW-SA	EGW-SB							
20	Dajo	Pesada	EGH-CA	EGW-CA	EGW-CB	-						
	Alto	Pesada	QHH-CA	-	-	-						
он	Alto	Super Pesada	QHH-HA	-	-	-						
GIT	Baio	Pesada	-	QHW-CA	QHW-CB	QHW-CC						
	Dajo	Super Pesada	-	QHW-HA	QHW-HB	QHW-HC						
OF	Baio	Media	QEH-SA	QEW-SA	QEW-SB	-						
	Dajo	Pesada	QEH - CA	QEW-CA	QEW-CB	-						

Nota. La tabla fué tomada de (HIWIN, 2020)

Ahora se debe seleccionar el grado de precisión de las guías. Para garantizar un mantenimiento adecuado, se decide elegir guías intercambiables con una precisión alta como se muestra en la Tabla 35, ya que se requiere precisión en el ensamblaje de las vigas.

Tipo de precisión

(2) Grados Tabla 2-2 G	de Precisió ados de Preci	sión								
	No Interca	ambiable		Intercamb	Intercambiable					
Serie	Normal	Alta	Precisión	Super Precisión	Ultra Precisión	Normal	Alta	Precisión		
	(C)	(H)	(P)	(SP)	(UP)	(C)	(H)	(P)		
HG	•	•	•	•	•	•	•	•		
EG	•	•	•	•	•	•	•	•		
QH	•	•	•	•	•	•	•	•		
QE	•	•	•	•	•	•	•	•		
WE	•	•	•	•	•	•	•	•		
MGN	•	•	•		-	•	•	•		
MGW	•	•	•		-	•	•	•		
RG	-	•	•	•	•		•	•		

Nota. La tabla fué tomada de (HIWIN, 2020)

Como siguiente paso, se debe elegir el tipo de precarga. En este caso, se opta por

una precarga tipo media ZA, como se ilustra en la Tabla 36.

Esta elección se basa en la información proporcionada en la Tabla 37, la cual explica

que este tipo de precarga es adecuada para aplicaciones en centros de mecanizado, que

pueden compararse con la máquina ensambladora de vigas.

Tabla 36

Tipo de precarga en la guía

(3) Clasif	(3) Clasificación de Precarga												
Tabla 2-3	Precarga												
Carda	No Intercambiable		Intercambiable										
Serie	Ligera	Media	Alta	Ligera	Media								
	(Z0)	(ZA)	(ZB)	(Z0)	(ZA)								
HG	•	•	•	•	•								
QH	•	•	•	•	•								

Nota. La tabla fué tomada de (HIWIN, 2020)

Ejemplos de aplicación de grados de precarga

```
(2) Grados de Precarga
```

Tabla 2-1-12 Grados de Precarga

HIWIN ofrece tres grados de precarga estándar, para diferentes aplicaciones y condiciones.

Grado	Código	Precarga	Condición	Ejemplos de Aplicación
Precarga Ligera	ZO	0~0.02C	Ciertas direcciones de carga. Requerimientos de precisión baja	Transportadores, maq. embalaje, aplicaciones XY para industria en general, pinzas de soldadura
Precarga Media	ZA	0.05C~0.07C	Requerimientos de Precisión alta	Centros de mecanizado, mesas X-Y, CNC, tornos, fresadoras, equipos de medición
Precarga Alta	ZB	0.10C~ 0.12C	Alta rigidez, aplicaciones con impactos y vibraciones	Centros de mecanizado, CNC, prensas, máquinas de corte
Grado	Intercar	nbiable		No Intercambiable
Precarga	Z0, ZA			Z0, ZA, ZB

NOTA: la letra "C" en la columna de la precarga hace referencia a la capacidad de carga dinámica.

Nota. La tabla fué tomada de (HIWIN, 2020)

Capacidad de carga estática de la guía lineal

En la primera iteración, se considera el uso del patín cuadrado de perfil bajo que se

muestra en la Tabla 38.

Capacidad de carga estática Co.

$$C_0 = 16,97 \text{ kN}$$

La carga del patín es P. Entonces, el factor de seguridad de la riel resulta:

$$f_{slrp} = \frac{C_0}{P} = 147$$
(83)

Si cumple con los requisitos de carga, entonces se puede usar esta guía.

Especificación de la riel: HGL15CA1T350Z0H

Especificaciones de las guías lineales HIWIN

Model o Nº	Dimensiones (mm)				Dimensiones del Patín (mm)								Dimensiones del Raíl (mm)					ım)	Tornillo de Montaie	Capacidad de Carga Dinámica	Capaci- dad de Carga	Máximo Momento Estático			Peso													
	-																							montajo	Di la li la	Estatica	M _R	Mp	My	Patín	Raíl							
	н	H ₁	N	w	в	B ₁	С	L	L	K,	K ₂	G	Mxl	т	H ₂	H₃	W _R	H _R	D	h	d	Ρ	E	(mm)	C(kN)	C₀(kN)	kN-m	kN-m	kN-m	kg	kg/m							
HGH 15CA	28	4.3	9.5	34	26	4	26	39.4	61.4	10	4.85	5.3	M4x5	6	7.95	7.7	15	15	7.5	5.3	4.5	60	20	M4x16	11.38	16.97	0.12	0.10	0.10	0.18	1.45							
HGH 20CA	20	4.0	40									32	0	36	50.5	77.5	12.25	2.25	10	MERC	0	6		20	47.5	0.5	0.5	0	60	20	ME	17.75	27.76	0.27	0.20	0.20	0.30	0.04
HGH 20HA	30	4.0	12	44	44 32	4 32 (14 32 6	32 6	32 6	6	50	65.2	92.2	12.6	0	12	M5x6	8	8 6	6 6	20	20 17.5	9.5 8	8.5	0	60	20	M5X16	21.18	35.90	0.35	0.35	0.35	0.39	2.21			
HGH 25CA	40	40 5.5 12.	40.5	5 48	25		35	58	84	16.8	8	40	140-0		10	0	00	00		0	-	CO	20	140-00	26.48	36.49	0.42	0.33	0.33	0.51	2.04							
HGH 25HA	40		12.5		35	5 6.5	50	78.6	104.6	6 19.6	0	12	M6x8 8	8	3 10	9	23	23 22		9 7		7 60) 20	M6X20	32.75	49.44	0.56	0.57	0.57	0.69	3.21							

Nota. La tabla fué tomada de (HIWIN, 2020)

Diseño de rueda que soporta el posible volteo del patín.

En el diseño de las ruedas se llevará a cabo el cálculo del pasador y la selección del rodamiento.

Pasador de la rueda

El escenario crítico para el cálculo de este eje es el potencial volteo del patín. Para determinar la fuerza de volteo, es esencial primero obtener la carga del patín sobre la rueda. En la elección de utilizar dos ruedas por cada patín, se realiza una división por áreas tributarias como se ilustra en la Figura 59. Dado que una rueda soporta una carga mayor, se tiene la información de que las ruedas están separadas por una distancia de 2000 mm.

Área tributaria de patín para cálculo de la carga del patín sobre la rueda

Área tributaria:

 $A_{tribmax} = 4000 \text{ mm} * 250 \text{ mm}$ $A_{tribmax} = 1000000 \text{ mm}^2$

Carga distribuida por unidad de área

Se calcula según la ecuación 13.

$$q_{dtotalrp} = 0,001 \frac{N}{mm^2}$$

Para calcular la carga distribuida lineal de cada rueda se utiliza la ecuación 14.

Carga distribuida lineal

$$q_{1rueda} = 3,695 \frac{N}{mm}$$

Fuerza puntual

Se calcula la carga puntual de acuerdo a la ecuación 15.

Ahora, utilizando esta carga del patín, se calcula la fuerza de volteo mediante un análisis estático del diagrama de cuerpo libre (D.C.L.) que se muestra en la Figura 60.

Figura 60

La fuerza normal en B debe ser cero para que se produzca el volteo, por lo que se realiza una suma de fuerzas en los ejes X y Y.

Como Nap y Nbp estan ubicados a distancias equivalentes serán iguales.

$$\sum Fy = 0 \tag{84}$$

$$N_a = N_b N_{ap} + N_{bp} - w_{patr} = 0$$

Entonces la normal Nap resulta:

 $N_{ap} = \frac{w_{patr}}{2}$ $N_{ap} = 461,893 N$

$$\sum Fx = 0$$
(85)
$$f_{rap} - F_{volteo} = 0$$
$$F_{volteo} = f_{rap}$$

Finalmente la fuerza F_{volteo} resulta de la definición de fricción de la ecuación 19:

También se genera un momento debido a la fuerza frap.

$$M_{rap} = f_{rap} \cdot 250 \text{ mm}$$

 $M_{rap} = 85, 45 \text{ Nmm}$

Para el cálculo de los pasadores, se ha optado por analizar su diámetro ideal

utilizando la herramienta de diseño en Inventor, como se ilustra en la Figura 61.

Posteriormente, se elegirá un diámetro aproximado.

Generador de componentes de eje 📄 🖬 🚰 🖉 [<u>*</u>-🕼 Diseño 🎜 Cálculo 🖄 Gráficos Selección de gráfico Gráfico Resultado Fuerza de corte Plano YZ Plano XZ Momento flector 50,000 mm Masa 0,278 kg 17,737 MPa σB ٩ Plano YZ Plano XZ τ_S 2,661 MPa Plano XZ ngulo de flexión Plano YZ Plano XZ 0,000 MPa σ_T 0,000 MPa Gred 18,325 MPa xión Plano YZ Plano XZ f_{máx} 0.354 um 0,00 gr nsión de plegado 1. Carga Plano YZ Plano XZ -0,199 µm fy ensión de corte 0,000 µm 20 P21 2367 fy Plano YZ Plano XZ 2. Carga nsión de torsión -0, 199 µm f, ensión E 10 ión reducida fx 0,000 µm 1.50 0.000 N Fz Fy 1881.267 N 20 40 30 10 Longitud [mm] Fχ 0,000 N Yv 0.000 um/N 2 Aceptar Cancelar

Diseño de pasador con acelerador de diseño de Inventor

Nota. La imagen fué tomada del software Inventor

Se obtiene un diámetro ideal de 21.24 mm. Por lo tanto, se elige un diámetro de 25 mm, ya que el diámetro interno de los rodamientos disponibles es de este valor.

Selección de rodamiento para la rueda

Ahora es necesario seleccionar un rodamiento para el eje. Este debe tener una dimensión interna igual al diámetro del pasador y una dimensión externa que sea menor que la distancia entre patines de la viga más pequeña, que es de 88 mm. Por lo tanto, la selección del rodamiento se basa en restricciones geométricas.

25	37 37	77	4,36 4,36 7,02	2,6 2,6	0,125	38 000	19 000 11 000	0,022	61805-2RZ 61805-2RS1 61905-2R7	-	
	42	9	7,02	4,3	0,193	-	10 000	0,045	61905-2R51	-]
	47 47 47 47	12 12 12 16	11,9 11,9 11,9 11,2	6,55 6,55 6,55 6,55	0,275 0,275 0,275 0,275	32 000 32 000 - -	16 000 16 000 9 500 9 500	0,08 0,08 0,08 0,10	* 6005-2Z * 6005-2RSL * 6005-2RSH 63005-2RS1	* 6005-Z * 6005-RSL * 6005-RSH -	
	52 52 52 52	15 15 15 18	14,8 14,8 14,8 14	7,8 7,8 7,8 7,8	0,335 0,335 0,335 0,335	28 000 28 000 - -	14 000 14 000 8 500 8 500	0,13 0,13 0,13 0,15	* 6205-2Z * 6205-2RSL * 6205-2RSH 62205-2RS1	* 6205-Z * 6205-RSL * 6205-RSH -	
	62 62 62 62	17 17 17 24	23,4 23,4 23,4 22,5	11,6 11,6 11,6 11,6	0.49 0.49 0.49 0.49	24 000 24 000 - -	13 000 13 000 7 500 7 500	0,23 0,23 0,23 0,32	* 6305-2Z * 6305-2RZ * 6305-2RS1 62305-2RS1	* 6305-Z * 6305-RZ * 6305-RS1 -	

Selección de rodamiento de pasador para rueda de volteo de patín

Nota. La tabla fué tomada de (SKF, 2006).

Dimensionamiento del buje de duralón de la rueda

Como se observa en la Tabla 39, se elige un diámetro externo de rodamiento de 42 mm con el objetivo de contar con un recubrimiento de duralón de 9 mm de espesor, logrando así una rueda con un diámetro total de 60 mm.

> $d_{extrodp} = 42 \text{ mm}$ $d_{extrueda} = 60 \text{ mm}$

Comprobación de cargas en el rodamiento

Se necesita determinar la carga radial y la carga axial. En este caso, solo se tiene carga radial que es F_{volteo} .

 $F_{rvp} = F_{volteo}$

$$F_{avp} = 0 N$$

Como siguiente paso, es necesario calcular la carga estática equivalente del

rodamiento P_0 . Para ello, se requieren los coeficientes X_0 y Y_0 , los cuales se obtienen de las ecuaciones 40 y 41.

Con esta información, se puede calcular la carga estática equivalente utilizando la ecuación 42.

Debido a que $P_0 < F_{rvp}$, se toma:

$$P_0 = F_{rvp} = 342N = 0,342kN$$

Con el fin de garantizar que el rodamiento cumpla con la carga máxima, es necesario calcular el factor de seguridad estática S₀, el cual debe superar el valor indicado en la Tabla 22.

Con un enfoque conservador, teniendo en cuenta que no se experimentará un movimiento continuo del rodamiento y con una certeza baja en el nivel de carga, el factor de seguridad estático $S_0 \leq 2$.

Rodamiento 6305-2Z

En la Tabla 39, se encuentra el valor de la capacidad de carga estática del rodamiento C_0 , el cual se utiliza para calcular el factor de seguridad estático S_0 como se indica en la ecuación 43.

$$C_0 = 4, 3kN$$

 $S_0 = 12, 58$

Dado que el factor de seguridad es superior a 2, se puede utilizar este rodamiento.

Selección de cilindro neumático para rueda que soporta el posible volteo del patín.

Para seleccionar el cilindro neumático es necesario calcular la fuerza de empuje.

Fuerza de empuje

Para seleccionar el cilindro neumático, es necesario conocer la fuerza de empuje

requerida, la cual está determinada por el peso del mecanismo que traslada la rueda. Dicho

peso se muestra en la Figura 62.

Figura 62

Peso del mecanismo que desplaza la rueda de volteo

Nota. La imagen fué tomada del software Inventor

F_{empujeruv} = 6,003 kgf = 58,869 N

Se sigue el mismo procedimiento utilizado en la selección del cilindro neumático de presión de patín. Para obtener detalles adicionales, consulte el Anexo C.1. Los resultados

obtenidos son los siguientes:

Carrera del cilindro c_{vastagoruv} = 150 mm. Velocidad del vástago v_{ruv} = 0,3 $\frac{m}{s}$. Diámetro del émbolo D_{emruv} = 32 mm.

Diseño de la rueda que eleva el alma.

Se debe hallar la fuerza que soporta cada rueda al elevar el alma. Analizando el caso

como una viga simplemente apoyada, el peso del alma, Pa, se dividirá entre el apoyo

proporcionado por la mesa de rodillos y las dos ruedas elevadoras del alma.

Entonces, la fuerza necesaria para elevar el alma se define como:

$$F_{ea} = \frac{P_a}{2}$$

 $F_{ea} = 637, 413 \text{ N}$

En la figura 63, se ilustran las fuerzas que intervienen en el sistema elevador del alma:

Figura 63

Reacciones del sistema elevador del alma

La fuerza aplicada por cada cilindro para elevar el alma debe ser de al menos:

$$F_{cn} = \frac{P_{ea}}{2}$$
$$F_{cn} = 318.706 \text{ N}$$

Para esta rueda, se sigue el mismo procedimiento que se detalla en la rueda diseñada para soportar el posible volteo del patín. El procedimiento detallado se puede verificar en el Anexo D.1.

A continuación, se presentan los resultados obtenidos:

Diámetro del pasador de la rueda d_{pea} = 12 mm

Rodamiento seleccionado: 61801-2Z.

Dimensionamiento del buje de la rueda

Debido a que el pasador tiene un diámetro de 12 mm, es necesario garantizar una distancia mínima entre el borde de la placa y el centro del agujero que sostiene al pasador. El buje que recubre el rodamiento debe superar esta distancia para que la rueda sobresalga.

Para la distancia mínima según (Budynas, 2018), en su libro Diseño en ingeniería mecánica de Shigley. Se establece un valor mínimo para la distancia desde el centro de la perforación al borde:

 $L_{borde} = 1.5 \cdot d L_{borde} = 18 \text{ mm}$

Se elige un eje de una medida comercial para ser maquinado, con un diámetro externo del buje de 15/8" y un diámetro interno de 21 mm.

 $d_{intrea} = 21 \text{ mm}$ $d_{extrea} = 47,625 \text{ mm}$

Selección del cilindro neumático para los elevadores del alma.

Para la selección de los cilindros neumáticos, solo se debe considerar la fuerza necesaria que debe ejercer cada cilindro para elevar el alma. Se excluye el peso del rodamiento y del buje, ya que son insignificantes debido a su reducido tamaño.

 $F_{cn} = 318.706 \text{ N}$

Se sigue el mismo procedimiento utilizado en la selección del cilindro neumático de presión de patín. Para obtener detalles adicionales, consulte el Anexo C.2. Los resultados obtenidos son los siguientes:

Carrera del cilindro c_{vastagoea} = 125 mm.

Velocidad del vástago $v_{ea} = 0,013 \frac{m}{s}$.

Diámetro del émbolo D_{ea} = 32 mm.

Diseño de la compuerta para alineación de flejes.

Ahora es necesario diseñar una compuerta que facilite la alineación de los flejes que conforman los patines y el alma. Esto asegurará que ningún fleje esté adelante o detrás de otro.

Para el análisis de esta compuerta en la zona de armado, se debe utilizar la fuerza tangencial generada por el rodillo motriz.

Se llevarán a cabo dos casos para determinar cuál es el más crítico. Además, se analizará únicamente el plano de la sección de menor tamaño.

Caso 1: Fuerza tangencial como fuerza puntual

Como se muestra en la Figura 64, la fuerza tangencial se tratará como una carga puntual al analizar la compuerta.

Caso 1: Análisis de compuerta

 $F_{tg} = 5988,353 \text{ N}$

La placa se fabricará con acero ASTM A36, por consiguiente:

En este caso, se utilizará un factor de seguridad igual a 2.

$$F.S = 2$$

Con esto, el esfuerzo admisible es:

$$\sigma_{\text{adm}} = \frac{S_{\text{y}}}{F.S} = 124, 1 \text{ MPa}$$
(86)

En el Apéndice A, tabla A-9 de (Budynas, 2018), se encuentra el caso 2: carga intermedia en voladizo. A partir de este caso, se obtiene la ecuación del momento máximo, la cual se muestra en la ecuación 87.

$$M_{maxc1} = F_{tg} \cdot a \tag{87}$$

Donde:

a = 30 mm M_{maxc1} = 179, 94 Nm

Se analiza únicamente el esfuerzo más crítico, que en este caso es el esfuerzo de flexión.

$$\sigma_{\rm fl1} = \frac{M_{\rm maxc1} \cdot y_{\rm c}}{I_{\rm c}}$$
(88)

Para determinar las dimensiones de la placa de la compuerta, es necesario realizar un análisis geométrico. Se observa que la placa medirá 30 mm más que el peralte de la viga más grande y 30 mm más que la mitad del ancho del patín más grande.

Por lo tanto, las dimensiones de la placa son:

 $a_{pl} = 330 \text{ mm}$: ancho de la compuerta $b_{pl} = 160 \text{ mm}$: largo de la compuerta

En este caso, se analizará únicamente la sección más pequeña, es decir, del lado de 160 mm.

$$y_{c} = \frac{e}{2}$$
(89)

Donde e es el espesor de la placa de la compuerta.

También se necesita la inercia de la sección analizada de la placa.

$$I_{\rm C} = \frac{b \cdot e^4}{12} \tag{90}$$

Reemplazando las ecuaciones 89 y 90 en la ecuación 88 se tiene:

$$\sigma_{\mathsf{f}|1} = \frac{\mathsf{M}_{\mathsf{maxc}1} \cdot \frac{\mathsf{e}}{2}}{\frac{\mathsf{b} \cdot \mathsf{e}^4}{12}} \tag{91}$$

Despejando e de la ecuación 91 e igualando este esfuerzo con σ_{adm} , se obtiene el espesor mínimo de la compuerta:

$$e_{c1} = \sqrt{\frac{6 \cdot M_{maxc1}}{\sigma_{adm} \cdot b}}$$
(92)

 $e_{c1} = 7,368 \text{ mm}$

Ahora se analiza el caso 2.

Caso 2: Fuerza tangencial como carga distribuida

Como se muestra en la Figura 65, la fuerza tangencial se tratará como una carga

distribuida al analizar la compuerta.

Caso 2: Análisis de compuerta

La fuerza tangencial se representa como una carga distribuida a lo largo de la placa.

$$q_{ftg} = \frac{F_{tg}}{b} = 37,425 \frac{N}{mm}$$

El esfuerzo admisible es el mismo que se presenta en la ecuación 86.

En el Apéndice A, tabla A-9 de (Budynas, 2018), se encuentra el caso 3: carga distribuida en voladizo. A partir de este caso, se obtiene la ecuación del momento máximo, la cual se muestra en la ecuación 93.

$$M_{maxc1} = \frac{q_{tg} \cdot b^2}{2}$$
(93)

M_{maxc1} = 479, 04 Nm

Se analiza igual que en el caso 1, pero se cambia el momento máximo obtenido.

El espesor que se obtiene con la ecuación 92 es:

$$e_{c2} = 12,031 \text{ mm}$$

Entonces, es necesario utilizar una placa con un espesor igual o mayor a 12.031 mm. Dado que las opciones disponibles en SEDEMI son placas de 12, 15, 18 y 20 mm, se optará por una placa de 12 mm de espesor.

$$e_c = 12 \text{ mm}$$

Pasador que gira la compuerta

Para estimar el diámetro del pasador, se utilizará el acelerador de diseño de Inventor. Para ello, es necesario contar con las cargas que actúan sobre el pasador. Se realizará un análisis a cortante considerando la fuerza tangencial y el peso de la placa de la compuerta como se ilustra en la Figura 66.

Figura 66

D.C.L. del pasador que gira la compuerta

El peso de la compuerta se obtiene mediante el software Inventor y se muestra en la

Figura 67.

Figura 67

Peso de la compuerta

Nota. La imagen fué tomada del software Inventor

 $W_{comp} = 19, 13 \text{ kgf} = 187, 601 \text{ N}$

Se obtiene como resultado el diámetro ideal mediante el acelerador de Inventor, como se indica en la Figura 68.

Diámetro ideal del pasador de la compuerta

Nota. La imagen fué tomada del software Inventor

Por lo tanto, se utilizará un eje de 1 $\frac{3}{8}$ " como pasador.

d_{pascomp} = 1,375 in = 34,925 mm

Selección del cilindro neumático para la compuerta.

El cilindro neumático debe tener la capacidad de elevar el mecanismo y también

deberá soportar la fuerza tangencial, como se muestra en la fgura 69.

D.C.L. cilindro neumático de la compuerta

Nota. La imagen fué tomada del software Inventor

Del modelo 3D, se obtiene el valor del ángulo α :

$$\alpha$$
 = 73, 19 deg

Realizando una sumatoria de fuerzas en el eje X

$$\sum F_{X}=0$$

 $\mathsf{F}_{\mathsf{empujec}} \cdot \mathsf{cos}(\alpha) = \mathsf{F}_{\mathsf{tg}}$

en el eje Y:

$$\sum F_y = 0$$

$$\mathsf{F}_{\mathsf{empujec}} \cdot \mathsf{sen}(\alpha) = \mathsf{W}_{\mathsf{comp}}$$

Por lo tanto, la fuerza de empuje resulta:

$$F_{empujec} = \sqrt{F_{tg}^2 + W_{comp}}$$

Se sigue el mismo procedimiento utilizado en la selección del cilindro neumático de presión de patín. Para obtener detalles adicionales, consulte el Anexo C.3. Los resultados obtenidos son los siguientes:

Carrera del cilindro c_{cilbr} = 125 mm. Velocidad del vástago v_{cilbr} = 0,013 $\frac{m}{s}$. Diámetro del émbolo D_{embr} = 125 mm.

Diseño de elementos de la zona de soldadura

Al igual que en los diseños previos de los ejes de rodillos, se realiza un diseño basado en la resistencia a la fatiga.

Se debe calcular la fuerza de empuje que los cilindros neumáticos deben ejercer sobre los rodillos, para mover la viga y el peso del mecanismo del rodillo vertical. Además se debe sumar la fuerza necesaria para mantener la viga presionada sin que esta se resbale.

Se considera que la tracción de transporte de la viga la realizarán 2 motores, con

sistema de transmisión de cadena en 2 rodillos consecutivos.

Distribución por áreas tributarias para los rodillos motrices

Figura 70

Distribución por áreas tributarias de la zona de soldadura

Área tributaria

$$A_{trib3} = 5700 \text{ mm} \cdot \text{L} = 1425000 \text{ mm}^2$$
 (94)

Carga distribuida por unidad de área

Considerando la ecuación 13, se obtiene:

$$q_{dtotal3} = 0.003 \frac{N}{mm^2}$$

Carga distribuida lineal

Reemplazando los datos en la ecuación 14:

$$q_{3rod} = 15,376 \frac{N}{mm}$$

Carga puntual

De la ecuación 15 se obtiene:

En la figura 71, se detallan las fuerzas que intervienen en la zona de soldadura,

mediante un diagrama de cuerpo libre:

Figura 71

D.C.L. de la zona de soldadura

Donde:

w_{mecsm}= Peso de la parte móvil de la zona de soldadura.

w_{viga}= Peso de la viga.

N= Fuerza normal.

fr= fricción que genera el rodillo con la viga.

F_{empz}= Fuerza de empuje.

Sumatoria de fuerzas:

$$\sum F_{y} = 0 \qquad (95)$$

$$F_{N} - w_{viga} = 0$$

$$F_{N} = w_{viga}$$

$$F_{N} = 3843.875 N$$

$$\sum F_{x} = 0 \qquad (96)$$

$$F_{tg} - f_{r} = 0$$

$$F_{tg} = f_{r}$$

Sustituyendo la ecuación 19 y utilizando el coeficiente de fricción estático definido en la ecuación 20

Finalmente se obtiene,

Para determinar la fuerza de empuje, se agrega la fuerza de fricción producida por el

peso del mecanismo móvil considerando que tiene rieles y patines:

El coeficiente de las rieles y patines según su catálogo es de aproximadamente:

$$\mu_{\rm Sr} = 0,004$$

Por lo tanto, la fuerza de fricción que produce el mecanismo móvil es:

Ahora se debe calcular la fuerza que se necesita para mantener la viga presionada

sin que esta se resbale. A continuación se muestra el D.C.L. en la figura 72:

Figura 72

D.C.L. de la zona de soldadura para que no resbale la viga

La fuerza para mantener la viga presionada Fpres se calcula suponiendo que la viga es presionada y no tiene ningún apoyo horizontal. La fuerza de fricción se opone a la posible caída de la viga, es decir en contra del peso de la misma.

Sumatoria de fuerzas:

$$\sum F_{y} = 0$$
 (97)
 $f_{r} - w_{viga} = 0$
 $f_{r} = w_{viga}$
 $f_{r} = 3843.875 \text{ N}$
 $\sum F_{x} = 0$ (98)

 $F_{pres} - N = 0$ $F_{pres} = N$

Sustituyendo la ecuación 19 y utilizando el coeficiente de fricción estático definido en la ecuación 20.

Finalmente se obtiene,

La fuerza de empueje resulta:

 $F_{empz} = f_{rmec} + f_{tg} + F_{pres}$ $F_{empz} = 8046,763 \text{ N}$

Fuerza requerida

La fuerza de empuje calculada previamente es la requerida para el cilindro neumático.

F_{empz} = 8046, 763 N

Se sigue el mismo procedimiento utilizado en la selección del cilindro neumático de presión de patín. Para obtener detalles adicionales, consulte el Anexo C.4. Los resultados obtenidos son los siguientes:

Carrera del cilindro cvastagopp = 230 mm.

Velocidad del vástago $v_{cpp} = 0,023 \frac{m}{s}$.

Diámetro del émbolo D_{cpp} = 100 mm.
Selección de rieles y patines.

Para los cilindros neumáticos presionadores de patín de la zona de soldadura, es necesario utilizar rieles y patines HIWIN, ya que estos contribuirán a que los rodillos verticales y todos los demás equipos, se desplacen con una fricción mínima.

La carga que actúa sobre los patines se compone del peso total del mecanismo y los momentos que este genera.

Se necesita conocer el peso de todo el mecanismo que conforma el presionador de patín en esta zona y también su centro de gravedad para obtener los momentos que este genera. Para ello se usa el software Inventor y se obtiene los datos necesarios, ilustrados en la Figura 73.

W_{mecsm} = 246, 694 kgf = 2419 N

Figura 73

Peso del mecanismo presionador de patín en la zona de soldadura

Nota. La imagen fue tomada del software Inventor

D.C.L. de las fuerzas que actúan sobre los patines

Para determinar las reacciones en los patines, así como sus momentos, se lleva a cabo un análisis estático con el D.C.L. de la Figura 74.

$$\sum Fy = 0 \tag{99}$$

$$R_{sma} + R_{smb} + R_{smc} + R_{smd} - W_{mecsm} = 0$$

Se estima que la reacción en cada patín será igual:

 $R_{sma} = R_{smb} = R_{smc} = R_{smd}$

$$R_{sma} = \frac{W_{mecsm}}{4} = 604,81 \text{ N}$$

Los momentos generados por el peso dependen de las distancias mostradas en el D.C.L. de la Figura 74.

 $M_{smdy} = M_{smcy}$ $M_{dy} = R_{sma} \cdot 434 \text{ mm} = 0,262 \text{ kNm}$ $M_{smay} = M_{smby}$ $M_{ay} = R_{sma} \cdot 391 \text{ mm} = 0,236 \text{ kNm}$ $M_{smaz} = M_{smbz} = M_{smdz} = M_{smcz}$ $M_{az} = R_{sma} \cdot 215 \text{ mm} = 0,13 \text{ kNm}$

Entonces la carga efectiva de los patines resulta:

 $P = R_{sma} = 604, 81 N$

Ahora se seguirá el procedimiento dado en (HIWIN, 2020), para la seleccion de rieles y patines.

- El primer paso consiste en seleccionar un tipo y serie de patín. Se opta por el ilustrado en la Tabla 34, debido a que cumple con las condiciones de montaje adecuadas para este diseño.
- Para garantizar un mantenimiento adecuado, se decide elegir guías intercambiables con una precisión alta como se muestra en la Tabla 35, ya que se requiere precisión en el ensamblaje de las vigas.

 Como paso siguiente, es necesario seleccionar el tipo de precarga. En esta instancia, se decide emplear una precarga del tipo media ZA, tal como se muestra en la Tabla 36.
 Esta decisión se fundamenta en la información detallada en la Tabla 37, la cual indica que este tipo de precarga es idóneo para aplicaciones en centros de mecanizado, pudiendo ser equiparadas con la máquina ensambladora de vigas.

Capacidad de carga estática de la guía lineal

En la primera iteración, se considera el uso del patín cuadrado de perfil bajo que se muestra en la Figura 38.

Capacidad de carga estática Co.

$$C_0 = 69, 16 \text{ kN}$$

La carga del patín es P. Entonces, el factor de seguridad de la riel resulta:

$$f_{slrp} = \frac{C_o}{P} = 114$$

Si cumple con los requisitos de carga.

Momentos estáticos admisibles de la guía lineal

Con referencia a la Figura 75, se extraen los momentos máximos necesarios para

llevar a cabo la verificación de capacidad.

Entonces los momentos más críticos son:

$$M_r = M_{smdy} = 0,262 \text{ kNm}$$

 $M_p = M_{smaz} = 0,13 \text{ kNm}$

En base al patín seleccionado se tienen los valores Mor y Mop de la Tabla 38.

 $M_{or} = 0,42 \text{ kNm}$ $M_{op} = 0,33 \text{ kNm}$

Figura 75

Momentos admisibles en rieles y patines HIWIN

Nota. La imagen fue tomada de (HIWIN, 2020)

Entonces, los factores de seguridad de momentos de la riel resultan:

$$f_{SIMr} = \frac{M_{or}}{M_{smdy}} = 1,776$$
$$f_{SIMr} = \frac{M_{op}}{M_{smaz}} = 2,538$$

Si cumple con los requisitos de momentos, por lo tanto, se puede escoger este patín.

Especificación de la riel: HGL25CA1T350Z0H

Diseño del eje motriz para el rodillo de la zona de soldadura.

Se debe considerar la fuerza tangencial, que resulta de la fuerza de empuje

previamente calculada, F_{empz}, como se muestra en la figura 76.

D.C.L. del eje del rodillo motriz de la zona de soldadura

Donde:

F_{empz}= Fuerza de empuje sobre los rodillos

N= Fuerza normal que soporta el rodillo motriz.

F_{rz}= fricción que genera el rodillo motriz con la viga.

 F_{tgz} = Fuerza tangencial que genera el movimiento de la viga.

Para calcular la fuerza tangencial en el rodillo, se debe calcular la fricción entre el

rodillo y la viga

Sumatoria de fuerzas:

$$\sum F_{y} = 0$$
 (100)
 $N - F_{empz} = 0$
 $N = F_{empz}$
 $N = 8046, 763 N$
 $\sum F_{x} = 0$ (101)

 $F_r - F_{tgz} = 0$ $F_r = F_{tgz}$

Utilizando el coeficiente de fricción estático definido en la ecuación 20 Finalmente se obtiene,

$$F_{tgz} = 5954.605 \text{ N}$$

Para determinar el diámetro del eje y el tamaño del rodamiento, se aplica el mismo procedimiento utilizado en el eje del rodillo motriz, adaptando los cálculos según las nuevas cargas.Para obtener información más detallada, se recomienda consultar el Anexo A.1.

Los resultados obtenidos son los siguientes:

El diámetro del eje es $D_{rl} = 45$ mm.

El rodamiento seleccionado es: SY35TF.

Debido a las restricciones geométricas, se determina un tubo que cumple con las especificaciones:

Tubo de 2 in SCH 80

 $D_{os} = 60.325 \text{ mm}$ $D_{is} = 49,2506 \text{ mm}$

Selección del motor y reductor de velocidad.

Con el objetivo de optimizar el control en el avance de la viga previamente armada durante el proceso de soldadura, se ha decidido utilizar dos motores en la zona de soldadura. Esta decisión se toma con la intención de garantizar un mejor manejo del sistema, evitando cualquier interferencia con el punteo de soldadura realizado en los vértices de la viga en el armado. La implementación de dos motores proporcionará una mayor estabilidad al sistema de tracción.

$n_{motores} = 2$

Al igual que en la zona de transporte y armado, se calculan ciertos parámetros para seleccionar el motor. Para obtener información adicional, dirigirse al Anexo E.1. Los resultados obtenidos son los siguientes:

Velocidad de avance $v_{avances} = 700 \frac{mm}{min}$.

Velocidad angular $w_s = 3.714$ rpm.

Torque resistente $T_{resists} = 89,319$ Nm.

Torque inercial $T_{iners} = 0,014$ Nm.

Potencia necesaria $P_{necs} = 0,047$ hp.

Especificaciones del motor:

Potencia: 0,25 hp.

Tensión: 230 V.

Especificaciones del reductor:

Motor: 63

Reductor: 50

Relación de transmisión i: 100

Torque de operación: 49 Nm.

Diseño del sistema de transmisión por cadena.

Es necesario implementar un sistema de transmisión mediante cadena con el objetivo de alcanzar la velocidad angular necesaria de 3.71 rpm en esta zona específica. El cálculo del sistema de transmisión sigue el mismo procedimiento utilizado en la zona de transporte y armado. El proceso detallado se encuentra en el Anexo F.1. Los resultados obtenidos para cadenas y catalinas son:

Se seleccionan los elementos del sistema de transmisión mediante el catálogo de KANA (SYL, 2020).

Cadena seleccionada según la Tabla 32: ANSI B29. Número 40-1 hilera.

Catalina conductora seleccionada segun la Tabla 30: NK40- SINGLE B TYPE 11

dientes.

Catalina conducida seleccionada segun la Tabla 31: NK40- SINGLE B TYPE 50 dientes.

Solución de la transmisión de cadena

La Figura 77 resume la solución obtenida para esta transmisión en cadena.

Figura 77

Solución del sistema de transmisión

Sistema de transmisión en cadena entre el rodillo motriz y el siguiente.

Es necesario emplear un sistema de transmisión en cadena entre dos rodillos verticales para ayudar en la tracción de la viga.

Dado que la potencia transmitida y la velocidad angular son iguales, se utiliza el mismo sistema de transmisión de cadena de una hilera número 40. La única diferencia radica en que los diámetros de las catalinas conductora y conducida son idénticos.

En consecuencia, se emplea la misma catalina conducida de 11 dientes. En este caso, una catalina actuará como conductora y la otra como conducida, ambas con 11 dientes.

La Figura 78 ilustra la solución de la transmisión de cadena entre dos rodillos verticales.

Figura 78

Solución de la transmisión en cadena entre rodillos verticales

Diseño de las chavetas para el sistema de transmisión para la zona de

soldadura.

Chaveta de unión entre rodillos de la zona de soldadura

El cálculo de la chaveta de unión entre rodillos sigue el mismo procedimiento que en la zona de transporte. Para obtener información más detallada, se puede consultar el Anexo B.2. Las dimensiones de la chaveta resultan:

Largo de la chaveta $I_{csz} = 32$ mm.

Ancho de la chaveta $b_{csz} = 8$ mm.

Profundidad de la chaveta $h_{csz} = 7$ mm.

Cálculo de la chaveta de unión entre el motoreductor y el piñón para la zona de soldadura

El cálculo de la chaveta de unión entre el motorreductor y el rodillo sigue el mismo procedimiento, con la única variación siendo el torque transmitido. Para obtener información más detallada, se puede consultar el Anexo B.3.

Las dimensiones de la chaveta resultan:

Largo de la chaveta $I_{csz2} = 22$ mm.

Ancho de la chaveta $b_{csz2} = 8$ mm.

Profundidad de la chaveta $h_{csz2} = 7$ mm.

Diseño de la rueda que posiciona el alma.

Para determinar la fuerza de los posicionadores, se evaluará la situación más crítica entre las ruedas superiores e inferiores.Se procederá a diseñar el sistema tomando como base la situación más crítica.

Caso 1 - Fuerza en el posicionador superior

Se considera como situación crítica que el alma se encuentra ligeramente elevada más allá de lo necesario, por lo que la rueda debe posicionarla en la posición media. En este escenario, la fuerza del posicionador debe superar la fricción entre el alma y el patín, como se ilustra en el diagrama de cuerpo libre (D.C.L.) de la Figura 79.

D.C.L. de la rueda superior que posiciona el alma

Se tienen los datos ya calculados anteriormente:

 $F_{presold} = 5194 \text{ N}$ $P_a = 1274,825 \text{ N}$

Ahora se realiza un análisis estático:

$$\sum Fy = 0$$
(102)
$$F_{posi} + p_a = fr_{sol}$$

$$F_{posi} = fr_{sol} - p_a$$

$$\sum Fx = 0$$
(103)

 $F_{presold} = N_{emps}$

De la definición de fricción de la ecuación 19 y usando el valor del coeficiente de fricción de la ecuación 20 se obtiene:

Con esto la fuerza en la rueda que posiciona el alma es:

$$F_{posi} = 2,569 \text{ kN}$$

Ahora se analiza el caso 2.

Caso 2 - Fuerza en el posicionador inferior

Se toma el mismo caso 1, pero se analiza el posicionador inferior, la fuerza del

posicionador inferior, en consecuencia, debe contrarrestar tanto la fuerza del posicionador

superior como el peso del alma, como se representa en el diagrama de cuerpo libre (D.C.L.)

de la Figura 80

Figura 80

El peso del alma se debe dividir para 2 ya que se tienen 2 posicionadores inferiores.

$$p_{a2} = \frac{pa}{2}$$

Ahora se realiza un análisis estático del D.C.L. de la figura 80.

$$\sum Fy = 0$$
(104)
$$F_{posi} + p_a = fr_{sol}$$

$$F_{posi} = fr_{sol} - p_a$$

Entonces la fuerza en el posicionador es:

F_{posinf} = 3206, 148 N

Por lo tanto, se realiza el diseño con el caso 2 que es el más crítico.

Para esta rueda, se sigue el mismo procedimiento que se detalla en la rueda diseñada para soportar el posible volteo del patín. El procedimiento detallado se puede verificar en el Anexo D.2.

A continuación, se presentan los resultados obtenidos:

Diámetro del pasador de la rueda d_{pasposinf} = 25 mm

Rodamiento seleccionado: 61905-2RZ.

Se elige un eje de una medida comercial para ser maquinado, con un diámetro externo del buje de 2 3/4" y un diámetro interno de 21 mm.

d_{intrea} = 39 mm

 $d_{extrea} = 69,85 \text{ mm}$

Selección del cilindro neumático elevador y presionador del alma en la zona de soldadura.

Fuerza de empuje

Figura 81

Fuerza de empuje para cilindro posicionador y presionador del alma

El cilindro neumático debe ser capaz de elevar el mecanismo y producir la fuerza del

posicionador inferior, como se ilustra en la Figura 81.

El peso del mecanismo se obtendrá del modelo preliminar en Inventor como se

muestra en la Figura 82.

La fuerza de empuje para este cilindro es:

 $F_{empuje} = F_{posinf} + W_{mec2}$

 $W_{mecspa} = 12 \text{ kgf} = 117,68 \text{ N}$

Con esto, la fuerza de empuje resulta:

Figura 82

Peso del mecanismo de antorchas

MECANISMO DE PRESION FI	O iProperties		×
General Resumen Proyecto Es Material	tado Personalizadas Guardar	Propiedades físicas	
	~	Actualizar	
Densidad	Precisión solicitada	Portapapeles	
7,986 g/cm^3	Baja 🗸 🗸		
Propiedades generales			
Incluir soldaduras ficticias	Incluir anulaciones d	e CTDAD	
Masa 11,681 kg (Error re	X -7,476 mm (Error	re	
Área 645824,566 mm^2	Y -16,438 mm (Erro	ri -	
Volumen 1462676,060 mm ^	Z 101,393 mm (Erro	r	

Nota. La imagen fué tomada del software Inventor

Se sigue el mismo procedimiento utilizado en la selección del cilindro neumático de presión de patín. Para obtener detalles adicionales, consulte el Anexo C.6. Los resultados obtenidos son los siguientes:

Carrera del cilindro c_{vastagoalm} = 125 mm.

Velocidad del vástago $v_{aea2} = 0,018 \frac{m}{s}$.

Diámetro del émbolo D_{emant} = 100 mm.

Diseño de la rueda que posiciona el patín.

Se considera como fuerza máxima el caso en el que un extremo del patín no está siendo presionado, y se requiere la aplicación de la fuerza por parte del posicionador para lograr su correcta ubicación, tal como se indica en el Diagrama de Cuerpo Libre (D.C.L.) de la Figura 83.

Ahora se realiza un análisis estático del D.C.L. de la Figura 83.

$$\sum Fx = 0 \tag{105}$$

 $F_{empsold} + Fposp = N_{bpa} + N_{apa}$

Ahora se realiza la sumatoria de momentos alrededor del punto B.

$$\sum M_{b} = 0 \tag{106}$$

-125 mm
$$\cdot$$
 F_{empsold} - 250 mm \cdot Fposp + 250 mm \cdot N_{apa} = 0

Figura 83

D.C.L. de la rueda que posiciona el patín

La condición para este caso es que la normal N_{apa} sea igual a cero, ya que un extremo del patín no tiene contacto con el rodillo.

Por lo tanto, la fuerza del posicionador es:

$$\mathsf{F}_{\mathsf{posp}} = \frac{-125 \text{ mm} \cdot \mathsf{F}_{\mathsf{empsold}}}{250 \text{ mm}}$$

$$F_p osp = -4023, 382 N$$

Al obtener un resultado negativo, el sentido de la fuerza se invierte.

Para esta rueda, se sigue el mismo procedimiento que se detalla en la rueda diseñada para soportar el posible volteo del patín. El procedimiento detallado se puede

verificar en el Anexo D.3.

A continuación, se presentan los resultados obtenidos:

Diámetro del pasador de la rueda d_{paspospat} = 30 mm

Rodamiento seleccionado: 61906-2RZ.

Se elige un eje de una medida comercial para ser maquinado, con un diámetro externo del buje de 21/2" y un diámetro interno de 44 mm.

 $d_{intrppa} = 44 \text{ mm}$ $d_{extrppa} = 60 \text{ mm}$

Selección del cilindro neumático para posicionador de patín y antorchas.

Fuerza de empuje

El cilindro neumático debe tener la capacidad de empujar el mecanismo y generar la fuerza necesaria para posicionar el patín como se ilustra en la Figura 84.

La fuerza de empuje de este cilindro es:

$$F_{emppa} = F_{posp} + W_{mecspa}$$

El peso del mecanismo se obtendrá del modelo preliminar en Inventor como se muestra en la Figura 82.

Con esto, la fuerza de empuje resulta:

Femppa = 4, 141 kN = 4141 N

Figura 84

Fuerza de empuje para cilindro posicionador de patín y antorcha

Se sigue el mismo procedimiento utilizado en la selección del cilindro neumático de presión de patín. Para obtener detalles adicionales, consulte el Anexo C.5. Los resultados obtenidos son los siguientes:

Cilindro de carrera corta ADVC Carrera del cilindro c_{vastagoant} = 15 mm. Velocidad del vástago v_{ant} = 0,002 $\frac{m}{s}$. Diámetro del émbolo D_{ea} = 100 mm.

Diseño de elementos de la zona de post - soldadura

Es importante destacar que en esta zona se tendrán los mismos elementos para las mesas de transporte que en la zona de transporte y armado. Por lo tanto, solo se necesita realizar el diseño de los elementos adicionales que se agregan, que son los brazos rotadores de viga y el cilindro neumático que acciona dicho mecanismo.

Diseño de los brazos rotadores para la zona de post - soldadura.

Para la sección de post - soldadura se tiene que girar la viga 180° y se usarán para ello 6 brazos rotadores para el efecto.

Para la distribución de los brazos en el área especificada, se tienen la limitante que para la viga menos larga se debe tener 2 apoyos. La viga menos larga es de 2m, por lo tanto, se tendrá la primera distancia entre brazos de 1800 mm y para la siguiente distancia se tendrá a 4m como se ilustra en la Figura 85.

Distancia de separación entre brazos

Entonces para conocer la carga máxima, se debe realizar un análisis con áreas

tributarias y el peso de la viga más grande como se ilustra en la Figura 86.

Figura 86

Áreas tributarias de la zona de post - soldadura

Se utiliza la carga de la viga de dimensiones más grande C_{total} .

Área tributaria

$$A_{trib3} = 2900 \text{ mm} \cdot 300 \text{ mm} = 870000 \text{ mm}^2$$
 (107)

Carga distribuida por unidad de área

Al considerar la ecuación 13, se obtiene:

$$q_{dtotal3} = 0.002 \frac{N}{mm^2}$$

Carga distribuida lineal

Considerando la ecuación 14 se obtiene:

$$q_{1br} = 6,519 \frac{N}{mm}$$

Carga puntual

De la ecuación 15 se obtiene:

Diseño por resistencia mecánica

Los brazos rotadores deben ser capaces de resistir la carga distribuida de la viga que se obtuvo. Con un criterio conservador se realiza un diseño a fatiga.

A continuación en la figura 87, se presentan las fuerzas que actúan sobre los brazos rotadores

Fuerzas en los brazos rotadodres

Análisis en el plano X-Z

En la Figura 88 se representa la viga junto con la carga y sus respectivas reacciones.

Figura 88

Nota. La imagen fue tomada de Skyciv

Las reacciones en los apoyos A y B son:

R_{ay2} = 1313 N R_{by2} = 788 N

El diagrama de momentos en el eje Y se presenta en la Figura 89

Figura 89

Diagrama de momento flector en el brazo rotador

Nota. La imagen fue tomada de Skyciv

El momento máximo se produce en x=231,818 mm.

$$M_{myz} = 0.123 \text{ kN} \cdot \text{m}$$

La placa se fabricará con acero ASTM A36, por consiguiente:

$$S_y = 36 \text{ ksi} = 248, 2 \text{ MPa}$$

Se debe realizar el análisis del brazo a fatiga y se necesitan calcular los siguientes factores:

Factor de superficie, ecuación 27:

Como el perfil es laminado, los valores de a1 y b1 son, respectivamente: 57.7 y -0.718.

Finalmente el factor de superficie resulta:

Factor de tamaño:

Como primera iteración se usará un perfil C de 100x50x6mm es decir

Primero se debe obtener un diámetro equivalente se debe usar el área como se

muestra a continuación:

$$A_{0,95cr} = 0.0766 \cdot d^2$$

y se debe igualar a la siguiente expresión:

$$A = 0.052 \cdot x \cdot a + 0.1 \cdot e \cdot (b - x)$$

Obteniendo la siguiete expresión para el área:

$$d_{e} = \sqrt{\frac{0.052 \cdot x \cdot a + 0.1 \cdot e \cdot (b - x)}{0.0766}}$$
(108)

Resultando:

 $d_1 = 33,255 \text{ mm}$

Para flexión y torsión puede emplear la ecuación 28

El factor de tamaño es:

$$k_{b3} = 0.852$$

Factor de confiabilidad:

Para una confiabilidad del 99,9%, según la tabla que se muestra en la Figura 21

$$k_{e3} = 0,753$$

Los demás factores, carga k_c y temperatura k_d se considerarán como 1.

Entonces, el esfuerzo admisible debido a la fatiga se determinará a partir de de la ecuación 29:

Ahora se calcula el esfuerzo flector máximo, σ_x , el esfuerzo cortante que produce el peso de la viga se desprecia ya que cuando el momento flector es máximo, el cortante es nulo .

$$\sigma_{\rm X} = \frac{{\sf M}_{\rm max} \cdot {\sf y}}{{\sf I}}$$

La distancia y es la distancia desde el centro de gravedad al borde del perfil:

$$y = \frac{b}{2}$$
$$b = 25 \text{ mm}$$

La inercia del perfil C se muestra en la imagen 90

Inercia del perfil C100X50X6

Section Name	C 100	K50X6		
Properties				Section
Cross-section (axial) area	1,128E-03	Section modulus about 3 axis	3,336E-05	
Moment of Inertia about 3 axis	1,668E-06	Section modulus about 2 axis	7,437E-06	
Moment of Inertia about 2 axis	2,625E-07	Plastic modulus about 3 axis	3,982E-05	3
Product of Inertia about 2-3	0,	Plastic modulus about 2 axis	1,340E-05	
Shear area in 2 direction	6,000E-04	Radius of Gyration about 3 axis	0,0385	
Shear area in 3 direction	6,000E-04	Radius of Gyration about 2 axis	0,0153	
Torsional constant	1,272E-08	Shear Center Eccentricity (x3)	0,0292	Properties
				Section Properties

Reemplazando los datos, se obtiene:

$$\sigma_{max}$$
 = 11.714 MPa

 $\sigma_{\min} = 0 \text{ MPa}$

Se calculan los esfuerzos alternantes y medios:

 $\sigma_{\rm mo} = \frac{\sigma_{\rm max} + \sigma_{\rm min}}{2} = 5.857 \; {\rm MPa}$

 $\sigma_{ao} = \frac{\sigma_{max} - \sigma_{min}}{2} = 5.857 \text{ MPa}$

En la sección crítica no se tiene concentrador de esfuerzos, por lo tanto, se calcula el esfuerzo equivalente con el criterio conservador de Soderberg:

$$\sigma_{\text{eq}} = \sigma_{\text{mo}} + \frac{S_{\text{y}}}{S_{\text{e}} \cdot \sigma_{\text{ao}}}$$

 σ_{eq} = 20.456 Mpa

Por lo tanto, con este perfil se obtiene un F.S:

$$F.S. = \frac{S_y}{\sigma_{eq}} = 12.221$$

Se puede usar este perfil o uno con sección más pequeña, se escogerá el perfil según las necesidades geométricas del brazo giratorio.

Selección del cilindro neumático para brazos rotadores de viga.

Fuerza de empuje

Para obtener la fuerza de empuje de este cilindro, es necesario sumar la fuerza del peso de la viga que soporta el brazo rotador y añadir el peso de dicho brazo, como se indica en la Figura 91.

Figura 91

D.C.L. del cilindro neumático para brazos rotadores

Se obtuvo previamente la carga distribuida del peso en uno de los brazos q1br.

Al expresarla como una carga puntual se obtiene:

$$F_{1br} = q_{1br} \cdot 300 \text{ mm} = 1,956 \text{ kN}$$

El peso del brazo rotador aproximado viene dado de la figura 92 del software Inventor.

Figura 92

Peso aproximado del brazo rotador

Nota. La imagen fué tomada del software Inventor

La fuerza de empuje entonces resulta:

Se sigue el mismo procedimiento utilizado en la selección del cilindro neumático de presión de patín. Para obtener detalles adicionales, consulte el Anexo C.7. Los resultados obtenidos son los siguientes:

Carrera del cilindro $c_{cilbr} = 200 \text{ mm}.$

Velocidad del vástago $v_{cilbr} = 0,005 \frac{m}{s}$.

Diámetro del émbolo D_{embr} = 80 mm.

Simulación de elementos críticos, conexiones y estructuras

Como el diseño del bastidor podría avanzar hacia una forma demasiado compleja que dificulta su análisis con técnicas tradicionales del análisis de esfuerzos, podría usted tener que emplear un modelado de elementos finitos, para determinar si el diseño es adecuado o tal vez demasiado robusto. (Mott, 2006)

Con esto en mente, se llevará a cabo el análisis de las estructuras mediante un software para simulación de estructuras, el análisis de conexiones con el software Idea Stática y el análisis de elementos críticos utilizando el software Inventor Nastran.

Simulación de estructuras

Simulación del bastidor de la zona de armado y transporte.

Como primer paso, se debe llevar a cabo el diseño teniendo en cuenta las restricciones geométricas de la máquina. Es fundamental garantizar la ausencia de interferencias entre todos los elementos que conformarán el bastidor en cada zona específica. Asimismo, resulta esencial diseñar el bastidor de manera que sea posible conectar todos los elementos y equipos necesarios para el funcionamiento de la máquina. Otro requisito es utilizar perfiles y elementos disponibles en la empresa SEDEMI. Con este propósito, SEDEMI ha proporcionado una lista de materiales con los que se puede trabajar.

Diseño geométrico del bastidor de la zona de transporte y armado

Nota. La imagen fué tomada del software Inventor

En la Figura 93, se muestra la solución del diseño geométrico de la zona de armado y transporte.

Con el modelo 3D obtenido, se realiza la simulación en un software para simulación de estructuras, siguiendo los siguientes pasos:

1. Se define la malla como se muestra en la figura 94

Definición de malla de la zona de transporte

Nota. La imagen fué tomada de un software para simulación de estructuras

Es necesario definir o crear el material de la estructura, se escoge el material acero
 A36, dado que es el material disponible en la empresa SEDEMI. En la figura 95, se muestra la definición del material.

Figura 95

Definición del material

laterials	Click to:
4000Psi	Add New Material
	Add Copy of Material
	Modify/Show Material
	Delete Material
	Show Advanced Properties
	ОК

Nota. La imagen fué tomada de un software para simulación de estructuras

3. Se definen los perfiles creados en el modelo 3D, como se ilustra en la figura 96

Lista de perfiles creados

operties	Click to:		
ind this property:	Import New Property		
C80X40X4			
C80X40X4	Add New Property		
eje 53			
_75X775X8	Add Copy of Property		
_ 9090X6			
C 50x50x3	Modify/Show Property		
rC60X30X4			
FC100X100X5	Delete Property		
TC 7575X4			
FR 30X70X3			
TR 50X70X4			
10074074			

Nota. La imagen fué tomada de un software para simulación de estructuras

4. Se realiza el modelado de la estructura de acuerdo al diseño geométrico, obteniendo una estructura como la que se ilustra en la figura 97.

Es fundamental ajustar el sentido de inercia de los perfiles de manera que coincida

adecuadamente con el diseño geométrico.

Modelado de la estructura de la zona de transporte

Nota. La imagen fué tomada de un software para simulación de estructuras

5. Asignación de cargas.

Las cargas asignadas a la estructura se derivan de la memoria de cálculo del diseño detallado, y estas cargas se asignan considerando la ubicación específica de los elementos en la estructura.

Cargas muertas

Deben considerarse como cargas muertas el peso de los rodillos, cilindros neumáticos,

motor y reductor que se ubicarán sobre el bastidor.

Carga muerta de los rodillos, tomado del sofware inventor:

$$P_{rodillo} = 126,604 \text{ N}$$

Carga muerta aproximada de los cilindros neumáticos, tomado del catálogo (FESTO,

2022):

Carga muerta del motor y reductor, tomado de la hoja técnica de (WEG, s.f.):

P_{motorarm} = 102, 97 N

Cargas vivas

Para las cargas vivas se deben considerar: la fuerza q_{1rod}, R_{az}, R_{bz}, R_{ayl}, R_{byl}, R_{ayp} y R_{byp}

 $q_{1rod} = 2,609 \frac{N}{mm}$ $R_{az} = 3054,604 N$ $R_{bz} = 2933,64 N$ $R_{ayl} = 412,731 N$ $R_{byl} = 396,379 N$ $R_{ayp} = 115.027 N$ $R_{byp} = 115.027 N$

La figura 98, muestra el bastidor con las cargas asignadas:

Cargas sobre la estructura de la zona de transporte

Nota. La imagen fué tomada de un software para simulación de estructuras

 Se requiere asignar las restricciones de grados de libertad. En este caso, se aplica la restricción fija, como se ilustra en la figura 99, en las columnas donde se ubicarán las placas base tal como lo indica la figura 98.
S Assign Joint Restraints × Restraints in Joint Local Directions Translation 1 Rotation about 1 Translation 2 Rotation about 2 Translation 3 Rotation about 3 Fast Restraints Market Restraints Mark

Asignación de grados de libertad en la estructura

Nota. La imagen fué tomada de un software para simulación de estructuras

Resultados

Chequeo de demanda a capacidad

En función de la barra de colores, se puede apreciar en la Figura 100, que la estructura se encuentra en un punto que puede soportar la demanda a capacidad sin problema. Siendo el valor más crítico de 15,2%.

Resultados de demanda capacidad

Nota. La imagen fué tomada de un software para simulación de estructuras

Chequeo de deflexiones

Según (Mott, 2006), se recomienda una deflexión para partes de máquina en general con un criterio de:

0.0005 a 0.003 pulg/pulg de longitud de viga.

Se utiliza un promedio del criterio resultando:

0.00175 pulg/pulg

La deflexión en la viga más crítica se calcula como:

 $def_{maxv} = 0,00175 \cdot I_{viga}$

Sabiendo que la longitud de la viga es: $I_{viga} = 510 \text{ mm}$

 $def_{max} = 0,893 \text{ mm}$

Figura 101

Resultado de la deflexión más crítica

Nota. La imagen fué tomada de un software para simulación de estructuras

Como se observa en la Figura 101, la deflexión máxima resulta:

def_{maxarm} = 0, 5038 mm

Por lo tanto, la deflexión es adecuada.

Chequeo de periodos

Los modos de vibración se revisan en tres modos, los dos primeros deberán ser

traslacionales y el tercero debe ser torsional, los tres con periodos de vibración bajos.

Figura 102

Resultado de los modos de vibración

Nota. La imagen fué tomada de un software para simulación de estructuras

Se evidencia en la Figura 102, que los periodos de vibración son bajos y los movimientos en las animaciones son las adecuadas.

Simulaciones de los bastidores de la zona de soldadura.

En la zona de soldadura, se cuentan con dos bastidores: uno fijo, anclado al piso, y otro móvil que estará equipado con patines y rieles en los costados, permitiendo un movimiento que será generado por cilindros neumáticos.

A continuación, se lleva a cabo el análisis de ambos bastidores.

Bastidor móvil

En la Figura 103, se muestra la solución del diseño geométrico del bastidor movil de

la zona de soldadura.

Figura 103

Diseño geométrico del bastidor móvil de la zona de soldadura

Nota. La imagen fué tomada del software Inventor

Chequeo de demanda a capacidad

En función de la barra de colores, se puede apreciar en la Figura 104, que la estructura se encuentra en un punto que puede soportar la demanda a capacidad sin problema. Siendo el valor más crítico de 25,4%.

Resultados de demanda capacidad del bastidor móvil de la zona de soldadura

Nota. La imagen fué tomada de un software para simulación de estructuras

Chequeo de deflexiones

Resultado de la deflexión más crítica en el bastidor móvil de la zona de soldadura

Nota. La imagen fué tomada de un software para simulación de estructuras

Cumpliendo con el mismo criterio, la deflexión en la viga más crítica se calcula como:

$$def_{maxv2} = 0,00175 \cdot I_{viga}$$

Sabiendo que la longitud de la viga es: l_{viga} = 178 mm

 $def_{max2} = 0,312 \text{ mm}$

Como se observa en la Figura 105, la deflexión máxima resulta:

Bastidor fijo

En la Figura 106, se muestra la solución del diseño geométrico del bastidor fijo de la zona de soldadura.

Diseño geométrico del bastidor fijo de la zona de soldadura

Nota. La imagen fué tomada del software Inventor

Chequeo de demanda a capacidad

En función de la barra de colores, se puede apreciar en la Figura 107, que la estructura se encuentra en un punto que puede soportar la demanda a capacidad sin problema. Siendo el valor más crítico de 33,9 %.

Resultados de demanda capacidad del bastidor fijo de la zona de soldadura

Nota. La imagen fué tomada de un software para simulación de estructuras

Chequeo de deflexiones

Figura 108

Resultado de la deflexión más crítica en el bastidor fijo de la zona de soldadura

Nota. La imagen fué tomada de un software para simulación de estructuras

La deflexión en la viga más crítica se calcula como:

$$def_{maxv} = 0,00175 \cdot I_{viga}$$

Sabiendo que la longitud de la viga es: I_{viga} = 555 mm

 $def_{max} = 0,971 \text{ mm}$

Como se observa en la Figura 108, la deflexión máxima resulta:

Por lo tanto, la deflexión es adecuada.

Chequeo de periodos

Los modos de vibración se revisan en tres modos, los dos primeros deberán ser

traslacionales y el tercero debe ser torsional, los tres con periodos de vibración bajos.

Figura 109

Resultado de los modos de vibración

Nota. La imagen fué tomada de un software para simulación de estructuras

Se evidencia en la Figura 109, que los periodos de vibración son bajos y los movimientos en las animaciones son las adecuadas.

Simulación del bastidor de la zona de post - soldadura.

En la Figura 110, se muestra la solución del diseño geométrico de la zona de post - soldadura.

Diseño geométrico del bastidor de la zona de post - soldadura

Nota. La imagen fué tomada del software Inventor

Chequeo de demanda a capacidad

En función de la barra de colores, se puede apreciar en la Figura 111, que la estructura se encuentra en un punto que puede soportar la demanda a capacidad sin problema. Siendo el valor más crítico de 33,9 %.

Resultados de demanda capacidad del bastidor de la zona de post - soldadura

Chequeo de deflexiones

La deflexión en la viga más crítica se calcula como:

$$def_{maxv} = 0,00175 \cdot I_{viga}$$

Sabiendo que la longitud de la viga es: $\rm I_{viga}$ = 510 mm

Resultados de deflexión máxima del bastidor de la zona de post - soldadura

Nota. La imagen fué tomada de un software para simulación de estructuras

Como se observa en la Figura 112, la deflexión máxima resulta:

 $def_{maxarm} = 0,0679 mm$

Por lo tanto, la deflexión es adecuada.

Chequeo de periodos

Figura 113

Resultado de los modos de vibración

Nota. La imagen fué tomada de un software simulación de estructuras

Se evidencia en la Figura 113, que los periodos de vibración son bajos y los movimientos en las animaciones son las adecuadas.

Simulación de elementos críticos

Se considerarán como elementos críticos aquellos que puedan experimentar grandes esfuerzos y deformaciones debido a la carga directa que soportan. Estos elementos críticos incluyen los ejes motrices de las dos zonas, los rodillos cedulados, la placa de la compuerta de la zona de transporte, el bastidor de la antorcha de soldadura y, por último, el brazo elevador y rotador de la zona de post soldadura.

Simulación del brazo rotador de la zona de post-soldadura.

El modelo del brazo rotador se muestra en la figura 114:

Modelo 3D del brazo rotador

Nota. La imagen fué tomada del software Inventor

Para la simulación en Inventor Nastran, se siguen los siguientes pasos:

1. Se verifica las unidades del programa para que los resultados se muestren en las

unidades deseadas, en este caso, N, mm y s.

Figura 115

Árbol de la simulación en Inventor

Nota. La imagen fué tomada del software Inventor

Como se ilustra en la figura 115, en la opción units se puede verificar las unidades.

2. Se asigna un material al elemento, en este caso específico el Acero ASTM 572, que se

utilizará para los brazos rotadores.

Figura 116

Material para los brazos rotadores

Nota. La imagen fué tomada del software Inventor

Como se ilustra en la figura 116, en la opción Solids se puede cambiar el material del elemento.

3. Se asignan las fuerzas; en este caso, se aplica la carga F_{1br} sobre la cara del perfil C,

como se ilustra en la figura 117.

Figura 117

Part	Modelo N X Nastr Nastr +	Mo	
Works Acc.30 WPE: Force Uodinkie System: Part Solids Uodinkie System: Bislid: 1 Copy Solids Solids Subcases Solids Solids Subcases Solids Solids Constraint 2 Copy Solids Solids Constraint 2 Copy Constraint 2 Copy Solids Subcases: Decky Options Solids Solids: Solids Solids Solids: Solids Solids Solids: Solids: Solids Solids: Solids: Solids Solids: Solids: Solids: Solid: Solid: Solid: Solid: Solid: Solid: Solid: Solid: Solid: Solid: Solid: Solid: Solid: Solid:	Arabyis 1 - Copy Arab		

Asignación de cargas sobre el perfil C del brazo rotador

Nota. La imagen fué tomada del software Inventor

4. Se procede a establecer las restricciones de grados de libertad. En este caso, se aplica una restricción fija en la placa de apoyo de la C y una restricción de traslación en el pasador derecho, como se indica en la figura 118.

Asignación de restricciones sobre brazo rotador

Nota. La imagen fué tomada del software Inventor

 Se configura la malla utilizando la opción "Generate mesh". Si es necesario, se realizan refinamientos de malla mediante la opción "Mesh control". El resultado de la malla se muestra en la figura 119.

Figura 119

Creación de la malla

Nota. La imagen fué tomada del software Inventor

Configuración del análisis de convergencia

Nota. La imagen fué tomada del software Inventor

- 6. Se configura la opción "Convergence settings" para que el análisis realice un número de bucles de 5 y se detenga cuando el error entre ellos sea menor al 5%, garantizando así una confiabilidad del 95% en los resultados.
- 7. Finalmente, se ejecuta la simulación con el comando "Run"

Ejecución de la simulación

Nota. La imagen fué tomada del software Inventor

Resultados:

Esfuerzos de Von Misses

Figura 122

Esfuerzo de Von Misses

Nota. La imagen fué tomada del software Inventor

Como se puede apreciar en la figura 122, el esfuerzo de Von Mises máximo es de

21.26 MPa, lo cual indica que el perfil C seleccionado para el brazo rotador es adecuado y no

experimentará ningún fallo debido a la resistencia mecánica.

Deflexiones

Figura 123

Deflexiones

Nota. La imagen fué tomada del software Inventor

Conforme se muestra en la figura 123, la deflexión máxima del perfil C es de 0,016 mm, lo que asegura una excelente rigidez en el diseño del brazo rotador. El criterio de serviciabilidad del elemento se cumple satisfactoriamente.

Gráfico de convergencia de la simulación

Como se señala en la Figura 124, el error es inferior al 5%, lo que demuestra una alta confiabilidad en la simulación. Se observa que se requirieron 4 bucles para lograr la convergencia, evidenciando que a medida que se refina la malla, se logra una mejor estabilidad en los resultados.

Convergencia de la simulación

Nota. La imagen fué tomada del software Inventor

Simulación del eje motriz.

El modelo del eje motriz se muestra en la figura 125:

Figura 125

Modelo 3D del eje motriz

Nota. La imagen fué tomada del software Inventor

Resultados:

Esfuerzos de Von Misses

Figura 126

Esfuerzo de Von Misses

Nota. La imagen fué tomada del software Inventor

Como se puede apreciar en la figura 126, el esfuerzo de Von Mises máximo es de

55,62 MPa, lo cual indica que el eje es adecuado y no experimentará ningún fallo debido a la

resistencia mecánica.

Deflexiones

Figura 127

Deflexiones

Nota. La imagen fué tomada del software Inventor

Conforme se muestra en la figura 127, la deflexión máxima del perfil C es de 0,026

mm, lo que asegura una excelente rigidez en el diseño del eje. El criterio de serviciabilidad del elemento se cumple satisfactoriamente.

Gráfico de convergencia de la simulación

Como se señala en la Figura 128, el error es 0,21 %, lo que demuestra una alta confiabilidad en la simulación. Se observa que se requirieron 3 bucles para lograr la convergencia, evidenciando que a medida que se refina la malla,se logra una mejor estabilidad en los resultados.

Figura 128

Convergencia de la simulación

Nota. La imagen fué tomada del software Inventor

Simulación del tubo cedulado del rodillo motriz.

El modelo del tubo cedulado del rodillo motriz se muestra en la figura 129:

Modelo 3D del tubo cedulado del eje motriz

Nota. La imagen fué tomada del software Inventor

Resultados:

Esfuerzos de Von Misses

Figura 130

Esfuerzo de Von Misses

Nota. La imagen fué tomada del software Inventor

Como se puede apreciar en la figura 130, el esfuerzo de Von Mises máximo es de 17,44 MPa, lo cual indica que el tubo cedulado es adecuado y no experimentará ningún fallo debido a la resistencia mecánica.

Deflexiones

Figura 131

Deflexiones

Nota. La imagen fué tomada del software Inventor

Conforme se muestra en la figura 131, la deflexión máxima del tubo cedulado es de 0,0104 mm, lo que asegura una excelente rigidez en el diseño del rodillo. El criterio de serviciabilidad del elemento se cumple satisfactoriamente.

Gráfico de convergencia de la simulación

Como se señala en la Figura 132, el error es 0,189 %, lo que demuestra una alta confiabilidad en la simulación. Se observa que se requirieron 5 bucles para lograr la convergencia, evidenciando que a medida que se refina la malla,se logra una mejor estabilidad en los resultados.

Convergencia de la simulación

Nota. La imagen fué tomada del software Inventor

Simulación del bastidor para antorchas.

El modelo del bastidor para antorchas se muestra en la figura 133:

Figura 133

Modelo 3D del bastidor para antorchas

Nota. La imagen fué tomada del software Inventor

Resultados:

Esfuerzos de Von Misses

Figura 134

Esfuerzo de Von Misses

Nota. La imagen fué tomada del software Inventor

Como se puede apreciar en la figura 134, el esfuerzo de Von Mises máximo es de 156,42 MPa, lo cual indica que el perfil es adecuado y no experimentará ningún fallo debido a la resistencia mecánica.

Deflexiones

Deflexiones

Nota. La imagen fué tomada del software Inventor

Conforme se muestra en la figura 135, la deflexión máxima del perfil C es de 0,524 mm, lo que asegura una excelente rigidez en el diseño del bastidor. El criterio de serviciabilidad del elemento se cumple satisfactoriamente.

Gráfico de convergencia de la simulación

Como se señala en la Figura 136, el error es 0,1026 %, lo que demuestra una alta confiabilidad en la simulación. Se observa que se requirió 1 bucle para lograr la convergencia, evidenciando que a medida que se refina la malla, se logra una mejor estabilidad en los resultados.

Convergencia de la simulación

Nota. La imagen fué tomada del software Inventor

Simulación de la placa de la compuerta.

El modelo de la placa de la compuerta se muestra en la figura 137:

Figura 137

Modelo 3D de la placa de la compuerta

Nota. La imagen fué tomada del software Inventor

Resultados:

Esfuerzos de Von Misses

Figura 138

Esfuerzo de Von Misses

Nota. La imagen fué tomada del software Inventor

Como se puede apreciar en la figura 138, el esfuerzo de Von Mises máximo es de 132,978 MPa, lo cual indica que la placa es adecuada y no experimentará ningún fallo debido a la resistencia mecánica.

Deflexiones

Deflexiones

Nota. La imagen fué tomada del software Inventor

Conforme se muestra en la figura 139, la deflexión máxima de la placa es de 0,337 mm, lo que asegura una excelente rigidez en el diseño de la compuerta. El criterio de serviciabilidad del elemento se cumple satisfactoriamente.

Gráfico de convergencia de la simulación

Como se señala en la Figura 140, el error es 4,10%, lo que demuestra una alta confiabilidad en la simulación. Se observa que se requirieron 2 bucles para lograr la convergencia, evidenciando que a medida que se refina la malla,se logra una mejor estabilidad en los resultados.

Convergencia de la simulación

Nota. La imagen fué tomada del software Inventor

Simulación de placa base y conexiones

Para la simulación de placas bases y conexiones, se utilizará el software Idea Statica. Para ello, es necesario seguir los siguientes pasos:

 Configuración del proyecto: Primero, se crea un proyecto donde se establece una clase de conexión, las geometrías que se unirán, el tipo de conexión y parámetros importantes, como el material de los elementos a unir, y la norma de diseño con la que se trabajará en el software, como se indica en la Figura 141. En este caso, se eligen las normas americanas AISC-360 y ACI 318.

Configuración del proyecto

Nota. La imagen fué tomada del software Idea StatiCa

2. Configuración de los elementos que conforman la conexión: En este paso, se definen ciertos parámetros geométricos, tales como las dimensiones de los perfiles de la conexión. En el caso de las placas base, también se establecen las dimensiones del hormigón, el número de pernos, la distancia entre ellos y sus propiedades mecánicas y estructurales, tal como se muestra en la Figura 142.

Configuración de la geometría de la conexión

Nota. La imagen fué tomada del software Idea StatiCa

3. Asignación de cargas: Para asignar las cargas en los elementos, es necesario obtenerlas del software para simulación de estructuras. En el caso de la placa base, se selecciona la columna que tenga la mayor demanda a capacidad y se ingresan las cargas de esta en el software Idea Statica, como se ve en la Figura 143.

Figura 143

Asignación de cargas en la conexión

Nota. La imagen fué tomada del software Idea StatiCa

4. Configuración de operaciones: Se ajustan las operaciones dependiendo de la conexión
deseada. Por ejemplo, se pueden seleccionar cortes de placas, placas de respaldo, juntas empernadas, tipos de soldaduras, alturas de gargantas, entre otros, tal como lo indica la Figura 144.

Figura 144

Configuración de operaciones

Nota. La imagen fué tomada del software Idea StatiCa

5. Ejecución de la simulación: Se realiza la simulación seleccionando la opción "Calcular"

y se obtienen los resultados.

Resultados:

Se obtienen entonces los siguientes resultados:

Resultados de la simulación de la placa base

Nota. La imagen fué tomada del software Idea StatiCa

Como se observa en la Figura 145, el diseño de la placa base es satisfactorio,

obteniendo los siguientes resultados: placas 5%, anclajes 27.1%, soldaduras 33% y bloque de hormigón 0.9%.

Resultados de la tensión equivalente de la placa base

Tensión equivalente, LE1

En relación con la tensión equivalente, como se muestra en la Figura 146, se observa que la tensión máxima es inferior a la admisible, indicando así que la conexión está adecuadamente diseñada en términos de resistencia mecánica.

Para todas las conexiones en el diseño de cada zona, se siguió el mismo procedimiento y se verificó que soportaran las cargas requeridas adecuadamente. Para obtener más detalles, dirigirse al Anexo H.

Capítulo IV: Resultados

Zona de transporte y armado

En la Tabla 40, se encuentra un resumen de los resultados de los elementos

diseñados y seleccionados en esta zona, y la Figura 147 muestra el modelo 3D obtenido.

Tabla 40

Resultados de los elementos diseñados y seleccionados de la zona de transporte y armado

N	Elementos	Dimensión o epecificación
1	Eje motriz para el rodillo de transporte	ϕ 53 mm
2	Rodamientos para el rodillo motriz de transporte	SY30TF/VA201
3	Eje para los rodillos locos de transporte	ϕ 30 mm
4	Tubo cedulado para el rodillo loco y motriz	Tubo de 2 1/2 in SCH 80
5	Rodamientos para el rodillo loco de transporte	6305-2Z
6	Motor	WEG 14159736
7	Reductor	WEG 541016
8	Eje del rodillo vertical	ϕ 30 mm
9	Rodamiento para el rodillo vertical	1905-2RS1
10	Tubo cedulado para el rodillo vertical	Tubo de 1 1/2 in SCH 80.
11	Cilindro neumático de presión de patines	DSBC-80-230-PPSA
12	Cadena de rodillos para mesas transportadoras	Cadena doble de rodillos número 40, 1/2 in.
13	Catalina conductora	NK40- double B 18 dientes
14	Catalina conducida	NK40- double B 45 dientes
15	Chaveta de unión entre rodillos	b=10 mm, h=8 mm, L=50 mm
16	Chaveta de unión entre el motoreductor y el rodillo	b=8 mm, h=7 mm, L=35 mm
17	Rieles y patines	HGL15CA1T350Z0H
18	Pasador de rueda que soporta el volteo del patín	ϕ 25 mm
19	Rodamiento de rueda que soporta el volteo del patín	6305-2Z
20	Cilindro neumático para rueda que soporta el posible	DSBC-32-150-PPSA
	volteo del patin	
21	Pasador de la rueda que eleva el alma	ϕ 12 mm
22	Rodamiento de la rueda que eleva el alma	61801-2Z
23	Buje de la rueda que eleva el alma	ϕ_{int} 21 mm, ϕ_{ext} 47, 625 mm
24	Cilindro neumático para los elevadores del alma	DSBC-32-125-PPSA
25	Pasador que gira la compuerta	ϕ 1 3/8 in
26	Cilindro neumático para la compuerta	DSBC-100-230-PPSA

Resultados de la zona de transporte y armado

Nota. La imagen fué tomada del software Inventor

Zona de soldadura

En la Tabla 41, se encuentra un resumen de los resultados de los elementos

diseñados y seleccionados en esta zona, y la Figura 148 muestra el modelo 3D obtenido.

Tabla 41

Resultados de los elementos diseñados y seleccionados de la zona de soldadura

Ν	Elementos	Dimensión o epecificación
1	Eje motriz para el rodillo de soldadura	ϕ 45 mm
2	Rodamientos para el rodillo motriz de soldadura	SY35TF/VA201
3	Cilindro neumático presionador de patín	DSBC-100-230-PPVA
4	Tubo cedulado para el rodillo motriz	Tubo de 2 in SCH 80
5	Motor	WEG 14690438
6	Reductor	WEG 541013
7	Cadena de rodillos para mesas transportadoras	Cadena de 1 hilera de rodillos
8	Catalina conductora	NK40- simple B 11 dientes
9	Catalina conducida	NK40- simple B 50 dientes
10	Chaveta de unión entre rodillos	b=8 mm, h=7 mm, L=32 mm
11	Chaveta de unión entre el motoreductor y el piñon	b=8 mm, h=7 mm, L=22 mm
12	Rieles y patines	HGL25CA1T350Z0H
13	Pasador de rueda que posiciona el alma	ϕ 25 mm
14	Rodamiento de rueda que posiciona el alma	61905-2RZ
15	Buje de la rueda que posiciona el patín	ϕ_{int} 39 mm, ϕ_{ext} 69, 85 mm
16	Cilindro neumático guiado elevador y presionador del alma	DFM-100-125-P-A-KF
17	Pasador de la rueda que posiciona el patín	ϕ 30 mm
18	Rodamiento de la rueda que posiciona el patín	61906-2RZ
19	Buje de la rueda que posiciona el patín	ϕ_{int} 44 mm, ϕ_{ext} 60 mm
20	Cilindro neumático para posicionador de patín y an- torchas	ADVC-100-15-I-P-A

Resultados de la zona de soldadura

Nota. La imagen fué tomada del software Inventor

Zona de post - soldadura

En la Tabla 42, se encuentra un resumen de los resultados de los elementos

diseñados y seleccionados en esta zona, y la Figura 149 muestra el modelo 3D obtenido.

Tabla 42

Resultados de los elementos diseñados y seleccionados de la zona de post - soldadura

Ν	Elementos	Dimensión o epecificación
1	Perfil para brazo rotador	C 100X50X6
2	Cilindro neumático para brazos rotadores	DSBC-80-200-PPVA

La cantidad de los elementos se puede verificar en los planos de ensamblaje del

Anexo J.

Resultados de la zona de post - soldadura

Nota. La imagen fué tomada del software Inventor

Solución total

Finalmente en la Figura 150, se muestra el resultado final obtenido para el sistema de armado de vigas tipo H con proceso de soldadura GMAW para la empresa SEDEMI SCC.

Resultado final del sistema de armado de vigas tipo H con proceso de soldadura GMAW para la empresa SEDEMI SCC.

Nota. La imagen fué tomada del software Inventor

Capítulo V: Costos y análisis de productividad

Costos

Presupuesto aproximado

Para el presupuesto, se han obtenido cotizaciones para los elementos que se deben adquirir. En el caso de los elementos que se fabricarán, se ha establecido un costo comercial referencial para grandes empresas de 1.90 dólares por kilogramo para los elementos terminados. Este costo incluye la materia prima, mano de obra, procesos de transformación y acabados.

Costo de materiales que se fabricarán

Para calcular el costo aproximado de los elementos a fabricar, se utiliza como referencia el peso obtenido a través del software Inventor, multiplicándolo por el costo previamente mencionado de 1.90 dólares por kilogramo.

Peso total de la máquina

Nota. La imagen fué tomada del software Inventor

El peso aproximado de la máquina es de 5109.356 kg, como se indica en la Figura

151

Costo =
$$\frac{Costo}{kg} \cdot Peso_{aprox}$$

Costo = 1.90 $\frac{$}{Kg}$ 5109, 356 Kg
Costo = 9707, 78\$

Costos de elementos y equipos comprados

Los precios de elementos comprados vienen dados de las cotizaciones del Anexo I y

se resumen en la Tabla 43.

Tabla 43

Costos de elementos y equipos comprados

Elemento/Equipo	Costo Total (\$)
Motores y reductores	1783,85
Cadenas y piñones	1149,30
Rieles y patines Hiwin	1109,74
Pernos, tuercas, arandelas y tornillos	315,67
Rodamientos	2815,10
Cilindros neumáticos y accesorios	18541,81
Compresor, tanque de almacenamiento y filtro	725,60
Costo total	26441,07

Costo detallado de los elementos que se fabricarán

La Tabla 44 detalla el costo de los componentes que se fabricarán.

Tabla 44

Costos de elementos que se fabricarán

Elemento	Costo Total (\$)
Ejes	1250,00
Rodillos cedulados	412,50
Bastidores de la zona de transporte y armado	3589,80
Bastidores de la zona de soldadura	2147,00
Bastidores de zona de post - soldadura	1520,00
Placas de soporte y unión	372,98
Perfiles con desarrollo	415,50
Costo total	9707,78

Costo total

Finalmente, la Tabla 45 muestra el costo total, que resulta de la suma de los

elementos que se fabricarán con los elementos comprados.

Tabla 45

Costos total

Descripción	Costo (\$)
Elementos que se fabrican	9707,78
Elementos y equipos comprados	26441,07
COSTO TOTAL	36148,85

Entonces, el costo total de la máquina asciende a 36,148.85 \$. Es importante destacar que este costo no incluye la automatización de la máquina. Sin embargo, en comparación con el costo de otras máquinas en el mercado, este es bastante competitivo.

Análisis de productividad

Para llevar a cabo el análisis de productividad, se calcularán dos factores distintos:

uno basado en la mano de obra empleada y otro en relación al tiempo invertido. A

continuación, se presentan las tablas correspondientes para respaldar estos cálculos.

Para el tiempo estimado y la mano de obra en el proceso actual, el departamento de

producción de SEDEMI ha detallado la información presentada en la tabla 46 con respecto al

tiempo, y en la tabla 47 en relación a la mano de obra.

Tabla 46

Tiempos del proceso manual del armado de vigas

Proceso	Tiempo (min)
Preparación de los elementos y equipos necesarios	20
Armado de la viga	36
Soldadura de la viga	21,6
Total	77,6

Cantidad de mano de obra del proceso manual

Mano de obra	Cant
Armadores	2
Soldadores	2
Ayudantes	4
Total	8

Tabla 48

Datos de cilindros neumáticos para cálculos de tiempos

Cilindro	Velocidad (m/s)	Carrera (m)	
ZONA DE ARMADO			
Rueda que soporta patín	0,013	0,125	
Presionador de patines 1	0,023	0,2	
Elevador de alma	0,013	0,125	
Presionador de patines 2	0,023	0,03	
Compuerta	0,013	0,125	
ZONA DE SOLDADURA			
Presionador de patines	0,023	0,23	
Elevador de alma	0,018	0,125	
Posicionador de antorchas	0,018	0,125	
ZONA DE POST - SOLDADURA			
Volteo de viga	0,005	0,2	

Tabla 49

Datos de motores para cálculos de tiempos

Motor	Velocidad (m/s)	Avance (m)
Transporte 1	0,025	0,2
Transporte 2	0,025	6,4
Soldadura	0,012	6
Transporte 3	0,025	1,2

Para determinar los tiempos del proceso de armado de vigas en el sistema

semiautomático, es decir, con la solución desarrollada, se deben considerar los datos de

velocidad, carrera y avance, que se encuentran detallados en las tablas 48 y 49.

Tabla 50

Tiempos del proceso semiautomático del sistema de armado de vigas

Proceso	Tiempo	
Preparación (Seteo de la máquina)	6	
ZONA DE ARMADO		
Colocación de flejes (Manual)	6	
Ajuste del cilindro de ruedas para soporte de patines	0,16	
Posicionamiento de ruedas para soporte de patines (Manual)	1	
Ajuste del cilindro para presión del patín 1	0,14	
Elevación de alma	0,16	
Ajuste del cilindro para presión de patín 2	0,02	
Avance de flejes 1	0,13	
Punteo de vértices de la viga	0,77	
Movimiento hacia abajo de la compuerta	0,16	
Avance de flejes 2	4,27	
Total	12,81	
ZONA DE SOLDADURA		
Ajuste de cilindro para presión de patines	0,17	
Ajuste de cilindro para elevador de alma	0,12	
Ajuste de cilindro para posicionamiento de antorchas	0,12	
Soldadura de los 2 primeros vértices	8,33	
Total	8,73	
ZONA DE POST - SOLDADURA		
Avance de la Viga	0,8	
Volteo 1	0,67	
Volteo 2	0,67	
Total	2,13	
Posicionamiento de la viga girada en la zona de soldadura (manual)	2	
Soldadura de los otros 2 vértices	8,33	
Avance de la viga 2	0,8	
Tiempo total primera viga	40,81	
Tiempo total vigas siguientes	28	

Por ejemplo, para el cálculo del tiempo de elevación del alma en la zona de armado:

La velocidad del cilindro elevador del alma, según la tabla 48, es de 0.013 m/s, y

recorre una carrera de 0.125 m.

Para calcular el tiempo necesario, se divide la carrera del cilindro entre su velocidad,

$$t = \frac{Carrera}{Velocidad} = \frac{0.125 \text{ m}}{0.013 \frac{\text{m}}{\text{s}}} = 0.16 \text{min}$$

La mano de obra necesaria para la operación de la solución del sistema de armado de vigas ha sido considerada, como se muestra en la tabla 51, como parte de los requerimientos de la empresa.

Tabla 51

Cantidad de mano de obra del proceso semiautomático

Mano de obra	Cant
Operadores	2
Ayudantes	2
Total	4

Cantidad de vigas producidas diariamente

Para determinar la cantidad de vigas producidas, se realizan dos cálculos distintos.

En el caso del proceso manual, se divide el tiempo total de un día laborable entre el tiempo necesario para fabricar una viga. En cambio, para la solución del sistema de armado de vigas, se debe considerar que se diseñó de tal manera que mientras una viga se está soldando, ya se puede comenzar a armar la siguiente, lo que reduce el tiempo de armado de las vigas sucesivas.

Proceso manual:

Se considera el tiempo de un día laborable como 8 horas.

Día laboral: 480 min.

Tiempo de armado de una viga manual: 77,6 min.

Cantidad de vigas diarias =
$$\frac{480 \text{ min}}{77, 6 \text{ min}}$$
 = 6 vigas

Proceso semiautomático con la solución desarrollada del sistema de armado de vigas:

Tiempo en la primera viga: 40,81 min

Tiempo en las siguientes vigas: 28 min

Cantidad de vigas diarias = $\frac{480 \text{ min} - 40,81 \text{ min}}{28 \text{ min}} + 1 \text{ viga} = 16 \text{ vigas}$

Tabla 52

Cantidad de vigas producidas diariamente

Tipo de proceso	Cant
Proceso manual	6
Proceso semiautomático	15

Cantidad de vigas producidas vs tiempo

Figura 152

Cantidad de vigas producidas vs Número de días

Asumiendo que se producirá la misma cantidad de vigas todos los días, se puede

obtener la tabla 53 y la Figura 152. Como se puede observar, la solución desarrollada para el sistema de armado de vigas generará aproximadamente tres veces más vigas que el proceso manual actual.

Tabla 53

Días	Cantidad (manual)	Cantidad(máquina)
1	6	16
2	12	32
3	18	48
4	24	64
5	30	80
6	36	96
7	42	112
8	48	128
9	54	144
10	60	160
11	66	176
12	72	192
13	78	208
14	84	224
15	90	240
16	96	256
17	102	272
18	108	288
19	114	304
20	120	320

Vigas diarias producidas en un mes

Factores de productividad

Productividad en función de la mano de obra

Para el cálculo de la productividad en función de la mano de obra se aplica la fórmula

presentada en la ecuación 109.

$$Productividad_{m} = \frac{Unidades \ producidas}{N \acute{u}mero \ de \ empleados}$$
(109)

Proceso manual

La productividad de un empleado en el proceso manual es:

Productividadm_{manual} = $\frac{6}{8}$ = 0, 75 vigas por día

Proceso semiautomático con la solución desarrollada

La productividad de un empleado en el proceso semiautomático es:

Productividadm_{semi} = $\frac{16}{4}$ = 4 vigas por día

Productividad en función del tiempo

Para el cálculo de la productividad en función del tiempo se aplica la fórmula presentada en la ecuación 110.

$$Productividad_{t} = \frac{Unidades \ producidas}{N \acute{u}mero \ de \ horas}$$
(110)

Proceso manual

Productividadt_{manual} = $\frac{6}{8}$ = 0,75 vigas por hora

Proceso semiautomático con la solución desarrollada

Productividadt_{semi} = $\frac{16}{8}$ = 2 vigas por hora

Capítulo VI: Conclusiones y recomendaciones

Conclusiones

Se diseñó y simuló una máquina para armado de vigas tipo H mediante el proceso de soldadura GMAW, en la cual se puede colocar patines de longitudes de ancho variables, abarcando desde 100 mm hasta 250 mm, y espesores que varíen entre 6 mm y 12 mm. Asimismo, puede trabajar con almas de longitudes de ancho variables, abarcando desde 88 mm hasta 276 mm, con espesores que varían entre 3 mm y 10 mm. Este diseño logró alcanzar una capacidad de producción de 16 vigas diarias, superando así el número de vigas establecido en el objetivo general.

La solución del sistema de armado de vigas tipo H obtenida satisface todos los requisitos establecidos por la empresa SEDEMI SCC. Mediante un análisis de las alternativas, se logró identificar la opción más adecuada, que se ajusta a los requerimientos de producción de la empresa: posición 2F con el alma en posición horizontal.

Al comparar el proceso manual actual de la empresa con el proceso que se obtendría con la solución del sistema de armado de vigas tipo H, se llevó a cabo un análisis de productividad. Como resultado de este análisis, se obtuvieron dos conjuntos de datos. En términos de productividad con respecto a la mano de obra, se observa que cada empleado logra una producción de 0,75 vigas por día en el caso del proceso manual, mientras que en el caso del proceso semiautomático, la productividad se incrementa a 4 vigas por día por cada empleado. En cuanto a la productividad relacionada con el tiempo, se registra una producción de 0,75 vigas por hora en el proceso manual, en contraste con las 2 vigas por hora logradas en el proceso semiautomático. El levantamiento de la ubicación de los componentes de la máquina en el sitio proporcionó información crucial para determinar el desnivel del suelo, el cual se estimó en un promedio de 9 mm. Como respuesta a esta variación en la superficie, se implementaron placas de nivelación en la máquina.

A través de la simulación computacional, se verificó el diseño de varios componentes mecánicos identificados como críticos en las áreas de armado, soldadura y volteo. Estos componentes fueron sometidos a cargas predefinidas y se llegó a la conclusión de que los elementos no están sujetos a esfuerzos que excedan su límite de fluencia. El factor de seguridad más bajo registrado es de 1.58, correspondiente al bastidor para antorchas.

Se llevaron a cabo simulaciones de los bastidores que componen las zonas de transporte y armado, soldadura y post-soldadura. Se verificó su resistencia mecánica, su serviciabilidad en términos de deflexiones y se realizaron chequeos de los modos de vibración. Todos estos aspectos resultaron ser adecuados para su construcción.

Se elaboraron planos detallados de elementos, conjunto, subconjunto, soldadura y ensamblaje de los elementos estructurales y mecánicos de la máquina. Estos planos proporcionan una guía clara y precisa para la futura construcción de la máquina.

Se realizó el presupuesto aproximado de la máquina, basándose en cotizaciones de proveedores locales y en un costo comercial aproximado de los elementos a fabricar. El resultado reveló un costo total de 36,148.85 dólares para la fabricación y montaje de los componentes mecánicos, indicando que se trata de un presupuesto adecuado y altamente competitivo en comparación con máquinas similares ofrecidas por proveedores internacionales.

Recomendaciones

Las láminas de acero que ingresen a la máquina deben tener medidas uniformes y estar alineadas, ya que este requisito es fundamental para garantizar la calidad de las vigas obtenidas.

Implementar un programa de mantenimiento para prever posibles fallas y reducir el tiempo de inactividad no planificado. Hacer especial énfasis en la lubricación de rieles y patines, cadenas y catalinas, cilindros guiados, y verificar las conexiones neumáticas presentes en todas las zonas del sistema de armado de vigas.

Proporcionar una capacitación adecuada al personal encargado de operar y mantener la máquina, destacando las prácticas seguras y los procedimientos detallados en la simulación final del sistema.

Para optimizar el rendimiento y la flexibilidad en las diferentes configuraciones de avance en la zona de soldadura, es importante la implementación de un variador de frecuencia. Este dispositivo permitirá ajustar la velocidad del proceso de soldadura de manera precisa, adaptándose a diversas condiciones de trabajo y tipos de materiales.

Implementar un sistema de control para la máquina, centrado en la automatización de procesos clave. La incorporación de tecnologías avanzadas de control garantizará una producción más precisa y estable.

Referencias

ACAT. (2022). *https://www.acatmexicana.com/maquina*soldadoravigasmetalicas.html. ACEROSCOL. (2018).

https://www.aceroscol.com/wp-content/uploads/2018/07/equivalencias-entre-perfiles-wf-

-s--hea--heb--ipe--ipn--hd.pdf.

Air Liquide . (2023). https://es.airliquide.com/soluciones/soldadura-industrial/el-proceso-desoldadura-mig-mag-gmaw, 25 de octubre del 2023.

AISC. (2017). Steel construction manual. Chicago. ANSI/AISC.

- ASME. (2021). Asme boiler and pressure vessel code section ix, welding, brazing, and fusing qualifications. Two Park Avenue; New York,NY; 10016 USA.
- Basuri Fernández, M. A., y Bolaños Naranjo, L. A. (2016). *Diseño y simulación de una máquina armadora y enderezadora de perfiles i de acero* (B.S. thesis). Quito, 2016.
- Budynas, J. K., Richard G y Nisbett. (2018). *Diseño en ingeniería mecánica de shigley*. Mc Graw Hill Education.
- Cary, H. (1992). Manual de soldadura moderna, 2ª edición, tomo 1, 1-256, editorial prentice-hall. México.

Cary, H., y Helzer, S. (2005). Modern welding technology. NJ: Pearson Education.

Chapelsteel. (2022). https://www.chapelsteel.com/es/plasma-cutting.html.

Corimpex. (2019). *https://www.youtube.com/watch?v=0mg8f*dfbjo, 29demarzodel2019.

Corimpex. (2022). https://www.youtube.com/watch?v=snvnfg42rgw, 4 de noviembre de 2022.

Dinalserg . (2023). *https://www.dynalserg.com/transportadores/transportadores-de-rodillos.* Directindustry. (2023).

https://www.directindustry.es/prod/promotech/product-57819-1146901.html.

FAO. (s.f.). https://www.fao.org/fishery/static/faotraining/faotraining/general/x6707s.

- FESTO. (2022). *Catálogo cilindros normalizados festo dsbc iso 15552.* FESTO latinoamérica.
- FESTO. (2023). https://www.festo.com/co/es/c/productos/automatizacionindustrial/actuadores/cilindros-neumaticos-idpim135/.

General. (2023). Hoja técnica a572. Cia. General de Aceros.

HIWIN. (2020). Catálogo guias lineales hiwin. GAES sistemas mecánicos.

Import Aceros. (2023). *https://www.importaceros.com/ecuador/vigas/?gad*source = 1gclid = cjwkcaiavoqsbhb9eiwa9xtwgveugmcdbhktqp6p99qiv1yatyhpuiynjrkb0f – pdp0olwqnjpvf – hocaquqavd_bwe.

Jiang, W. (2019). Analysis and design of machine elements. Wiley.

Larburu Arrizabalaga, N., y cols. (2011). Máquinas prontuario.

- Liu, L., Zhong, M., y Dong, Q. (2011). Design of automatic cutting and welding machine for brake beam-axle. En *Computer and computing technologies in agriculture iv: 4th ifip tc* 12 conference, ccta 2010, nanchang, china, october 22-25, 2010, selected papers, part iv 4 (pp. 167–176).
- Mabie, H. H., y Reinholtz, C. F. (1991). *Mechanisms and dynamics of machinery*. John Wiley & Sons.

Manufacturing guide. (2020). https://www.manufacturingguide.com/en/profile-rolling.

Material mundial. (2022). https://www.materialmundial.com/acero-astm-a36-propiedadesficha-tecnica-estructural/.

McGuire, P. M. (2009). Conveyors: application, selection, and integration. CRC Press.

Mott, R. L. (2006). Diseño de elementos de máquinas. Pearson.

Noceda Rodriguez, J. R. (2020). Diseño de una máquina para soldeo de vigas curvas que mejore la productividad en la industria metalmecánica.

Norton, R. L. (2011). Diseño de máquinas, un enfoque integrado. Pearson.

- Pino Solis, J. C. (2022). Diseño de sistema electromecánico para la producción de vigas de acero en metal sur del perú eirl.
- Placencia Morillo, J. D., y Rivera Carrera, M. G. (2020). *Diseño y simulación de operaciones de un sistema de ensamble de vigas ipe para la empresa saurus ecuador cia. Itda* (B.S. thesis). Quito, 2020.

Serviacero. (2022). https://portal.serviacero.com/assets/webfiles/3/files/491018.pdf.

Serway. (2017). Coeficientes de fricción entre materiales.

SKF. (2006). Catálogo general skf. 6000 ES.

Statista Research Department. (2022).

https://es.statista.com/estadisticas/598604/demanda-mundial-de-acero-por-region/, 29

de septiembre del 2022.

SYL, I. (2020). Catálogo marca kana. sylpanama.

Valparaíso. (2023). https://solucionesvalp.com/terreno-para-construccion-de-casas/.

WEG. (s.f.). Catálogo weg. Mega Motor.