DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

TRABAJO DE INTEGRACIÓN CURRICULAR, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

"DESARROLLAR LA REPOTENCIACIÓN Y EL DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE ADQUISICIÓN DE DATOS PARA EL EQUIPO TRANSFERENCIA DE CALOR AGUA-ACEITE DEL LABORATORIO DE CONVERSIÓN DE LA ENERGÍA"

AUTORES: ERAS ARCOS, ERICK FERNANDO

HEREDIA CALERO, FAUSTO DAVID

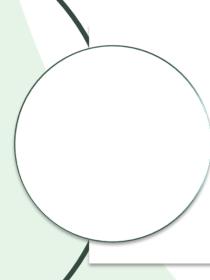
TUTOR ACADÉMICO: ING. VILLAVICENCIO POVEDA, ÁNGELO HOMERO

CONTENIDO

- Justificación e Importancia
- Objetivos
- Levantamiento técnico del equipo
- Mantenimiento del equipo
- Diseño del sistema eléctrico
- Adquisición de datos
- Interfaz hombre-maquina (HMI)
- Diseño e implementación del intercambiador de calor Agua-Aceite
- Resultados
- Conclusiones
- Recomendaciones
- Referencias Bibliográficas

JUSTIFICACIÓN E IMPORTANCIA

EQUIPO: BANCO DE PRUEBAS PARA INTERCAMBIADORES DE CALOR AGUA-ACEITE


RESOLVER PROBLEMAS

INGENIERO MECÁNICO REPOTENCIACIÓN REDISEÑO ADQUISICIÓN DE DATOS

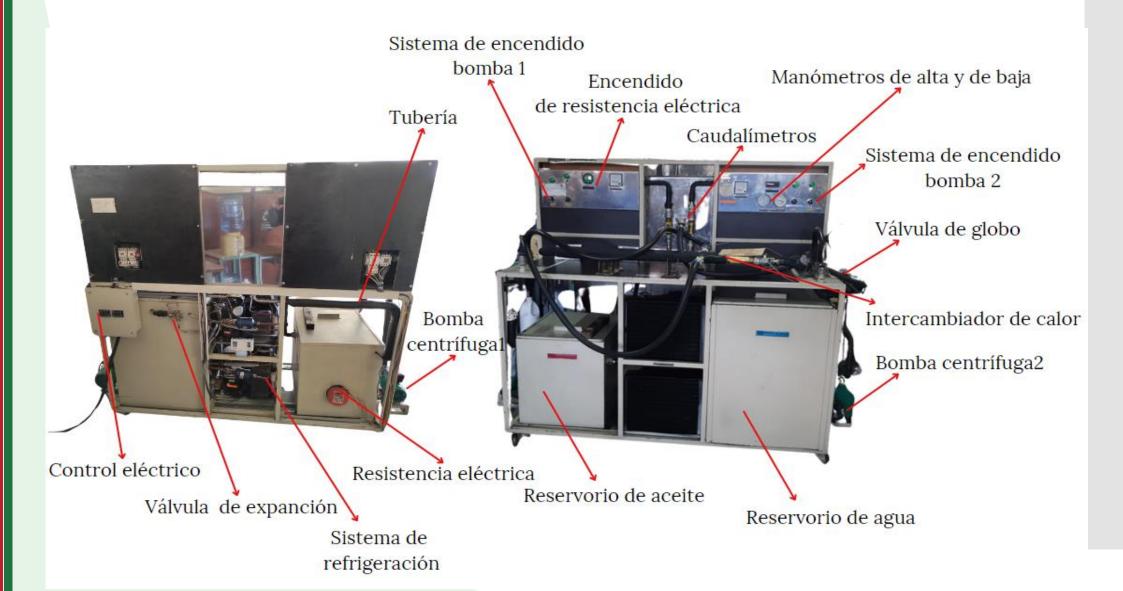
APLICACIÓN EN LA INDUSTRIA

FORMACIÓN TÉCNICA COMPLEMENTAR EL CONOCIMIENTO

Desarrollar la repotenciación, y el diseño e implementación de un sistema de adquisición de datos para el equipo Transferencia de Calor agua aceite, del Laboratorio de Conversión de la Energía.

Realizar una evaluación técnica del estado inicial de los componentes e instrumentación del Equipo de transferencia de calor de agua aceite.

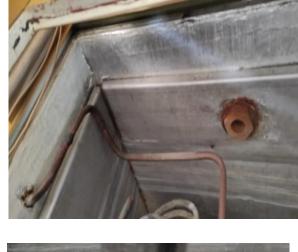
Realizar el mantenimiento preventivo y/o correctivo para la repotenciación del Equipo de transferencia de calor de agua aceite.


Realizar el diseño e implementación de un intercambiador de calor Agua-Aceite en el cual se permita transferir calor de manera eficiente entre dos fluidos sin que se mezclen entre sí.

Realizar el diseño e implementación del sistema de adquisición de datos del Equipo de transferencia de calor de agua aceite.

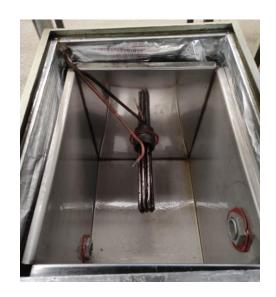
Realizar el diseño e implementación de la interfaz HMI para el Equipo de transferencia de calor de agua aceite.

TÉCNICO LEVANTA


Figura 1 Elementos y partes constitutivas que forman parte del banco de pruebas agua aceite

TÉCNICO LEVANTAMIENTO DEL EQUIP

Figura 2 Levantamiento técnico del reservorio de agua y sus componentes



TÉCNICO LEVANTAMIENTO DEL EQUIP

Figura 3 Levantamiento técnico del reservorio de aceite y sus componentes

TÉCNICO LEVANTAMIENTO DEL EQUIP

Figura 4 Levantamiento técnico de la bomba de agua y sus componentes

TÉCNICO LEVANTAN

Figura 5 Levantamiento técnico de la bomba de aceite y sus componentes

TÉCNICO LEVANTAMIENTO TO DEL EQUIP

Figura 6 Levantamiento técnico de la estructura del banco de pruebas

TÉCNICO LEVANTAMIENTO DEL EQUIP

Figura 7 Levantamiento técnico del Intercambiador de calor

Figura 8 Desmontaje del banco de pruebas

MANTENIMINETO DEL EQUIPO

Figura 9 Modificación y pintado de la estructura

Figura 10 Modificación de la base de la bomba de aceite

MANTENIMINETO DEL EQUIPO

Figura 11 Cambio de accesorios y empaques de la red de tuberias

Equipo actual

Figura 12 Estado actual del equipo

ADQUISICIÓN DE DATOS

Identificación de actuadores

Tabla 1 Datos del compresor 1 y 2

	Característica	Especificación
	Voltaje nominal	220 V
	Frecuencia	60 Hz
Amp	peraje de carga nominal (RLA)	7,5 A
	Refrigerante	R404A

$$I_{carga} = 7.5 A$$

Al ser una carga continua (funciona por más de 3 horas) se considera:

$$I_{conductor} \ge 1.25 I_{carga}$$

 $I_{termomagn\'etico} \ge 1.25 I_{carga}$

Cálculo del conductor sin factores de corrección:

$$I_{conductor} = 1.25 I_{carga}$$

 $I_{conductor} = 1.25(7.5 A)$
 $I_{conductor} = 9.375 A$

Factor de Corrección de Temperatura

$$F_{t} = 1$$

$$F_a = 70\%$$

$$I_{carga-f} = \frac{I_{carga}}{(F_t \times F_a)}$$

$$I_{carga-f} = \frac{7.5}{(1 \times 0.7)}$$

$$I_{carga-f} = 10.72 A$$

- \therefore El conductor seleccionado según la I_{carga} es un AWG 16 THHN
- \therefore El termomagnético seleccionado según la I_{carga} es de 16 A
- \therefore Contactor con un valor inmediato superior al valor de I_{carga} es 12 A
- \therefore El relé térmico según la I_{carqa} su rango de trabajo es: 9 13 A

Tabla 2 Datos de la resistencia eléctrica

Característica	Especificación
Voltaje nominal	220 V
Potencia	660 W
Corriente nominal	3,5 A

$$I_{carga} = 3.5 A$$

Al ser una carga continua (funciona por más de 3 horas) se considera:

$$I_{conductor} \ge 1.25 I_{carga}$$

$$I_{termomagn\'etico} \ge 1.25 I_{carga}$$

Cálculo del conductor sin factores de corrección:

$$I_{conductor} = 1.25 I_{carga}$$

 $I_{conductor} = 1.25(3.5 A)$
 $I_{conductor} = 4.75 A$

Factor de Corrección de Temperatura

$$F_{t} = 1$$

$$F_a = 70\%$$

$$I_{carga-f} = \frac{I_{carga}}{(F_t \times F_a)}$$

$$I_{carga-f} = \frac{3.5 A}{(1 \times 0.7)}$$

$$I_{carga-f} = 5 A$$

- \therefore El conductor seleccionado según la I_{carga} es un AWG 18 THHN
- \therefore El termomagnético seleccionado según la I_{carga} es de 10 A
- \therefore Contactor con un valor inmediato superior al valor de I_{carga} es 9 A
- \therefore El relé térmico según la I_{carga} su rango de trabajo es: 4 6 A

ADQUISICIÓN DE DATOS

Tabla 3 Datos de la bomba de agua

Característica	Especificación
Voltaje nominal	120 V
Potencia	1,5 KW
Corriente nominal	9,6 A

$$I_{carga} = 12 A$$

Al ser una carga continua (funciona por más de 3 horas) se considera:

$$I_{conductor} \ge 1.25 I_{carga}$$

$$I_{termomagn\'etico} \ge 1.25 I_{carga}$$

Cálculo del conductor sin factores de corrección:

$$I_{conductor} = 1.25 I_{carga}$$

 $I_{conductor} = 1.25(9,6 A)$
 $I_{conductor} = 12 A$

Factor de Corrección de Temperatura

$$F_{t} = 1$$

$$F_a = 70\%$$

$$I_{carga-f} = \frac{I_{carga}}{(F_t \times F_a)}$$

$$I_{carga-f} = \frac{9.6 A}{(1 \times 0.7)}$$

$$I_{carga-f} = 13,71 A$$

- \therefore El conductor seleccionado según la I_{carga} es un AWG 16 THHN
- \therefore El termomagnético seleccionado según la I_{carga} es de 16 A
- \therefore Contactor con un valor inmediato superior al valor de I_{carga} es 18 A
- \therefore El relé térmico según la I_{carga} su rango de trabajo es: 12 18 A

ADQUISICIÓN DE DATOS

Tabla 4 Datos de la bomba de aceite

Característica	Especificación
Voltaje nominal	220 V
Potencia	1,8 KW
Corriente nominal	8,1 A

$$I_{carga} = 8.1 A$$

Al ser una carga continua (funciona por más de 3 horas) se considera:

$$I_{conductor} \ge 1.25 I_{carga}$$

$$I_{termomagn\'etico} \ge 1.25 I_{carga}$$

Cálculo del conductor sin factores de corrección:

$$I_{conductor} = 1.25 I_{carga}$$

 $I_{conductor} = 1.25(8.1 A)$
 $I_{conductor} = 10.13 A$

Factor de Corrección de Temperatura

$$F_{t} = 1$$

$$F_a = 70\%$$

$$I_{carga-f} = \frac{I_{carga}}{(F_t \times F_a)}$$

$$I_{carga-f} = \frac{8.1 A}{(1 \times 0.7)}$$

$$I_{carga-f} = 11,57 A$$

- \therefore El conductor seleccionado según la I_{carga} es un AWG 16 SPT
- \therefore El termomagnético seleccionado según la I_{carga} es de 16 A
- \therefore Contactor con un valor inmediato superior al valor de I_{carga} es 12 A
- \therefore El relé térmico según la I_{carga} su rango de trabajo es: 9 13 A

Identificación de variables y rangos de funcionamiento

Tabla 5 Identificación de las variables a medir y rangos de trabajo

Fluid	do	Variable	Simb	min	max	Unidad
		Caudal	Q_c	0	0,00041	$[m^3/s]$
	1-	Temperatura de entrada	T_{hi}	0	75	[° <i>C</i>]
Acei	te	Temperatura de salida	T_{ho}	T_{ho} -10	50	[° <i>C</i>]
		Temperatura del reservorio	T_{rc}	0	75	[° <i>C</i>]
		Caudal	$Q_{\mathbf{w}}$	0	0,00091	$[m^3/s]$
		Temperatura de entrada	t _{hi}	-10	50	[° <i>C</i>]
Agu	ıa	Temperatura de salida	t_{ho}	0	50	[° <i>C</i>]
		Temperatura del reservorio	T_{rw}	0	50	[°C]

Tabla 6 Identificación de la cantidad de sensores necesarios

Variables a medir	Cantidad
Temperatura	10
Caudal	2
Total	12

Selección del Controlador

Tabla 7 Matriz comparación de características entre distintas opciones de tipos de PLC

Parámetro	Escala	Ponderación	DVP-SX2	LOGO! (Siemens)	Micro Logix 1100
Entradas analógicas	0-10	0.15	10/1.5	10/1.5	8/1.2
Voltaje de entrada	0-10	0.05	9/0.45	7/0.35	7/0.35
Disponibilidad en el mercado	0-10	0.15	10/1.5	7/1.05	6/0.9
Programación	0-10	0.2	9/1.8	10/2	5/1
Costo	0-10	0.2	8/1.6	6/1.2	10/2
Facilidad de instalación	0-10	0.15	10/1.5	8/1.2	7/1.05
Funcionalidad	0-10	0.1	10/1	9/0.9	7/0.7
Total		1	9.35	8.2	7.2

Figura 13 PLC DVP-SX2

Selección del sensor de Temperatura

Tabla 8 Matriz comparación de características entre distintas opciones de tipos de sensores de temperatura

Característica	Escala	Ponderación	HDT-500	Termocupla tipo K	XTP25N-030-
				= 5 0 =	N40140F
Voltaje de alimentación	0-10	0.15	10/1.5	7/1.05	5/0.75
Resolución	0-10	0.2	9/1.8	8/1.6	7/1.4
Transmisor (4 a 20 mA	0-10	0.15	8/1.2	6/0.9	10/1.5
o 0 a 10V)	0 10	0.13	0, 0.5	10/1.5	
Longitud de sonda	0-10	0.25	10/2.5	5/1.25	7/1.75
Facilidad de instalación	0-10	0.1	10/1	9/0.9	9/0.9
Costo	0-10	0.15	6/0.9	10/1.5	8/1.2
Total		1	8.9	7.2	7.5

Figura 14 Sensor HDT-500

Característica	Descripción
Voltaje de alimentación	24 VDC
Salida	0 - 10 V
Rango de medición	Adaptable
Temperatura de operación	−20°C a 90°C
Tipo de sensor	РП00
Precisión	0.1°C
Nivel de protección	IP67
Material de sonda	Acero inoxidable
	306L

Selección del sensor de Caudal

Tabla 9 Matriz comparación de características entre distintas opciones de tipos de sensores de caudal

Característica	Escala	Ponderación	YF-DN40 1.5	LWGY-40	YF-S201C
Voltaje de alimentación	0-10	0.1	10/1	8/0.8	8/0.8
Transmisor	0-10	0.2	8/1.6	10/2	6/1.2
Rango de caudal	0-10	0.15	10/1.5	5/0.75	7/1.05
Temperatura de trabajo	0-10	0.15	10/1.5	5/0.75	5/0.75
Presión permitida	0-10	0.1	7/0.7	8/0.8	9/0.9
Precisión	0-10	0.1	5/0.5	7/0.7	5/0.5
Resistencia a la corrosión	0-10	0.1	10/1	10/1	9/0.9
Costo	0-10	0.1	10/1	7/0.7	6/0.6
Total		1	8.8	7.5	6.7

Figura 15 Sensor YF-DN40 1.5

Característica	Descripción	
Voltaje de alimentación	24 VDC	
Salida	0 - 10 V	
Rango de caudal	5 a 150 L/min	
Temperatura permitida	−25°C a 90°C	
Precisión	±1%	
Material	Acero inoxidable	

Selección de la interfaz HMI

Tabla 10 Matriz comparación de características entre distintas opciones de interfaz HMI

Característica	Escala	Ponderación	HMI KINCO	HMI TOUCHWIN	HMI EVIEW
Caracteristica	ESCAIA	Ponderación	GL070E	TGA63 ET	ET070
Voltaje de	0-10	0.1	10/1	7/0.7	7/0.7
alimentación Tamaño de display	0-10	0.2	10/2	7/1.4	6/1.2
Puertos de comunicación	0-10	0.2	8/1.6	8/1.6	10/2
Programación desde PC	0-10	0.25	10/2.5	7/1.75	5/1.25
Costo	0-10	0.25	7/1.75	6/1.5	6/1.5
Total		1	8.85	6.95	6.65

Figura 16 Interfaz HMI KINCO GL070E

ADQUISICIÓN DE DATOS

Dimensionamiento del consumo del sistema de adquisición de datos

Tabla 11 Bomba de aceite

Característica	Especificación
Marca	SAEK
Voltaje de alimentación	220 V
Potencia	1 HP
Caudal	$0.00041 \ m^3/s$
RPM	3450

Tabla 12 Bomba de agua

Característica	Especificación	
Marca	Myers	
Voltaje de alimentación	110 V	
Potencia	1 HP	
Caudal	-	
RPM		

Tabla 13 Sistema de refrigeración

Característica	Especificación	
Marca	TECUMSEH	
Voltaje de alimentación	220 V	
Potencia	1 HP	
Frecuencias	60 Hz	

Tabla 14 Resistencia

Característica	Especificación	
Consumo	1.5 Kw/h	
Voltaje de alimentación	220 V	

Tabla 15 HMI KINCO GL070E

Característica	Especificación	
Marca	KINCO	
Voltaje de alimentación	24 VDC	
Consumo eléctrico	0.5 A	

Tabla 16 PLC modular DVP-SX2

Especificación	
DVP	
24 VDC	
0.5 A	

Tabla 17 Sensor HDT-500

Característica	Especificación	
Marca	HDT	
Voltaje de alimentación	24 VDC	
Consumo eléctrico	0.35 A	

Tabla 18 Sensor YF-DN40 1.5

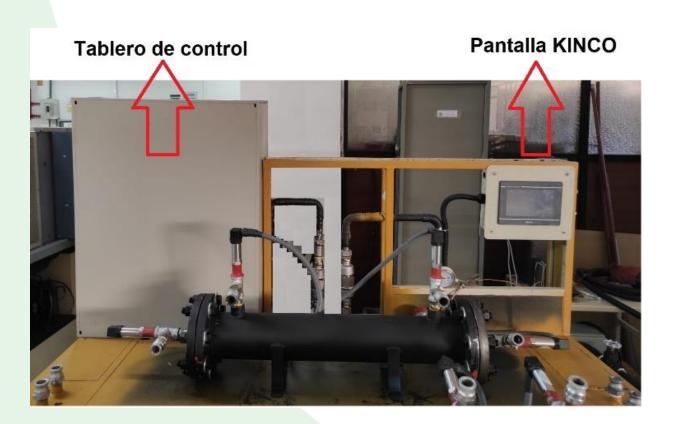
Característica	Especificación	
Marca	YF	
Voltaje de alimentación	24 VDC	
Consumo eléctrico	0.5 A	

Dimensionamiento de la fuente de alimentación

Tabla 19 Especificaciones eléctricas de cada componente para el dimensionamiento de la fuente de alimentación

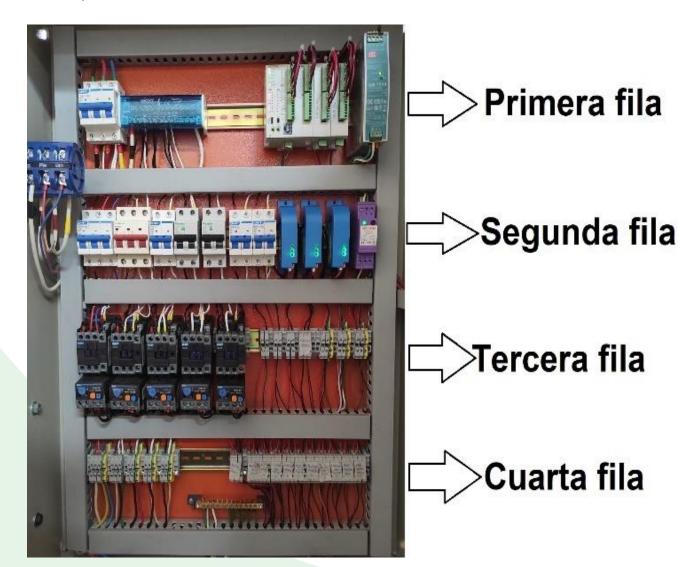
Componente	Cantidad	Corriente nominal	Total
PLC modular DVP-SX2	1	0.7 A	0.7 A
Sensores de temperatura HDT-500	10	0.2 A	2 A
Sensores de caudal YF- DN40 1.5	2	0.5 A	1 A
HMI KINCO GL070E	1	0.5 A	0.5 A
	Total		4.2 A

 $I_{fuente} = 1.15(Corrinte\ nominal) = 1.15(4.2\ A) = 4.9\ A$


Figura 17 Fuente de alimentación DC

Diseño del tablero de control

Figura 18 Diseño del tablero de control



Implementación del sistema de adquisición de datos

Figura 19 Distribución de los componentes en el tablero de control

Conexión de los sensores

Figura 20 Conexión del sensor de temperatura

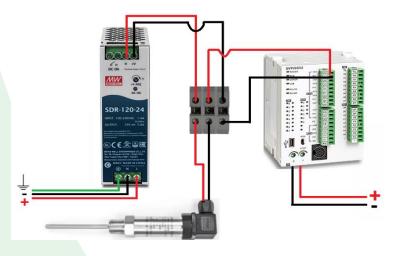
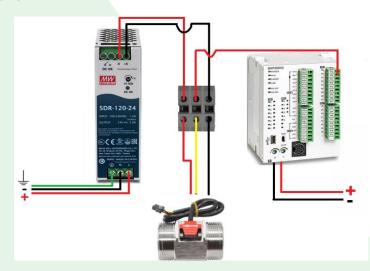
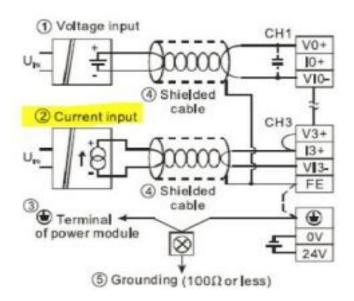




Figura 21 Conexión del sensor de caudal

Programación del PLC

Figura 22 Habilitación de las entradas del PLC para el almacenamiento de datos

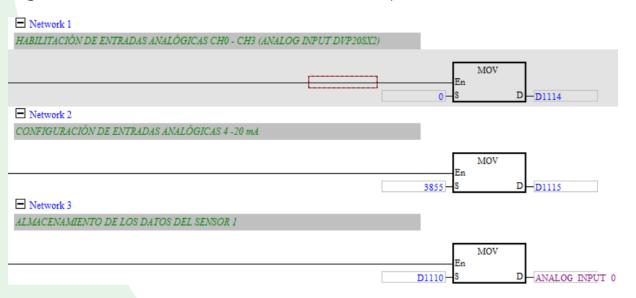
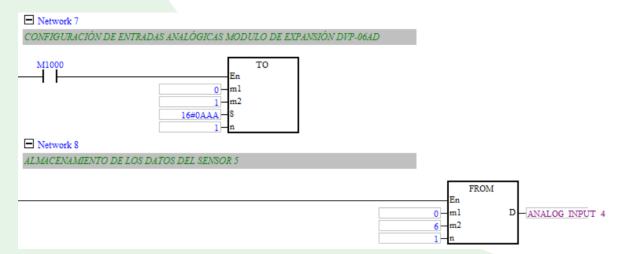



Figura 23 Configuración de las entradas del modulo de expansión para el almacenamiento de datos

Escalamiento del sensor de temperatura

Figura 24 Linealización del sensor de temperatura

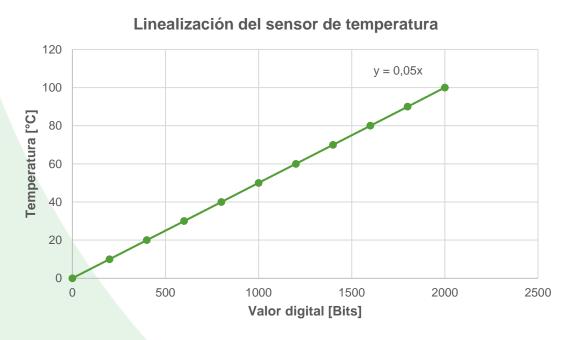


Figura 25 Ingreso de la ecuación de linealización

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$\frac{y-0}{100-0} = \frac{x-0}{2000-0}$$

$$\frac{y}{100} = \frac{x}{2000}$$

$$y = \frac{x}{20}$$

$$y = 0.05x$$

Escalamiento del sensor de caudal

Figura 26 Lectura de los datos

```
■ Network 60
LECTURA DE DATOS DEL SENSOR DE ACEITE ENTRADA X5
                                             DCNT
                                   C240 -
■ Network 61
TEMPORIZADOR DE MUESTREO 60 SEG
                                             TMR
■ Network 62
                                            DMOV
                                  C240
                                                    D CONTADOR
                                T0
                               (R)
                               C240
                               (R)
■ Network 64
OBTENCION DE LA FRECUENCIA EN HZ DEL SENSOR DE CAUDAL DE ACEITE
                                                                         DDIVR
                                                                                D CAUDAL ACEITE
                                                         FLOAT CAUDAL
```


Figura 27 Linealización de caudal

$$Q = \frac{Frecuencia \ [Hz]}{0.45} \left[L/min\right]$$

Figura 55 Ingreso de la ecuación de linealización

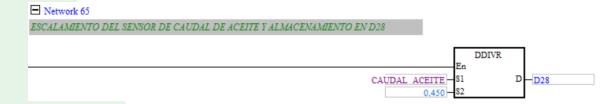
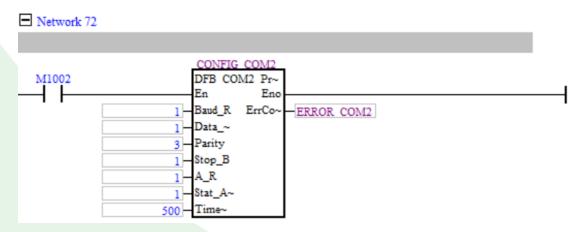



Figura 28 Configuración de la comunicación entre el PLC y la interfaz HMI

INTERFAZ HOMBRE-MAQUINA

Diseño y programación de la interfaz HMI

Figura 29 Configuración de la dirección IP

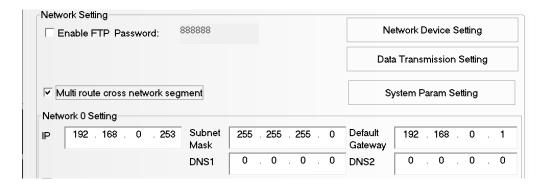
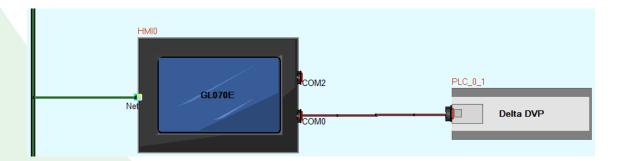
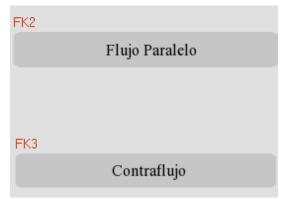
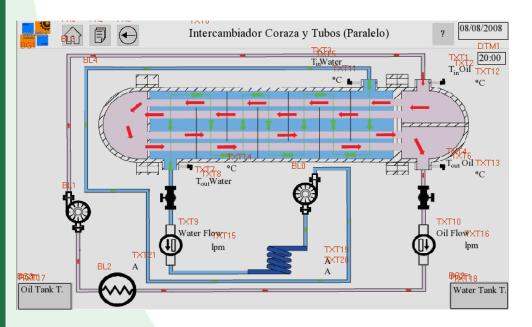
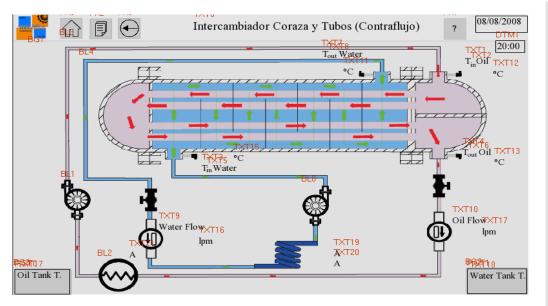
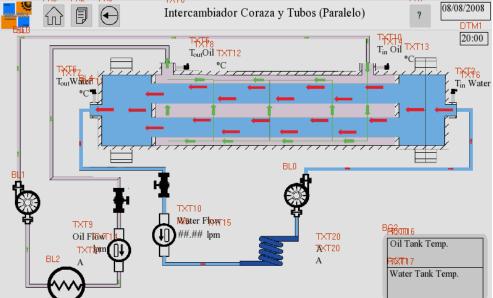



Figura 58 Diagrama de comunicación entre el PLC y la interfaz HMI

INTERFAZ HOMBRE-MAQUINA

Figura 30 Diseño de las ventanas de las HMI

Norma ISA 101.01-2015.

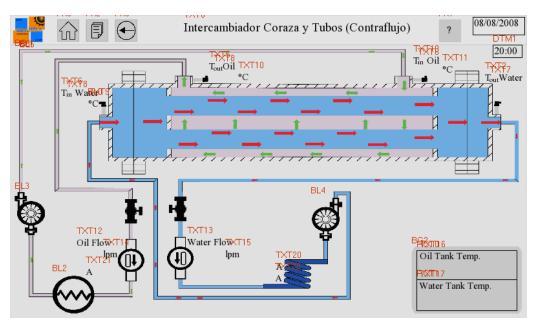
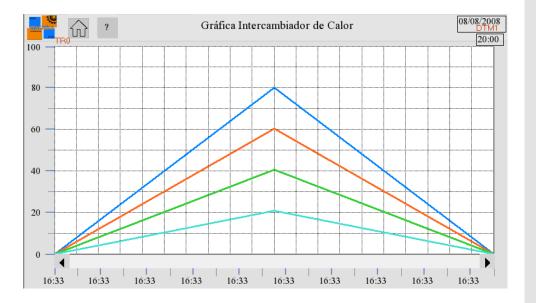


Figura 31 Diseño de las ventanas de las HMI



INTERFAZ HOMBRE-MAQUINA

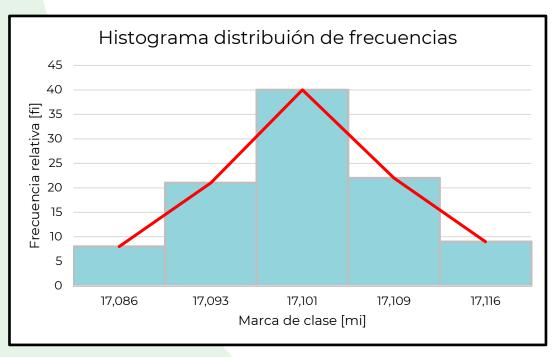
Figura 32 Diseño de las ventanas de las HMI

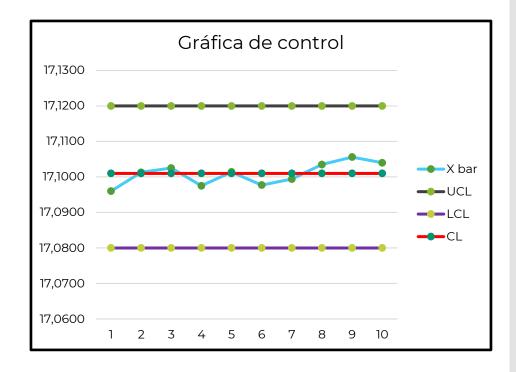
Análisis estadístico del sensor de temperatura

Tabla 20 Análisis estadístico

	Sensores de temperatura HDT-500									
Medida	1	2	3	4	5	6	7	8	9	10
1	17,08	17,11	17,11	17,10	17,11	17,10	17,10	17,10	17,09	17,10
2	17,10	17,10	17,11	17,09	17,10	17,09	17,11	17,11	17,12	17,10
3	17,10	17,11	17,08	17,11	17,10	17,10	17,11	17,10	17,12	17,11
4	17,11	17,10	17,11	17,10	17,10	17,09	17,09	17,11	17,11	17,10
5	17,10	17,10	17,10	17,09	17,11	17,09	17,08	17,10	17,09	17,11
6	17,10	17,11	17,11	17,09	17,09	17,10	17,10	17,11	17,11	17,10
7	17,11	17,10	17,10	17,08	17,12	17,10	17,10	17,09	17,10	17,11
8	17,09	17,09	17,11	17,10	17,10	17,10	17,10	17,10	17,10	17,10
9	17,09	17,09	17,09	17,09	17,10	17,09	17,10	17,10	17,12	17,11
10	17,09	17,10	17,11	17,12	17,09	17,10	17,09	17,12	17,10	17,10

Tabla 21 Resultado de análisis


Tabla 22 Intervalos de clase


Variable	Valor	_		Intervalo	s de clase					
n	100	N	l° de		Límite	_				
Xmin	17,08	c	lase	Límite inferior	superior	Xi	ni	Ni	fi	Fi
Xmax	17,12		1	17,08	17,0896	17,086	8	8	0,08	0,0
Rango	0,04		2	17.0896	17,0972	17,093	21	29	0,21	0,2
Media	17,101		3	17,0972	17,1048	17,101	40	69	0,4	0,6
Moda	17,100		4	17,1048	17,1124	17,109	22	91	0,22	0,9
Mediana	17,100		5	17,1124	17,1200	17,116	9	100	0,09	1
Desv est	0,0089			17,112 1	17,1200	17,110	100	100	0,03	<u> </u>

Análisis estadístico del sensor de temperatura

Figura 33 Histograma de distribución de frecuencias y gráfica de control

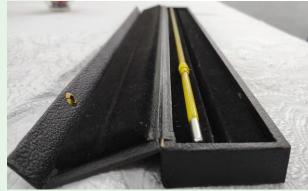


Figura 34 Termómetro patrón de mercurio

Calor extraído del agua

$$Q = m * cp * (T_{enf} - T_{amb})$$

$$Q = 70kg * \frac{4180J}{Kg * {}^{\circ}C} * (5 - 20)^{\circ}C$$

$$Q = 4389000J$$

Antes del mantenimiento

Después del mantenimiento

$$q = \frac{4389000J}{7200s}$$

$$q = \frac{4389000J}{5400s}$$

$$q = 609.58Watts$$

$$q = 812,77Watts$$

Métodos para el dimensionamiento del Intercambiador de calor

Simulación numérica

- Dimensiones
- Flujo másico
- Temperaturas de entrada

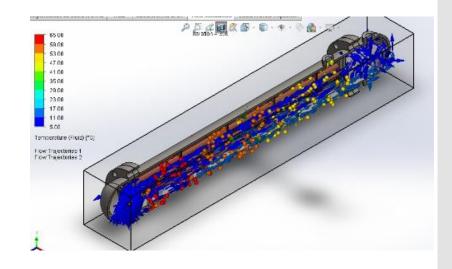
Tabla 23 Datos iniciales para el diseño

Parámetro	Símbolo	Valor
Temperatura de entrada del aceite	T_{hi}	65 [° <i>C</i>]
Temperatura de salida del aceite	T_{ho}	31 [°C]
Diámetro entrada de aceite	D_c	0.01905 [m]
Caudal lado del aceite	Q_c	$0.0004167 [m^3/s]$
Temperatura de entrada del agua	t_{ci}	5 [° <i>C</i>]
Temperatura de salida del agua	t_{co}	25.52 [° <i>C</i>]
Diámetro entrada de agua	D_c	0.01905 [m]
Caudal lado del agua	Q_c	$0.0009157 [m^3/s]$

Efectividad NTU

- Dimensiones
- Flujo másico
- Temperaturas de entrada

Figura 35 Intercambiador de calor tubos y coraza



Método Simulación Numérica

Tabla 24 Efectividad y Coeficiente global de transferencia de calor flujo paralelo

Figura 36 Simulación	n flujo paralelo
-----------------------------	------------------

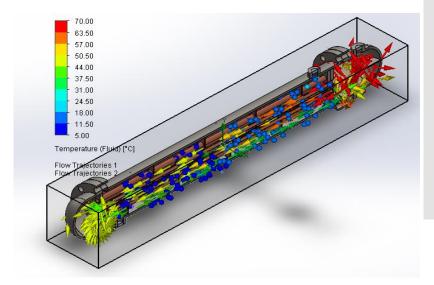

Variable	Símbolo	Valor
Efectividad	ε	59%
Coeficiente global de transferencia de calor	Ü	$725,45[W/(m^2K)]$
Entrada del agua	Te_w	5 [° <i>C</i>]
Salida del agua	Ts_w	18,4 [° <i>C</i>]
Entrada del aceite	Te_o	65 [° <i>C</i>]
Salida del aceite	Ts_o	47,15 [° <i>C</i>]

Tabla 25 Efectividad y Coeficiente global de transferencia de calor contraflujo

Variable	Símbolo	Valor
Efectividad	ε	53,58%
Coeficiente global de transferencia de calor	U	$854,78[W/(m^2K)]$
Entrada del agua	Te_w	5 [° <i>C</i>]
Salida del agua	Ts_w	24,69 [° <i>C</i>]
Entrada del aceite	Te_o	65 [° <i>C</i>]
Salida del aceite	Ts_o	38,96 [° <i>C</i>]

Figura 37 Simulación contraflujo

Método de Efectividad NTU

Tabla 24 Efectividad y Coeficiente global de transferencia de calor flujo paralelo

Variable	Símbolo	Valor
Efectividad	${\cal E}$	46%
Coeficiente global de cansferencia de calor	Ù	$689,15[W/(m^2K)]$
Entrada del agua	Te_w	5 [° <i>C</i>]
Salida del agua	Ts_w	24,69 [° <i>C</i>]
Entrada del aceite	Te_o	65 [° <i>C</i>]
Salida del aceite	Ts_o	38,96 [° <i>C</i>]

Tabla 25 Efectividad y Coeficiente global de transferencia de calor contraflujo

Variable	Símbolo	Valor
Efectividad	ε	55,78%
Coeficiente global de transferencia de calor	Ù	$824,78[W/(m^2K)]$
Entrada del agua	Te_w	5 [° <i>C</i>]
Salida del agua	Ts_w	18,4 [° <i>C</i>]
Entrada del aceite	Te_o	65 [° <i>C</i>]
Salida del aceite	Ts_o	47,15 [° <i>C</i>]

Figura 38 Flujo paralelo

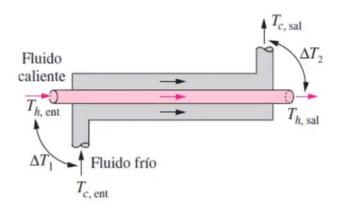
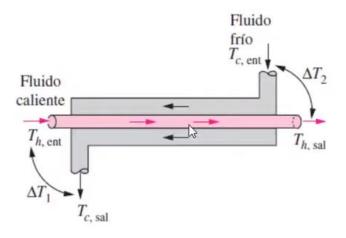



Figura 39 Contraflujo

Diseño del intercambiador de calor

Cálculo del área y velocidad de entrada del agua y aceite

$$A_c = \left(\frac{\pi}{4}\right) \cdot (D_c)^2 \quad (1)$$

$$A_c = 2.85X10^{-4} \, [m^2]$$

$$A_c = 2.85X10^{-4} [m^2]$$
 $A_w = 2.85X10^{-4} [m^2]$

$$V_c = \frac{Q_c}{A_c} \qquad (2)$$

$$V_c = 2.87 [m/s]$$
 $V_w = 3.21 [m/s]$

$$= 3.21 [m/s]$$

Temperatura media volumétrica para el agua

$$Tb_w = \frac{t_{ci} + t_{co}}{2} \tag{3}$$

$$Tb_w = 15.26 \, [^{\circ}C]$$

Propiedades termo físicas para el agua

$$\mu_w = 1.1309X10^{-3} [kg/m \cdot s]$$

$$\rho_w = 999.04 \, [kg/m^3]$$

$$v_w = 1.132X10^{-6} [m^2/s]$$

$$k_w = 0.589 \left[\frac{W}{m \, ^{\circ} K} \right]$$

$$Pr_{w} = 8.033$$

$$Re_{w} = \frac{V_{agua} \cdot d_{i}}{v_{w}} (\mathbf{4})$$

$$Re_w = 28048.033$$

$$f_w = (0.790 \cdot \ln(Re_w) - 1.64)^{-2} (5)$$

$$f_w = 0.024$$

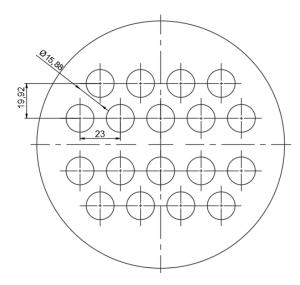
$$\overline{Nu}_D = \frac{(f/8)Re_D Pr}{K_1 + K_2(f/8)^{1/2}(Pr^{2/3} - 1)}$$
(6)
$$\overline{Nu}_D = 213.779$$

Coeficiente de convección para el agua

$$\overline{Nu}_D = \frac{hi_w \cdot d_i}{k_w} (7)$$

$$hi_w = 99.91 \left[\frac{KW}{m^2 \, ^{\circ} K} \right]$$

Diseño del intercambiador de calor


Cálculo del número de bafles

$$B = \frac{\frac{L}{2}}{dc_i}(\mathbf{8})$$

$$B = \frac{\frac{1.84 \ [m]}{2}}{0.127 \ [m]}$$

$$B = 7.244 \approx 8 \text{ bafles}$$

Dimensiones del escalonamiento de los tubos

Temperatura media volumétrica para el aceite

$$Tb_c = \frac{T_{hi} + T_{ho}}{2} (\mathbf{9})$$

$$Tb_c = \frac{65 + 31}{2}$$

$$Tb_c = 48 \, [^{\circ}C]$$

Diseño del intercambiador de calor

$$v_c = 1.776X10^{-4} [m^2/s]$$

$$Re\ max_c = \frac{Vmax_c \cdot d_o}{v_c}$$

$$k_c = 0.1424 \left[\frac{W}{m \, ^{\circ} K} \right]$$

$$Re\ max_c = 1721.038$$

$$\rho_c = 861.66 \left[\frac{kg}{m^3} \right]$$

$$ho_c = \frac{C1_c \cdot (Re \ max_c)^{n_c} \cdot k_c}{d_o}$$

$$Cp_c = 1997.2 \left[\frac{J}{kg \, {}^{\circ}K} \right]$$

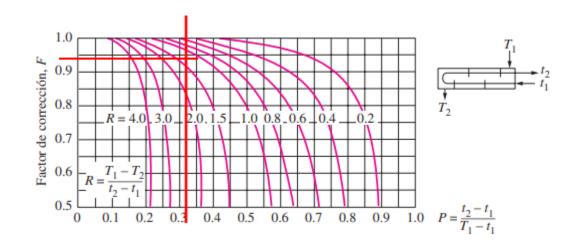
$$ho_c = 275.677 \left[\frac{W}{m^2 \, ^{\circ} K} \right]$$

Cálculo del coeficiente de transferencia de calor limpio

$$U_{\text{lim}} = \frac{1}{\frac{r_o}{r_i \cdot hi_w} + \frac{r_o \cdot \ln(r_o/r_i)}{k_{cu}} + \frac{1}{ho_c}} (\mathbf{10})$$

$$U_{lim} = 266.076 \left[\frac{W}{m^2 \, ^{\circ} K} \right]$$

Cálculo de la transferencia de calor en la carcasa del intercambiador de calor


$$Qo_{air} = U_{cor} \cdot A_{carcasa} \cdot (Tb_c - Tb_{air})(\mathbf{11})$$

$$Qo_{air} = \left(3.206 \frac{W}{m^2 \, {}^{\circ}K}\right) \cdot (0.755 \, m^2) \cdot (48 \, {}^{\circ}C - 22 \, {}^{\circ}C)$$

$$Qo_{air} = 68.081 watts$$

Factor de corrección del intercambiador de calor

$$F_{corr} = 0.94$$

ACIÓN DEL E CALOR DISEÑO E IN INTERCAM

Cálculo de la temperatura media logarítmica

$$\Delta T_1 = T_{ho} - t_{ci}$$

$$\Delta T_2 = T_{hi} - t_{co}$$

$$\Delta T_{ml} = \frac{\Delta T_2 - \Delta T_1}{\ln\left(\frac{\Delta T_2}{\Delta T_1}\right)} (\mathbf{12})$$

$$\Delta T_{ml} = 32.272 \, [^{\circ}C]$$

$$\Delta T_{ml} = 305.272 \, [^{\circ}K]$$

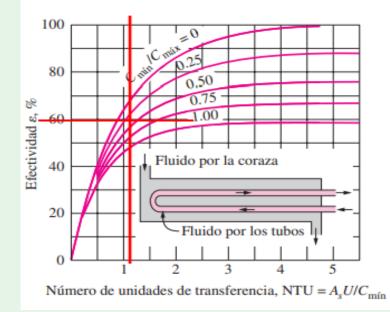
Cálculo de la transferencia de calor total del intercambiador de calor

$$Q_{total} = U_{lim} \cdot [Nt \cdot \pi \cdot d_o \cdot L] \cdot F_{corr} \cdot \Delta T_{ml}(\mathbf{13})$$

$$Q_{total} = \left(266.076 \frac{W}{m^2 \, {}^{\circ}K}\right) \cdot (9) \cdot (\pi) \cdot (0.016 \, m) \cdot (0.92 \, m) \cdot (0.94) \cdot (305.272 \, {}^{\circ}K)$$

$$Q_{total} = 3334.415 watts$$

ACIÓN DEL DE CALOR DISEÑO E IM INTERCAM


Método NTU

$$NTU = \frac{UA_s}{C_{min}} = \frac{UA_s}{(\dot{m}Cp)_{min}}$$

$$C_{min} = (\dot{m}Cp)_{aceite}$$

$$C_{max} = (\dot{m}Cp)_{agua}$$

Figura 20 efectividad del intercambiador de calor

$$c = \frac{C_{min}}{C_{max}} = \frac{1.44}{3.85} = 0.374$$

$$NTU = \frac{UA_s}{C_{min}} = 1.07$$

$$\varepsilon = 2 \left[1 + c + \sqrt{1 + c^2} \frac{1 + e^{-NTU*\sqrt{1 + c^2}}}{1 - e^{-NTU*\sqrt{1 + c^2}}} \right]^{-1}$$

$$\varepsilon = 0.588 \approx 59\%$$

Construcción del Intercambiador de calor

Tabla 6 Elementos empleados para la construcción del IC

Nro.	Descripción	Cantidad
1	Tubería de cobre tipo K 1/2"	18 [m]
2	Brida ANSI B 16.36 RF 150 SCH 40	4
3	Empaque bimetálico para brida 5"	2
4	Unión hembra Acero 3/4"	4
5	Tubo ASTM 53 GR B, 5"	1 [m]
6	Placa A36, 5"	2
7	Bafles de cobre 5"	6
8	Cabezal semi elíptico ASTM 53 GR B, 5"	2
9	Pintura anticorrosiva gris [lt]	1
10	Pernos M18 con tuerca Acero	32
11	Arandelas de presión M18	32

Mecanizado de los componentes

Figura 6 Corte y trazado de la tubería de cobre

Figura 11 Perforaciones a las placas tubulares

Figura 10 Perforaciones a la coraza y cabezales

Figura 12 Corte y trazado de los bafles

Ensamblaje de los componentes

Figura 13 Soldadura de los cabezales semielípticos

Figura 14 Soldadura de los cabezales a las bridas

Figura 16 Soldadura de las bridas a la carcasa

Figura 20 Colocación de los bafles al haz de tubos

Figura 21 Soldadura entre los bafles y haz de tubos

Figura 22 Inspección y verificación de la posición de los bafles

Figura 23 Soldadura entre la brida y la placa tubular

Figura 26 Colocación de los empaques bimetálicos

Figura 27 Unión de los cabezales a la carcasa del IC

Figura 28 Prueba de fugas

PRUEBAS DE ON CIONAMIENTO

Resultados de pruebas

Tabla 43Datos de la práctica IC multitubos 1 flujo contracorriente

	Ti.O	Ti.W	To. 0	To.W	Q.Oil	Q.W	Tt. 0	Tt.W	ΔΤο	ΔTw
t (min)	(° C)	(° C)	(° C)	(° C)	(LPM)	(LPM)	(° C)	(° C)	(° C)	(° C)
0	70	3,5			10	5				
6	64	7,85	59,22	16,17	10	5	68.22	7.22	4,78	8,32
6	55,33	8,18	51,53	15,9	10	5	59.80	7.45	3,8	7,72
6	49,2	8,35	45,85	15,7	10	5	53.42	7.62	3,35	7,35
6	43,12	8,65	40,97	15,5	10	10	46.85	7.88	2,15	6,85
6	38,92	9,1	37,3	15,2	10	15	42.08	8.45	1,62	6,1
6	37,12	10,2	35,35	16,2	10	20	39.35	9.32	1,77	6

PRUEBAS DE UNCIONAMIENTO

Tabla 30 Resultados de la práctica IC multitubos 1 flujo paralelo

	Q_{agua} (watts)	$egin{aligned} Q_{aceite} \ (watts) \end{aligned}$	DMLT (° C)	Re_{agua}	Re_{aceite}	f_{agua}	e (%)
	2236,29	3514,93	89,12	5152,49	29285,83	0,599	15,21
	2091,55	3173,42	75,30	5155,72	17688,82	0,598	16,45
	2052,99	2895,42	65,06	5161,76	13692,80	0,598	18,23
	3903,80	2900,77	56,49	5154,73	23150,45	0,598	36,56
	5178,99	2902,66	58,47	5172,21	32967,30	0,597	47,85
	7172,64	3002,64	58,49	5328,88	42901,74	0,588	65,59
	2508,87	7769,34	106,42	4465,01	41670,01	0,647	15,21
	Nu_{agua}	\textit{Nu}_{aceite}	h_{agua} (W/m^2K)	h_{aceite} (W/m^2K)	$U_{interno}$ (W/m^2K)	Q_{max} (W)	$oldsymbol{Q_{total}}{(W)}$
_	Nu _{agua} 222,21	Nu _{aceite} 998,86					
_			(W/m^2K)	(W/m^2K)	(W/m^2K)	(W)	(W)
_	222,21	998,86	(<i>W</i> / <i>m</i> ² <i>K</i>)	(W/m ² K) 33043,24	(W / m ² K) 803,71	(W)	(W) 26278,21
_	222,21 222,30	998,86 655,41	(<i>W</i> / <i>m</i> ² <i>K</i>) 1015,35 1020,32	(W/m ² K) 33043,24 26482,70	(<i>W</i> / <i>m</i> ² <i>K</i>) 803,71 802,69	(W) 14704,76 12711,13	(W) 26278,21 22173,90
	222,21 222,30 222,50	998,86 655,41 528,06	(<i>W</i> / <i>m</i> ² <i>K</i>) 1015,35 1020,32 1016,15	(<i>W</i> / <i>m</i> ² <i>K</i>) 33043,24 26482,70 24611,87	(<i>W</i> / <i>m</i> ² <i>K</i>) 803,71 802,69 797,68	(W) 14704,76 12711,13 11260,82	(W) 26278,21 22173,90 19038,74
	222,21 222,30 222,50 222,28	998,86 655,41 528,06 820,98	(<i>W</i> / <i>m</i> ² <i>K</i>) 1015,35 1020,32 1016,15 1014,10	(<i>W</i> / <i>m</i> ² <i>K</i>) 33043,24 26482,70 24611,87 37168,86	(<i>W</i> / <i>m</i> ² <i>K</i>) 803,71 802,69 797,68 804,92	(<i>W</i>) 14704,76 12711,13 11260,82 10677,15	(W) 26278,21 22173,90 19038,74 16682,39

h_{agua} (W/m^2K)	$U_{interno}$ (W/m^2K)		
1015,35	803,71		
1020,32	802,69		
1016,15	797,68		
1014,10	804,92		
1017,30	811,89		
1040,63	832,65		

TABLA 8.1 Coeficientes globales de transferencia de calor para varias aplicaciones (W/m² K)^a (multiplique los valores en la tabla por 0.176 para obtener unidades de Btu/h ft²°F).

Flujo de calor → a: ↓ de:	Gas (inmóvil) $\overline{h}_c = 5 - 15$	Gas (fluyendo) $\overline{h}_c = 10 - 100$	Líquido (inmóvil) $\overline{h}_c = 50 - 1000$	Líquido (fluyendo) Agua $\overline{h}_c = 1000 - 3000$ Otros líquidos $\overline{h}_c = 500 - 2000$	Líquido en ebullición Agua $\overline{h}_c = 3500 - 60000$ Otros líquidos $\overline{h}_c = 1000 - 20000$
Gas (convección natural) $\overline{h}_c = 5 - 15$	Aire en hab./ exterior a través de cristal U = 1 - 2	Sobrecalentadores $U = 3 - 10$		Cámara de combustión U = 10 - 40 + radiación	Caldera de vapor U = 10-40 + radiación
Gas (fluyendo) $\overline{h}_c = 10 - 100$		Intercambiadores de calor para gases $U = 10 - 30$	Caldera de gas $U = 10 - 50$		
Líquido (convección natural) $\overline{h}_c = 50 - 10000$			Baño de aceite para calentamiento $U = 25 - 500$	Serpentín de enfriamier $U = 500 - 1500$ con agitación	nto
Líquido (fluyendo) agua $\overline{h}_c = 3000 - 10000$ otros líquidos $\overline{h}_c = 500 - 3000$	Calefacción central por radiador U = 5 - 15	Enfriadores de gas U = 10 - 50	Serpentín de calentamiento en un recipiente agua/agua sin agitación $U = 50 - 250$, con agitación $U = 500 - 2000$	Intercambiador de calor agua/agua U = 900 - 2500 agua/otros líquidos U = 200 - 1000	Evaporadores de refrigeradores U = 300 - 1000
Vapor condensándose agua $\overline{h}_c = 5000 - 30000$ otros líquidos $\overline{h}_c = 1000 - 4000$	Radiadores de vapor U = 5 - 20	Calentadores de aire U = 10 - 50	Camisas de vapor alrededor de recipientes, agua U = 300 - 1000 otros líquidos U = 150 - 500	Condensadores vapor/agua U = 1000 - 4000 otro vapor/agua U = 300 - 1000	Evaporadores vapor/agua U = 1500 - 6000 vapor/otros líquidos U = 300 - 2000

Tabla 31 Parámetros para comparación de efectividades

Parámetro	Valor		
Temperatura de entrada del aceite en el tanque	65 [° <i>C</i>]		
Temperatura de salida del aceite a la salida del intercambiador	39.5 ± 8.5 [°C]		
Flujo masico aceite	0,17 [kg/s]		
Temperatura de entrada del agua en el tanque	3.5 [° <i>C</i>]		
Temperatura de salida del agua a la salida del intercambiador	8 ± 4.5 [°C]		
Flujo masico agua	0,3 [kg/s]		
FC	Flujo contracorriente		
FP	Flujo paralelo		

Factor de ensuciamiento

TABLA 8.2 Factores de ensuciamiento comunes

Tipo de fluido	Factor de ensuciamiento, R_d (m ² K/W)						
Agua de mar							
por debajo de 325 K	0.00009						
por arriba de 325 K	0.0002						
Agua de suministro tratada para							
calderas arriba de 325 K	0.0002						
Aceite combustible	0.0009						
Aceite para temple	0.0007						
Vapores de alcohol	0.00009						
Vapor, sin aceite	0.00009						
Aire industrial	0.0004						
Líquido refrigerante	0.0002						

Fuente: Cortesía de la Standards of Tubular Exchanger Manufacturers Association.

$$U_{\text{corr}} = \frac{1}{\frac{r_o}{r_i \cdot hi_w} + \frac{Rf_i}{Ai_w} + \frac{r_o \cdot \ln(r_o/r_i)}{k_{cu}} + \frac{Rf_i}{A_o} + \frac{1}{ho_c}}$$

$$Q_{total} = U_{corr} \cdot [Nt \cdot \pi \cdot d_o \cdot L] \cdot F_{corr} \cdot \Delta T_{ml}$$

PRUEBAS DE FUNCIONAMIENTO

Tabla 32 Comparación de las eficiencias entre los intercambiadores de calor

	Eficiencia teórica		Eficiencia práctica		Eficiencia simulación		Eficiencia de diseño		Eficiencia del sistema	
	(%)		(%)		(%)		(%)		(%)	
Denominación	FC	FP	FC	FP	FC	FP	FC	FP	FC	FP
Intercambiador de 4 tubos	23,7	22,14	7,96	7,77	15,36	12,47	2,85	1,01	33,25	14,25
intercambiador de 18 tubos	62,14	55,37	55,17	37,85	67,48	61,74	59,45	55,78	22,32	16,38

PRUEBAS DE :UNCIONAMIENTO

Figura 63 Flujo de agua 5 LPM y aceite 10 LPM

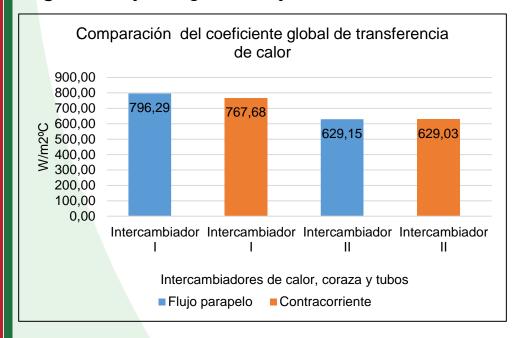


Figura 64 Flujo de agua 15 LPM y aceite 10 LPM

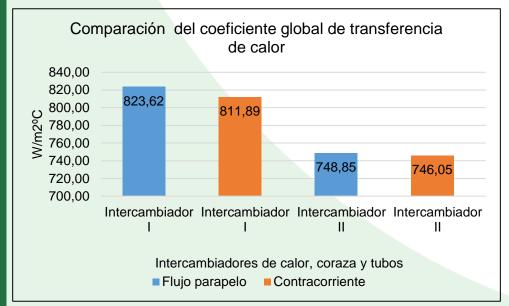
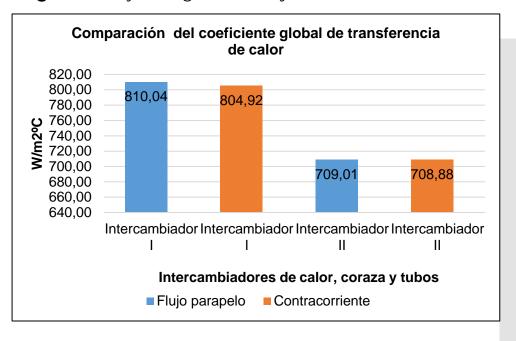
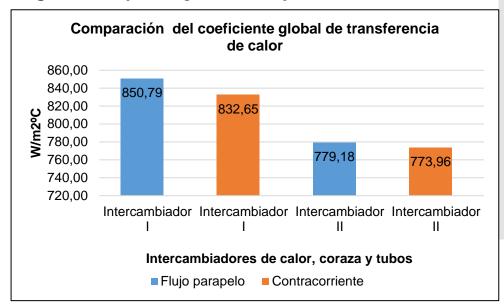




Figura 65 Flujo de agua 10 LPM y aceite 10 LPM

Figura 66 Flujo de agua 20 LPM y aceite 10 LPM

Figura 67 Flujo de agua 5 LPM y aceite 10 LPM

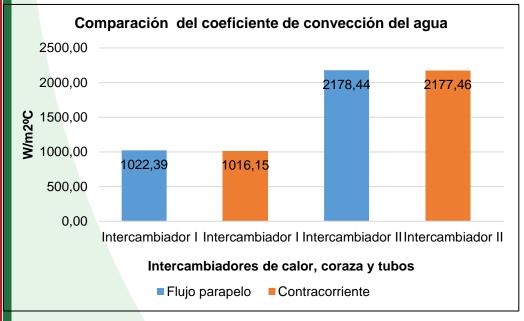


Figura 68 Flujo de agua 15 LPM y aceite 10 LPM

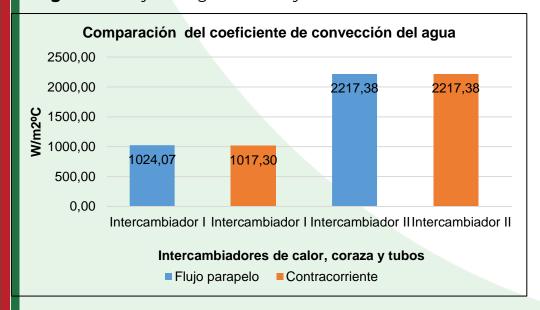
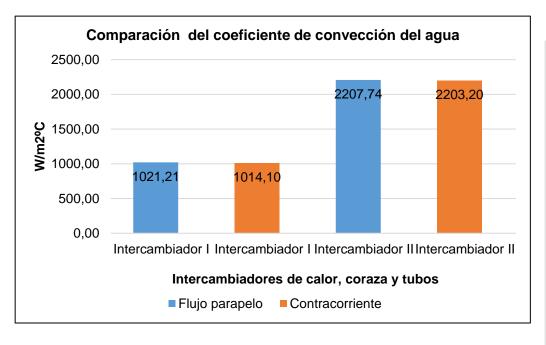
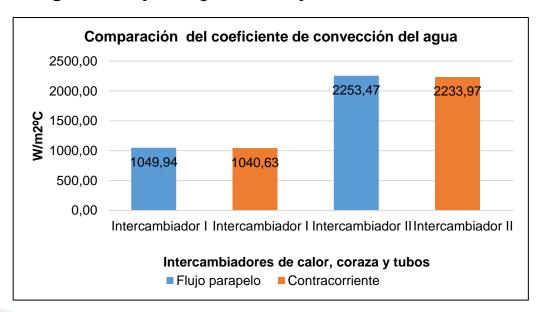
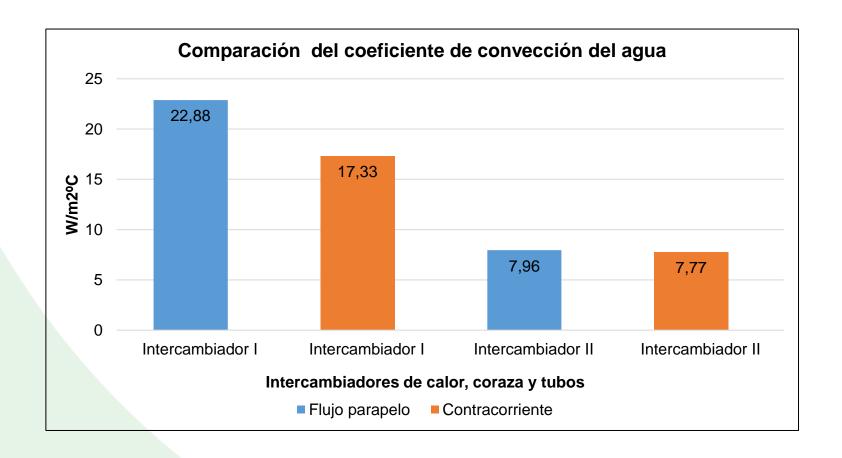




Figura 69 Flujo de agua 10 LPM y aceite 10 LPM


Figura 70 Flujo de agua 20 LPM y aceite 10 LPM

PRUEBAS DE ON CIONAMIENTO

Figura 71 Comparación de la efectividad de los intercambiadores de calor de coraza y tubos

- Los bancos de pruebas para intercambiadores de calor son herramientas esenciales que permiten la interacción al estudiante con el fenómeno transferencia de calor, conocer cómo y en donde se puede presentar, que función cumple en la industria y él porque es importante estudiarlo.
- El propósito de diseñar y construir un nuevo intercambiador de calor es para determinar que estos dispositivos cumplan con especificaciones de rendimiento y eficiencia en aplicaciones del mundo real, ya que son útiles para la investigación y desarrollo de nuevas tecnologías en el campo de transferencia de calor y sistemas de intercambio térmico.

- Según los resultados obtenidos en la simulación y el diseño del intercambiador de calor, al momento de realizar las pruebas se pudo evidenciar que las efectividades en la práctica son bajas comparadas a las de la simulación y a las teóricas esto depende por los factores de presión, y el ambiente donde se encuentre el intercambiador de calor, además con el paso de los días se forman incrustaciones lo que hace que los materiales del intercambiador sufran cambios no tan significativos pero son importantes al momento de realizar las practicas.
- En la práctica con el intercambiador diseñado se obtuvo un coeficiente de transferencia global de calor de (850.7/m²K), dicho valor se obtuvo con un flujo masico de agua correspondiente a 0.30 kg/s y del aceite a 0.17kg/s. con una efectividad de 0.5776 lo que se aproxima bastante al valor obtenido en el diseño, además se realizó un balance de energía del sistema y se obtiene una eficiencia del 22.28%, lo que nos indica que el banco de pruebas pierde calor por las tuberías, tanques. Esto se da las condiciones ambientales donde está ubicado el equipo.

- Con la implementación del nuevo sistema de adquisición de datos se permitieron obtener resultados más precisos y confiables en tiempo real a comparación del antiguo sistema, ya que dichos resultados se almacenan en la interfaz HMI para su visualización y análisis, además de ver como varia la temperatura del intercambiador en el paso del tiempo.
- Una vez realizado el mantenimiento preventivo y correctivo al equipo, se pudieron identificar y corregir problemas potenciales antes de llegar a convertirse en fallas graves a lo largo su funcionamiento. Esto ayudo a prolongar la vida útil tanto del equipo como sus componentes, lo que resulto en un mejor retorno a su utilización en el laboratorio.

Para un correcto diseño y construcción del intercambiador de calor, se recomienda buscar asesorías a través del personal profesional, ya que ellos por medio de su experiencia laboral y enseñanza pueden brindar las grandes ideas para realizar la investigación.

- Para una mejor recopilación de datos se debe considerar todas las pérdidas que existen en el balance de energías en los reservorios del banco de pruebas para de esta manera garantizar que los datos se más confiables y poder realizar un modelamiento matemático con más eficacia.
- Se recomienda investigar las fases y procesos que requieren para realizar el mantenimiento adecuado al equipo y sus componentes, de tal manera que el funcionamiento sea mejorado tanto es su eficiencia y productividad.

Para el diseño e implementación del sistema de adquisición de datos se recomienda realizar los respectivos cálculos para determinar los elementos eléctricos que se necesitaran para las conexiones además del tipo de cable y la fuente de alimentación que abastecerá a los mismos.

- Antes de comenzar con el diseño del sistema de adquisición de datos, es crucial comprender los requisitos del banco de pruebas y los datos que se necesitan adquirir.
 Esto incluye la cantidad de sensores requeridos, tipos de señales (analógicas, digitales), frecuencia de muestreo, resolución necesaria, etc.
- Se recomienda elegir los sensores adecuados para medir variables importantes como la temperatura y el flujo. Además, se debe asegurar de que los equipos de adquisición de datos sean compatibles con los sensores y proporcionen las características necesarias, como la velocidad de muestreo y el número de datos.

REFERENCIAS BIBLIOGRÁFICAS

- Bolton, W. (2006). Sistemas de control electrónico en ingeniería mecánica (2a Edición ed.). Mexico: Alfaomega.
- Çengel, Y. A. (2011). *Transferencia de calor y masa* (3th ed.). Mexico: Mc GrawHill.
- Garcia, D. (26 de Marzo de 2011). *InfoPLC*. Obtenido de https://www.infoplc.net/descargas/19-delta/1074-manual-operacion-delta-dvp-es2-ex2-ss2-sx2-en-castellano
- Incropera, F. P., & Dewitt, D. P. (2012). Fundamentos de transferencia de calor y masa (7th ed.). Mexico: John Wiley & Sons.
- Kern, D. Q. (1965). Procesos de Transferencia de Calor (1th ed.). Mexico: Mc Graw Hill Book Company.
- Kreith, F., Manglik, R., & Bohn, M. (2012). Principios de transferencia de calor (7th ed.).
 Mexico: Cengage Learning.
- Pitts, D. R., & Sissom, L. E. (1979). Teoría y problemas de transferencia de calor (3th ed.).
 Mexico: McGraw Hill Latinoamericana.
- Zapata, M., & Topón Visarrea, L. (2021). Fundamentos de automatización y redes industriales (1ra Edición ed.). Ecuador: Universidad Técnologica Indoamericana.

GRACIAS POR SU

ATENCIÓN