TEMÁTICA:
DISEÑO Y CONSTRUCCIÓN DE UNA MÁQUINA PARA EL PULIDO AUTOMÁTICO DE SUPERFICIES PLANAS DE ACERO INOXIDABLE PARA LA EMPRESA SERVITORNO
S. Esmerilado

S. Pulido

S. Abrillantado

S. Soporte Banda

Mesa
1. Rodillo motriz
2. Soporte del rodillo motriz
3. Rodillo tensor para la banda abrasiva
4. Soporte del rodillo tensor
5. Tornillo tensor para la banda abrasiva
6. Placa soporte del sistema de esmerilado
7. Base soporte del sistema de esmerilado
8. Motor eléctrico
9. Mecanismo de elevación del sistema de esmerilado

F_{esm} = \mu_{AI-BA} \cdot N_1 = \mu_{AI-BA} \cdot F_{tra}

F_{tra} = 150 N

F_{esm} = 0.7 \cdot 150 N

F_{esm} = 105 N
RODILLO MOTRIZ

\[V_{esm} = 25 \text{ m/s} \; ; \quad \omega_{mot} = 1750 \text{ rpm} = 183,36 \text{ rad/seg} \]

\[r_{rm} = 0,137 \text{ m} = 137 \text{ mm} \approx 150 \text{ mm} \]

\[V_{esm} = 183,26 \frac{\text{rad}}{s} \cdot 0,15m = 27,5 \text{ m/s} \; ; \quad \text{Rango recomendado}=15-30 \text{ m/s} \]

\[T_{esm} = 105 \text{ N} \cdot 0,15m = 15,75 \text{ N} \]

\[F_{res1} = \sqrt{(150 + 123,53)^2 + 105^2} = 293 \text{ N} \]

\[M_{esm} = F_{res1} \cdot d_1 \]

\[M_{esm} = 293,0 \text{ N} \cdot 0,125 \text{ m} = 36,62 \text{ Nm} \]

\[\phi_{eje1} = \left[\frac{32 \cdot FS}{\pi \cdot S_y} \left(M_{esm}^2 + \frac{3}{4} T_{esm}^2 \right)^{1/2} \right]^{1/3} \]

\[S_y = \text{resistencia a la fluencia del acero estructural ASTM A36} = 250 \text{ MPa} \]

\[\phi_{eje1} = \left[\frac{32 \cdot 2,5}{\pi \cdot 250 \cdot 10^6} \left(36,62^2 + \frac{3}{4} 15,75^2 \right)^{1/2} \right]^{1/3} = 15,9 \text{ mm} \]
DISEÑO DEL MECANISMO TENSOR DE LA BANDA ABRASIVA

\[F_{esm} = \mu_{CA-BA} \cdot N_2 = \mu_{CA-BA} \cdot F_{ten} \]

\[\mu_{CA-BA} = 0.85 \]

\[F_{ten} = 123.53 N \]

\[d_{estándar} = 100 \text{mm (catálogo)} \]

\[M_{ten} = \frac{(F_{tra} + F_{ten}) \cdot d_2}{4} \]

\[M_{ten} = \frac{(150 + 123.53) \cdot 0.12 \text{m}}{4} = 8.21 \text{Nm} \]

\[T_{ten} = 0 \text{ rodillo loco} \]

\[\Phi_{eje} = \left[\frac{32 \cdot FS}{\pi \cdot S_y} \left(M_{ten}^2 + \frac{3}{4} T_{ten}^2 \right)^{1/2} \right]^{1/3} \]

\[\Phi_{eje} = \left[\frac{32 \cdot 2.5}{\pi \cdot 250 \cdot 10^6} \left(8.21^2 + \frac{3}{4} 0^2 \right)^{1/2} \right]^{1/3} = 9.4 \text{m} \]

TORNILLO DE POTENCIA

\[A_{t1} = \frac{FS \cdot (F_{tra} + F_{ten})}{S_y} \]

\[A_{t1} = \frac{2.5 \cdot (150 + 123.53) \text{N}}{250 \cdot 10^6 \text{N/m}^2} = 0.0424 \text{ plg}^2 \]

\[\lambda = \tan^{-1} \frac{p}{\pi \cdot D_{p1}} = \tan^{-1} \frac{1.8 \text{mm}}{\pi \cdot 6.64 \text{mm}} = 4.97^\circ \]

\[T_{u1} = \frac{F \cdot D_{p1}}{2} \left(\frac{\cos \theta \cdot \tan \lambda + f}{\cos \theta \cdot f \tan \lambda} \right) \]

\[T_{u1} = \frac{273.53 \text{N} \cdot 0.00664 \text{m}}{2} \left(\frac{(\cos 14.5^\circ \cdot \tan 4.97^\circ + 0.15)}{(\cos 14.5^\circ - 0.15 \cdot \tan 4.97^\circ)} \right) = 0.22 \text{Nm} \]
DISEÑO DEL MECANISMO DE ELEVACIÓN DEL SISTEMA DE ESMERILADO

\[A_{t2} = \frac{F \cdot S}{S_y} \]

\[\lambda = \tan^{-1} \frac{p}{\pi \cdot D_{p1}} \]

\[T_{u2} = \frac{F \cdot D_{p1}}{2} \left[\frac{(\cos \theta \cdot \tan \lambda + f)}{\left(\cos \theta - f \cdot \tan \lambda\right)} \right] \]

\[\omega_{tor2} = \frac{25 \text{ mm/s} \cdot 1 \text{ rev}}{2.5 \text{ mm}} = 62.83 \text{ rad/seg} \]

\[P_{Mot2} = \frac{P_{otm2}}{\eta_T} = \frac{59.69 \text{ W}}{0.6} = 0.133 \text{ hp} \]

\[P_D = 1.3 \cdot P_{Mot2} = 1.3 \cdot \frac{1}{6} \text{ hp} = 0.217 \text{ hp} \]
SELECCIÓN DE LOS MOTORES

TRANSMISIÓN DE POTENCIA

Rueda dentada=RS25 con menos de 13 dientes, paso de $\frac{1}{4}$ plg

$N_1 = 11$ dientes

$P_{m1} = T_{esm} \cdot \omega_{mot}$

$P_{Mot1} = \frac{P_{m1}}{\eta_T}$
<table>
<thead>
<tr>
<th>SISTEMA ESMERILADO</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad mínimo</td>
<td>Simbolo</td>
<td>Unidad</td>
<td>Valor</td>
</tr>
<tr>
<td></td>
<td>F_S</td>
<td>-</td>
<td>2,5</td>
</tr>
<tr>
<td>Resistencia a la fluencia del acero A35</td>
<td>S_Y</td>
<td>Mpa</td>
<td>250</td>
</tr>
<tr>
<td>Fuerza de Trabajo</td>
<td>F_{Tr}</td>
<td>N</td>
<td>150</td>
</tr>
<tr>
<td>Velocidad periférica (recomendada)</td>
<td>V</td>
<td>m/s</td>
<td>25</td>
</tr>
<tr>
<td>Coeficiente de fricción (tablas)</td>
<td>μ_{Al-BA}</td>
<td>-</td>
<td>0,7</td>
</tr>
<tr>
<td>Fuerza de Fricción</td>
<td>F_{fem}</td>
<td>N</td>
<td>105</td>
</tr>
<tr>
<td>Rodillo Motriz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diámetro del Rodillo Motriz</td>
<td>d</td>
<td>mm</td>
<td>137\pm 150</td>
</tr>
<tr>
<td>Torque Requerido</td>
<td>T_{ezm}</td>
<td>Nm</td>
<td>15,75</td>
</tr>
<tr>
<td>Fuerza resultante total</td>
<td>F_{rez}</td>
<td>N</td>
<td>293</td>
</tr>
<tr>
<td>Momento de flexión máximo</td>
<td>M</td>
<td>Nm</td>
<td>36,62</td>
</tr>
<tr>
<td>Diámetro eje rodillo</td>
<td>ϕ_{eje}</td>
<td>mm</td>
<td>15,9\pm 20</td>
</tr>
<tr>
<td>Mecanismo Tensor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuerza de tensión requerida</td>
<td>F_{sm}</td>
<td>N</td>
<td>123,53</td>
</tr>
<tr>
<td>Coeficiente de fricción (tablas)</td>
<td>μ_{Co-BA}</td>
<td>-</td>
<td>0,85</td>
</tr>
<tr>
<td>Diámetro del Rodillo conductor</td>
<td>d</td>
<td>mm</td>
<td>100</td>
</tr>
<tr>
<td>Momento de flexión</td>
<td>M_{sm}</td>
<td>Nm</td>
<td>8,21</td>
</tr>
<tr>
<td>Diámetro eje rodillo</td>
<td>ϕ_{eje}</td>
<td>mm</td>
<td>9,4\pm 10</td>
</tr>
</tbody>
</table>

Tornillo Tensor			
Área de tracción	A_{c1}	plg2	0,0424
Tornillo tensor	-	-	ACME $5/16^\circ$
Paso	-	mm	6,64
Hilos por pulgada	-	-	14
Torque Requerido para subir carga	T_{tr}	Nm	0,22

Motor			
Potencia Motor	P	HP	4,84\pm 5
Eficiencia del motor	η	%	80
Revoluciones del motor	-	rpm	1750

Mecanismo de Elevación			
Carga total que soporta	P	N	750
Área de tracción del tornillo	A_{c2}	plg2	0,116
Tornillo	-	-	ACME $1/4^\circ$
Paso	-	mm	10,94
Hilos por pulgada	-	-	10
Torque	T_{c2}	Nm	0,95
Velocidad de elevación	-	mm/s	25
Velocidad angular del tornillo	ω_{tor3}	rad/s	82,83
Potencia Motor	P	HP	0,217
Factor de servicio	F_S	-	1,3
Revoluciones del motor	-	rpm	800
Cadena de transmisión	-	-	R525
Piñón	-	-	Ne11; p 0.75

![Image of a machine part](image)
Sistema Pulido

1. Rodillo motriz
2. Rodillo tensor para la banda abrasiva
3. Soporte del rodillo tensor
4. Tornillo tensor para la banda abrasiva
5. Mecanismo de presión de la banda abrasiva
6. Rodillo de arrastre
7. Placa soporte del sistema de pulido
8. Base soporte del sistema de pulido
9. Motor eléctrico

\[F_{fric} = F_{pul} = \mu_{AI-BA} \cdot N_1 = \mu_{AI-BA} \cdot F_{tra} \]

\[T_{pul} = F_{pul} \cdot r_{tm} \]

\[F_{tra} = 150N \]
\[\mu_{AI-BA} = 0,4 \]
DISEÑO DEL MECANISMO DE PRESIÓN PARA EL PULIDO

Factor de carga = 1,5

\[F_D = 1.5 \cdot F_{tra} \quad F_D = 1.5 \cdot 150 \ N = 225 \ N \]

Presión de aire comprimido= de 5 bares (500 kPa)

\[\phi_{pist} = \sqrt{\frac{4 \cdot F_D}{\pi \cdot p}} \quad \phi_{pist} = \sqrt{\frac{4 \cdot 225 \ N}{\pi \cdot 500 \cdot 10^3 \ N/m^2}} = 24 \ mm \]

Caudal de aire requerido para alcanzar una velocidad de descenso

\[Q = V \cdot A = V \cdot \frac{\pi \cdot \phi_{pist}^2}{4} \]

\[Q = 25 \frac{mm}{s} \cdot \frac{\pi \cdot 25^2 \ mm^2}{4} = 0.012 \ lt/s \]
SISTEMA PULIDO

<table>
<thead>
<tr>
<th>Variables</th>
<th>Símbolo</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad mínimo</td>
<td>F_S</td>
<td>-</td>
<td>2,5</td>
</tr>
<tr>
<td>Resistencia a la fluencia del acero A38B</td>
<td>f_{FL}</td>
<td>Mpa</td>
<td>250</td>
</tr>
<tr>
<td>Fuerza de Trabajo</td>
<td>F_{Tg}</td>
<td>N</td>
<td>150</td>
</tr>
<tr>
<td>Velocidad periférica (recomendada)</td>
<td>V</td>
<td>m/s</td>
<td>25</td>
</tr>
<tr>
<td>Coeficiente de fricción (tablas)</td>
<td>μ_{MN-BA}</td>
<td>-</td>
<td>0,4</td>
</tr>
<tr>
<td>Fuerza de fricción</td>
<td>F_{eM}</td>
<td>N</td>
<td>60</td>
</tr>
<tr>
<td>Torque requerido para Pulido</td>
<td>T_{pul}</td>
<td>Nm</td>
<td>9</td>
</tr>
</tbody>
</table>

Rodillo Motriz

<table>
<thead>
<tr>
<th>Variables</th>
<th>d</th>
<th>mm</th>
<th>137±150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque requerido</td>
<td>T_{emm}</td>
<td>Nm</td>
<td>157,75</td>
</tr>
<tr>
<td>Fuerza resultante total</td>
<td>F_{emm}</td>
<td>N</td>
<td>298</td>
</tr>
<tr>
<td>Momento de Flexión máximo</td>
<td>M</td>
<td>Nm</td>
<td>36,62</td>
</tr>
<tr>
<td>Diámetro del rodillo</td>
<td>$d_{e,j}$</td>
<td>mm</td>
<td>15,9±20</td>
</tr>
</tbody>
</table>

Mecanismo Tensor

<table>
<thead>
<tr>
<th>Variables</th>
<th>F_{ten}</th>
<th>N</th>
<th>123,53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeficiente de fricción (tablas)</td>
<td>μ_{Ca-BA}</td>
<td>-</td>
<td>0,85</td>
</tr>
<tr>
<td>Diámetro del Rodillo conducido</td>
<td>d</td>
<td>mm</td>
<td>100</td>
</tr>
<tr>
<td>Momento de Flexión</td>
<td>M_{ten}</td>
<td>Nm</td>
<td>8,21</td>
</tr>
<tr>
<td>Diámetro eje rodillo</td>
<td>$d_{e,j}$</td>
<td>mm</td>
<td>9,4±10</td>
</tr>
</tbody>
</table>

Tornillo Tensor

<table>
<thead>
<tr>
<th>Variables</th>
<th>A_{t1}</th>
<th>p/in²</th>
<th>0,0424</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornillo tensor</td>
<td>-</td>
<td>-</td>
<td>ACME 5/16"</td>
</tr>
<tr>
<td>Paso</td>
<td>-</td>
<td>mm</td>
<td>6,64</td>
</tr>
<tr>
<td>Hilos por pulgada</td>
<td>-</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>Torque requerido para subir carga</td>
<td>T_{u1}</td>
<td>Nm</td>
<td>0,22</td>
</tr>
</tbody>
</table>

Motor

<table>
<thead>
<tr>
<th>Variables</th>
<th>P</th>
<th>HP</th>
<th>2,77±03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eficiencia del motor</td>
<td>η_{T}</td>
<td>%</td>
<td>80</td>
</tr>
<tr>
<td>Revoluciones del motor</td>
<td>-</td>
<td>rpm</td>
<td>1750</td>
</tr>
</tbody>
</table>

Mecanismo de Presión

<table>
<thead>
<tr>
<th>Variables</th>
<th>F_p</th>
<th>N</th>
<th>225</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión</td>
<td>p</td>
<td>Kpa</td>
<td>500</td>
</tr>
<tr>
<td>Diámetro del pistón</td>
<td>Φ</td>
<td>mm</td>
<td>24±25</td>
</tr>
<tr>
<td>Velocidad de descenso (placa)</td>
<td>V</td>
<td>mm/s</td>
<td>25</td>
</tr>
<tr>
<td>Carrera</td>
<td>-</td>
<td>mm</td>
<td>50</td>
</tr>
<tr>
<td>Caudal de aire requerido</td>
<td>Q</td>
<td>l/s</td>
<td>0,012</td>
</tr>
<tr>
<td>Piston escogido</td>
<td>-</td>
<td>-</td>
<td>JS-25-50</td>
</tr>
</tbody>
</table>
1. Disco de abrillantado
2. Estructura soporte del sistema de abrillantado
3. Base soporte del sistema de abrillantado
4. Mecanismo aplicador de pasta abrasiva del sistema de abrillantado
5. Motor eléctrico
6. Mecanismo de elevación del sistema de abrillantado

\[F_{fri} = F_{abr} = \mu_{AI-BA} \cdot N_1 = \mu_{AI-BA} \cdot F_{tra} \]

\[F_{tra} = 120 \text{N} \]

\[\mu_{AI-DA} = 0.3 \]
SELECCIÓN DEL DISCO DE ABRILLANTADO

\[V_{abr} = \omega_{mot} \cdot r_{ra} \]

\[T_{abr} = F_{abr} \cdot r_{ra} \]

\[F_{res2} = \sqrt{F_{tra}^2 + F_{abr}^2} \]

\[F_{res2} = 125,28 \, N \]

\[M_{abr} = F_{res2} \cdot d_3 \]

\[\phi_{eje} = \left[\frac{32 \cdot FS}{\pi \cdot S_y} \left(M_{abr}^2 + \frac{3}{4} T_{abr}^2 \right)^{1/2} \right]^{1/3} \]
SISTEMA ABRILLANTADO

<table>
<thead>
<tr>
<th>Variables</th>
<th>Símbolo</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad mínimo</td>
<td>F_S</td>
<td>-</td>
<td>2,5</td>
</tr>
<tr>
<td>Resistencia a la fluencia del acero A36</td>
<td>s_Y</td>
<td>Mpa</td>
<td>250</td>
</tr>
<tr>
<td>Fuerza de Trabajo</td>
<td>F_{Tr}</td>
<td>N</td>
<td>150</td>
</tr>
<tr>
<td>Velocidad periférica (recomendada)</td>
<td>v</td>
<td>m/s</td>
<td>55</td>
</tr>
<tr>
<td>Coeficiente de fricción (tablas)</td>
<td>μ_{Al-BA}</td>
<td>-</td>
<td>0,3</td>
</tr>
<tr>
<td>Fuerza de Fricción</td>
<td>F_{abr}</td>
<td>N</td>
<td>36</td>
</tr>
</tbody>
</table>

Rodillo A brillantado
- **Diámetro del Rodillo Motriz:** d_{abr}, mm = 191÷200
- **Torque Requerido:** T_{abr}, Nm = 7,2
- **Fuerza resultante total sobre el disco:** F_{reg2}, N = 125,28
- **Momento de Flexión máximo:** M_{abr}, Nm = 23,18
- **Diámetro eje rodillo:** d_{eje}, mm = 12,8÷15

Mecanismo Tensor
- **Fuerza de tensión requerida:** F_{ten}, N = 123,53
- **Coeficiente de fricción (tablas):** μ_{CA-BA}, - = 0,85
- **Diámetro del Rodillo conducido:** d_{ten}, mm = 100
- **Momento de Flexión:** M_{ten}, Nm = 8,21
- **Diámetro eje rodillo:** d_{eje}, mm = 9,4÷10

Motor
- **Potencia Motor:** P , HP = 2,07÷2
- **Eficiencia del motor:** η_T, % = 85
- **Revoluciones del motor:** , rpm = 1750
Sistema banda transportadora

1. Rodillo motriz
2. Rodillo tensor
3. Rodillos guías
4. Banda transportadora
5. Motor-reductor de la banda transportadora
6. Estructura soporte de la banda transportadora

\[F_{BT} = F_{esm} + F_{pul} + F_{abr} \]
SELECCIÓN DEL RODILLO MOTRIZ

\[V_{BT} = \frac{\omega_{mot}}{t_{red}} \cdot r_{rb} \]

Velocidad de avance de la banda transportadora = 0,5m/s

\[r_{rb} = \frac{0.5 \text{ m/s} \cdot 50}{183.26 \text{ rad/s}} = 136 \text{ mm} \]

\[T_{BT} = F_{BT} \cdot r_{rb} \]

\[M_{BT} = F_{BT} \cdot d_4 \]

\[\phi_{eje} = \left[\frac{32 \cdot F_S}{\pi \cdot S_y} \left(M_{BT}^2 + \frac{3}{4} T_{BT}^2 \right)^{1/2} \right]^{1/3} \]
DISEÑO DEL MECANISMO TENSOR DE LA BANDA TRANSPORTADORA

\[F_{BT} = \mu_{p-c} \cdot N_2 = \mu_{ca-ba} \cdot F_{ten} \]

\[M_{RT} = F_{BT} \cdot d_4 \]

\[\phi_{eje} = \left[\frac{32 \cdot FS}{\pi \cdot S_y} \left(M_{RT}^2 + \frac{3}{4} T_{ten}^2 \right)^{1/2} \right]^{1/3} \]

\[A_{t3} = \frac{FS \cdot F_{ten}}{S_y} \]

Tornillo tensor: ACME de 5/16” (8 mm)
SISTEMA DE BANDA TRANSPORTADORA

<table>
<thead>
<tr>
<th>Variables</th>
<th>Símbolo</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad mínimo</td>
<td>F_S</td>
<td>-</td>
<td>2,5</td>
</tr>
<tr>
<td>Velocidad de avance de la banda</td>
<td>v_{BT}</td>
<td>m/s</td>
<td>0,5</td>
</tr>
<tr>
<td>Fuerza tangencial total (tracción)</td>
<td>F_{BT}</td>
<td>N</td>
<td>201</td>
</tr>
</tbody>
</table>

Rodillo Motriz

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Unidad</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro rodillo motriz</td>
<td>d</td>
<td>mm</td>
<td>136=150</td>
</tr>
<tr>
<td>Torque Requerido para accionar</td>
<td>T</td>
<td>Nm</td>
<td>30,15</td>
</tr>
<tr>
<td>Momento de Flexión máximo</td>
<td>M</td>
<td>Nm</td>
<td>45,22</td>
</tr>
<tr>
<td>Diámetro eje rodillo</td>
<td>$d_{e/e}$</td>
<td>mm</td>
<td>17,5=20</td>
</tr>
</tbody>
</table>

Mecanismo Tensor

<table>
<thead>
<tr>
<th>Variables</th>
<th>Símbolo</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuerza de tensión requerida</td>
<td>F_{teq}</td>
<td>m/s</td>
<td>223,33</td>
</tr>
<tr>
<td>Coeficiente de fricción (tablas)</td>
<td>μ</td>
<td>-</td>
<td>0,9</td>
</tr>
<tr>
<td>Momento del rodillo tensor</td>
<td>M_{BT}</td>
<td>N</td>
<td>50,25</td>
</tr>
<tr>
<td>Diámetro del Rodillo Tensor</td>
<td>$d_{e/e}$</td>
<td>mm</td>
<td>4,84=5</td>
</tr>
<tr>
<td>Diámetro eje rodillo Tensor</td>
<td>$d_{e/e}$</td>
<td>mm</td>
<td>17,2=20</td>
</tr>
<tr>
<td>Area de tracción del tornillo</td>
<td>$A_{1/2}$</td>
<td>plg2</td>
<td>0,034</td>
</tr>
<tr>
<td>Tornillo</td>
<td>-</td>
<td>-</td>
<td>ACME 5/16”</td>
</tr>
<tr>
<td>Paso</td>
<td>-</td>
<td>mm</td>
<td>6,54</td>
</tr>
</tbody>
</table>

Moto-Reductor

<table>
<thead>
<tr>
<th>Variables</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Relación de transmisión</td>
<td></td>
<td>rpm</td>
<td>50:1</td>
</tr>
<tr>
<td>Revoluciones del motor</td>
<td></td>
<td>rpm</td>
<td>1750</td>
</tr>
<tr>
<td>Potencia del Motor</td>
<td>P</td>
<td>HP</td>
<td>1/2</td>
</tr>
<tr>
<td>Banda Transportadora</td>
<td>Tipo</td>
<td>Espesor</td>
<td>Ancho</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 mm</td>
<td>10 cm</td>
</tr>
</tbody>
</table>

Construcción Superior:
- Empalme: Vulcanizado
- Perfil superior: 2 unidades
- Ancho perfil: 10 mm
- Altura de Lona: 2 mm
- Espaciado entre perfil: 53 mm

Construcción Inferior:
- Empalme: Vulcanizado
- Perfil superior: 2 unidades
- Ancho perfil: 10 mm
- Altura de Lona: 6 mm
- Espaciado entre perfil: 10 mm

<table>
<thead>
<tr>
<th>BANDAS ABRASIVAS</th>
<th>Sistema</th>
<th>Tipo</th>
<th>Mineral</th>
<th>Grano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esmerilado</td>
<td>Fandeli</td>
<td>ZIRC..S-18</td>
<td>Aluminio</td>
<td>80</td>
</tr>
<tr>
<td>Pulido</td>
<td>Fandeli</td>
<td>FLEZ..JF88</td>
<td>Zirconio</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SISTEMA ABRILLANTADO</th>
<th>Disco</th>
<th>Tela</th>
<th>Diámetro del disco: 20 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Tela algodón</td>
<td>15 mm</td>
<td></td>
</tr>
<tr>
<td>Abrasivo:</td>
<td>Pasta</td>
<td>Varios tipos de AlO2</td>
<td></td>
</tr>
<tr>
<td>Tipo</td>
<td></td>
<td>Blanca</td>
<td></td>
</tr>
<tr>
<td>Composición</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diseño y selección del sistema Eléctrico

\[P_{\text{demanda total}} = \sum \text{cargas instaladas} \]

\[\text{Factor de demanda} = \frac{\text{Demanda máxima (KW ó W)}}{\text{Carga instalada (hp)}} \]

<table>
<thead>
<tr>
<th>MARCA</th>
<th>KW</th>
<th>F.DEMANDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEG W22</td>
<td>3.7</td>
<td>119%</td>
</tr>
<tr>
<td>WEG W22</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>WEG W22</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>FIMEC</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>VARIADOR DE FRECUENCIA LS</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>MSL</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>FUENTE ALIMENTACIÓN C&W</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>VÁLVULAS SELENOIDES</td>
<td>0.0048</td>
<td></td>
</tr>
<tr>
<td>MICRORELÉS</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>P demanda total</td>
<td>8.5648</td>
<td>9.05KW</td>
</tr>
<tr>
<td>Motor</td>
<td>In</td>
<td>k</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>5Hp</td>
<td>14A</td>
<td>2.55</td>
</tr>
<tr>
<td>3Hp</td>
<td>8.5A</td>
<td>2.7</td>
</tr>
<tr>
<td>2HP</td>
<td>6.08A</td>
<td>2.85</td>
</tr>
<tr>
<td>0.5HP</td>
<td>1.9A</td>
<td>3</td>
</tr>
<tr>
<td>0.21HP</td>
<td>0.38A</td>
<td>2</td>
</tr>
<tr>
<td>Fuente</td>
<td>0.96A</td>
<td>-</td>
</tr>
<tr>
<td>Alimentador</td>
<td>56.36A</td>
<td>2.55</td>
</tr>
</tbody>
</table>
Diseño y selección del sistema Eléctrico

- **4 x 8 ST-HHN**
 - Alimentador
- **4x10 STHHN**
 - Motor 5hp
- **4x14ST-HHN**
 - Motor 3hp
- **4x18ST-HHN**
 - Motor 2hp
- **3 x 18 T-HHN**
 - Motor 0.21Kw
- **3 x 18 T-HHN**
 - Motor 0.21Kw
- **4 x 18 T-HHN**
 - Variador de frecuencia
- **18 TFF**
 - Fuente 24Vdc

Diagrama

- **3φ, 220 V, 60 Hz**
- **600V 60A**
- **DERIVACIONES**
- **3φ - 0.5Hp**, **3φ - 5Hp**, **3φ - 3Hp**, **3φ - 2Hp**, **1φ - 0.21Kw**, **1φ - 0.21Kw**
- **220VAC - 6.96A**
- **18 TFF**
<table>
<thead>
<tr>
<th>Variador de frecuencia</th>
<th>Fuente 24 DC</th>
<th>Sensores de proximidad</th>
<th>Encoder</th>
<th>PLC</th>
<th>Módulos E/S digitales</th>
<th>Módulos E/S analógicas</th>
<th>Panel de visualización HMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75KW</td>
<td>3032.8 mA</td>
<td>Inductivo NPN activado con 24vdc</td>
<td>100ppm</td>
<td>xLogic ELC-12DC-DA-R</td>
<td>ELC 12-E-AQ-V</td>
<td>ELC- HMI-MD204</td>
<td></td>
</tr>
<tr>
<td>0.1HZ-400HZ</td>
<td>3.2A</td>
<td>15mm</td>
<td>0.5mm</td>
<td>4in-ana/dig +4 dig</td>
<td>4 dig. 0-10Vdc</td>
<td>-</td>
<td>6 teclas estándar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 relay 3A+2 relay 10A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 canales 0-10Vdc</td>
<td>4 teclas función-táctil</td>
<td></td>
</tr>
</tbody>
</table>

0.1HZ - 400HZ: 6 teclas estándar
PROGRAMACIÓN DEL PLC XLOGIC

<table>
<thead>
<tr>
<th>Elemento controlado</th>
<th>Variable de salida digital</th>
<th>Variable de salida analógica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor 0.5hp</td>
<td>Q023</td>
<td></td>
</tr>
<tr>
<td>Motor 2hp</td>
<td>Q003</td>
<td></td>
</tr>
<tr>
<td>Motor 3hp</td>
<td>Q002</td>
<td></td>
</tr>
<tr>
<td>Motor 5hp</td>
<td>Q001</td>
<td></td>
</tr>
<tr>
<td>Sube esmerilado</td>
<td>Q011</td>
<td></td>
</tr>
<tr>
<td>Baja esmerilado</td>
<td>Q012</td>
<td></td>
</tr>
<tr>
<td>Sube abrillantado</td>
<td>Q013</td>
<td></td>
</tr>
<tr>
<td>Baja abrillantado</td>
<td>Q014</td>
<td></td>
</tr>
<tr>
<td>Válvula para sistema abrillantado</td>
<td>Q021</td>
<td></td>
</tr>
<tr>
<td>Válvula para sistema pulido</td>
<td>Q022</td>
<td></td>
</tr>
<tr>
<td>Activación variador de AQ</td>
<td></td>
<td>AQ031</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elemento controlado</th>
<th>Variable de entrada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder para sistema abrillantado</td>
<td>I008</td>
</tr>
<tr>
<td>Encoder para sistema esmerilado</td>
<td>I007</td>
</tr>
<tr>
<td>Sensor para sistema abrillantado</td>
<td>I006</td>
</tr>
<tr>
<td>Sensor para sistema esmerilado</td>
<td>I005</td>
</tr>
<tr>
<td>Paro de emergencia</td>
<td>I011</td>
</tr>
<tr>
<td>Conmutador Proceso manual</td>
<td>I012</td>
</tr>
<tr>
<td>Conmutador Proceso automático</td>
<td>I013</td>
</tr>
<tr>
<td>Reset sistema esmerilado (alto)</td>
<td>I001</td>
</tr>
<tr>
<td>Reset sistema esmerilado (bajo)</td>
<td>I002</td>
</tr>
<tr>
<td>Reset sistema abrillantado (alto)</td>
<td>I003</td>
</tr>
<tr>
<td>Reset sistema abrillantado (bajo)</td>
<td>I004</td>
</tr>
<tr>
<td>Elementos</td>
<td>Características</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Lija gruesa</td>
<td>Dirección 1</td>
</tr>
<tr>
<td>Lija fina</td>
<td>Dirección 2</td>
</tr>
<tr>
<td>Disco abrillantado</td>
<td>Dirección 3</td>
</tr>
<tr>
<td>Cera o pasta Abrillantadora</td>
<td>Dirección 4</td>
</tr>
<tr>
<td>Banda transportadora</td>
<td>Dirección 8</td>
</tr>
<tr>
<td>Pausa</td>
<td>Dirección 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elementos</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura lija gruesa</td>
<td>Rango: 0.5 – 40mm, Dirección 1, Registro 2</td>
</tr>
<tr>
<td>Altura disco abrillantado</td>
<td>Rango: 0.5 – 40mm, Dirección 2, Registro 2</td>
</tr>
<tr>
<td>Velocidad de la banda</td>
<td>Rango: 0.1 – 400Hz, Dirección 3, Registro 2</td>
</tr>
<tr>
<td>transportadora</td>
<td></td>
</tr>
<tr>
<td>VELOCIDAD BANDA (Hz)</td>
<td>VELOCIDAD BANDA (m/s)</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5</td>
<td>2.36</td>
</tr>
<tr>
<td>10</td>
<td>4.71</td>
</tr>
<tr>
<td>15</td>
<td>7.07</td>
</tr>
<tr>
<td>20</td>
<td>9.42</td>
</tr>
<tr>
<td>25</td>
<td>11.78</td>
</tr>
<tr>
<td>30</td>
<td>14.14</td>
</tr>
<tr>
<td>35</td>
<td>16.49</td>
</tr>
<tr>
<td>40</td>
<td>18.85</td>
</tr>
<tr>
<td>45</td>
<td>21.21</td>
</tr>
<tr>
<td>50</td>
<td>23.56</td>
</tr>
<tr>
<td>Velocidad de la banda (m/s)</td>
<td>Altura Sistema 1 (mm)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>Tapa</td>
</tr>
<tr>
<td>11.78</td>
<td>13</td>
</tr>
<tr>
<td>11.78</td>
<td>12</td>
</tr>
<tr>
<td>11.78</td>
<td>11</td>
</tr>
<tr>
<td>11.78</td>
<td>10</td>
</tr>
</tbody>
</table>
INVERSIÓN TOTAL

<table>
<thead>
<tr>
<th>COSTOS</th>
<th>COMPONENTES</th>
<th>COSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECTOS</td>
<td>Materiales</td>
<td>5180,55</td>
</tr>
<tr>
<td></td>
<td>Mano de obra</td>
<td>1090,00</td>
</tr>
<tr>
<td></td>
<td>Suministro Eléctrico</td>
<td>144,00</td>
</tr>
<tr>
<td>INDIRECTOS</td>
<td>Materiales extras</td>
<td>56,58</td>
</tr>
<tr>
<td></td>
<td>Imprevistos</td>
<td>250,00</td>
</tr>
<tr>
<td></td>
<td>Inversión Total</td>
<td>6721,13</td>
</tr>
</tbody>
</table>

TIEMPO TOTAL DEL PROCESO

<table>
<thead>
<tr>
<th>PROCESO:</th>
<th>TAPA</th>
<th>PLATINA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MANUAL</td>
<td>AUTOMÁTICO</td>
</tr>
<tr>
<td></td>
<td>TIEMPO (SEG)</td>
<td>TIEMPO (SEG)</td>
</tr>
<tr>
<td>ESMERILADO</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>PULIDO</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>ABRILLANTADO</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL TIEMPO (SEG)</td>
<td>45</td>
<td>18</td>
</tr>
</tbody>
</table>
Análisis de Resultados

Costo del proceso total de forma manual y automático

<table>
<thead>
<tr>
<th>Proceso:</th>
<th>TAPA</th>
<th>PLATINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo (min)</td>
<td>Manual: 0,0125</td>
<td>Automático: 0,0050</td>
</tr>
<tr>
<td></td>
<td>Manual: 0,0333</td>
<td>Automático: 0,0100</td>
</tr>
<tr>
<td>Costo Hora/hombre</td>
<td>4,77</td>
<td>1,59</td>
</tr>
<tr>
<td>Costo Total ($)</td>
<td>0,06</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Cálculo del valor ahorrado

- **Cantidad en 1 min**: TAPA = 6, PLATINA = 2
- **Cantidad en 4 horas**: TAPA = 1440, PLATINA = 480
- **Producción mensual**: TAPA = 31680, PLATINA = 10560
- **Valor ahorrado mensual**: TAPA = 251,86, PLATINA = 167,90
- **Valor ahorrado anual ($)**: TAPA = 3022,272, PLATINA = 2014,848

Recuperación de la inversión

\[
VAN = -I + \sum_{n=1}^{N} \frac{Q_n}{(1 + TMAR)^n}
\]

\[
0 = -I + \sum_{n=1}^{N} \frac{Q_n}{(1 + TMAR)^n}
\]

<table>
<thead>
<tr>
<th>VAN</th>
<th>$6,964,04</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIR</td>
<td>45,13%</td>
</tr>
</tbody>
</table>
PERÍODO DE RECUPERACIÓN DE LA INVERSIÓN

<table>
<thead>
<tr>
<th>Año</th>
<th>Flujo Neto</th>
<th>VAN</th>
<th>VAN Acumulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6721,13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>2945,32</td>
<td>2618,061</td>
<td>2618,061</td>
</tr>
<tr>
<td>2</td>
<td>3387,12</td>
<td>3010,770</td>
<td>5628,831</td>
</tr>
<tr>
<td>3</td>
<td>3895,18</td>
<td>3462,385</td>
<td>9091,216</td>
</tr>
<tr>
<td>4</td>
<td>4479,46</td>
<td>3981,743</td>
<td>13072,959</td>
</tr>
<tr>
<td>5</td>
<td>5151,38</td>
<td>4579,005</td>
<td>17651,964</td>
</tr>
</tbody>
</table>

\[PRI = a + \frac{b - c}{d} \]

\[PRI = 2,315 \text{ (años)} \]

a=2 años
b=6721,13 ($)
c=5628,831 ($)
d=3462,385 ($)
1. Con una velocidad de 11.78 m/s de la banda transportadora y a una altura de 10 mm de los sistemas de esmerilado y abrillantado se consiguió un acabado de alta calidad respecto al accesorio de vidrio templado (tapa).

2. Se obtuvo un superficie lisa reflectante de la platina con una velocidad de avance de la banda transportadora de 11.78 m/s y con una altura de 8 mm de los sistemas de esmerilado y abrillantado.

3. Con la velocidad de avance de 25Hz o 11.78 m/s y con un tiempo de 0.5 para la tapa y 40 seg. para la platina, el acabado mecánico superficial es reflectante.

4. Se redujo significativamente el costo hombre/máquina, siendo así la utilización de un solo operador a diferencia de los tres operadores que intervenían en todo el proceso de pulido.

5. De acuerdo a los cálculos realizados el VAN es de 6964.04 ($) que es un valor mayor que cero, lo que significa que la inversión es rentable; es decir, las ganancias del proyecto son positivas.

6. El valor de la TIR es del 45.13% que es mayor al TMAR= 12.5%, lo que significa que el proyecto da una rentabilidad mayor que la rentabilidad mínima requerida; es decir, no solo se recupera la tasa mínima invertida sino que existe un porcentaje mayor de ganancias.

7. El objetivo inicial de este proyecto fue reducir el tiempo de producción de accesorios elaborados en Servitorno, lo cual se cumplió a cabalidad ya que se aumentó la producción en un 300%.
1. Para realizar el acabado superficial de otras superficies planas con un espesor mayor a 40mm es necesario diseñar un tornillo de elevación para los sistemas de esmerilado y abrillantado con una longitud mayor a la construida.

2. Para que la tolerancia de rugosidad de la superficie plana de acero inoxidable sea menor a 0.5 micrones es necesario la implementación de un servomotor para el control exacto de los sistemas de elevación.

3. Para mayor seguridad y facilidad en la operación de la máquina es necesario diseñar e implementar un sistema de alineación de las bandas abrasivas, para que así las mismas no tiendan a desubicarse de su posición de trabajo.

4. Para que el sistema de pulido sea totalmente automático será necesario la implementación de un motor con las mismas características de los sistemas de esmerilado y abrillantado.

5. Para mejorar la calidad de acabado superficial con respecto a la proyectada, será preciso utilizar motores de mayor potencia en los sistemas pulido y abrillantado, así también utilizar elementos abrasivos con características que estén de acuerdo a las velocidades de los nuevos motores instalados.

6. Para las futuras implementaciones en la máquina será indispensable utilizar elementos o equipos de la misma gama para las respectivas interacciones.
GRACIAS POR LA ATENCIÓN
<table>
<thead>
<tr>
<th>S/N</th>
<th>Test No.</th>
<th>Die Material</th>
<th>Surface Material</th>
<th>Lubricant</th>
<th>Av. Ho</th>
<th>Av. Do</th>
<th>Av. H</th>
<th>Av. D</th>
<th>Av. %Rh</th>
<th>Av. %Rd</th>
<th>Friction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S1</td>
<td>Steel</td>
<td>Steel</td>
<td>Dry</td>
<td>48.50</td>
<td>25.00</td>
<td>32.70</td>
<td>16.70</td>
<td>30</td>
<td>33</td>
<td>0.577</td>
</tr>
<tr>
<td>2</td>
<td>S2</td>
<td>Steel</td>
<td>Steel</td>
<td>SAE 40</td>
<td>46.50</td>
<td>25.00</td>
<td>32.20</td>
<td>19.30</td>
<td>31</td>
<td>23</td>
<td>0.577</td>
</tr>
<tr>
<td>3</td>
<td>S3</td>
<td>Steel</td>
<td>Steel</td>
<td>SAE 32</td>
<td>46.50</td>
<td>25.00</td>
<td>28.40</td>
<td>16.80</td>
<td>39</td>
<td>34</td>
<td>0.40</td>
</tr>
<tr>
<td>4</td>
<td>S4</td>
<td>Steel</td>
<td>Steel</td>
<td>REGAL 32</td>
<td>46.50</td>
<td>25.00</td>
<td>29.92</td>
<td>20.00</td>
<td>33</td>
<td>20</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>S5</td>
<td>Steel</td>
<td>Steel</td>
<td>RANDO 68</td>
<td>46.50</td>
<td>25.00</td>
<td>31.65</td>
<td>20.00</td>
<td>31</td>
<td>20</td>
<td>0.30</td>
</tr>
<tr>
<td>6</td>
<td>SP1</td>
<td>Steel</td>
<td>Sand paper</td>
<td>Dry</td>
<td>46.50</td>
<td>25.00</td>
<td>31.7</td>
<td>16.5</td>
<td>32</td>
<td>9</td>
<td>0.70</td>
</tr>
<tr>
<td>7</td>
<td>SP2</td>
<td>Steel</td>
<td>Sand paper</td>
<td>SAE 40</td>
<td>46.50</td>
<td>25.00</td>
<td>33.30</td>
<td>22.80</td>
<td>28</td>
<td>20</td>
<td>0.20</td>
</tr>
<tr>
<td>8</td>
<td>SP3</td>
<td>Steel</td>
<td>Sand paper</td>
<td>RANDO 68</td>
<td>46.50</td>
<td>25.00</td>
<td>32.70</td>
<td>19.80</td>
<td>30</td>
<td>20</td>
<td>0.40</td>
</tr>
<tr>
<td>9</td>
<td>SP4</td>
<td>Steel</td>
<td>Sand paper</td>
<td>REGAL 32</td>
<td>46.50</td>
<td>25.00</td>
<td>29.78</td>
<td>19.00</td>
<td>36</td>
<td>24</td>
<td>0.40</td>
</tr>
<tr>
<td>10</td>
<td>SP5</td>
<td>Steel</td>
<td>Sand paper</td>
<td>RANDO 68</td>
<td>46.50</td>
<td>25.00</td>
<td>31.65</td>
<td>18.88</td>
<td>31</td>
<td>24</td>
<td>0.40</td>
</tr>
<tr>
<td>11</td>
<td>PA1</td>
<td>Steel</td>
<td>Paper</td>
<td>Dry</td>
<td>46.50</td>
<td>25.00</td>
<td>38.50</td>
<td>18.80</td>
<td>17</td>
<td>25</td>
<td>0.577</td>
</tr>
<tr>
<td>12</td>
<td>PA2</td>
<td>Steel</td>
<td>Paper</td>
<td>SAE 40</td>
<td>46.50</td>
<td>25.00</td>
<td>35.10</td>
<td>19.30</td>
<td>25</td>
<td>23</td>
<td>0.40</td>
</tr>
<tr>
<td>13</td>
<td>PA3</td>
<td>Steel</td>
<td>Paper</td>
<td>SAE 32</td>
<td>46.50</td>
<td>25.00</td>
<td>30.70</td>
<td>20.40</td>
<td>34</td>
<td>18</td>
<td>0.30</td>
</tr>
<tr>
<td>14</td>
<td>PA4</td>
<td>Steel</td>
<td>Paper</td>
<td>REGAL 32</td>
<td>46.50</td>
<td>25.00</td>
<td>35</td>
<td>19</td>
<td>36</td>
<td>24</td>
<td>0.40</td>
</tr>
<tr>
<td>15</td>
<td>PA5</td>
<td>Steel</td>
<td>Paper</td>
<td>RANDO 68</td>
<td>46.50</td>
<td>25.00</td>
<td>33</td>
<td>21</td>
<td>26</td>
<td>16</td>
<td>0.30</td>
</tr>
<tr>
<td>16</td>
<td>SPA1</td>
<td>Sand paper</td>
<td>Sand paper</td>
<td>Dry</td>
<td>46.50</td>
<td>25.00</td>
<td>36.70</td>
<td>21.30</td>
<td>15</td>
<td>15</td>
<td>0.577</td>
</tr>
<tr>
<td>17</td>
<td>SPA2</td>
<td>Sand paper</td>
<td>Sand paper</td>
<td>SAE 40</td>
<td>46.50</td>
<td>25.00</td>
<td>36.80</td>
<td>19.40</td>
<td>17</td>
<td>22</td>
<td>0.577</td>
</tr>
<tr>
<td>18</td>
<td>SPA3</td>
<td>Sand paper</td>
<td>Sand paper</td>
<td>SAE 32</td>
<td>46.50</td>
<td>25.00</td>
<td>32.10</td>
<td>18.70</td>
<td>31</td>
<td>25</td>
<td>0.577</td>
</tr>
<tr>
<td>19</td>
<td>SPA4</td>
<td>Sand paper</td>
<td>Sand paper</td>
<td>REGAL 32</td>
<td>46.50</td>
<td>25.00</td>
<td>32</td>
<td>15</td>
<td>31</td>
<td>20</td>
<td>0.30</td>
</tr>
<tr>
<td>20</td>
<td>SPA5</td>
<td>Sand paper</td>
<td>Sand paper</td>
<td>RANDO 68</td>
<td>46.50</td>
<td>25.00</td>
<td>32</td>
<td>19</td>
<td>31</td>
<td>24</td>
<td>0.40</td>
</tr>
<tr>
<td>21</td>
<td>DP1</td>
<td>Sand paper</td>
<td>Paper</td>
<td>Dry</td>
<td>46.50</td>
<td>25.00</td>
<td>31.80</td>
<td>19.50</td>
<td>32</td>
<td>22</td>
<td>0.40</td>
</tr>
<tr>
<td>22</td>
<td>DP2</td>
<td>Sand paper</td>
<td>Paper</td>
<td>SAE 40</td>
<td>46.50</td>
<td>25.00</td>
<td>37.80</td>
<td>18.8</td>
<td>14</td>
<td>25</td>
<td>0.577</td>
</tr>
<tr>
<td>23</td>
<td>DP3</td>
<td>Sand paper</td>
<td>Paper</td>
<td>SAE 32</td>
<td>46.50</td>
<td>25.00</td>
<td>33.70</td>
<td>19.60</td>
<td>28</td>
<td>22</td>
<td>0.40</td>
</tr>
<tr>
<td>24</td>
<td>DP4</td>
<td>Sand paper</td>
<td>Paper</td>
<td>REGAL 32</td>
<td>46.50</td>
<td>25.00</td>
<td>31.80</td>
<td>22.80</td>
<td>31</td>
<td>20</td>
<td>0.12</td>
</tr>
<tr>
<td>25</td>
<td>DP5</td>
<td>Sand paper</td>
<td>Paper</td>
<td>RANDO 68</td>
<td>46.50</td>
<td>25.00</td>
<td>34</td>
<td>21</td>
<td>27</td>
<td>18</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Av. = Average
Tabla 10-1 Roscas para tornillos Acme que se prefieren

<table>
<thead>
<tr>
<th>Diámetro mayor nominal (pulg)</th>
<th>Hilos de cuerda por pulgada</th>
<th>Peso, p = 1 libra (pulg)</th>
<th>Diámetro menor mínimo (pulg)</th>
<th>Área de sección por esfuerzo de tracción (pulg²)</th>
<th>Área de tensión por esfuerzo de corte (pulg²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>16</td>
<td>0.062 5</td>
<td>0.161 8</td>
<td>0.204 3</td>
<td>0.026 32</td>
</tr>
<tr>
<td>5/16</td>
<td>14</td>
<td>0.071 4</td>
<td>0.214 0</td>
<td>0.261 4</td>
<td>0.044 38</td>
</tr>
<tr>
<td>3/8</td>
<td>12</td>
<td>0.083 3</td>
<td>0.263 2</td>
<td>0.316 1</td>
<td>0.065 89</td>
</tr>
<tr>
<td>7/16</td>
<td>12</td>
<td>0.083 3</td>
<td>0.325 3</td>
<td>0.378 3</td>
<td>0.097 20</td>
</tr>
<tr>
<td>1/2</td>
<td>10</td>
<td>0.100 0</td>
<td>0.359 4</td>
<td>0.430 6</td>
<td>0.122 5</td>
</tr>
<tr>
<td>5/8</td>
<td>8</td>
<td>0.125 0</td>
<td>0.457 0</td>
<td>0.540 8</td>
<td>0.195 5</td>
</tr>
<tr>
<td>3/4</td>
<td>6</td>
<td>0.166 7</td>
<td>0.537 1</td>
<td>0.642 4</td>
<td>0.273 2</td>
</tr>
<tr>
<td>7/8</td>
<td>6</td>
<td>0.166 7</td>
<td>0.661 5</td>
<td>0.766 3</td>
<td>0.400 3</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0.200 0</td>
<td>0.750 9</td>
<td>0.872 6</td>
<td>0.517 5</td>
</tr>
<tr>
<td>1/4</td>
<td>5</td>
<td>0.200 0</td>
<td>0.875 3</td>
<td>0.996 7</td>
<td>0.688 1</td>
</tr>
<tr>
<td>1/2</td>
<td>5</td>
<td>0.200 0</td>
<td>0.999 8</td>
<td>1.121 0</td>
<td>0.883 1</td>
</tr>
<tr>
<td>3/8</td>
<td>4</td>
<td>0.250 0</td>
<td>1.071 9</td>
<td>1.218 8</td>
<td>1.030 1</td>
</tr>
<tr>
<td>1/8</td>
<td>4</td>
<td>0.250 0</td>
<td>1.196 5</td>
<td>1.342 9</td>
<td>1.266 1</td>
</tr>
<tr>
<td>1/4</td>
<td>4</td>
<td>0.250 0</td>
<td>1.445 6</td>
<td>1.591 6</td>
<td>1.811 1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.250 0</td>
<td>1.694 8</td>
<td>1.840 2</td>
<td>2.454 1</td>
</tr>
<tr>
<td>21/2</td>
<td>3</td>
<td>0.333 3</td>
<td>1.857 2</td>
<td>2.045 0</td>
<td>2.982 1</td>
</tr>
<tr>
<td>23/4</td>
<td>3</td>
<td>0.333 3</td>
<td>2.106 5</td>
<td>2.291 9</td>
<td>3.802 1</td>
</tr>
<tr>
<td>21/2</td>
<td>3</td>
<td>0.333 3</td>
<td>2.355 8</td>
<td>2.542 7</td>
<td>4.711 1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.500 0</td>
<td>2.432 6</td>
<td>2.704 4</td>
<td>5.181 1</td>
</tr>
<tr>
<td>31/2</td>
<td>2</td>
<td>0.500 0</td>
<td>2.931 4</td>
<td>3.202 6</td>
<td>7.388 1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.500 0</td>
<td>3.430 2</td>
<td>3.700 8</td>
<td>9.985 1</td>
</tr>
<tr>
<td>41/2</td>
<td>2</td>
<td>0.500 0</td>
<td>3.929 1</td>
<td>4.199 1</td>
<td>12.972 1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.500 0</td>
<td>4.428 1</td>
<td>4.697 3</td>
<td>16.351 1</td>
</tr>
</tbody>
</table>

*Por pulgada de longitud de enlazamiento.
<table>
<thead>
<tr>
<th>Type of Impact</th>
<th>Machines</th>
<th>Source of Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electric Motor or Turbine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Combustion Engine</td>
</tr>
<tr>
<td>Smooth</td>
<td>Belt conveyors with small load fluctuation, chain conveyors, centrifugal</td>
<td>With hydraulic drive</td>
</tr>
<tr>
<td></td>
<td>blowers, general textile machines, machines with small load fluctuation</td>
<td>Without hydraulic drive</td>
</tr>
<tr>
<td>Some impact</td>
<td>Centrifugal compressors, marine engines, conveyors with some load</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>fluctuation, automatic turnstiles, dryers, pulverizers, general machine</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>tools, compressors, general work machines, general paper mills</td>
<td>1.4</td>
</tr>
<tr>
<td>Large impact</td>
<td>Press, construction or mining machines, vibration machines, oil well</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>rigs, rubber mixers, rolls, general machines with reverse or large</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>impact loads</td>
<td>1.7</td>
</tr>
</tbody>
</table>
TABLA DE SELECCIÓN DE CADENA DE TRANSMISIÓN DE POTENCIA
CILINDRO NEUMÁTICO COMPACTO JS

Specification

<table>
<thead>
<tr>
<th>Cabin</th>
<th>JS-50</th>
<th>JS-50C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Standard type</td>
<td>Double acting with magnetic piston</td>
</tr>
<tr>
<td>Bore</td>
<td>Ø12, Ø16, Ø20, Ø25, Ø30, Ø30C, Ø40, Ø50, Ø100</td>
<td></td>
</tr>
<tr>
<td>Operating fluid</td>
<td>Compressed air</td>
<td></td>
</tr>
<tr>
<td>Operating pressure (MPa)</td>
<td>0.47 (71psi)</td>
<td></td>
</tr>
<tr>
<td>Max. operating pressure (MPa)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Piston speed range (mm/min)</td>
<td>0-500</td>
<td></td>
</tr>
<tr>
<td>Temperature range (°C)</td>
<td>Without oil</td>
<td>With oil</td>
</tr>
<tr>
<td>Lubrication</td>
<td>Not required</td>
<td></td>
</tr>
<tr>
<td>Stroke length tolerance</td>
<td>Standard Stroke: ±1.0 mm</td>
<td>Long Stroke: ±1.4 mm</td>
</tr>
</tbody>
</table>

Theoretical output

Bore (mm)	Rod diameter (mm)	Operation	Pressurized area (cm²)	Operating pressure 0.3(MPa) 0.5(MPa) 0.7(MPa)		
Ø12	Ø6	Out	1.13	343.38	757.85	790.47
		In	0.77	249.43	496.36	520.05
Ø16	Ø8	Out	2.01	838.11	1771.83	1811.44
		In	1.51	494.85	986.87	1001.85
Ø20	Ø10	Out	3.14	940.81	1971.84	2020.23
		In	2.96	711.27	1431.91	1481.34
Ø25	Ø12	Out	4.21	1471.42	2942.84	3024.55
		In	3.78	1121.40	2242.81	2305.91
Ø32	Ø16	Out	6.04	2400.24	4790.45	4909.71
		In	5.03	1951.45	3961.90	4113.80
Ø40	Ø18	Out	8.66	3700.37	7400.71	7700.87
		In	6.88	2100.35	4000.60	4150.14
Ø50	Ø20	Out	15.63	9800.85	19600.72	20701.36
		In	11.49	6000.42	11900.83	12150.73
Ø63	Ø25	Out	21.16	8000.85	16001.78	16340.22
		In	16.02	5000.85	10001.78	10340.22
Ø80	Ø25	Out	25.14	18001.78	36003.57	37003.57
		In	18.53	13001.78	26003.57	27003.57
Ø100	Ø30	Out	39.53	23000.37	46001.78	47001.78
		In	27.82	14000.37	28001.78	29001.78

Weight list

<table>
<thead>
<tr>
<th>Model (mm)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø12</td>
<td>40</td>
<td>47</td>
<td>54</td>
<td>61</td>
<td>68</td>
<td>75</td>
<td>82</td>
<td>89</td>
<td>96</td>
<td>103</td>
<td>120</td>
</tr>
<tr>
<td>Ø16</td>
<td>53</td>
<td>63</td>
<td>73</td>
<td>83</td>
<td>93</td>
<td>103</td>
<td>113</td>
<td>123</td>
<td>133</td>
<td>143</td>
<td>180</td>
</tr>
<tr>
<td>Ø20</td>
<td>71</td>
<td>85</td>
<td>99</td>
<td>113</td>
<td>127</td>
<td>137</td>
<td>147</td>
<td>157</td>
<td>167</td>
<td>177</td>
<td>220</td>
</tr>
<tr>
<td>Ø25</td>
<td>92</td>
<td>110</td>
<td>126</td>
<td>142</td>
<td>158</td>
<td>168</td>
<td>178</td>
<td>188</td>
<td>198</td>
<td>208</td>
<td>250</td>
</tr>
<tr>
<td>Ø30</td>
<td>113</td>
<td>143</td>
<td>163</td>
<td>183</td>
<td>203</td>
<td>223</td>
<td>243</td>
<td>263</td>
<td>283</td>
<td>303</td>
<td>350</td>
</tr>
<tr>
<td>Ø32</td>
<td>137</td>
<td>179</td>
<td>202</td>
<td>225</td>
<td>248</td>
<td>271</td>
<td>294</td>
<td>317</td>
<td>340</td>
<td>363</td>
<td>400</td>
</tr>
<tr>
<td>Ø40</td>
<td>171</td>
<td>227</td>
<td>283</td>
<td>339</td>
<td>395</td>
<td>451</td>
<td>507</td>
<td>563</td>
<td>619</td>
<td>675</td>
<td>720</td>
</tr>
<tr>
<td>Ø50</td>
<td>217</td>
<td>293</td>
<td>370</td>
<td>446</td>
<td>523</td>
<td>599</td>
<td>675</td>
<td>751</td>
<td>828</td>
<td>904</td>
<td>1000</td>
</tr>
<tr>
<td>Ø63</td>
<td>278</td>
<td>370</td>
<td>462</td>
<td>554</td>
<td>646</td>
<td>738</td>
<td>830</td>
<td>922</td>
<td>1014</td>
<td>1106</td>
<td>1200</td>
</tr>
<tr>
<td>Ø80</td>
<td>350</td>
<td>462</td>
<td>574</td>
<td>686</td>
<td>798</td>
<td>910</td>
<td>1022</td>
<td>1134</td>
<td>1246</td>
<td>1358</td>
<td>1500</td>
</tr>
<tr>
<td>Ø100</td>
<td>432</td>
<td>574</td>
<td>716</td>
<td>858</td>
<td>990</td>
<td>1132</td>
<td>1274</td>
<td>1416</td>
<td>1558</td>
<td>1700</td>
<td>2000</td>
</tr>
</tbody>
</table>

Additional weights for hose fitting mm:

- Ø12: 57, 105
- Ø16: 71, 129
- Ø20: 94, 153
- Ø25: 125, 184
- Ø30: 158, 227
- Ø32: 190, 260
- Ø40: 222, 300
- Ø50: 263, 351
- Ø63: 303, 400
- Ø80: 343, 450
- Ø100: 383, 500

CILINDRO NEUMÁTICO COMPACTO JS