Departamento de ciencias de la Energía y Mecánica

Carrera De Ingeniería Mecánica

Tesis previo a la obtención del titulo de Ingeniero Mecánico

Titulo:

"DESARROLLO E IMPLEMENTACIÓN DE UN SOFTWARE PARA LA OPERACIÓN ÓPTIMA DE UN SISTEMA ENERGÉTICO MIXTO DE GASIFICACIÓN DE BIOMASA Y SOLAR FOTOVOLTAICO CON AUTOMATIZACIÓN EN LA TOMA DE DATOS"

Autores:
Garzón Correa Gabriel
Mayorga Goyes Luis

ING. GUTIÉRREZ, ROBERTO

DIRECTOR

ING. AYALA, PAUL CODIRECTOR

DR. MARCELO MEJÍA SECRETARIO ACADEMICO DE LA UNIDAD DE ADMISIÓN Y REGISTRO

ANTECEDENTES

En los últimos años el Gobierno de la República del Ecuador, ha facilitado la apertura a proyectos energéticos cuyo fin es reducir la contaminación ambiental y la disminución de gases de efecto invernadero

El uso de biomasa como combustible en motores de combustión interna reduce las emisiones de dióxido de carbono (CO_2) y metano (CH_4) .

El sistema del software permite supervisar y controlar las distintas variables que intervienen en el proceso, también permite organizar y analizar los datos emitidos por otros software asociados a instrumentos de medida y plataformas de adquisición de datos

Objetivo General

Desarrollar e implementar un software para la operación óptima de un sistema mixto de gasificación de biomasa y solar fotovoltaico automatizado con toma de datos.

Objetivos Específicos

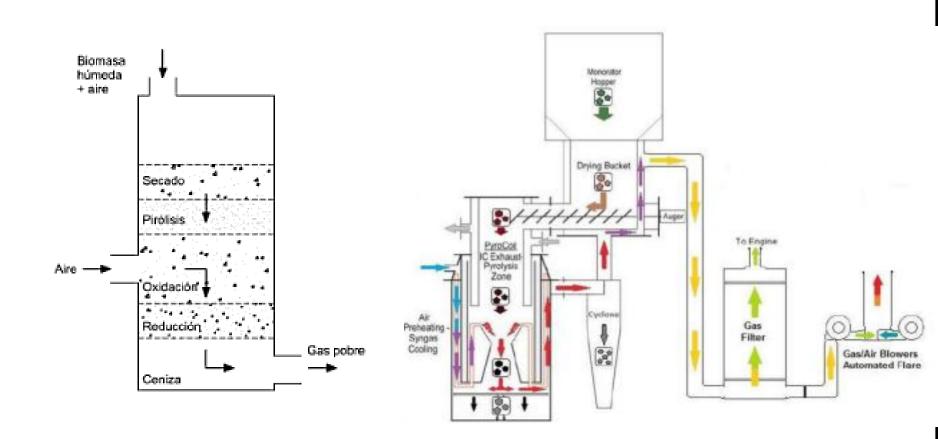
Diseñar un software en NI Labview 2014 myRIO para la operación óptima de un sistema energético mixto de gasificación de biomasa y solar fotovoltaico con automatización en la toma de datos

Diseñar la evaluación técnica, análisis y validación de datos del sistema mixto de gasificación de biomasa y solar fotovoltaico para la mezcla optima en producción del poder calorífico y potencia del motor generador utilizando como combustible gasolina y gas de síntesis

Diseñar un proceso para analizar la validación de datos del sistema mixto de gasificación de biomasa y solar fotovoltaico

ALCANCES

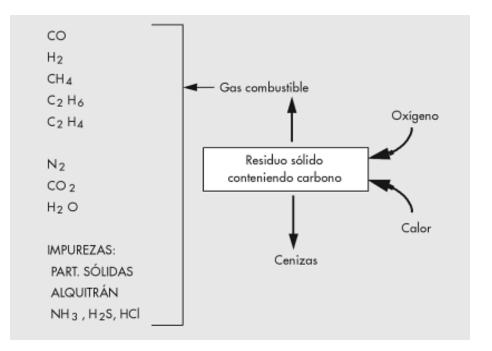
Tener el gasificador automatizado y funcionando en conjunto con el motor generador y el panel fotovoltaico


En el gasificador se instalará un sistema de sensores, dotados de una tarjeta myRIO, que permitirá realizar el proceso de automatización para la toma de datos.

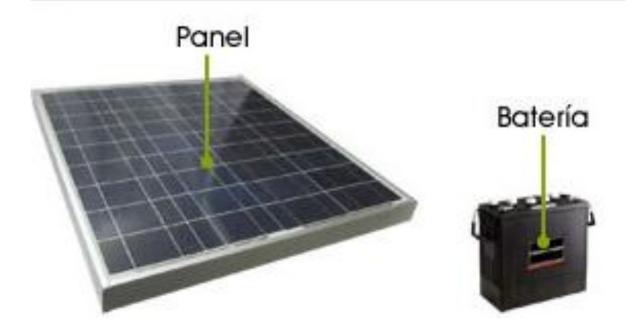
La combustión de la biomasa con efecto de oxigeno genera un gas que mediante variables controladas permitirá determinar la calidad y cantidad necesaria del gas para poner en marcha al motor generador.

Una vez que cada subsistema tenga su generación de energía eléctrica, se deberá acoplar las fuentes para que puedan operar conjuntamente en función del consumo.

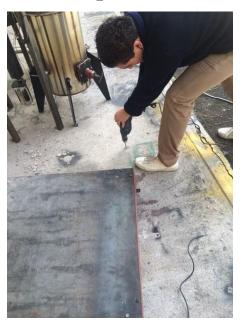
Proceso de Gasificación



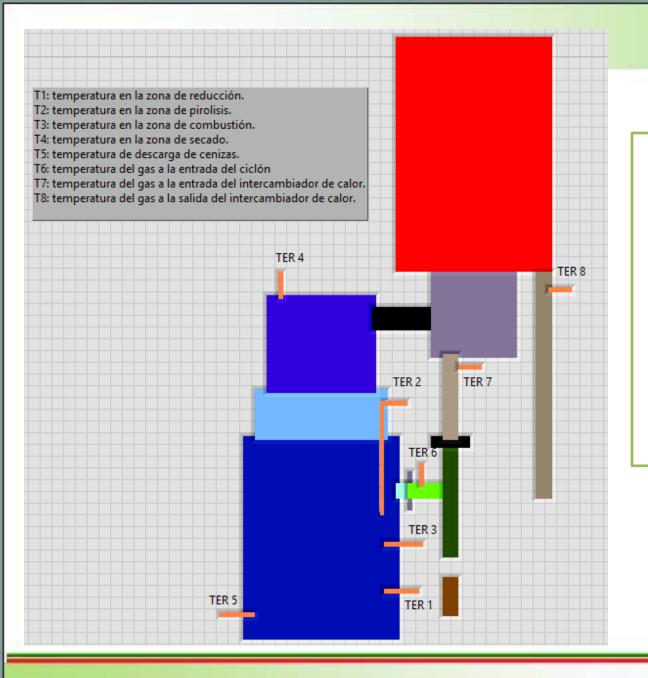
Composición característica del gas de síntesis


CONSTITUYENTE COMPOSICION Metano (CH₄) 55-75% Dióxido de carbono (CO₂) 30-45% Sulfuro de hidrógeno (H2S) 1-2% 0-1% Nitrógeno (N2) Hidrógeno (H₂) 0-1% Monóxido de carbono (CO) Trazas Oxígeno (O2) Trazas

Principio químico del proceso de Gasificación


Sistema fotovoltaico

Montaje del sistema mixto

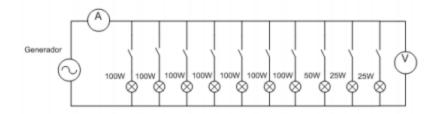

Perforación de pernos de anclaje

Calibración de balanza

Distribución de de termocuplas en el gasificador

Conexión del aire al Venturi

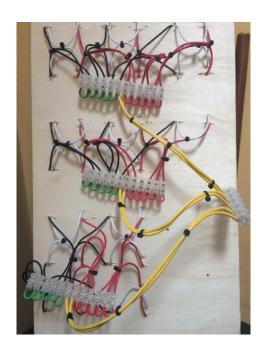
Especificaciones técnicas del generador a gas de síntesis


Potencia nominal	800 W
Potencia máxima	9000 W
Frecuencia	60Hz
Voltaje AC	120 V
Voltaje DC	12 V 8.3 A
Número de polos	2
Velocidad	3600 rpm

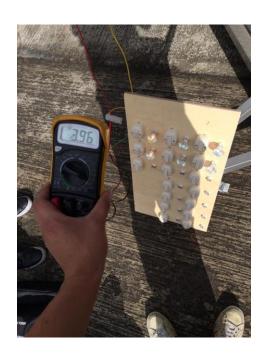
Ingreso del aire y gas de síntesis al motor generador

Circuito eléctrico de focos

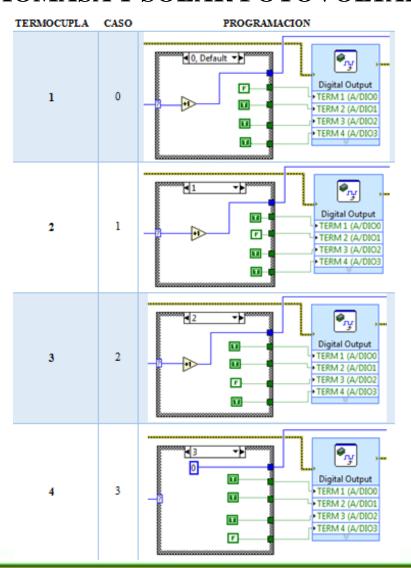
Especificaciones técnicas del panel fotovoltaico


Tensión nominal	12 V	24 V
Tensión de máxima potencia	17.4 V	34.8 V
Potencia nominal	100 W	100 W
Corriente máxima	5.74 A	2.87 A
Tensión en circuito abierto	21.6 V	43.2 V
Corriente en cortocircuito	6.54 A	3.27 A

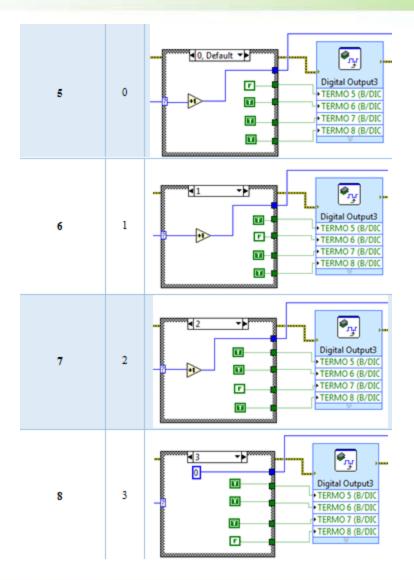
Especificaciones técnicas de la batería


Celdas por unidad	6
Voltaje por unidad	12 V
Capacidad	11 Ah
Corriente de descarga máxima	150 A/ 180 A
Resistencia interna	14 <u>mΩ</u>
Voltaje de carga flotante	13.5 a 13.8 V
Corriente de carga máxima	3.6 A

Conexión en paralelo de las cargas



Medición de corriente con la conexión en paralelo



PUESTA EN MARCHA DEL SISTEMA MIXTO DE GASIFICACION DE BIOMASA Y SOLAR FOTOVOLTAICA

Lectura de termocuplas

La conexión para los canales del NI myRIO se lo realizó con la siguiente distribución:

TERMOCUPLA	CANAL
1	A/DIO0
2	A/DIO1
3	A/DIO2
4	A/DIO3
5	B/DIO0
6	B/DIO1
7	B/DIO2
8	B/DIO3

Comunicación SPI

PROGRAMACION Frame Count: Descompone los 32 bits en 4 partes de 8 bits cada una. Frames Read: Salida de la señal PROGRAMACION PROGRAMACION Frame Count Frame Count Frame Count Frame Count Frame Count Frame Count Frame Read Frame Read

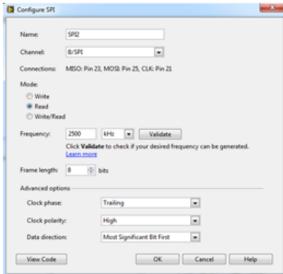
Name:

Nombre del SPI en el cual se va trabajar

Channel:

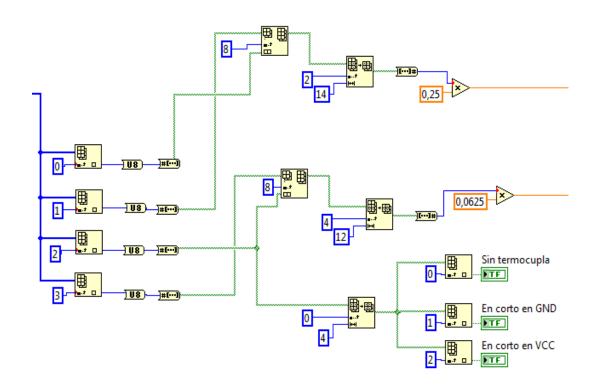
Indica en el canal en el cual se va trabajar, para nuestra programación se utilizó los canales A y B

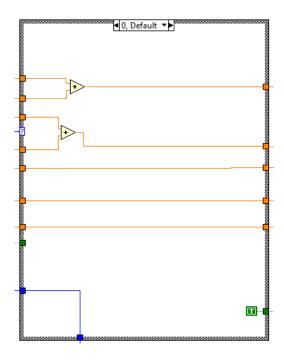
Mode:


Señales por ser leídas

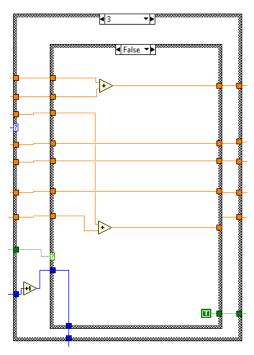
Frame Length:

Advierte que cada fragmento está formado por 8 bits.

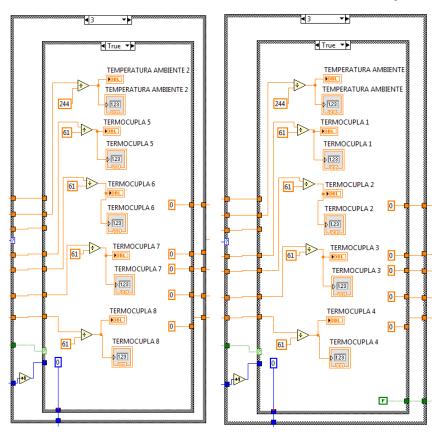

Funciones restantes de los parámetros como Frecuency y Advanced options dependerán de la forma en la cual se ocupa u opera el módulo MAX31855. Tanto estas opciones como las anteriores se pueden consultar en la página del fabricante.



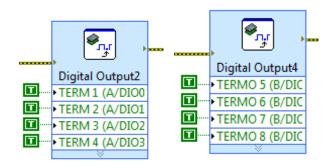
Calibración y ordenamiento de temperaturas


Hay que tener en cuenta que en la programación entre el caso 0 y el caso 2 las temperaturas continuamente son sumadas

Comportamiento caso 0 y 2

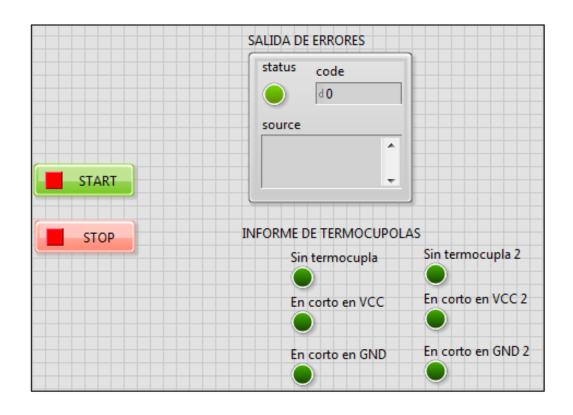

El caso 3 se comportara como los casos (0, 1, 2) siempre y cuando el caso interno se encuentre en FALSE y las temperaturas se sumaran de forma continua.

Comportamiento del caso 3 y FALSE

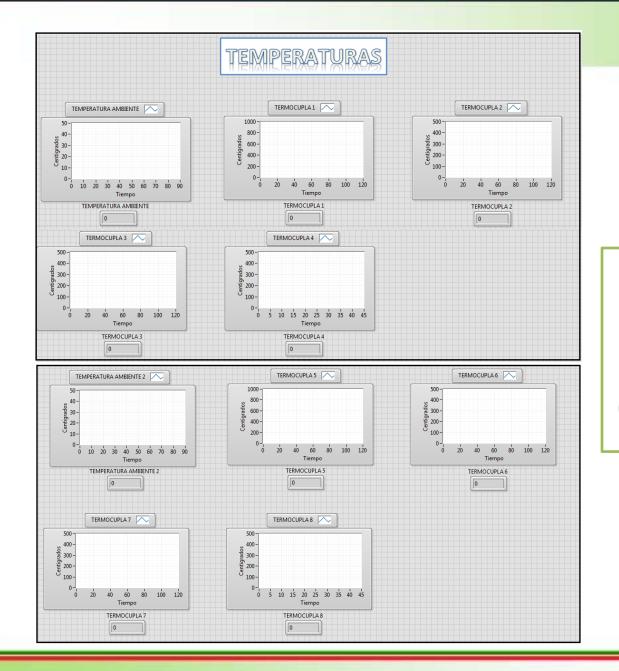


Al momento que adquiere los 60 datos cada una de las 4 termocuplas de forma automática se activa el caso TRUE y las temperaturas se dividen para 60

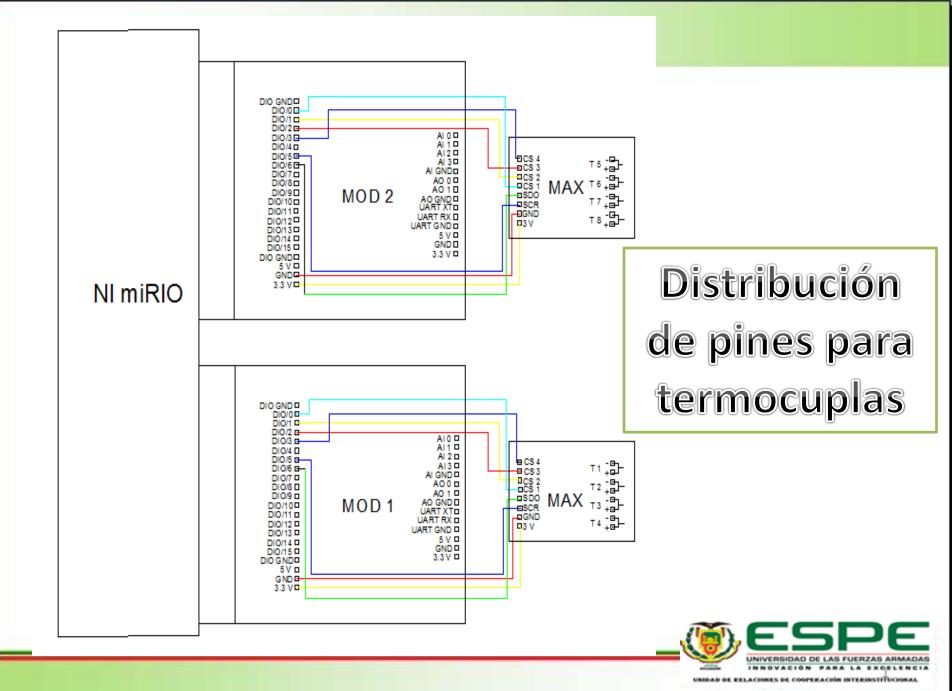
Comparador para un proceso continuo

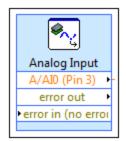


Reseteo de señales

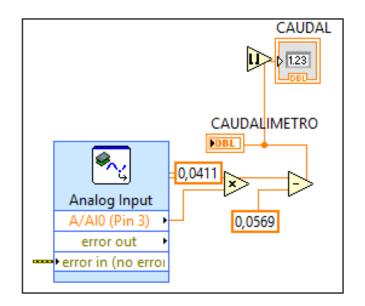

Comportamiento del caso 3 y TRUE

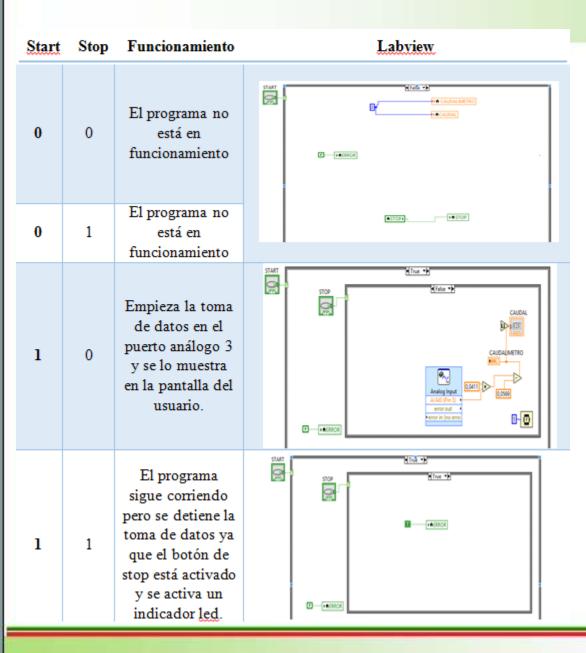
Botonería de start y stop, Informe de termocuplas



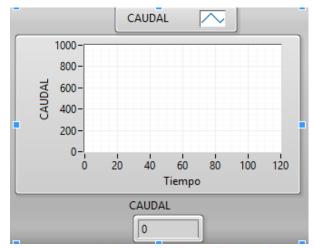

Pantalla de datos de termocuplas

Sensor MAF


Canal de Entrada de la MyRIO

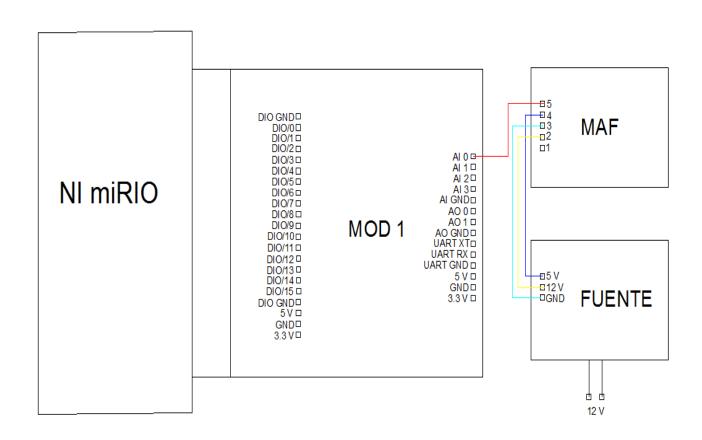

Indicador

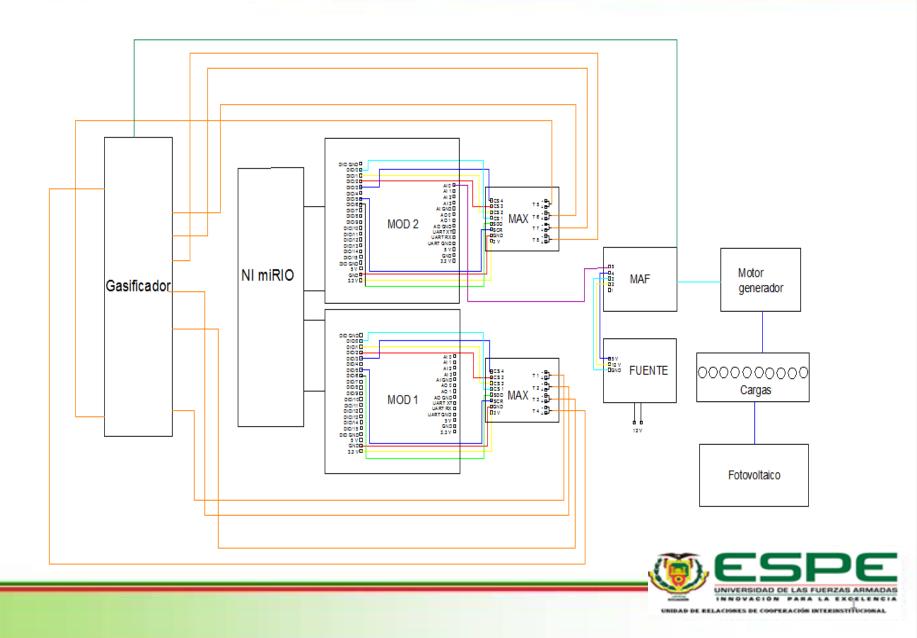
Calibración para la obtención del caudal



Comportamiento del TRUE y FALSE del sensor MAF

Panel de control del sensor MAF


Indicador de caudal del sensor MAF


UNIDAD DE RELACIONES DE COOPERACIÓN INTERINSTITUCIONAL

Conexión del sensor MAF al dispositivo NI myRIO

SISTEMA ENERGÉTICO MIXTO DE GENERACIÓN DE ENERGÍA.

PRUEBAS DEL SISTEMA MIXTO DE GASIFICACIÓN DE BIOMASA Y SOLAR FOTOVOLTAICO

Toma de datos con cascarilla de arroz

t	tiempo en producir etano 10m			tiempo final 1h48m33					tiempo cada 5 minutos				
	cascarilla	de arroz		TERMOCUPLAS									
	peso (kg)	Humedad (%)	t1(<u>°C</u>)	t2(<u>°C</u>)	t3(<u>°C</u>)	t4(<u>°C</u>)	t5(<u>°C</u>)	t6(<u>°C</u>)	t7(<u>°C</u>)	t8(<u>°C</u>)	p1	p2	
	5	7											
t1	4,75	7	258,61	113,56	268,51	30,43	59,5	12,57	67,15	44,26	30,7	40	
t2	4,7	7	341,5	231,16	378,05	40,15	103,75	123,4	71,75	60,24	32,5	38,2	
t3	4,6	7	367,09	235,75	416,25	50,4	190,54	160,16	77,25	71,06	31,8	38,7	
t4	4,4	7	416,93	282,59	434,75	49,31	259,5	181,84	82,38	74,8	30,5	40,2	
t5	4,15	7	423,96	305,62	458,03	49,52	301,32	178,09	80,5	73,27	31,3	39,3	
t6	3,95	7	446,25	301,91	535,07	71,8	331,39	206,83	81,02	71,8	32,4	38,1	
t7	3,75	7	468,58	318,24	615,5	82,62	381,73	247,25	96,75	71,59	31.5	39	
t8	3,6	7	482,25	343,91	662,25	105,73	440,13	254,81	110,36	68,7	30,3	40	
t9	3,45	7	513,75	402,41	651	131,66	469,75	277,5	116,93	72,16	31,5	39	
t10	3,2	7	548,87	419,53	587,56	173,91	467,7	292,05	126,8	73,82	31,5	40	
t11	3,1	7	565,41	395,07	566	155,87	473,02	286,35	135,25	75	30	40,5	
t12	2,95	7	566,3	432,96	562,4	196,77	488,11	311,94	135,25	68,92	31	40	
t13	2,9	7	578,3	421,96	565,42	206,55	473,11	311,35	143	67,62	32	39	
t14	2,7	7	611,49	483,15	564,74	212,54	472,71	331,33	152,07	74,42	30,5	40	
t15	2,55	7	606,5	489,16	570,75	187,66	472,94	328,67	145,5	82,02	30	40,5	
t16	2,25	7	611,84	489,5	561,75	165,51	469,59	338,52	152,32	80,95	32	39	
t17	1,8	7	601,56	469,22	547,27	178,82	464,15	325,92	157,26	83,65	31	40	
t18	1,6	7	592,68	455,34	525,1	204,05	459,5	316,85	152,95	76,22	29,5	40	
t19	1,45	7	601,66	500,32	529,83	167,45	457,25	324,63	157,75	83,97	31	39,5	
t20	1,25	7	591,59	490,25	519,5	202,86	446	323,7	156,65	78,4	31,5	39,5	
t21	1,05	7	585,87	484,53	503,43	255,77	439,92	336,19	161,01	86,63	30,5	40,5	
t22	0	7	559,16	457,82	501,05	269,47	427,88	301,75	152,67	68,95	31,5	39	

LEVANTAMIENTO DE DATOS DEL SISTEMA MIXTO DE GASIFICACIÓN DE **BIOMASA Y SOLAR FOTOVOLTAICO**

					-1-6										-	2		
	x1=Cantidad de biomasa												k	g	5	3	1	
	x2= presión Entrada de aire al gasificador											% vá	lvula	100	50	25		
	x3=Humedad de la biomasa											9/	ó	20	16	10		
٠,			T (0.00	41 (000)	42 (0 CO	42/000	+4/000	45/060	46(060	47/060	40/060	malq	mcen	Pres	sión	y2	PC	PC
xl	x2	x3	T (<u>°C</u>)	tl(°C)	12(<u>°C</u>)	t3(<u>°C</u>)	t4(<u>°C</u>)	t5(<u>°C</u>)	t6(°C)	t7(<u>°C</u>)	t8(<u>°C</u>)	(g)	(kg)	P1	P2	mgas	kJ/kg	Btu/lb
inf	inf	inf	22,3	363,82	318,10	239,99	53,47	420,60	151,14	60,79	45,72	24	0,35	43,35	27,4	0,63	820,101	352,58
inf	med	inf	23,2	533,82	603,23	408,64	65,51	498,71	174,79	89,92	51,96	23	0,36	41,13	33,19	0,62	861,62	370,43
inf	sup	inf	20,8	534,90	546,18	475,88	62,96	431,32	281,96	128,87	60,20	23	0,35	45,4	33	0,63	908,35	390,52
med	inf	med	23,9	726,89	399,84	423,66	120,94	499,35	240,74	164,71	81,79	51	0,32	48,21	34,22	2,63	583,012	250,65
med	med	med	24,9	708,52	602,56	643,14	97,25	645,85	345,38	197,06	96,96	50	0,33	37,33	33,25	2,62	628,299	270,12
med	sup	med	23,1	645,14	589,47	502,67	98,94	578,29	235,43	182,46	82,45	54	0,3	40,31	29,43	2,65	682,053	293,23
sup	inf	sup	24,3	718,87	404,26	476,50	113,61	638,77	292,51	206,83	94,36	157	0,27	50,19	27,15	4,57	2257,94	970,74
sup	med	sup	20,7	750,08	690,70	519,39	102,31	621,52	360,72	232,27	113,59	158	0,28	51,6	30,22	4,56	2289,06	984,12
sup	sup	sup	21,2	523,75	433,69	679,96	90,34	615,41	311,37	201,96	94,63	162	0,25	42,07	28,43	4,59	2348,59	1009,71
inf	inf	med	20,8	582,26	528,23	568,34	93,10	573,84	229,76	105,58	92,84	23	0,28	37,3	28,34	0,70	711,361	305,83
inf	inf	sup	25,2	646,34	529,44	518,65	121,51	609,26	254,86	173,60	90,37	19	0,16	50,8	27,18	0,82	660,282	283,87
med	med	inf	23,6	595,19	524,76	238,81	100,49	510,88	241,42	107,64	70,43	58	0,30	39	31,39	2,64	1056,73	454,31
med	med	sup.	22,2	532,68	502,41	428,59	96,20	619,46	275,86	181,39	91,18	41	0,19	49,3	23,17	2,77	880,74	378,65
sup	sup	inf	24,5	468,17	424,19	366,87	84,45	479,48	177,14	103,31	53,75	140	0,36	39,21	28,78	4,50	3071,06	1320,32
sup	sup	med	24,1	620,37	591,47	430,49	91,32	529,69	281,42	148,17	78,36	134	0,3	44,15	31,34	4,57	2686,32	1154,91
med	inf	inf	20,5	522,93	478,54	407,24	57,97	550,21	175,34	83,79	59,22	70	0,31	49,9	33,13	2,62	1005,93	432,47
sup	inf	inf	22,1	661,44	564,34	323,47	58,60	465,20	197,99	89,91	77,94	132	0,34	42,23	34,31	4,53	2980,49	1281,38
inf	med	med	24,3	475,32	406,99	455,74	81,83	568,79	202,11	148,39	83,76	24	0,29	39,28	28,8	0,69	755,438	324,78

Corriente y voltaje de las cargas utilizando como combustible gasolina en el motor generador

Carga [W]	Corriente [A]	Voltaje [V]
100	0.7	109.1
200	1.6	105.8
300	2.4	108.7
400	3.3	107.2
500	4.2	108.2
600	5.1	107.8
625	5.3	106.5

Corriente y voltaje de las cargas utilizando como combustible gas de síntesis en el motor generador

Carga [W]	Corriente [A]	Voltaje [V]
100	0.68	108.5
200	1.44	106.3
300	2.5	108.2
400	3.2	106.9
500	4.24	107.6

Corriente y voltaje de las cargas con el rectificador

Carga [W]	Corriente Rectificador Idc[A]	Voltaje [V]
35	3,11	11,74
70	6,07	11,68
105	8,96	11,63
140	11,88	11,59
175	14,78	11,55
210	17,67	11,5
245	20,48	11,45
280	23,46	11,41
315	26,36	11,36
350	29,25	11,31
385	32,15	11,27
420	35,05	11,22
455	37,94	11,17

Corriente y voltaje de las cargas del sistema fotovoltaico

Carga [W]	Corriente [A]	Voltaje [V]
35	3,02	11,4
70	5,9	10,9
105	8,92	10,4
140	11,94	9,9
175	14,96	9,4

Corriente y voltaje de las cargas de las baterías

Carga [W]	Corriente [A]	Voltaje [V]
35	3,20	12,27
70	6,21	12,14
105	9,19	12,03
140	12,11	11,94

OBTENCIÓN DE DATOS CARACTERISTICOS DEL FUNCIONAMIENTO DEL SISTEMA MIXTO DE GASIFICACIÓN DE BIOMASA Y SOLAR FOTOVOLTAICO

Biomasa	Presión	Humedad	T Proc e	valor t	PC (BTU/lb)	PC (KJ/Kg)	Biomasa	Presión	Humedad	T Proc e	valor t (°C)	PC (BTU/lb)	PC (KJ/Kg)
Bio inf	Pres inf	Humed inf	t1	363,82	352,58	820,10	Bio med	Pres med	Humed med	t2	602,56	270,12	628,30
Bio inf	Pres inf	Humed inf	t2	318,10	352,58	820,10	Bio med	Pres med	Humed med	t3	643,14	270,12	628,30
Bio inf	Pres inf	Humed inf	t3	239,99	352,58	820,10	Bio med	Pres med	Humed med	t4	97,25	270,12	628,30
Bio inf	Pres inf	Humed inf	t4	53,47	352,58	820,10	Bio med	Pres med	Humed med	t5	645,85	270,12	628,30
Bio inf	Pres inf	Humed inf	t5	420,60	352,58	820,10	Bio med	Pres med	Humed med	t6	345,38	270,12	628,30
Bio inf	Pres inf	Humed inf	t6	151,14	352,58	820,10	Bio med	Pres med	Humed med	t7	197,06	270,12	628,30
Bio inf	Pres inf	Humed inf	t7	60,79	352,58	820,10	Bio med	Pres med	Humed med	t8	96,96	270,12	628,30
Bio inf	Pres inf	Humed inf	t8	45,72	352,58	820,10	Bio med	Pres sup	Humed med	t1	645,14	293,23	682,05
Bio inf	Pres med	Humed inf	t1	533,82	370,43	861,62	Bio med	Pres sup	Humed med	t2	589,47	293,23	682,05
Bio inf	Pres med	Humed inf	t2	603,23	370,43	861,62	Bio med	Pres sup	Humed med	t3	502,67	293,23	682,05
Bio inf	Pres med	Humed inf	t3	408,64	370,43	861,62	Bio med	Pres sup	Humed med	t4	98,94	293,23	682,05
Bio inf	Pres med	Humed inf	t4	65,51	370,43	861,62	Bio med	Pres sup	Humed med	t5	578,29	293,23	682,05
Bio inf	Pres med	Humed inf	t5	498,71	370,43	861,62	Bio med	Pres sup	Humed med	t6	235,43	293,23	682,05
Bio inf	Pres med	Humed inf	t6	174,79	370,43	861,62	Bio med	Pres sup	Humed med	t7	182,46	293,23	682,05
Bio inf	Pres med	Humed inf	t7	89,92	370,43	861,62	Bio med	Pres sup	Humed med	t8	82,45	293,23	682,05
Bio inf	Pres med	Humed inf	t8	51,96	370,43	861,62	Bio sup	Pres inf	Humed sup	t1	718,87	970,74	2257,94
Bio inf	Pres sup	Humed inf	t1	534,90	390,52	908,35	Bio sup	Pres inf	Humed sup	t2	404,26	970,74	2257,94
Bio inf	Pres sup	Humed inf	t2	546,18	390,52	908,35	Bio sup	Pres inf	Humed sup	t3	476,50	970,74	2257,94
Bio inf	Pres sup	Humed inf	t3	475,88	390,52	908,35	Bio sup	Pres inf	Humed sup	t4	113,61	970,74	2257,94
Bio inf	Pres sup	Humed inf	t4	62,96	390,52	908,35	Bio sup	Pres inf	Humed sup	t5	638,77	970,74	2257,94
Bio inf	Pres sup	Humed inf	t5	431,32	390,52	908,35	Bio sup	Pres inf	Humed sup	t6	292,51	970,74	2257,94
Bio inf	Pres sup	Humed inf	t6	281,96	390,52	908,35	Bio sup	Pres inf	Humed sup	t7	206,83	970,74	2257,94
	P			322,00	,	1	Bio sup	Pres inf	Humed sup	t8	94,36	970,74	2257,94

Sistema mixto de generación de energía baja carga

Carga [W]	Corriente	Corriente	Voltaje [V]		
	Gasificador [A]	Fotovoltaico [A]			
35	0	3,20	12,27		
70	0	6,21	12,14		
105	0	9,19	12,03		

Sistema mixto de generación de energía a plena carga

Carga [W]	Corriente Gasificador [A]	Corriente Fotovoltaico [A]	Voltaje [V]	
385	23,83	7,57	11,24	
420	26,83	7,77	11,21	
455	29,83	7,42	11,17	
490	31,63 8,13		11,11	
525	34,93	8,08	11,08	
560	37,94	8,17	11,03	
595	37,94	10,91	11,24	

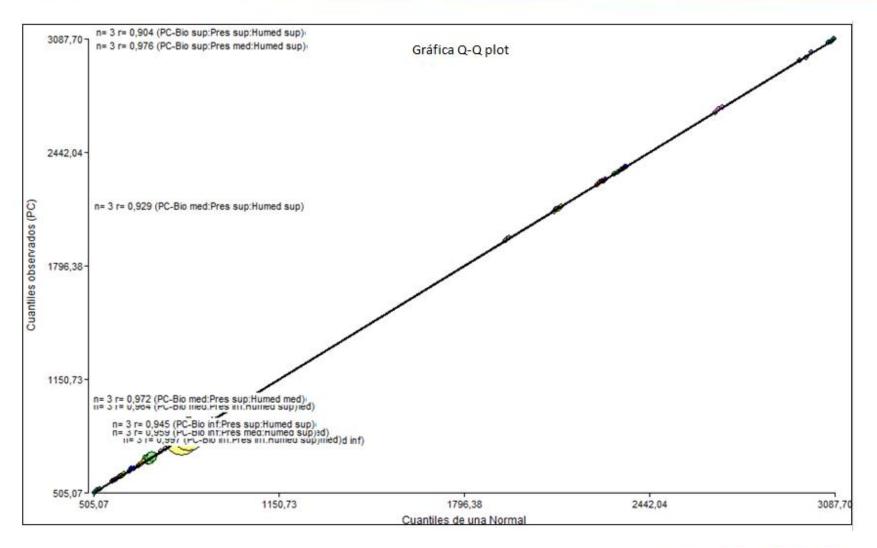
Sistema mixto de generación de energía a media carga

Carga [W]	Corriente	Corriente	Voltaje [V]
	Gasificador [A]	Fotovoltaico [A]	
140	11,88	0	11,60
175	14,78	0	11,55
210	17,67	0	11,5
245	20,48	0	11,45
280	23,46	0	11,41
315	26,36	0	11,36
350	29,25	0	11,31

VALIDACIÓN DE PARÁMETROS DE FUNCIONAMIENTO DEL SISTEMA MIXTO DE GASIFICACIÓN DE BIOMASA Y SOLAR FOTOVOLTAICO

ANÁLISIS DE DUNCAN

Duncan


Duncan								
F.V.	SC	Gl	CM	F	p-valor			
Modelo.	56741079,6	26	2182349,21	16820,8542	0			
Biomasa	47294377,4	2	23647188,7	182265,016	0			
Humedad	1146081,22	2	573040,611	4416,81493	0			
Presión	1558130,34	2	779065,169	6004,78674	0			
Biomasa*Humedad	1532449,55	4	383112,388	2952,90854	0			
Biomasa*Presión	1368756,29	4	342189,071	2637,48462	0			
Humedad*Presión	682859,865	4	170714,966	1315,81671	0			
Biomasa*Humedad*Presión	3158424,91	8	394803,114	3043,01694	0			
Error	7005,9972	54	129,740689					
Total	56748085,6	80						

Análisis de Duncan selección de grupos

Biomasa	Humedad	Presión	Medias	n	E.E.																						
Bio med	Humed sup	Pres inf	516,590	3	6,576	A																					
Bio med	Humed med	Pres inf	576,787	3	6,576		В																				
Bio inf	Humed sup	Pres med	603,737	3	6,576			С																			
Bio inf	Humed sup	Pres sup	604,637	3	6,576			С																			
Bio med	Humed med	Pres med	638,217	3	6,576				D																		
Bio med	Humed med	Pres sup	671,780	3	6,576					Ε																	
Bio inf	Humed sup	Pres inf	672,863	3	6,576					Ε																	
Bio inf	Humed med	Pres inf	700,150	3	6,576						F																
Bio inf	Humed med	Pres med	754,903	3	6,576							G															
Bio inf	Humed med	Pres sup	793,203	3	6,576								Η														
Bio inf	Humed inf	Pres inf	823,217	3	6,576									Ι													
Bio inf	Humed inf	Pres med	862,380	3	6,576										J												
Bio med	Humed inf	Pres sup	879,710	3	6,576										J	K											
Bio med	Humed sup	Pres med	891,663	3	6,576											K	L										
Bio inf	Humed inf	Pres sup	910,327	3	6,576												L										
Bio med	Humed inf	Pres inf	1006,827	3	6,576													M									
Bio med	Humed inf	Pres med	1048,627	3	6,576														N								
Bio sup	Humed med	Pres med	1947,917	3	6,576															0							
Bio med	Humed sup	Pres sup	2116,573	3	6,576																P						
Bio sup	Humed inf	Pres med	2126,260	3	6,576																P						
Bio sup	Humed sup	Pres inf	2269,010	-	6,576																	Q					
Bio sup	Humed sup	Pres med	2281,850	3	6,576																	Q					
Bio sup	Humed med	Pres inf	2331,073	3	6,576																		R				
Bio sup	Humed sup	Pres sup	2356,187	3	6,576																			S			
Bio sup	Humed med	Pres sup	2683,940	3	6,576																				T		
Bio sup	Humed inf	Pres inf	2985,963	3	6,576																					U	
Bio sup	Humed inf	Pres sup	3074,677	3	6,576																						W

Potencia de entrada y salida en las cargas

Carga [W]	Potencia Primario [W]	Potencia Rectificador [W]	<u>fp</u>
35	44,85	36,51	0,81
70	78,20	70,90	0,91
105	112,70	104,20	0,92
140	148,35	137,73	0,93
175	184,00	170,70	0,93
210	219,65	203,25	0,93
245	253,00	234,51	0,93
280	290,95	267,62	0,92
315	326,60	299,41	0,92
350	362,25	330,94	0,91
385	397,90	362,19	0,91
420	433,55	393,18	0,91
455	469,20	423,89	0,90

ANÁLISIS DE RESULTADOS DEL SISTEMA MIXTO DE GASIFICACIÓN DE BIOMASA Y SOLAR FOTOVOLTAICO

Poder calórico generado por biomasa y presión

Biomasa	Presión	PC[KJ/kg]
Bio sup	Pres sup	3071,06
Bio sup	Pres inf	2980,49
Bio sup	Pres med	2135,85
Bio med	Pres med	1056,73
Bio med	Pres inf	1005,93
Bio inf	Pres sup	908,35
Bio med	Pres sup	894,63
Bio inf	Pres med	861,62
Bio inf	Pres inf	820,10

Mapa de calor con variables biomasa y presión

			Presión	
		Inf	Med	Sup
	Inf	908,34 [KJ/Kg]	861,62 [KJ/Kg]	908,34 [KJ/Kg]
Biomasa	Med	1005,92 [KJ/Kg]	1056,72 [KJ/Kg]	894,62 [KJ/Kg]
	Sup	2980,48 [KJ/Kg]	2135,84 [KJ/Kg]	3071,06 [KJ/Kg]

Poder calórico generado por biomasa y humedad

Biomasa	Humedad	PC [kJ/Kg]
Bio sup	Humed inf	2980,49
Bio sup	Humed med	2329,21
Bio sup	Humed sup	2257,94
Bio med	Humed inf	1005,93
Bio inf	Humed inf	820,10
Bio inf	Humed med	711,36
Bio inf	Humed sup	660,28
Bio med	Humed med	583,01
Bio med	Humed sup	505,07

Mapa de calor con variables biomasa y humedad

			Humedad	
		Inf	Med	Sup
	Inf	820,10 [KJ/Kg]	711,36 [KJ/Kg]	660,28 [KJ/Kg]
Biomasa	Med	1005,92 [KJ/Kg]	583,01 [KJ/Kg]	505,06 [KJ/Kg]
	Sup	2980,48 [KJ/Kg]	2329,20 [KJ/Kg]	2257,94 [KJ/Kg]

Análisis Económico

Costos Directos	2294,5
Costos Indirectos	808,36
Total	3102,86
Imprevistos (10%)	310,29
TOTAL PROYECTO	3413,15

CONCLUSIONES

- La programación en Labview realiza el diseño y la construcción del software, algoritmos, estructuras de datos, los mismo que fueron utilizados con el objeto de ser más entendible y accesible, facilitando al usuario concentrarse de mejor manera en resolver la tarea o problema, permitiendo obtener de manera gráfica los valores de las temperaturas distribuidas en el sistema y presión de salida del gas de síntesis.
- Mediante las figuras 56 y 57 el índice de calor de la combinación de los efectos de biomasa, presión y humedad para determinar el poder calorífico más óptimo indica que la mezcla favorable del estudio es con 5 kilogramos de biomasa y el 100 % de abertura del ingreso de aire al gasificador, el valor de la humedad para una mezcla óptima es de 10 %, siendo la mezcla con mayor poder calorífico biomasa superior, presión superior y humedad inferior.
- Mediante las tablas 15 y 16 determinamos que el gas de síntesis como combustible para el motor generador entrega un amperaje del 20 % menos que con la gasolina como combustible para el motor generador.

CONCLUSIONES

- El análisis de Shapiro Will que se llevó a cabo en la toma de datos de las ocho termocuplas, con una confiabilidad del 95 %, determinamos por medio de la figura 54 y el anexo 4 que los datos son normales, ya que las diferencias significativas (p) tienen valores mayores a 0.05.
- El análisis de Duncan obtiene como resultado un valor de 0 de error, lo que significa que la biomasa, la presión, la humedad y sus interacciones influyen en el valor del poder calorífico. El análisis de Duncan por grupos indica que en el caso de repetición de variables (letras), se opera con cualquiera de estas si se desea obtener el mismo poder calorífico.

RECOMENDACIONES

- Para el uso del gasificador verificar inicialmente que tenga un cierre hermético a lo largo del sistema, puesto que la mínima entrada de aire afecta la producción de gas de síntesis de buena calidad.
- Para evitar problemas en el encendido del motor generador cuando se encuentre funcionando con el gas de síntesis, se realiza el cierre del paso de gasolina para no generar daños internos en el motor generador.
- El montaje de los módulos MAX 31855 se deben realizar en el momento de las pruebas, ya que el diseño de estos son de alta sensibilidad, por lo cual no se permite el ingreso de objetos extraños.
- Dar una revisión a las termocuplas cada mes para verificar su correcto funcionamiento y obtener datos reales.

GRACIAS POR LA ATENCIÓN PRESTADA

