

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y DE

LA CONSTRUCCIÓN

CARRERA DE INGENIERÍA CIVIL

TESIS PREVIO A LA OBTENCIÓN DEL TÍTULO DE

INGENIERO CIVIL

AUTOR: GUADALUPE MALDONADO DIEGO ARMANDO

TEMA: DETERMINACIÓN DE LA RESISTENCIA AL CORTE IN SITU DE LOS SUELOS EN ZONAS DE PELIGRO SÍSMICO.

DIRECTOR: ING. HUGO BONIFAZ MSC.

CODIRECTOR: ING. BYRON MORALES MSC.

SANGOLQUÍ

2015

CERTIFICACIÓN

Certifico que la presente investigación fue realizada en su totalidad por el señor DIEGO ARMANDO GUADALUPE MALDONADO como requerimiento para la obtención del título de INGENIERO CIVIL.

Sangolquí, Junio de 2015.

ING. HUGO BONIFÁZ MSC.

DIRECTOR

ING. BYRON MORALES MSC.

REVISADO POR

ING. PABLO CAIZA, Ph.D.

DIRECTOR DE LA CARRERA DE INGENIERÍA CIVIL

AUTORÍA DE RESPONSABILIDAD

Yo, GUADALUPE MALDONADO DIEGO ARMANDO

Declaro que:

El proyecto de grado denominado "DETERMINACIÓN DE LA RESISTENCIA AL CORTE IN SITU DE LOS SUELOS EN ZONAS DE PELIGRO SÍSMICO" ha sido desarrollado en base a una investigación adecuada, respetando derechos intelectuales de terceros, conforme las referencias que constan en las páginas correspondientes, cuyas fuentes se incorporan en la bibliografía. Consecuentemente este trabajo es de mi autoría.

En virtud de esta declaración, me responsabilizo del contenido, veracidad y alcance científico del proyecto de grado en mención parcial a la obtención del título de Ingeniero Civil.

Sangolquí, Junio de 2015

GUADALUPE MALDONADO DIEGO ARMANDO

AUTORIZACIÓN

Yo, GUADALUPE MALDONADO DIEGO ARMANDO

Autorizo a la Universidad de las Fuerzas Armadas la publicación, en la biblioteca virtual de la Institución, del trabajo "DETERMINACIÓN DE LA RESISTENCIA AL CORTE IN SITU DE LOS SUELOS EN ZONAS DE PELIGRO SÍSMICO", cuyo contenido, ideas y criterios son de mi exclusiva responsabilidad y autoría.

Sangolquí, Junio de 2015

GUADALUPE MALDONADO DIEGO ARMANDO

DEDICATORIA

A Dios por la gentileza de un nuevo día, de una nueva oportunidad, porque siempre se puede empezar de nuevo.

A mis queridos padres Anita y Mario, primero por haberme dado el don más sagrado que es la vida, por todo su amor y apoyo, el sacrificio que hacen para que no nos falte nada.

A mí amada Fernanda por aparecer en mi vida, ser la motivación y el aliento que me da para seguir adelante, bendito Dios por encontrarnos en el camino.

A mis queridos hermanos Edwin, Marco, Luis, Fabricio y sobrinos por el cariño, las palabras de aliento y el abrazo.

A mi tío lván, sé que siempre estas pendiente de nosotros.

A mis amigos por los buenos momentos, porque yo sé que siempre están allí.

A un ángel que guía mis pasos, Carmencita, tu luz y bendición no me abandonan.

AGRADECIMIENTO

A la Universidad Politécnica del Ejército, los docentes de la Carrera de Ingeniería Civil por los conocimientos brindados y la pasión por esta carrera.

Ingenieros Byron Morales y Hugo Bonifáz, por la guía y ayuda para el desarrollo de este proyecto de grado.

A la empresa Geosuelos y todo el personal, por la ayuda y la facilidad que me brindaron para desarrollar la tesis.

A todas las personas que de una u otra manera intervinieron en el desarrollo de esta tesis.

ÍNDICE GENERAL

CERTIFICACIÓNii		
AUTORÍA DE RESPONSABILIDADiii		
AUTORIZACIÓNiv		
DEDICATORIAv		
AGRADECIMIENTOvi		
RESUMENxviii		
ABSTRACTxix		
CAPÍTULO I		
INTRODUCCIÓN1		
1.1 Antecedentes1		
1.2 Justificación del Proyecto5		
1.3 Objetivo General del Proyecto7		
1.3.1 Objetivos Específicos del Proyecto7		
CAPÍTULO II		
FUNDAMENTOS DE LA RESISTENCIA AL CORTE9		
2.1 Esfuerzo y Resistencia al Corte9		
2.2 Criterios de falla de Mohr – Coulomb9		
2.3 Inclinación del plano de falla causado por cortante12		
2.4 Ley de falla por cortante en suelo saturado15		
2.5 Parámetros Fundamentales16		
2.5.1 Angulo de Fricción16		
2.5.2 Cohesión16		
2.5.3 Esfuerzos Totales y Efectivos18		

2.6 Medición de la Resistencia al Corte de los Suelos	19
2.6.1 Selección de Muestras	20
2.7 Ensayos de Laboratorio	21
2.7.1 Ensayo Triaxial	21
2.7.2 Ensayo Ficómetro	27
2.7.3 Ensayo de Veleta (Norma ASTM D 2573)	31
CAPÍTULO III	
PROPUESTA DE TRABAJO	35
3.1 Importancia del uso del ficómetro	35
3.2 Trabajo de Campo	35
3.3 Metodología y Ejecución de la Prueba del Ficómetro	36
3.3.1 Objetivo:	36
3.3.2 Descripción del equipo:	36
3.3.3 Preparación del barreno	42
3.3.4 Calibración de la sonda del ficómetro	43
3.3.5 Preparación de la prueba de ficómetro	46
3.3.6 Falla:	49
CAPÍTULO IV	
MEMORIA DE CALCULO PARA OBTENER LOS PARAMETROS DE	
CORTE	53
4.1 Procesamiento de Datos	53
CAPÍTULO V	
RESULTADOS DE LOS TRABAJOS REALIZADOS EN EL	
NORORIENTE DE LA CIUDAD DE QUITO	60

viii

5.1 Sitio de Investigación 160
5.2 Sitio de Investigación 261
5.3 Sitio de Investigación 362
5.4 Sitio de Investigación 463
5.5 Sitio de Investigación 564
5.6 Análisis de Resultados66
5.7 Magnitud de la variación en los resultados entre el ensayo del
Ficómetro, triaxial UU y Corte Directo68
5.7.1 Sitio de Investigación 168
5.7.2 Sitio de Investigación 269
5.7.3 Sitio de Investigación 370
5.7.4 Sitio de Investigación 471
5.7.5 Sitio de Investigación 572
5.8 Correlación entre los esfuerzos cortantes resistentes obtenidos
con el ficómetro y Triaxial-UU73
5.8.1 Sitio de Investigación 373
5.9 Correlación entre los esfuerzos cortantes resistentes obtenidos
con el Ficómetro y Corte Directo75
5.9.1 Sitio de Investigación 175
5.9.2 Sitio de Investigación 276
5.9.3 Sitio de Investigación 377
5.9.4 Sitio de Investigación 478
5.9.5 Sitio de Investigación 579

ix

CAPÍTULO VI

CONCLUSIONES Y RECOMENDACIONES	80
6.1 Conclusiones	
6.2 Recomendaciones	
6.3 Bibliografía	
6.4 Anexos	
6.4.1 Ensayos de Ficómetro	
6.4.2 Ensayos Triaxial	
6.4.3 Ensayos Corte Directo	115
6.4.4 Formato para el Ensayo de Ficómetro	133
6.4.5 Registro Fotográfico	135

ÍNDICE DE TABLAS

Tabla 1-1 Clasificación de los perfiles de suelo	4
Tabla 4-1. Datos medidos in situ de la presión de calibración medida	
en la consola	53
Tabla 4-2. Datos medidos in situ del diámetro de la sonda para la	
calibración	54
Tabla 4-3. Reducción y corrección de los datos del ensayo de ficómetro	
por presión	55
Tabla 4-4. Reducción y corrección de los datos del ensayo de ficómetro	
por diámetro	56
Tabla 4-5. Datos obtenidos en campo de volumen medido en 15, 30, 60	
y 210 segundos, presión leída en el manómetro y Tensión máxima	
medida en el ensayo en cada incremento de presión	57
Tabla 4-6. Cálculos del área de corte (S), presión normal corregido (pc)	
y la tensión de corte (t)	59
Tabla 5-1. Resultados de las pruebas in situ y de laboratorio para el	
Sitio de investigación 1	60
Tabla 5-2. Resultados de las pruebas in situ y de laboratorio para el	
Sitio de investigación 2	61
Tabla 5-3. Resultados de las pruebas in situ y de laboratorio para el	
Sitio de investigación 3	62
Tabla 5-4. Resultados de las pruebas in situ y de laboratorio para el	
Sitio de investigación 4	63

Tabla 5-5. Resultados de las pruebas in situ y de laboratorio para el	
Sito de investigación 5	.64
Tabla 5-6. Resumen de resultados de Pruebas de ficómetro, Triaxial UU	
y Corte Directo	. 66

ÍNDICE DE FIGURAS

Figura 1.1. Modelo de una columna generalizada de suelo de Quito	2
Figura 2.1. Modelo de fricción	9
Figura 2.2. Envolvente de falla de Mohr y los criterios de falla de Mohr -	
Coulomb	11
Figura 2.3. Inclinación del plano de falla en el suelo con respecto al plano	
principal mayor	13
Figura 2.4. Circulo de Mohr y envolvente de falla	13
Figura 2.5. Círculos de Mohr	17
Figura 2.6 . Esfuerzos totales y efectivos. $\sigma'(efectivo) = \sigma (total) - \mu$	18
Figura 2.7. Equipo Triaxial	23
Figura 2.8. Prensa Triaxial	25
Figura 2.9. Sonda de ficómetro	28
Figura 2.10. Unidad de Control de Presiones y Volúmenes	29
Figura 2.11. Detalle del ensayo de ficómetro	30
Figura 2.12. Diagrama del equipo de la veleta de corte	31
Figura 2.13. Equipo de la veleta de corte	32
Figura 2.14. Derivación de la ecuación 2.12: (a) momento resistente de	
la fuerza cortante; (b) variaciones en la movilización de la resistencia	
cortante	34
Figura 3.1. Maquina Acker ACE	36
Figura 3.2. Sonda del ficómetro	37
Figura 3.3. Disposición típica del aparato de ensayo ficómetro	38
Figura 3.4. Tubería de perforación	39

Figura 3.5. Sistema de tensado40
Figura 3.6. Unidad de Control de Presiones y Volumen41
Figura 3.7. Sistema de medición de movimientos verticales
Figura 3.8. Herramientas auxiliares42
Figura 3.9. Perforación del suelo43
Figura 3.10. Calibración del equipo ficómetro44
Figura 3.11. Medición del diámetro de la sonda del ficómetro44
Figura 3.12. Curvas volumen - diámetro de la sonda y volumen - presión
de la sonda45
Figura 3.13. Colocación de la sonda del ficómetro46
Figura 3.14. Instalación de las vigas de reacción46
Figura 3.15. Colocación de la celda de carga, gato hidráulico y el trípode 47
Figura 3.16. Calibrador dinamométrico para medir la fuerza de tracción T47
Figura 3.17. Etapa de contacto de la sonda y el suelo
Figura 3.18. Etapa de contacto de la sonda y el suelo
Figura 3.19. Etapa de contacto de la sonda y el suelo
Figura 3.20. Etapa de contacto de la sonda y el suelo
Figura 4.1. Grafico Volumen vs. Presión de calibración
Figura 4.2. Grafico Volumen vs. Diámetro de calibración55
Figura 4.3. Presión corregida (pc) vs. Tensión de corte (t)
Figura 5.1. Ubicación de Sondeos del Sitio de Investigación 161
Figura 5.2. Ubicación de Sondeos del Sitio de Investigación 262
Figura 5.3. Ubicación de Sondeos del Sitio de Investigación 363
Figura 5.4. Ubicación de Sondeos del Sitio de Investigación 464

xiv

Figura 5.5. Ubicación de Sondeos del Sitio de Investigación 5
Figura 5.6. Magnitud de variación de la cohesión entre el ficómetro y
corte directo del sitio de investigación 168
Figura 5.7. Magnitud de variación del ángulo de fricción interna entre el
ficómetro y corte directo del sitio de investigación 1
Figura 5.8. Magnitud de variación de la cohesión entre el ficómetro y
corte directo del sitio de investigación 269
Figura 5.9. Magnitud de variación del ángulo de fricción interna entre
el ficómetro y corte directo del sitio de investigación 269
Figura 5.10. Magnitud de variación de la cohesión entre el ficómetro,
triaxial UU y corte directo del sitio de investigación 3
Figura 5.11. Magnitud de variación del ángulo de fricción interna entre
el ficómetro, triaxial UU y corte directo del sitio de investigación 370
Figura 5.12. Magnitud de variación de la cohesión entre el ficómetro,
triaxial UU y corte directo del sitio de investigación 471
Figura 5.13. Magnitud de variación del ángulo de fricción interna entre
el ficómetro, triaxial UU y corte directo del sitio de investigación 471
Figura 5.14. Magnitud de variación de la cohesión entre el ficómetro,
triaxial UU y corte directo del sitio de investigación 572
Figura 5.15. Magnitud de variación del ángulo de fricción interna entre
el ficómetro, triaxial UU y corte directo del sitio de investigación 572
Figura 5.16. Correlación entre los esfuerzos cortantes resistentes
obtenidos con el ficómetro 6 y la prueba triaxial UU del Sitio de
Investigación 373

xv

Figura 5.17. Correlación entre los esfuerzos cortantes resistentes	
obtenidos con el ficómetro 7 y la prueba triaxial UU del Sitio de	
Investigación 3.	74
Figura 5.18. Correlación entre los esfuerzos cortantes resistentes	
obtenidos con el ficómetro 2 y la prueba de corte directo del Sitio de	
Investigación 1	75
Figura 5.19. Correlación entre los esfuerzos cortantes resistentes	
obtenidos con el ficómetro 3 y la prueba de corte directo del Sitio de	
Investigación 2	76
Figura 5.20. Correlación entre los esfuerzos cortantes resistentes	
obtenidos con el ficómetro 4 y la prueba de corte directo del Sitio de	
Investigación 2.	76
Figura 5.21. Correlación entre los esfuerzos cortantes resistentes	
obtenidos con el ficómetro 5 y la prueba de corte directo del Sitio de	
Investigación 2.	77
Figura 5.22. Correlación entre los esfuerzos cortantes resistentes	
obtenidos con el ficómetro 6 y la prueba de corte directo del Sitio de	
Investigación 3.	77
Figura 5.23. Correlación entre los esfuerzos cortantes resistentes	
obtenidos con el ficómetro 7 y la prueba de corte directo del Sitio de	
Investigación 3.	78
Figura 5.24. Correlación entre los esfuerzos cortantes resistentes	
obtenidos con el ficómetro 8 y la prueba de corte directo del Sitio de	
Investigación 4	78

Figura 5.25. Correlación entre los esfuerzos cortantes resistentes
obtenidos con el ficómetro 9 y la prueba de corte directo del Sitio de
Investigación 479
Figura 5.26. Correlación entre los esfuerzos cortantes resistentes
obtenidos con el ficómetro 10 y la prueba de corte directo del Sitio de
Investigación 5
Figura 6.1. Ensayo Ficómetro en el Sito de Investigación 3135
Figura 6.2. Calibración de la sonda, Sito de Investigación 3135
Figura 6.3. Toma de datos de calibración, Sito de Investigación 3136
Figura 6.4. Ingreso de la sonda, Sito de Investigación 3
Figura 6.5. Colocación del equipo de superficie, Sito de Investigación 3137
Figura 6.6. Colocación del equipo de superficie, Sito de Investigación 3137
Figura 6.7. Proceso de extracción de la sonda mediante el gato
hidráulico, Sito de Investigación 3138
Figura 6.8. Material que queda entre los dientes anulares de la sonda,
Sito de Investigación 3138
Figura 6.9. Ensayo Ficómetro en el Sito de Investigación 4139
Figura 6.10. Ensayo Ficómetro en el Sito de Investigación 4139
Figura 6.11. Tallado del material140
Figura 6.12. Tallado del material140
Figura 6.13. Muestras talladas para Ensayo de Corte Directo141
Figura 6.14. Ensayo de Corte Directo141
Figura 6.15. Falla de la muestra en Ensayo de Corte Directo142

RESUMEN

El uso de los ensayos in situ para conocer los parámetros de corte de los suelos, como el ensayo triaxial y corte directo son métodos indirectos en que las muestras inalteradas de suelo in situ son transportadas y manipuladas en laboratorio, esto puede generar pérdidas en la propiedades índice y generar micro fisuras para la evaluación del ensayo. En este tema de investigación se da a conocer el ensayo de ficómetro que es un equipo de exploración geotécnica, un ensayo directo que permite obtener los parámetros de corte del suelo in situ principalmente en suelos de difícil muestreo como arenas, suelos duros, tobas, rellenos compactados y rocas blandas. El uso del ficómetro en suelos de difícil muestreo del Nororiente de Quito se reciente, por lo que es necesario llevar a cabo calibraciones de los parámetros de resistencia al corte de los suelos obtenidos con esta técnica cohesión y ángulo de fricción interna (c, Ø) con los de pruebas triaxiales convencionales o de corte directo a fin de establecer su intervalo de aplicación y tener mayor certidumbre y confianza con esta prueba. En este trabajo se muestran los datos obtenidos del ensayo de ficómetro en el Nororiente de la ciudad de Quito y su correlación con resultados del ensayo de corte directo y triaxial UU, donde se observa una correlación alta con la prueba de corte directo y en menor grado con triaxial UU.

Se propone mediante los ensayos realizados un nuevo ensayo para la determinación de los parámetros de corte del suelo como método directo.

PALABRAS CLAVES:

- FICÓMETRO
- COHESIÓN
- ÁNGULO DE FRICCIÓN INTERNA
- TRIAXIAL UU
- CORTE DIRECTO

ABSTRACT

The use of test in situ soil to know the shear parameters of soil, such as triaxial test and direct shear are indirect methods in which the undisturbed specimen of soil are transported and handled in the laboratory, this may generate losses to the index properties and generate fissure for test evaluation. In this investigation makes know the Phicometer test such as a geotechnical exploration, Phicometer is a direct test to allow obtaining the shear parameters in situ mainly in difficult soil such as sand, hard soil, tufas, backfilling and loose rock. The use of the Phicometer on difficult specimen's soils of the Northeastern Quito is recently so, and it is necessary to perform calibrations of the resistance parameters obtained with this technique Soil friction angle (\emptyset) and soil cohesion (c) with the conventional triaxial tests and direct shear test to establish its interval of application and have greater certainty and confidence with this test. In this paper we expose works of implementation of Phicometer in soils of Northeastern of Quito.

It's proposed to know Phicometer test by the survey soil test on the Northeastern of Quito to determine the shear parameters.

KEYWORDS:

- > PHICOMETER
- COHESION
- SOIL FRICTION ANGLE
- ➢ TRIAXIAL TEST
- DIRECT SHEAR TEST

CAPÍTULO I: INTRODUCCIÓN

1.1 Antecedentes

La resistencia al corte de un suelo es necesaria para evaluar diferentes análisis Geotécnicos y propósitos de diseño, como la evaluación de estabilidad de taludes, diseño de cimentaciones para estructuras y el cálculo de la estabilidad de estructuras de contención.

Para la evaluación de infraestructuras de obra civil ya desarrolladas en su sistema constructivo, cuando están expuestas a escurrimientos superficiales de lluvias (pluviometría alta) o drenajes mal conducidos, hace que los materiales volcano-sedimentarios absorban cantidades importantes de agua afectando la estructura interna del suelo específicamente la resistencia al corte, un probable daño de las estructuras por el aumento de humedad no siempre es posible la toma de muestras realizando excavaciones o toma de bloques para ensayos triaxial para obtener la resistencia del suelo, por lo que es necesario una medición in situ con ensayo alternos.

La ciudad de Quito se encuentra enmarcada en un entorno geodinámico complejo, ya que al estar rodeado por volcanes y fallas geologicas activas los procesos: sedimentación, volcanismo, tectónica y erosión; interactúan entre sí dando como resultado una cuenca volcano-sedimentaria complicada dentro del denominado Valle Interandino. (Metro de Quito)

El estudio estructural del Valle de Quito menciona que "La zona de estudio se encuentra enmarcada dentro de un ambiente tectónico activo, en el que presenta un sistema de fallas inversas asociadas a una depositación sin-tectónica observada hacia los términos de las fallas". (Metro de Quito)

La falla de Quito va desde el sur por el Este de Quito y termina en la denominada Falla Botadero. Este conjunto de falla genera levantamiento a lo largo de una dirección Suroeste-Noreste conocidos como los levantamientos de llumbisí-Puengasí; Batán-La Bota y Calderón-Catequilla. (Metro de Quito).

Al estar Quito rodeada de volcanes, es lógico pensar que los suelos de la cuenca de la ciudad tienen ese origen el mismo que se inició en el Pleistoceno medio (El Pleistoceno es una época que empieza hace 2.5 Ma) y un modelo generalizado es el presentado en la figura 1.1 donde se distinguen dos formaciones denominadas Fm. Machángara y Fm. Cangahua. (Villagómez, 2003; Peñafiel, 2009)

Figura 1.1. Modelo de una columna generalizada de suelo de Quito. Fuente: (Peñafiel, 2009)

Se destaca que la Formación Cangahua de origen volcánico, está compuesta por cenizas volcánicas, tobas y suelos que empezaron a depositarse hace 10000 años antes de Cristo. En la parte inferior de la figura

1.1, se tiene una dimensión de 50 m., donde se tiene una interrogante, sobre el origen de ese material. Pero en base a esa dimensión se puede indicar que la columna de suelo presentada en la figura 1.1, tiene unos 500 m. (Aguiar 2013)

La Cangahua es una ceniza volcánica que con el paso del tiempo (miles de años) se ha nitrificado dando lugar a una roca blanda. Es un suelo muy resistente apto para la construcción, en verano es muy difícil excavar en este tipo de suelo, en invierno es más fácil pero solamente donde la tierra está húmeda luego es muy duro la excavación. Existen siete tipos de Cangahuas entre las que se destacan las tipo: toba; brecha; superficial; flujo lajárico; arena media SM; limo de baja plasticidad LM. (Bonifaz, 2002).

La Cangahua tiene una alta resistencia al corte la misma que varía entre 0.5 a 1 kg/cm2; el ángulo de fricción se encuentra entre 30° y 35°; el coeficiente de Poisson se encuentra entre 0.3 y 0.4; el Índice de plasticidad está entre 4 y 6; la velocidad de la onda de corte se encuentra entre 300 y 350 m/s. Dentro de las propiedades químicas se debe manifestar que la Cangahua son volcánicas con granos de silicato. (Bonifaz, 2002).

Mediante el ficómetro que es un ensayo de corte in situ, se determinara una medición muy útil de la resistencia límite al corte y la determinación de parámetros mecánicos cohesión (C) y ángulo de fricción interna (Ø).

Una de las ventajas del ensayo de ficómetro, es un ensayo de campo para realizar en suelos en los que es difícil obtener muestras inalteradas.

Para caracterizar el comportamiento de los materiales existentes frente a las acciones sísmicas, la Norma Ecuatoriana de la Construcción NEC-11 (Peligro sísmico y Requisitos de Diseño Sismo Resistente) definen unos coeficientes de amplificación dinámica de perfiles de suelo Fa, Fd y Fs. cuyo valor depende del tipo de terreno. Las citada norma diferencia hasta seis tipo de perfiles de suelo, denominados A, B, C, D, E y F.

Tabla 1-1

Clasificación de los perfiles de suelo

Tipo de perfil	Descripción	Definición	
Α	Perfil de roca competente	V _s ≥ 1500 m/s	
В	Perfil de roca de rigidez media	1500 m/s > V s ≥ 760 m/s	
с	Perfiles de suelos muy densos o roca blanda, que cumplan con el criterio de velocidad de la onda de cortante, o	760 m/s > V s≥ 360 m/s	
	perfiles de suelos muy densos o roca blanda, que cumplan con cualquiera de los dos criterios	N ≥ 50.0 S _u ≥ 100 KPa (≈ 1 kgf/cm²)	
	Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o	360 m/s > V ₅ ≥ 180 m/s	
D	perfiles de suelos rígidos que cumplan cualquiera de las dos condiciones	50 > N ≥ 15.0 100 kPa (≈ 1 kgf/cm ²) > S _u ≥ 50 kPa (≈0.5 kgf7cm ²)	
E	Perfil que cumpla el criterio de velocidad de la onda de cortante, o	V _s < 180 m/s	
	perfil que contiene un espesor total H mayor de 3 m de arcillas blandas	IP > 20 w≥ 40% Su < 50 kPa (≈0.50 kfg7cm ²)	
	 Los perfiles de suelo tipo F requieren una evaluación realizada explícitamente en el sitio por un ingeniero geotecnista (Ver 2.5.4.9). Se contemplan las siguientes subclases: F1—Suelos susceptibles a la falla o colapso causado por la excitación sísmica, tales como; suelos licuables, arcillas sensitivas, suelos dispersivos o débilmente cementados, etc. F2—Turba y arcillas orgánicas y muy orgánicas (H >3m para turba o arcillas orgánicas y muy orgánicas). F3—Arcillas de muy alta plasticidad (H >7.5 m con índice de Plasticidad IP >75) F4—Perfiles de gran espesor de arcillas de rigidez mediana a blanda (H >30m) 		
F			
	F5—Suelos con contrastes de impedancia α ocurriendo dentro de los primeros 30 m superiores del perfil de subsuelo, incluyendo contactos entre suelos blandos y roca, con variaciones bruscas de velocidades de ondas de corte.		
	F6—Rellenos colocados sin control ingenieril.		

Fuente: (Norma Ecuatoriana de la Construcción, 2011)

1.2 Justificación del Proyecto

Los efectos locales de la respuesta sísmica de las edificaciones deben evaluarse en base a los perfiles de suelo, independientemente del tipo de cimentación. La identificación del perfil se realiza a partir de la superficie del terreno. (Fuente. NEC 11)

Las propiedades mecánicas e hidráulicas del subsuelo tales como: resistencia al esfuerzo cortante, propiedades esfuerzo-deformación, compresibilidad, expansión, permeabilidad y otras que resulten pertinentes de acuerdo con la naturaleza geológica del área, se determinarán en cada caso mediante procedimientos aceptados de campo o laboratorio. (Fuente. NEC 11)

Se debe determinar cómo mínimo las características de resistencia al esfuerzo cortante en cada uno de los materiales típicos encontrados en el sitio, como por ejemplo; ensayos compresión simple o triaxial UU (no consolidado no drenado), veleta de laboratorio, resistencia índice (torvane, penetrometro de bolsillo) o corte directo en muestras inalteradas de suelos cohesivos o finos, y estimaciones de la resistencia por medio de correlaciones con los ensayos de penetración estandar SPT (en arenas y suelos finos de consistencia rígida a muy dura) o de cono estático CPT en suelos arenosos y cohesivos o finos. (Fuente. NEC 11)

En el NEC – 11, se calcula la capacidad de carga admisible (q adm) bajo el criterio de resistencia al corte y asentamiento, para la cual se utiliza métodos directos como el ensayo de penetración estándar SPT o métodos indirectos como ensayos triaxiales UU, siempre y cuando sea posible el muestreo. Por esta razón el ensayo del Ficómetro permite cumplir con los criterios del NEC – 11, ya que es un método directo y es un ensayo in situ

Históricamente en la ciudad de Quito se ha tenido fallas por corte como por ejemplo, falla de muro de contención en la avenida Eloy Alfaro; sector La Carolina año 2013, viviendas en el centro histórico que requieren de muros de contención, falla en el muro de contención ubicado en el lado oeste del lindero de la Estación del Tren en Chimbacalle.

Muchos de estos materiales existentes no permiten tomar muestras inalteradas, por lo que es necesario medir directamente en el sitio de evaluación.

La resistencia al corte de suelos, representado por el ángulo de fricción y la cohesión del modelo Mohr-Coulomb, un parámetro fundamental para geotécnica. Desempeña un papel vital en el estudio de capacidad de carga, estabilidad de taludes y presiones laterales sobre estructuras de contención de suelo.

Por lo general, la resistencia al corte se mide en el laboratorio utilizando ensayos triaxiales UU o ensayos de corte directo efectuados en muestras de campo. Esta medida sólo tiene sentido si el muestreo, conservación y preparación hacen lo posible para considerar a la muestra como inalterada y por lo tanto los especímenes de ensayo como suficientemente representativos.

En este proyecto de grado se va a comparar los resultados de la prueba del ficómetro con el ensayo triaxial UU (no consolidado-no drenado) debido a que los sitios de investigación realizados en el presente proyecto de grado presentan situaciones en las que no hay drenaje y el análisis del triaxial UU está en función de esfuerzos totales y parámetros geomecanicos determinados in situ para estabilidad a corto plazo.

Muchos tipos de suelo y de los materiales no cumplen con estas condiciones de muestreo. Entre estos, es posible citar arena de grano fino, suelos blandos (ceniza volcánica, arenisca), suelos gruesos y suelos heterogéneos (gravas, arcilla, roca descompuesta, etc.) y con diversos materiales (relleno).

En el caso de tales suelos y materiales, el ensayo del ficómetro in situ permite una medición direccional y horizontal muy útil de la resistencia límite al corte y la determinación de los parámetros habituales C y ø del modelo Mohr-Coulomb en términos de esfuerzos totales, el ensayo evita la alteración de las condiciones naturales del suelo por muestreo y transporte, realizando en condiciones reales "in situ"

Los resultados del ensayo ficómetro, permiten entender el comportamiento mecánico de los suelos, a partir de lo cual se pueden tomar decisiones de ingeniería para diseño y para construcción.

Los resultados de la prueba del ficómetro y del ensayo triaxial UU se correlacionan mediante la resistencia al corte obtenido de cada ensayo

1.3 Objetivo General del Proyecto

Introducir una nueva técnica de ensayo para la determinación de los parámetros de resistencia al corte como método directo que elimina la incertidumbre de la alteración del suelo durante el muestreo.

1.3.1 Objetivos Específicos del Proyecto

- Presentar los resultados de pruebas del ficómetro en los suelos investigados, y su comparación con resultados de pruebas triaxiales UU.
- Establecer la magnitud de la variación en los resultados (ángulo de fricción interna y cohesión), entre el ensayo del ficómetro y triaxial UU.

- Comparar las envolventes del modelo Mohr-Coulomb con la prueba del ficómetro.
- Definir la importancia que tiene el uso del ficómetro para el análisis geotécnico.
- Describir el equipo y el procedimiento de ejecución de la prueba con la sonda del ficómetro.
- Determinar las ventajas y desventajas de cada uno de los métodos utilizados en el presente trabajo para obtener los parámetros de resistencia al corte de los suelos.
- Determinar las diferencias que existen entre los ensayos del ficómetro y triaxial UU con base al recurso humano, recurso económico, tiempo, fiabilidad, normas, grado de dificultad, etc.
- Verificar el cumplimiento de la norma XP P94-120, para el uso del ficómetro.
- Fomentar lo que podría ser el inicio del uso del ficómetro que enmarque los estudios para la determinación de la resistencia al corte de los suelos y sus características.
- Definir resultados, conclusiones y recomendaciones del estudio realizado en el Nororiente de la ciudad de Quito

CAPÍTULO II: FUNDAMENTOS DE LA RESISTENCIA AL CORTE

2.1 Esfuerzo y Resistencia al Corte

Se define a la resistencia al corte, o resistencia al esfuerzo cortante de un suelo como el valor máximo, o límite de esfuerzo que se puede inducir dentro de su masa antes de que esta ceda. (Torres, 2006)

La resistencia al corte en el seno de una masa sólida se debe al desarrollo de la resistencia a la fricción entre partículas adyacentes, de modo que los análisis se basan principalmente en el modelo de fricción. (Torres, 2006)

Se conoce que un suelo se rompe cuando el esfuerzo de corte aplicado es mayor que su resistencia al corte. (Torres, 2006)

Figura 2.1. Modelo de fricción Fuente:(Torres, 2006)

2.2 Criterios de falla de Mohr – Coulomb

Mohr (1900) presento una teoría sobre la ruptura de los materiales. Esta teoría afirma que un material falla debido a una combinación crítica de esfuerzo normal y esfuerzo cortante, y no solo por la presencia de un esfuerzo máximo normal o bien de un esfuerzo máximo cortante. Así

entonces, la relación funcional entre un esfuerzo normal y un esfuerzo cortante sobre un plano de falla se expresa en la forma (figura 2.2a) (Das, 2001)

$$\tau_{\rm f} = f(\sigma) \tag{2.1}$$

Dónde:

- τ_{f} = Esfuerzo cortante sobre el plano de falla
- σ = Esfuerzo normal sobre el plano de falla

La envolvente de falla definida por la ecuación (2.1) es una línea curva, como muestra la figura 2.1b. Para la mayoría de los problemas de mecánica de suelos, es suficiente aproximar el esfuerzo cortante sobre el plano de falla como una función lineal del esfuerzo normal (Coulomb, 1776). Esta relación se escribe como

$$\tau = c + \sigma x Tan \emptyset$$
 (2.2)

Dónde:

c = Cohesión

Ø =Ángulo de fricción interna del material

La ecuación precedente se llama criterio de falla de Mohr-Coulomb.

Figura 2.2. Envolvente de falla de Mohr y los criterios de falla de Mohr -Coulomb Fuente:(Das, 2001)

El significado de la envolvente de falla se explica como sigue: si el esfuerzo normal y el esfuerzo cortante sobre un plano en una masa de suelo son tales que son representados por el punto *A* en la figura 2.1b, entonces no ocurrirá una falla cortante a lo largo de ese plano. Si el esfuerzo normal y el esfuerzo cortante sobre un plano son representados por el punto *B* (que se encuentra sobre la envolvente de falla), entonces ocurrirá una falla cortante a lo largo de ese plano. Un estado de esfuerzo sobre un plano representado por el punto *C* no existe porque éste queda por arriba de la envolvente de falla y la falla cortante ya habría ocurrido en el suelo.(Das, 2001)

2.3 Inclinación del plano de falla causado por cortante

Como se establece en el criterio de falla de Mohr-Coulomb, la falla por cortante ocurrirá cuando el esfuerzo cortante sobre un plano alcanza un valor dado por la ecuación (2.2). (Das, 2001)

Para determinar la inclinación del plano de falla respecto al plano principal mayor, refiérase a la figura 2.3, donde $\sigma 1$ y $\sigma 3$ son, respectivamente, los esfuerzos principales mayor y menor. El plano de falla EF forma un ángulo Θ con el plano principal mayor. Para determinar el ángulo Θ y la relación entre $\sigma 1$ y $\sigma 3$, refiérase a la fig. 2.4, que es una gráfica del círculo de Mohr para el estado de esfuerzo mostrado en la figura 2.3. En la figura 2.4, fgh es la envolvente de falla definida por la relación s = c + σ x Tan Ø. La línea radial ab define el plano principal mayor (CD en la figura 2.3), y la línea radial ad define el plano de falla (EF en la figura 2.3). Se muestra que en ángulo bad = 2 Θ = 90 + Ø, o (Das, 2001)

$$\theta = 45 + \frac{\emptyset}{2} \tag{2.3}$$

De nuevo, de la figura 7.3, tenemos

$$\frac{ad}{fa} = sen \, \emptyset \tag{2.4}$$

Figura 2.3. Inclinación del plano de falla en el suelo con respecto al plano principal mayor Fuente:(Das, 2001)

14

$$\overline{fa} = f0 + 0a = \operatorname{ccot}\emptyset + \frac{\sigma_1 + \sigma_3}{2}$$
(2.5a)

También;

$$\overline{ad} = \frac{\sigma_1 - \sigma_3}{2} \tag{2.5b}$$

Sustituyendo las ecuaciones (2.5a) y (2.5b) en la ecuación (2.4), obtenemos.

$$\operatorname{sen} \emptyset = \frac{\frac{\sigma_1 - \sigma_3}{2}}{\operatorname{ccot} \emptyset + \frac{\sigma_1 + \sigma_3}{2}}$$

0

$$\sigma_{1} = \sigma_{3} \left(\frac{1 + sen\emptyset}{1 - sen\emptyset} \right) + 2c \left(\frac{cos\emptyset}{1 - sen\emptyset} \right)$$
(2.6)

Sin embargo,

$$\frac{1 + sen\emptyset}{1 - sen\emptyset} = \tan^2\left(45 + \frac{\emptyset}{2}\right)$$

у

$$\frac{\cos \emptyset}{1 - sen\emptyset} = \tan^2 \left(45 + \frac{\emptyset}{2} \right)$$

Entonces,

$$\sigma_1 = \sigma_3 \tan^2\left(45 + \frac{\emptyset}{2}\right) + 2c \, \tan\left(45 + \frac{\emptyset}{2}\right) \tag{2.7}$$

Esta relación es el criterio de falla de Mohr-Coulomb expresada en términos de los esfuerzos de falla. (Das, 2001)

2.4 Ley de falla por cortante en suelo saturado

En un suelo saturado, el esfuerzo normal total en un punto es la suma del esfuerzo efectivo y la presión de poro, o (Das, 2001)

$$\sigma = \sigma' + \mu \tag{2.8}$$

El esfuerzo efectivo σ' es tomado por los sólidos del suelo. Entonces, para aplicar la ecuación (2.2) a la mecánica del suelo tenemos que reescribirla como (Das, 2001)

$$\tau_{f} = c + (\sigma - u) \tan \emptyset = c + \sigma' \tan \emptyset$$
(2.9)

El valor de *c* para la arena y el limo inorgánico es 0. Para arcillas normalmente consolidadas, *c* se considera igual a 0. Las arcillas sobreconsolidadas tienen valores de *c* que son mayores que 0. El ángulo de fricción Ø se llama a veces el ángulo de fricción drenado. (Das, 2001)

Para arcillas normalmente consolidadas, el ángulo de fricción Ø generalmente varía entre 20° y 30°. Para arcillas preconsolidadas, la magnitud de Ø decrece. Para arcillas naturales no cementadas, preconsolidadas con presión de preconsolidacion menor que aproximadamente 1000 kN/m². (Das, 2001)

2.5 Parámetros Fundamentales

2.5.1 Angulo de Fricción

El Ángulo de Fricción Interna del suelo (Ø), es el que forma la envolvente con la horizontal (abscisas) y se determina en la gráfica por la pendiente de la envolvente. (Bonifaz, 2015)

El ángulo de fricción (Ø) depende de una gran cantidad de factores; algunos de los más importantes son: (Suárez, 2009)

- > Tipo de mineral constitutivo de las partículas.
- Tamaño de los granos o partículas. A mayor tamaño de partículas, mayor es Ø.
- Forma de los granos o partículas. Ø es mayor para partículas angulosas.
- Distribución de los tamaños de granos o partículas. En los suelos bien gradados, Ø es mayor que en los suelos uniformes.
- > Fábrica o microestructura (organización de las partículas).
- > Densidad.
- Permeabilidad (Facilidad de drenaje).
- Presión normal o de confinamiento.
- Presión de preconsolidación.

El ángulo de fricción es el resultado de la combinación de todos los factores. Por ejemplo, el ángulo de fricción es mayor al aumentar la densidad, pero si las presiones normales son muy altas, el ángulo de fricción tiende a disminuir. En arcillas, el ángulo de fricción depende de las condiciones de preconsolidación. (Suárez, 2009)

2.5.2 Cohesión

Resistencia al corte cuando los esfuerzos principales son nulos o tienen valores de cero. (Bonifaz, 2015)

El valor de la cohesión (c), está dado por la ordenada al origen de dicha envolvente, medida a la misma escala con que se trazaron los círculos. (Bonifaz, 2015)

La cohesión en la mecánica de suelos, es utilizada para representar la resistencia al cortante producida por la cementación entre las partículas, mientras que en la física, este término se utiliza para representar la resistencia a la tensión. (Suárez, 2009)

En los suelos eminentemente granulares en los cuales no existe ningún tipo de cementante o material que pueda producir adherencia, la cohesión se supone igual a cero y a estos suelos se les denomina suelos friccionantes o "no cohesivos" (C = 0). (Suárez, 2009)

En los suelos no saturados, la tensión debida a la succión del agua en los poros, produce un fenómeno de adherencia entre partículas por presión negativa o fuerzas capilares. Esta cohesión "aparente" desaparece con la saturación. (Suárez, 2009)

Figura 2.5. Círculos de Mohr Fuente: (Bonifaz, 2015)
2.5.3 Esfuerzos Totales y Efectivos

Se define como esfuerzo a la fuerza por unidad de área.

2.5.3.1 Esfuerzo Efectivo

Una masa de suelo saturada está compuesta por dos fases distintas: el esqueleto de partículas y los poros entre partículas llenos de agua. (Suárez, 2009)

Cualquier esfuerzo impuesto sobre el suelo, es soportado por el esqueleto de partículas y también, por la presión del agua. (Suárez, 2009)

Figura 2.6. Esfuerzos totales y efectivos. $\sigma'(\text{efectivo}) = \sigma \text{ (total)} - \mu$ **Fuente:** (Suárez, 2009)

Típicamente, el esqueleto puede transmitir esfuerzos normales y de corte por los puntos de contacto entre las partículas y el agua a su vez, puede ejercer una presión hidrostática igual en todas las direcciones. (Suárez, 2009)

Los esfuerzos ejercidos por el esqueleto solamente se conocen como esfuerzos efectivos y a los esfuerzos hidrostáticos del agua se les denomina "presión de poros". Los esfuerzos efectivos son los que controlan el comportamiento del suelo al cortante y no los esfuerzos totales. (*Figura 2.1*)(Suárez, 2009)

$$\sigma' = \sigma - \mu \tag{2.10}$$

2.5.3.2 Esfuerzo Total

El esfuerzo total es la suma de todas las fuerzas, incluyendo aquellas transmitidas a través de contactos entre partículas, aquellas transmitidas a través de la presión de poros en el agua (divididas por el área total) e incluyendo el área de sólidos y el área de vacíos. (Suárez, 2009)

$$\sigma = \sigma' + \mu$$
 (2.11)
Esfuerzo total = esfuerzo efectivo+ presión de poros

En problemas prácticos, el análisis con esfuerzos totales puede utilizarse en problemas de estabilidad a corto plazo y las presiones efectivas, para analizar la estabilidad a largo plazo. (Suárez, 2009)

2.6 Medición de la Resistencia al Corte de los Suelos

Para determinar los parámetros de resistencia al corte del suelo cohesión (c) y el ángulo de fricción interna (Ø), la forma más común es la de realizar ensayos de laboratorio. Sin embargo los valores de la resistencia al corte determinados en ensayos de laboratorio dependen de varios factores, tales como la calidad de las muestras, su tamaño y el método de ensayo. (Suárez, 2009)

La resistencia al corte depende del grado de saturación por ello existen ensayos triaxial UU, CU, CC. (Bonifaz, 2015)

Esta situación dificulta la realización de ensayos representativos por ejemplo en muestras saturadas se puede perder humedad en el tiempo. (Bonifaz, 2015)

Por ejemplo, para análisis poco profundos deben utilizarse esfuerzos normales pequeños, y para fallas profundas esfuerzos normales mayores. (Suárez, 2009)

2.6.1 Selección de Muestras

Lo ideal es que los ensayos sean realizados sobre muestras de suelo tallados en material inalterado, lo más representativo posible del material; por ejemplo, muestras grandes en bloque de muy buena calidad o muestras tomadas con muestreadores delgados pueden estar relativamente inalteradas. Generalmente, entre más grande la muestra, esta podría ser de mejor calidad. Además, las muestras deben ser obtenidas a una profundidad correcta, de acuerdo a las posibles superficies críticas de falla. (Suárez, 2009)

El tamaño de la muestra es importante. Las muestras para ensayos triaxiales deben tener como mínimo siete centímetros de diámetro y para ensayos de corte directo de cinco centímetros. El espesor mínimo de la muestra en un ensayo de corte directo es de dos centímetros. (Suárez, 2009)

En el caso de suelos con presencia de grava, la preparación de la muestra es difícil, y puede ser no representativa de la realidad de la resistencia al corte del suelo en el sitio, y en ocasiones se deben realizarlos ensayos con material de la matriz solamente. (Suárez, 2009)

Por otro lado, la preparación de muestras de material muy frágil es difícil y en ocasiones existe la tendencia a utilizar para el ensayo, las partes más duras de la muestra, lo cual conduce a obtener parámetros de resistencia mayores a los reales. (Suárez, 2009)

2.7 Ensayos de Laboratorio

La determinación de los parámetros que definen la resistencia al corte de un terreno, se pueden obtener mediante ensayos de campo y ensayos de laboratorio.

Los ensayos de laboratorio más comunes son los ensayos de Compresión triaxial UU, CU, CC y de corte directo. (Bonifaz, 2015)

Los ensayos de campo más importantes son los siguientes: (G. Philipponnat, 1986)

- Triaxiales tipo No consolidados-no drenados UU, Consolidados-no drenados CU, Consolidados-drenados CC.
- Ficómetro: Se obtiene φ (ángulo de rozamiento) y c (cohesión).
- > Veleta: Se obtiene Cu (cohesión sin drenaje ni consolidación).
- > Rheotest: Se obtiene ϕ (ángulo de rozamiento) y c (cohesión).

2.7.1 Ensayo Triaxial

2.7.1.1 Objetivo

Determinar el Ángulo de Rozamiento Interno y la Cohesión del suelo, que permitan establecer su Resistencia al Corte, aplicando a las probetas esfuerzos verticales y laterales que tratan de reproducir los esfuerzos a los que está sometido el suelo en condiciones naturales. (Bonifaz, 2015)

2.7.1.2 Descripción del ensayo

El ensayo de compresión triaxial es el más usado para determinar las características de esfuerzo-deformación y de resistencia al esfuerzo cortante de los suelos. El ensayo consiste en aplicar esfuerzos laterales y verticales diferentes, a probetas cilíndricas de suelo y estudiar su comportamiento. (Bonifaz, 2015)

El ensayo se realiza en una cámara de pared transparente (cámara triaxial) llena de líquido, en la que se coloca la probeta cilíndrica de suelo que, salvo que se adopten precauciones especiales, tiene una altura igual a dos veces su diámetro, forrada con una membrana de caucho. Esta membrana va sujeta a un pedestal y a un cabezal sobre los que se apoyan los extremos de la probeta. (Bonifaz, 2015)

El ensayo se divide en dos etapas:

La primera, en la que la probeta de suelo es sometida a una presión hidrostática de fluido, con esfuerzos verticales iguales a los horizontales. Durante esta etapa, se dice que la probeta es "consolidada" si se permite el drenaje del fluido de los poros. Alternativamente, si el drenaje no puede ocurrir se dice que la probeta es "no consolidada". (Bonifaz, 2015)

En la segunda etapa, llamada de aplicación del *Esfuerzo Desviador*, se incrementan los esfuerzos verticales (desviadores) a través del pistón vertical de carga, hasta la falla. En esta etapa el operador tiene también la opción de permitir el drenaje y por lo tanto eliminar la presión neutra o mantener la válvula correspondiente cerrada sin drenaje. Si la presión neutra es disipada se dice que el ensayo es "drenado", en caso contrario se dice que el ensayo es "no drenado". (Bonifaz, 2015)

Figura 2.7. Equipo Triaxial Fuente: Laboratorio de Mecánica de Suelos ESPE

Así los ensayos triaxiales pueden ser clasificados en:

No consolidados-no drenados (UU) o rápidos (Q) ASTM - D2850
Se impide el drenaje durante las dos etapas del ensayo. (Bonifaz, 2015)

Consolidados-no drenados (CU) o consolidados rápidos (RC).
ASTM - D4767

Se permite el drenaje durante la primera etapa solamente. (Bonifaz, 2015)

Consolidados-drenados (CD) o lentos (S). ASTM - D7181

Se permite el drenaje durante todo el ensayo, y no se dejan generar presiones neutras aplicando los incrementos de carga en forma pausada durante le segunda etapa y esperando que el suelo se consolide con cada incremento. (Bonifaz, 2015) La Resistencia al Esfuerzo Cortante de un suelo (T_f), en función de los esfuerzos totales, se determina usando la Ley de Coulomb:

$$T_f = c + \sigma \tan \emptyset \tag{2.12}$$

Generalmente cada prueba se realiza con tres o cinco probetas de la misma muestra de suelo, bajo esfuerzos confinantes distintos. La representación de los resultados en el diagrama de Mohr está constituida por una serie de círculos, cuya envolvente permite obtener los parámetros del suelo estudiado en el intervalo de esfuerzos considerado. (Bonifaz, 2015)

2.7.1.3 Equipo

- Cámara triaxial
- Máquina de compresión triaxial
- Membrana de caucho
- Molde metálico
- Compresor de aire
- Bomba de vacío
- Balanza de precisión, aproximación 0,1 gr
- Calibrador
- Aro-sello de caucho
- Tallador de muestras, cuchillas y sierras
- Equipo para determinar el contenido de humedad

Figura 2.8. Prensa Triaxial Fuente: (Suárez, 2009)

2.7.1.4 Procedimiento

El suelo a utilizarse se prefiere que sea inalterado, en cuyo caso se debe tallar por lo menos tres especímenes cilíndricos, teniendo muy en cuenta su estratificación y evitando destruir la estructura original del suelo.

Si la muestra es alterada, se procede a prepararlos especímenes compactándose la muestra con una determinada energía, de acuerdo con las condiciones técnicas impartidas. (Bonifaz, 2015)

- Las dimensiones de los especímenes dependen de tamaño de la máquina triaxial a emplearse; debiendo tomar en cuenta que la altura de la muestra debe ser el doble del diámetro, (Se toman las medidas de los especímenes preparados). (Bonifaz, 2015)
- 2. El momento de preparar los especímenes se debe tomar muestra para determinar el contenido de humedad. (Bonifaz, 2015)

- Pesamos el primer espécimen y lo colocamos en la base de la cámara triaxial, utilizando una piedra porosa entre la muestra y dicha base. (Bonifaz, 2015)
- Colocamos la membrana de caucho en el espécimen, utilizando un aparato especial para ello. (Bonifaz, 2015)
- 5. Colocamos la cabeza de plástico usando una piedra porosa entre la cabeza y el espécimen. (Bonifaz, 2015)
- Aseguramos la membrana con ligas tanto en la parte superior como en la inferior. (Bonifaz, 2015)
- En el caso de realizar en ensayo triaxial en un triaxial Soiltest, conectamos la cabeza de plástico en el tubo espiral que sale de la base y que se utiliza para el drenaje de la muestra. (Bonifaz, 2015)
- Colocamos la cámara con su tapa, asegurándonos que estén bien colocados los empaques y seguidamente apretamos los tornillos que sujetan la cámara uniformemente. (Bonifaz, 2015)
- Introducimos el pistón en el hueco de la cabeza de plástico. (Bonifaz, 2015)
- 10. Centramos el brazo de carga con el pistón y colocamos el dial de las deformaciones en cero. (Bonifaz, 2015)
- 11.Si la muestra no se encuentra saturada, será necesario saturarla, salvo introducciones contrarias al respecto, para lo cual abrimos las válvulas de saturación permitiendo que el agua fluya desde la base a través de la muestra. (Bonifaz, 2015)

- 12. Aplicamos presión al tanque de almacenamiento de la glicerina o agua y luego abrimos las válvulas que permiten el paso de la glicerina o agua a la cámara; la presión lateral introducida serán las indicadas anteriormente. (Bonifaz, 2015)
- 13. En estas condiciones aplicamos el tipo de triaxial solicitado; llegando en cualquier caso a aplicar la carga hasta romper la muestra; anotándose las lecturas de las deformaciones axiales y de la carga aplicada. (Bonifaz, 2015)
- 14. Una vez terminado el ensayo se reduce la presión y se devuelve la glicerina o agua al tanque de almacenamiento, se seca la cámara y luego a la muestra con mucho cuidado con el objeto de graficar la fractura y además determinar la humedad. (Bonifaz, 2015)
- 15. Todo este proceso lo repetimos con los demás especímenes, utilizando presiones laterales diferentes. (Bonifaz, 2015)
- 16.El Ángulo de Fricción Interna del suelo (Ø), es el que forma la envolvente con la horizontal (abscisas) y se determina en la gráfica por la pendiente de la envolvente. El valor de la cohesión (c), está dado por la ordenada al origen de dicha envolvente, medida a la misma escala con que se trazaron los círculos.

2.7.2 Ensayo Ficómetro

El ensayo de ficómetro es un ensayo de campo donde se prueba al suelo en corte directo, utilizando una sonda que se introduce dentro de una perforación. Este ensayo proporciona parámetros de resistencia de acuerdo con el modelo Mohr-Coulomb, tales como ángulo de fricción interna Ø y cohesión c, principalmente en suelos donde el muestreo inalterado es difícil, tales como los suelos arenosos, suelos duros y suelos con gravas, por ejemplo. La norma para este ensayo es XP P94-120 (Francesa) (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

2.7.2.1 Descripción del equipo

El ficómetro está integrado principalmente por tres componentes interconectadas entre sí, mecánica e hidráulicamente, a saber: (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

- > La sonda inflable del ficómetro
- > Gabinete de control y medición de presión y volúmenes
- > El sistema de aplicación de carga a extracción

2.7.2.2 La sonda del Ficómetro

La sonda del ficómetro consiste en una coraza cilíndrica de acero hueca y denticulada con 10 anillos de 5 mm de espesor; cuenta con una longitud de 103 cm y diámetro de 61 mm. Radialmente tiene seis ranuras longitudinales que le permiten expandirse al inflar una membrana de neopreno ubicada en el interior de la sonda (Figura 2.7). La membrana se infla inyectando agua a presión mediante un tanque de nitrógeno líquido. La presión se regula a través de la unidad de control. (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

Figura 2.9. Sonda de ficómetro

2.7.2.3 Unidad de Control de Presiones y Volúmenes

La sonda del ficómetro se conecta a una unidad de control de presiones y volúmenes, donde por medio de un sistema interconectado de manómetros y válvulas, es posible regular y medir la presión aplicada en la sonda y el volumen de agua inyectado. Cuenta con cuatro manómetros: dos manómetros para medir la presión en el sistema de agua (capacidad de 25 bar y 60 bar) (1 bar = 1.02 kg/cm²), un manómetro para medir la presión aplicada en el sistema de nitrógeno (capacidad de 25 bar) y un manómetro para regular la presión de entrada al sistema de medición desde el tanque de abastecimiento de nitrógeno (capacidad de 100bar). Adicionalmente cuenta con una bureta instrumentada que mide el volumen de inyección de agua hacia la sonda, con resolución de 5 cm³ y capacidad de hasta 800 cm³. El agua es inyectada a la sonda mediante presión del nitrógeno comprimido. (Gonzalez, Ibarra, Rangel , & Ovando , 2012)

Figura 2.10. Unidad de Control de Presiones y Volúmenes

2.7.2.4 El Sistema de Extracción

En superficie se coloca un gato hidráulico hueco por el cual pasan las barras conectadas a la sonda del ficómetro. Con el gato se aplica la fuerza ascendente con velocidad controlada que romperá la adherencia y fricción sonda-terreno. Asimismo, el equipo cuenta con una celda de carga, un micrómetro y un cronómetro para controlar la fuerza y la velocidad del desplazamiento de la sonda. (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

③ Equipo de Superficie

Figura 2.11.Detalle del ensayo de ficómetro Fuente: (APAGEO, 2011)

2.7.3 Ensayo de Veleta (Norma ASTM D 2573)

Se obtienen resultados bastante confiables para la resistencia cortante sin drenaje c_u in situ (concepto: $\emptyset = 0$) de suelos cohesivos muy platicos a partir de pruebas de cortante con veleta. Ésta consiste usualmente en cuatro placas de acero delgadas de igual tamaño soldadas a una barra de torsión hecha del mismo metal (figura 2.10). (Das, 2001)

Primero, la veleta se hinca en el suelo, luego se aplica un torque en la parte superior de la barra para hacer girar la veleta con rapidez uniforme. Un cilindro de suelo de altura *h* y diámetro *d* resistirá el torque hasta que falle el suelo. La resistencia a cortante sin drenar del suelo se calcula como sigue. (Das, 2001)

Figura 2.12. Diagrama del equipo de la veleta de corte Fuente: (Das, 2001)

Figura 2.13. Equipo de la veleta de corte Fuente: Laboratorio de Mecánica de Suelos ESPE

Si *T* es el torque máximo aplicado en la cabeza de la barra para generar la falla, éste deber ser igual a la suma del momento resistente de la fuerza cortante a lo largo de la superficie lateral del cilindro de suelo (M_s) y del momento resistente de la fuerza cortante en cada extremo (M_s) (figura 2.11): (Das, 2001)

$$T = M_s + M_e + M_e$$

Dos extremos

El momento resistente M_s se expresa como

$$M_s = (\pi dh)c_u (d/2)$$

Área Brazo del superficial momento

Donde *d* = diámetro de la veleta de cortante

h = altura de la veleta de cortante

Para calcular M_e , los investigadores supusieron tres tipos de distribución de la movilización de la resistencia cortante en los extremos del cilindro de suelo: (Das, 2001)

- 1. *Triangular:* la movilización de la resistencia cortante es c_u en la periferia del cilindro de suelo y decrece linealmente a 0 en el centro.
- Uniforme: la movilización de la resistencia cortante es constante (es decir, c_u) de la periferia al centro del cilindro de suelo
- 3. *Parabólica:* la movilización de la resistencia cortante es c_u en la periferia del cilindro de suelo decrece parabólicamente a 0 en el centro.

Esas variaciones en la movilización de la resistencia cortante se muestran en la figura 2.11b. En general, el torque T en la falla se expresa como (Das, 2001)

$$T = \pi c_u \left[\frac{d^2 h}{2} + \beta \frac{d^3}{4} \right] \tag{2.13}$$

0

$$c_u = \frac{T}{\pi \left[\frac{d^2h}{2} + \beta \frac{d^3}{4}\right]} \tag{2.14}$$

dónde:

 β = 1/2 para la movilización triangular de la resistencia cortante sin drenaje

 β = 2/3 para la movilización uniforme de la resistencia cortante sin drenaje

 β = 2/3 para la movilización uniforme de la resistencia cortante sin drenaje

Figura 2.14. Derivación de la ecuación 2.12: (a) momento resistente de la fuerza cortante; (b) variaciones en la movilización de la resistencia cortante

Fuente: (Das, 2001)

CAPÍTULO III: PROPUESTA DE TRABAJO

3.1 Importancia del uso del ficómetro

Se estima que la mayoría de los suelos y rocas erosionadas no puede ser probada en el laboratorio debido a que el suelo es demasiado grueso o demasiado sensible para reorganizar durante las manipulaciones de laboratorio. Esto muestra cómo la geotécnia es a menudo obligada a limitarse a una simple estimación de las características esenciales.

Con la excepción de la cohesión no drenada de arcillas blandas, estos parámetros como la cohesión (c) y el ángulo de fricción interna (Ø) actualmente no se pueden medir directamente de una manera común en el campo. La extracción de muestras de suelo heterogéneo no siempre permite la toma de una muestra que satisfacen los criterios de un ensayo de corte en laboratorio. El ficómetro es un dispositivo que elimina este paso. De hecho, "se mide in situ un ángulo de fricción interna y la cohesión del suelo".

La aplicación de los parámetros de corte Cohesión (c) y el ángulo de fricción interna (ø) son para: Diseño de estabilidad de taludes, diseño de muros, capacidad portante del suelo para cimentaciones.

3.2 Trabajo de Campo

Con el fin de caracterizar los materiales existentes en el subsuelo del área de investigación, se realizaron sondeos mecánicos, para recuperar muestras alteradas e inalteradas con la ayuda de muestreadores tipo cuchara partida y doble barril.

Esta perforación se realiza utilizando una máquina perforadora de 30 hp marca Acker ACE montada sobre patines, adicionalmente se utilizará tubería de perforación AW (Ø exterior = 64.0 mm) y todas las herramientas y accesorios necesarios para las labores de perforación.

Figura 3.1. Maquina Acker ACE

3.3 Metodología y Ejecución de la Prueba del Ficómetro

3.3.1 Objetivo:

Determinar el Ángulo de Rozamiento Interno y la Cohesión del suelo in situ, que permitan obtener en campo la resistencia al corte no drenado de suelos esencialmente arenosos que son muy difíciles de muestrear. Es un procedimiento confiable y su ejecución está regida por la norma francesa XP P 94-120.

3.3.2 Descripción del equipo:

El Ficómetro es un equipo de exploración geotécnica aplicable en arenas, suelos duros, tobas, rellenos compactados y rocas blandas.

El Ficómetro consta de:

- Sonda del ficómetro
- Tubería de perforación
- Equipo superficial
- Herramientas auxiliares

3.3.2.1 Sonda del Ficómetro

La sonda del ficómetro consiste en una coraza cilíndrica de acero hueca y denticulada con 10 anillos de 5 mm de espesor; cuenta con una longitud de 103 cm y diámetro de 61 mm. Radialmente tiene seis ranuras longitudinales que le permiten expandirse al inflar una membrana de neopreno ubicada en el interior de la sonda (Figura 2.3). La membrana se infla inyectando agua a presión mediante un tanque de nitrógeno líquido. La presión se regula a través de la unidad de control.

Figura 3.2. Sonda del ficómetro

③ Equipo de Superficie

Figura 3.3. Disposición típica del aparato de ensayo ficómetro

3.3.2.2 Tubería de perforación

La Tubería de perforación cuenta con un diámetro de 32 mm el cual va conectado a la sonda del ficómetro y al equipo de superficie, para el ingreso de la sonda hacia la perforación. (APAGEO, 2011)

El conjunto de Tubería de perforación se compone de:

- 1 x 0,4 m de largo varilla
- 1 x 0,8 m de largo varilla
- 1 x 1,2 m de largo varilla

Figura 3.4. Tubería de perforación Fuente: (APAGEO, 2011)

3.3.2.3 Equipo de superficie

Dos operadores deben utilizar el equipo. El equipo de superficie incluye:

- Un sistema de tensado
- Una Unidad de Control de Presión Volumen
- Un sistema para medir los movimientos verticales

3.3.2.3.1 Sistema de tensado

El sistema de tensado se compone de:

- 1. Dos vigas de reacción del sistema de tensado
- 2. Una placa hueca centrada
- Un celda de carga para asumir la fuerza de extracción con bomba hidráulica manual
- 4. Un gato hidráulico manual
- 5. Calibrador dinamométrico para medir la fuerza de tracción T
- 6. Una arandela de centrado y la tuerca de bloqueo.

Figura 3.5. Sistema de tensado

3.3.2.3.2 Unidad de Control de Presiones y Volúmenes

Para inflar la sonda es necesario tener unidad de control de presiónvolumen. Sólo la célula central se utilizará.

Figura 3.6. Unidad de Control de Presiones y Volumen Fuente: (APAGEO, 2011)

3.3.2.3.3 Sistema de medición de movimientos verticales

El sistema de medición de movimiento vertical consiste en:

- Un trípode que está apoyada en tierra y se mantienen en su lugar con pesas. (Dumas, Orea, & Hernández, 2013)
- Un cronometro de 30 seg. por revolución.
- Un comparador de 50 mm.

Figura 3.7. Sistema de medición de movimientos verticales

3.3.2.4 Herramientas auxiliares

- Calibrador Vernier
- Una bomba de vacío manual

Figura 3.8. Herramientas auxiliares

3.3.3 Preparación del barreno

La calidad del barreno es un aspecto esencial para la correcta ejecución de la prueba y la confiabilidad de los resultados. En suelos granulares, se recomienda utilizar lodos o ademe hasta 1 metro antes de la profundidad de la prueba. Además se recomienda llevar el barreo 1 metro por debajo de la profundidad de la prueba para dejar espacio en la parte inferior de la sonda y evitar que los posibles azolves obstruyan su colocación. (Dumas, Orea, & Hernández, 2013)

Figura 3.9. Perforación del suelo

3.3.4 Calibración de la sonda del ficómetro

- Se conecta la sonda a un costado de la unidad de control de presiones y volumen. La sonda debe encontrarse libre para realizar una calibración.
- Se infla con agua a presión, en incrementos de volumen constantes de 100 cm³, iniciando desde 0 cm³ hasta 600 cm³.
- Para cada incremento, se registra la presión y el diámetro de la sonda; el diámetro se registra en los anillos centrales de la sonda.
- 4. Se grafica los resultados de presión y volumen inyectado así como volumen inyectado y diámetro constituyen las curvas de calibración.
- Con las curvas se emplean para la reducción y corrección de los datos del ensayo de ficómetro por presión y por área de corte.

 La calibración se realiza a cada prueba. (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

Figura 3.10. Calibración del equipo ficómetro

Figura 3.11. Medición del diámetro de la sonda del ficómetro

Fuente: (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

La curva de la presión (pe) - volumen se corrige en caso de que al momento de la calibración, la sonda no haya estado al mismo nivel de la consola, entonces: (APAGEO, 2011)

$$pe = ph + pr \tag{3.1}$$

Dónde:

pe = Presión de calibración correspondiente al volumen final obtenido de la curva de calibración

ph = Presión hidrostática correspondiente a la profundidad entre la consola y la sonda

pr = Presión medida en la consola

3.3.5 Preparación de la prueba de ficómetro

3.3.5.1 Instalación del equipo

1. Se introduce la sonda en el barreno hasta que su centro alcance la profundidad deseada.

Figura 3.13. Colocación de la sonda del ficómetro

2. En la superficie se colocan dos vigas de reacción

Figura 3.14. Instalación de las vigas de reacción

 Se coloca el gato hidráulico y la celda de carga sobre la barra de perforación que sobresale del pozo con su arandela, se aprieta la tuerca de bloqueo y se instala el trípode con el comparador y el cronometro.

Figura 3.15. Colocación de la celda de carga, gato hidráulico y el trípode

 En la parte superior se sujeta un sensor de carga con lector digital ajustado a cero, junto con un cronómetro y un comparador para medir el desplazamiento de la sonda.

Figura 3.16. Calibrador dinamométrico para medir la fuerza de tracción T Fuente: (APAGEO, 2011)

5. Finalmente, la manguera neumática del ficómetro se conecta a la consola de control para proceder con la prueba.

3.3.5.2 Contacto de la sonda con el suelo

Esta fase es necesaria para garantizar que la presión aplicada es suficiente para que la sonda esté en contacto efectivo con el suelo in-situ.

Se procede a la etapa de contacto, donde los anillos de la sonda tocan y penetran las paredes del suelo de forma controlada inyectando agua mediante la unidad de control con incrementos de presión de 0.5 bar (Fig. 3.17). (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

Figura 3.17. Etapa de contacto de la sonda y el suelo. **Fuente:** (Gonzalez, Ibarra, Rangel , & Ovando , 2012)

La correcta penetración de los anillos se observa claramente al graficar la curva presión versus volumen en la misma gráfica de calibración. El contacto y penetración se establece cuando la curva presenta un claro desvío respecto a la curva de calibración. (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

Figura 3.18. Etapa de contacto de la sonda y el suelo. **Fuente:** (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

3.3.6 Falla:

Finalmente, se procede a la etapa de corte, donde se extrae la sonda en forma controlada con una velocidad constante igual a 2 mm/min, mediante el gato hidráulico y la bomba colocados en superficie. Para ello, se lleva el registro de lecturas de carga y volumen de la sonda a los 0 s, 30 s, 30 s, 60 s, 90 s, 120 s, 150 s, 180 s y 210 s, hasta que se presenta la falla, que se alcanza si ocurren alguna de las condiciones siguientes: (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

- Tres lecturas consecutivas de la celda de carga estables con deformación creciente sin necesidad de llegar a los 210s
- Alcanzar una deformación de 7 mm (que ocurre en 210s).

La velocidad de extracción se controla visualmente con el seguimiento simultáneo del cronómetro y del comparador, logrando el movimiento sincronizado de una vuelta del cronómetro (30s) con una vuelta del micrómetro (1mm). Mediante la celda de carga se mide la fuerza T, mientras que la presión normal radial pr y el volumen de la sonda en los tiempos indicados (0s a 210s) se miden en la consola de la unidad de control. Al

iniciar cada incremento se mide el volumen de la sonda (VD) hasta finalizar la prueba (VF). (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

Figura 3.19. Etapa de contacto de la sonda y el suelo. **Fuente:** (Gonzalez, Ibarra, Rangel , & Ovando , 2012)

El proceso de corte anterior, se repite para diferentes presiones radiales incrementales, que se programan de acuerdo con las condiciones estratigráficas presentes. Las presiones radiales se van incrementando sin exceder la capacidad de volumen de la sonda (700 cm³), o bien, hasta llegar a ocho incrementos de presión radial. (Gonzalez, Ibarra, Rangel, & Ovando, 2012)

Figura 3.20. Etapa de contacto de la sonda y el suelo. **Fuente:** (Gonzalez, Ibarra, Rangel , & Ovando , 2012)

Para permitir un correcto análisis de los resultados, deben llevarse a cabo las siguientes operaciones finales: (APAGEO, 2011)

Tenga en cuenta el nivel de agua o lodo hw, en el pozo o mencionar en el formulario de informe de la prueba de que el pozo estaba seco. (APAGEO, 2011)

Soltar la presión en la sonda sin deshacer el equipo de superficie y sin tocar el gato. Tenga en cuenta la carga residual en la celda de carga después de 1' y 2'. (APAGEO, 2011)

- Desmontar el equipo de superficie.
- Levantar la sonda de la perforación (si es necesario. conectar la bomba de vacío al circuito de agua para desinflar la celda suficientemente)
- Tenga en cuenta la cantidad de tierra atrapada entre los dientes anulares en la sonda, ya sea completo, medio lleno, vacío.

- > Tenga en cuenta el tipo de suelo que queda en la sonda.
- Limpiar cuidadosamente la sonda antes de cualquier prueba nueva.
- Después de cada prueba la sonda se debe traer a la superficie a limpiar.

Para cada incremento se calcula el esfuerzo normal efectivo y el valor esfuerzo de resistencia al corte (τ) correspondiente a la falla, con los que se define la gráfica de comportamiento de resistencia a τ vs. esfuerzo normal. Mediante el criterio Mohr – Coulomb se obtiene la cohesión y el ángulo de fricción interna. (Dumas, Orea, & Hernández, 2013)

CAPÍTULO IV: MEMORIA DE CALCULO PARA OBTENER LOS PARAMETROS DE CORTE

4.1 Procesamiento de Datos

1. Con los datos obtenidos en campo y mediante una hoja electrónica en el programa Excel, se traza las curvas:

$$V = f(Pr)$$
 y $V = f(Ds)$

Donde

V = Volumen medido en la consola

Pr = presión de calibración medido en la consola.

Ds = diámetro exterior de la sonda.

2. El V = f (Pr) es la curva de una función exponencial

Tabla 4-1.

Datos medidos in situ de la presión de calibración medida en la consola.

VOLUMEN	PRESION	PRESION
(cm³)	Pr (bar)	Pr (KPa)
0,00	0,00	0,00
100	2,25	225,00
200	2,75	275,00
300	3,00	300,00
400	3,75	375,00
500	3,75	375,00
600	3,75	375,00

Figura 4.1. Grafico Volumen vs. Presión de calibración.

3. El V = f (Ds) es lineal

Tabla 4-2.

Datos medidos in situ del diámetro de la sonda para la calibración.

VOLUMEN	DIAMETRO SONDA	DIAMETRO SONDA
(cm³)	Ds (cm)	Ds (m)
0,00	4,83	0,0483
100	5,15	0,0515
200	5,51	0,0551
300	6,12	0,0612
400	6,74	0,0674
500	7,16	0,0716
600	7,72	0,0772

Figura 4.2. Grafico Volumen vs. Diámetro de calibración.

4. Una vez trazadas las curvas se realiza la reducción y corrección de los datos del ensayo de ficómetro por presión y por diámetro.

Tabla 4-3.

Reducción y corrección de los datos del ensayo de ficómetro por presión.

Incrementos de Presión	VOLUMEN FINAL VF	ре
1	205	285.530271
2	220	292.113326
3	236	298.657851
4	253	305.142102
5	270	311.204507
6	290	317.865997
7	290	317.865997
8	365	339.308405

Tabla 4-4.

Reducción y corrección de los datos del ensayo de ficómetro por diámetro.

Incrementos de Presión	VF	D
1	205	0.056
2	220	0.057
3	236	0.058
4	253	0.059
5	270	0.060
6	290	0.061
7	290	0.061
8	365	0.065

Donde:

pe = Presión de calibración correspondiente al VF obtenida de la curva de calibración

5. Mediante el programa computacional, realizamos la tabla con los datos que se obtuvo del ensayo

Datos del ensayo:

Longitud efectiva de la sonda:	0.23	m
Altura de la probeta h:	13.00	m
Altura de la consola ho:	1.00	m
Densidad del agua:	10.00	KN/m ³

Tabla 4-5.

Datos obtenidos en campo de volumen medido en 15, 30, 60 y 210 segundos, presión leída en el manómetro y Tensión máxima medida en el ensayo en cada incremento de presión.

# Incrementos de Presión	VD15" (cm ³)	VD30" (cm ³)	VD1' (cm ³)	VF (cm3)	рМ (КРа)	Tmax (KN)
1	185	190	195	205	500.00	16.06
2	210	210	215	220	575.00	19.50
3	225	225	228	236	750.00	25.35
4	240	240	245	253	875.00	30.76
5	254	254	260	270	1050.00	37.68
6	275	276	279	290	1175.00	44.07

6. Se calcula las Presiones Normales Corregido Pc. y la Tensión de Corte t:

Para cada etapa de carga, la presión normal corregido pc aplicada al suelo está dada por:

Si el pozo está seco hasta el nivel de la prueba:

$$pc = pM + (h + ho) \times \gamma w - pe \tag{4.1}$$

> Si el pozo está lleno de agua o lodo de perforación:

$$pc = pM + (hw + ho) \times \gamma w - pe \qquad (4.2)$$

Dónde:

рМ	=	Presión leída en el manómetro
h	=	Altura de la probeta
ho	=	Altura de la consola
hw	=	Nivel freático
ре	=	Presión de calibración correspondiente al VF obtenida
de la cur	va de c	alibración
γw	=	Densidad del agua = 10 kN / m^3

Para cualquier etapa de carga, la tensión de corte a la ruptura t. viene dada por:

$$t = \frac{Tmax}{S} \tag{4.1}$$

Dónde:

t = Tensión de corte a la ruptura

Tmax = Tensión máxima medida en el ensayo en cada incremento de presión.

S = Área de superficie expuesta a corte.

$$S = \pi.d.L \tag{4.2}$$

L = Longitud efectiva de la sonda.

L = 23cm para probetas estándar

- d = Diámetro leído de la curva de calibración correspondiente al VF
- Mediante el programa Excel se calculó las Presiones Normales Corregidas Pc. y la Tensión de Corte t con las formulas determinadas en el numeral 6.

Tabla 4-6.

Cálculos del área de corte (S), presión normal corregido (pc) y la tensión de corte (t).

# Incrementos de Presión	pe (Kpa)	d (m)	S (m²)	рс (Кра)	t (KN/m²)
1	285.530	0.056	0.0407	354.47	394.53
2	292.113	0.057	0.0413	422.89	472.39
3	298.658	0.058	0.0419	591.34	605.15
4	305.142	0.059	0.0425	709.86	723.09
5	311.205	0.060	0.0432	878.80	872.44
6	317.866	0.061	0.0440	997.13	1002.66

8. Con los resultados obtenidos y codificados, se construye, para cada incremento de presión una gráfica a escala aritmética; ubicando, en las abscisas las Presiones Normales Corregidas (pc) en KPa, y en las ordenadas Tensión de Corte (t) en (KN/m²). La gráfica permite determinar la cohesión y el ángulo de fricción interna mediante la tabulación de los parámetros obtenidos en la tabla 4-6.

Figura 4.3. Presión corregida (pc) vs. Tensión de corte (t).

CAPÍTULO V: RESULTADOS DE LOS TRABAJOS REALIZADOS EN EL NORORIENTE DE LA CIUDAD DE QUITO

Para este proyecto de tesis se realizaron 10 ensayos de ficómetro, distribuidos de la siguiente manera.

5.1 Sitio de Investigación 1

Se encuentra ubicado en el sector "La Lira" en este sector se realizó 2 ensayos de ficómetro con los siguientes datos.

Tabla 5-1.

				Parámetros Índice	Parám Geomeo	etros cánicos
Sondeo	Coordenadas UTM	Prof. (m)	Ensayo en Sondeo	Clasificación SUCS	Cohesión (kg/cm²)	Ángulo de fricción interna (°)
P-3	N: 9977905.00 E: 784423.00	15.00 20.00 2.00	Ficómetro 1 Ficómetro 2 Corte Directo	ML SM SM	0.64 1.64 1.57	43 33 34.38

Figura 5.1. Ubicación de Sondeos del Sitio de Investigación 1 Fuente: (Google Earth)

5.2 Sitio de Investigación 2

Se encuentra ubicado la "Ruta Collas" en este sector se realizó 3 ensayos de ficómetro con los siguientes datos.

Tabla 5-2.

				Parámetros Índice	Parámetros Geomecánicos	
Sondeo	Coordenadas UTM	Prof. (m)	Ensayo en Sondeo	Clasificación SUCS	Cohesión (kg/cm²)	Ángulo de fricción interna (°)
S-2B	N: 9988307 E: 791311	1.00	Ficómetro 3	SM	0.64	43
S-3B	N: 9988372 E: 791398	3.00 12.00	Ficómetro 4 Ficómetro 5	SM SM	1.64 0.64	33 43
S-2B	N: 9988307 E: 791311	2.00	Corte Directo	SM	0.08	37.93
S-3B	N: 9988372 E: 791398	2.00 2.00	Corte Directo Corte Directo	SM SM	1.1 0.87	38.34 39.23

Figura 5.2. Ubicación de Sondeos del Sitio de Investigación 2 Fuente: (Google Earth)

5.3 Sitio de Investigación 3

Se encuentra ubicado en la "Vía a Guayllabamba" en este sector se realizó 2 ensayos de ficómetro con los siguientes datos.

Tabla 5-3.

				Parámetros Índice	Parámetros Geomecánicos	
Sondeo	Coordenadas UTM	Prof. (m)	Ensayo en Sondeo	Clasificación SUCS	Cohesión (kg/cm²)	Ángulo de fricción interna (°)
P-1	N: 9992054 E: 791713	15.00	Ficómetro 6	SM	1.04	49.93
P-2	N: 9992183 E: 791861	10.00	Ficómetro 7	SM	0.33	39.39
P-1	N: 9992054 E: 791713	2.00	Corte Directo	SM	1,11	34.89
P-2	N: 9992183 E: 791861	2.00	Corte Directo	SM	0.49	25.79
P-1	N: 9992054 E: 791713	21.00 37.00	Triaxial Triaxial	SM SM	1.53 1.24	16.5 24

Figura 5.3. Ubicación de Sondeos del Sitio de Investigación 3 Fuente: (Google Earth)

5.4 Sitio de Investigación 4

Se encuentra ubicado en el sector "Batan Alto" se realizó 2 ensayos de ficómetro con los siguientes datos.

Tabla 5-4.

				Parámetros Índice	Parámetros Geomecánicos	
Sondeo	Coordenadas UTM	Prof. (m)	Ensayo en Sondeo	Clasificación SUCS	Cohesión (kg/cm²)	Ángulo de fricción interna (°)
P-2	N: 9978800 E: 780407	6	Ficómetro 8	SM	0.09	35.68
P-6	N: 9978776 E: 780431	13	Ficómetro 9	SM	0.26	35.08
P-2	N: 9978800 E: 780407	2.00	Corte Directo	SM	0.96	35.69
P-6	N: 9992183 E: 791861	2.00	Corte Directo	SM	0.19	36.43
P-1	N: 9978793 E: 780422	2.5	Triaxial	SM	0.59	26.5

Figura 5.4. Ubicación de Sondeos del Sitio de Investigación 4 Fuente: (Google Earth)

5.5 Sitio de Investigación 5

Se encuentra ubicado en la "Av. 12 de Octubre" se realizó 1 ensayo de ficómetro con los siguientes datos.

Tabla 5-5.

				Parámetros Índice	Parán Geome	netros ecánicos
Sondeo	Coordenadas UTM	Prof. (m)	Ensayo en Sondeo	Clasificación SUCS	Cohesió n (kg/cm ²)	Ángulo de fricción interna (°)
P-3	N: 9977414.29	12.0	Ficómetro 10	SM	0.24	37.18
	E: /80128.91	1.5	Corte Directo	SM	0.85	39.94

Figura 5.5. Ubicación de Sondeos del Sitio de Investigación 5 Fuente: (Google Earth)

5.6 Análisis de Resultados

Tabla 5-6.

Resumen de resultados de Pruebas de ficómetro, Triaxial UU y Corte Directo

	Sondeo	Coordenadas UTM	Prof. (m)	Ensayo en Sondeo	Clasificación SUCS	Cohesión (kg/cm²)	Ángulo de fricción interna (°)
Sitio de Investigación 1	P-3	N: 9977905 E: 784423	15.00	Ficómetro 1	ML	0.64	43
			20.00	Ficómetro 2	SM	1.64	33
			2.00	Corte Directo	SM	1.57	34.38
	S-2B	N: 9988307 E: 791311	1.00	Ficómetro 3	SM	0.64	43
Sitio de	S-3B	N: 9988372 E: 791398	3.00	Ficómetro 4	SM	1.64	33
			12.00	Ficómetro 5	SM	0.64	43
Investigación 2	S-2B	N: 9988307 E: 791311	2.00	Corte Directo	SM	0.08	37.92
			2.00	Corte Directo	SM	1.10	38.34
	3-20	N. 9900572 E. 791590	2.00	Corte Directo	SM	0.87	39.23
	P-1	N: 9992054 E: 791713	15.00	Ficómetro 6	SM	1.04	49.93
	P-2	N: 9992183 E: 791861	10.00	Ficómetro 7	SM	0.33	39.39
Sitio de Investigación 3	P-1	N: 9992054 E: 791713	2.00	Corte Directo	SM	1,11	34.89
	P-2	N: 9992183 E: 791861	2.00	Corte Directo	SM	0.49	25.79
	P-1	N: 9992054 E: 791713	21.00	Triaxial	SM	1.53	16.5
			37.00	Triaxial	SM	1.24	24
						CONTINÚA	

	Sondeo	Coordenadas UTM	Prof. (m)	Ensayo en Sondeo	Clasificación SUCS	Cohesión (kg/cm²)	Ángulo de fricción interna (°)
	P-2	N: 9978800 E: 780407	6.00	Ficómetro 8	SM	0.09	35.68
	P-6	N: 9978776 E: 780431	13.00	Ficómetro 9	SM	0.26	35.08
Sitio de Investigación A	P-2	N: 9978800 E: 780407	2.00	Corte Directo	SM	0.96	35.69
	P-6	N: 9992183 E: 791861	2.00	Corte Directo	SM	0.36	36.46
	P-1	N: 9978793 E: 780422	2.50	Triaxial	SM	0.59	26.5
Sitio de Investigación 5	P-3	N: 9977414.29	12.00	Ficómetro 10	SM	0.24	37.18
		E:780128.91	2.00	Corte Directo	SM	0.87	39.53

5.7 Magnitud de la variación en los resultados entre el ensayo del Ficómetro, triaxial UU y Corte Directo.

5.7.1 Sitio de Investigación 1

Figura 5.6. Magnitud de variación de la cohesión entre el ficómetro y corte directo del sitio de investigación 1.

Figura 5.7. Magnitud de variación del ángulo de fricción interna entre el ficómetro y corte directo del sitio de investigación 1.

Figura 5.8. Magnitud de variación de la cohesión entre el ficómetro y corte directo del sitio de investigación 2.

Figura 5.12. Magnitud de variación de la cohesión entre el ficómetro, triaxial UU y corte directo del sitio de investigación 4.

5.8 Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro y Triaxial-UU

5.8.1 Sitio de Investigación 3

Ficómetro 6

Figura 5.16. Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro 6 y la prueba triaxial UU del Sitio de Investigación

> Ficómetro 7

Figura 5.17. Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro 7 y la prueba triaxial UU del Sitio de Investigación

5.9 Correlación entre los esfuerzos cortantes resistentes obtenidos con el Ficómetro y Corte Directo

5.9.1 Sitio de Investigación 1

Ficómetro 2

Figura 5.18. Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro 2 y la prueba de corte directo del Sitio de Investigación 1.

5.9.2 Sitio de Investigación 2

Ficómetro 3

Figura 5.19. Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro 3 y la prueba de corte directo del Sitio de Investigación 2.

Figura 5.20. Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro 4 y la prueba de corte directo del Sitio de Investigación 2.

Ficómetro 5

Figura 5.21. Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro 5 y la prueba de corte directo del Sitio de Investigación 2.

5.9.3 Sitio de Investigación 3

Ficómetro 6

Figura 5.22. Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro 6 y la prueba de corte directo del Sitio de Investigación 3.

> Ficómetro 7

Figura 5.23. Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro 7 y la prueba de corte directo del Sitio de Investigación 3.

5.9.4 Sitio de Investigación 4

Ficómetro 8

Figura 5.24. Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro 8 y la prueba de corte directo del Sitio de Investigación 4.

Ficómetro 9

Figura 5.25. Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro 9 y la prueba de corte directo del Sitio de Investigación 4.

5.9.5 Sitio de Investigación 5

Ficómetro 10

Figura 5.26. Correlación entre los esfuerzos cortantes resistentes obtenidos con el ficómetro 10 y la prueba de corte directo del Sitio de Investigación 5.

CAPÍTULO VI: CONCLUSIONES Y

RECOMENDACIONES

6.1 Conclusiones

> Diferencias de los ensayos de Ficómetro y Triaxial.

FICOMETRO	TRIAXIAL				
RECURSO HUMANO					
2 personas: 1 ingeniero técnico y un ayudante	2 personas: 1 laboratorista y 1 ayudante				
RECURSO ECONOMICO					
300 dólares sin perforación	90 dólares				
TIEMPO					
Instalación, calibración, toma de datos, y resultados del ensayo: 1 hora a 1.5 horas	Toma de muestra y transporte: 1 hora, Preparación de muestra y ensayo: 2 horas. Total: 3 horas				
FIABILIDAD					
Se realiza el ensayo con las características de los materiales in situ, sin variación de parámetros	Toma de muestras superficiales que están sometidas a variaciones en los parámetros por manipulación y tiempo de ensayo.				
NORMAS					
XP P94-120	ASTM D 2850				
GRADO DE DIFICULTAD					
Control de la presión aplicada en la sonda.	Toma de muestra y preparación en laboratorio de especímenes.				

> Ventajas y desventajas de los ensayos de Ficómetro y Triaxial.

FICOMETRO	TRIAXIAL UU
VENT	AJAS
Se obtienen in situ los parámetros de resistencia al corte del suelo, eliminando las incertidumbres causadas por el manejo y transporte de muestras "inalteradas" que posteriormente son manipuladas en laboratorio.	Es el ensayo de resistencia al corte en arcillas saturadas normalmente consolidadas.
Es de utilidad, principalmente en	El costo del ensayo es más
suelos arenosos de difícil muestreo.	económico que el ensayo de ficómetro.
El ensayo se puede realizar a la	Permite realizar un análisis a corto
los parámetros de corte.	plazo.
Refleja el comportamiento real del	Es la prueba más utilizada para
suelo mediante la aplicación de la	estudios esfuerzo (σ) - deformación
tensión en el suelo y la determinación del esfuerzo cortante.	(ε).
Desempeña un papel vital en el	
estudio de la estabilidad de las	
estructuras, sirve para el diseño de	
los tensores para pantallas	
ancladas.	

FICOMETRO	TRIAXIAL UU
DESVEI	NTAJAS
Se necesita de una perforación	Muestras inalteradas de suelo in
destructiva y sin revestimiento	situ que son transportados y
(difícil en suelos muy	manipuladas en laboratorio, que
heterogéneos), para un correcto	pueden generar pérdidas en las
ensayo. Cuando la pared del pozo	propiedades índice y generar micro
no son naturalmente estables	fisuras para la evaluación del
	ensayo de resistencia al corte.
No se puede ensayar en suelos arcillosos, limos elásticos, suelos orgánicos.	Dificulta en el tallado de probetas, cuando el material es heterogéneo.
El costo del ensayo es elevado en	Los parámetros de resistencia al
comparación con los ensayos de	corte del suelo se determinan a
corte directo y triaxial.	partir de las envolventes de falla y
	Círculos de Mohr.
	Dependen de factores tales como la
	calidad de las muestras, su tamaño
	y el método de ensayo.
	No es posible la toma de muestra
	para el ensayo triaxial a una
	profundidad deseada.
	Muestras muy buenas pueden tener
	perdidas de resistencia de hasta el
	50% Fuente: (Ladd y Lambe 1964;
	Clayton y Hight 1992).
	ino es posible realizar las curvas de
	cedencia de iviorn-Coulomb, debido
	a que los equipos convencionales
	para i riaxial estan calibrados para
	un estado de carga maximo de /
	kg/cm2

- En la presente tesis se incluyó como dato adicional para comparar con los ensayos de ficómetro, la toma de muestras en los sitios de investigación para ensayo de corte directo.
- > Se obtienen las siguientes conclusiones de los sitios de investigación:

Sitio de Investigación 1.
La magnitud de variación de la cohesión tiene una varianza del 4.2% y para el ángulo de fricción interna tiene una varianza de 4.01%.

Sitio de Investigación 2.

En el sondeo S-2B, ficómetro 3 la magnitud de variación de la cohesión tiene una varianza del 88% y para el ángulo de fricción interna tiene una varianza del 12%.

En el sondeo S-3B, ficómetro 4 y el ensayo de corte directo la magnitud de variación de la cohesión tiene una varianza del 33% y para el ángulo de fricción interna tiene una varianza del 14%.

En el sondeo S-3B, ficómetro 5 y el ensayo de corte directo la magnitud de variación de la cohesión tiene una varianza del 26% y para el ángulo de fricción interna tiene una varianza del 9%.

Sitio de Investigación 3.

En el sondeo P-1, ficómetro 6 y el ensayo de corte directo la magnitud de variación de la cohesión tiene una varianza del 6% y para el ángulo de fricción interna tiene una varianza del 30%.

En el sondeo P-2, ficómetro 7 y el ensayo de corte directo la magnitud de variación de la cohesión tiene una varianza del 33% y para el ángulo de fricción interna tiene una varianza del 35%.

Sitio de Investigación 4.

En el sondeo P-2, ficómetro 8 y el ensayo de corte directo la magnitud de variación de la cohesión tiene una varianza del 91% y para el ángulo de fricción interna tiene una varianza del 0%.

En el sondeo P-6, ficómetro 9 y el ensayo de corte directo la magnitud de variación de la cohesión tiene una varianza del 28% y para el ángulo de fricción interna tiene una varianza del 4%.

Sitio de Investigación 5.

En el sondeo P-3, ficómetro 10 y el ensayo de corte directo la magnitud de variación de la cohesión tiene una varianza del 72% y para el ángulo de fricción interna tiene una varianza del 6%.

Tomando en cuenta que los ensayos de corte directo se realizó a una profundidad de 2m. en todos los sitios de investigación, los resultados obtenidos entre la prueba de ficómetro y el ensayo de corte directo, presentan una varianza alta y baja en algunos sitios de investigación, esta diferencia se debe a un proceso llamado Intemperismo o meteorización que es la disgregación o descomposición de los materiales expuestos al aire, la humedad, la temperatura y al efecto de la materia orgánica que se dio en la toma de muestras para el corte directo.

Existe similitud entre las resistencias al esfuerzo cortante obtenidas con el ficómetro y la prueba de corte directo, con un coeficiente de correlación promedio alta (0.97).

Al comparar los resultados de las prueba triaxial UU en el sitio de investigación 3 con el ficómetro, se observa que la primera es mucho menor y que existe una dispersión importante al comparar los esfuerzos resistentes.

Se muestra que las pruebas de laboratorio comparables con los resultados del ficómetro para los suelos estudiados son las pruebas de corte directo.

6.2 Recomendaciones

- Es recomendable continuar con las investigaciones de los parámetros de corte de los suelos en la ciudad de Quito comparando los resultados de triaxial CC, CD y pruebas tradicionales para determinar la cohesión y el ángulo de fricción interna con el ficómetro.
- Para un mejor análisis de comparación entre el ficómetro, la prueba triaxial UU y corte directo, se recomienda realizar los ensayos a la misma profundidad para determinar los parámetros de corte del suelo y así tener resultados más concretos.
- Realizar clasificación SUCS, ensayo de penetración estándar y métodos convencionales en área de influencia del ensayo del ficómetro
- Para obtener una comparación de resultados como la curva de cedencia de Morh-Coulomb del ensayo ficómetro con corte directo y triaxial se deben tener equipos más especializados, debido a que la capacidad que tienen es muy baja.
- La operación del ficómetro debe ser realizada por personal especialista en el funcionamiento del equipo y con conocimientos de geotecnia para la toma de decisiones en campo e interpretación de los resultados.
- Es caso de que la universidad desee adquirir un equipo es de suma importancia contar no solo con el costo del mismo, también existen

factores que consecuentemente vienen involucrados y deben ser tomados en cuenta como: costos de mantenimiento, costos de personal, requerimientos mínimos de instalación del equipo.

6.3 Bibliografía

- > APAGEO. (2011). Obtenido de http://www.apageo.com
- Das, B. (2001). Fundamentos de Ingeniería Geotécnica.
- Dumas, C., Orea, I., & Hernández, O. (2013). Exploración in situ con la prueba de phicómetro.
- G. Philipponnat. (1986). Le phicomètre : essai de cisaillement direct in situ the phicometer : in situ direct shear test
- Gonzalez, J., Ibarra, E., Rangel, J., & Ovando, E. (2012). Empleo del ficómetro en los suelos duros y aluviales del valle de México.
- Norma Ecuatoriana de la Construcción. (2011).
- > Suárez Díaz, J. (2009). Deslizamientos. Tomo I: Análisis Geotécnico.
- Suárez, J. (2009). Análisis Geotécnico.
- > Torres, M. (2006). Ingenieria de los Suelos 2. ESPE.
- Valcarce, A. G. (2003). MANUAL DE EDIFICACIÓN. Mecánica de los terrenos y cimientos.
- > CABOURG. (2011). Journées Géotechnique.
- Philipponnat, G. and Zerhouni, M.I. (1993). Interprétation de l'essai au Phicomètre, Revue Française de Géotechnique , 65.Revue Francaise De Géotechnique
- AFNOR (1997). Sols: Reconnaissance et essais –Essai de cisaillement au Phicomètre, French standard XP P94-120
- > Torres Higgeco. (2011). Resultados de la Geotecnia en Quito

Moulay I. Zerhouni and Rabah Arab. (2007). In situ shear resistance of soils and particular materials measured by the Phicometer

6.4 Anexos

6.4.1 Ensayos de Ficómetro

Sitio de Investigación 1: Sector La Lira

Ensayo Ficómetro 1

A. Información del ensayo:	
Sondeo:	P-3
Profundidad:	15,00 m
C. Datos del ensayo:	
Longitud efectiva de la sonda:	0,23 m
h:	15,00 m
ho:	1,00 m
Densidad del agua:	10,00 KN/m ³

# incrementos	VD15" (cm ³)	VD30'' (cm ³)	VD1' (cm ³)	VF (cm3)	рМ (КРа)	Tmax (KN)
1	185	190	195	205	500,00	16,06
2	210	210	215	220	575,00	19,50
3	225	225	228	236	750,00	25,35
4	240	240	245	253	875,00	30,76
5	254	254	260	270	1050,00	37,68
6	275	276	279	290	1175,00	44,07

# incrementos	pe (Kpa)	d (m)	s (m ²)	pc (Kpa)	t (KN/m ²)
1	285,530	0,057	0,0414	354,47	388,23
2	292,113	0,058	0,0419	422,89	465,54
3	298,658	0,059	0,0424	591,34	597,30
4	305,142	0,060	0,0430	709,86	714,85
5	311,205	0,060	0,0436	878,80	863,85
6	317,866	0,061	0,0443	997,13	994,55

Ensayo Ficómetro 2

A. Información del ensayo:	
Sondeo:	P-3
Profundidad:	20,00 m
C. Datos del ensayo:	
Longitud efectiva de la sonda:	0,23 m
h:	20,00 m
ho:	1,00 m
Densidad del aqua:	10,00 KN/m ³

# incrementos	VD15" (cm ³)	VD30'' (cm ³)	VD1' (cm ³)	VF (cm3)	рМ (КРа)	Tmax (KN)
1	130	135	155	175	610,00	21,48
2	200	205	210	220	950,00	31,55
3	225	230	230	245	1150,00	25,35
4	250	250	250	260	1350,00	35,62
5	260	265	265	270	1475,00	43,13
6	275	275	275	280	1600,00	50,67
7	285	285	285	290	1750,00	51,86

# incrementos	pe (Kpa)	d (m)	S (m ²)	pc (Kpa)	t (KN/m ²)
1	270,780	0,056	0,056 0,0403 47		532,63
2	292,113	0,058	0,0419	797,89	753,22
3	302,147	0,059	0,0428	987,85	592,95
4	307,686	0,060	0,0433	1182,31	823,16
5	311,205	0,060	0,0436	1303,80	988,80
6	314,595	0,061	0,0440	1425,41	1152,51
7	317,866	0,061	0,0443	1572,13	1170,35

Sitio de Investigación 2: Ruta Collas Ensayo Ficómetro 3

V (cm3)	Pr (KPa)
0	0.00
100	125.00
200	175.00
300	200.00
400	250.00
500	252.00
600	300.00

A. Información del ensayo:	
Sondeo:	S-2B
Profundidad:	1.00 m
C. Datos del ensayo:	
Longitud efectiva de la sonda:	0.23 m
h:	1.00 m
ho:	1.00 m
Densidad del agua:	10.00 KN/m ³

# incrementos	VD15" (cm ³)	VD30'' (cm ³)	VD1' (cm ³)	VF (cm3)	рМ (KPa)	Tmax (KN)
1	90	95	101	120	255.00	5.40
2	127	130	135	150	340.00	8.47
3	155	160	163	171	375.00	11.16
4	175	175	176	178	450.00	12.63
5	192	195	198	211	520.00	15.82
6	217	220	225	235	600.00	18.71
7	240	243	245	255	700.00	22.55
8	260	261	265	275	800.00	26.65

# incrementos	pe (Kpa)	d (m)	S (m ²)	рс (Кра)	t (KN/m ²)
1	132.467	0.053	0.0384	262.53	140.54
2	153.100	0.055	0.0395	326.90	214.64
3	165.215	0.056	0.0402	349.78	277.69
4	168.925	0.056	0.0404	421.08	312.38
5	184.651	0.058	0.0416	475.35	380.52
6	194.612	0.059	0.0424	545.39	441.21
7	202.164	0.060	0.0431	637.84	523.21
8	209.146	0.061	0.0438	730.85	608.56

6.4.1.1 Ensayo Ficómetro 4

S-3B	sondeo inclinado
3.00 m	(longitud inclinada)
0.23 m	
3.00 m	
1.00 m	
10.00 KN/m ³	
	S-3B 3.00 m 0.23 m 3.00 m 1.00 m 10.00 KN/m ³

# incrementos	VD15" (cm ³)	VD30'' (cm ³)	VD1' (cm ³)	VF (cm3)	рМ (КРа)	Tmax (KN)
1	275	280	300	335	475.00	12.86
2	345	350	360	385	650.00	19.91
3	390	398	445	425	850.00	24.40
4	428	430	435	480	1020.00	33.59

# incrementos	pe (Kpa)	d (m)	S (m ²)	pc (Kpa)	t (KN/m ²)
1	283.971	0.063	0.0459	331.03	280.36
2	295.073	0.066	0.0476	494.93	418.26
3	302.961	0.068	0.0490	687.04	498.08
4	312.673	0.070	0.0509	847.33	660.02

6.4.1.2 Ensayo Ficómetro 5

A. Información del ensayo:		
Sondeo:	S-3B	sondeo inclinado
Profundidad:	12.00 m	(longitud inclinada)
C. Datos del ensayo:		
Longitud efectiva de la sonda:	0.23 m	
h:	12.00 m	
ho:	1.00 m	
Densidad del agua:	10.00 KN/m ³	

# incrementos	VD15" (cm ³)	VD30'' (cm ³)	VD1' (cm ³)	VF (cm3)	рМ (КРа)	Tmax (KN)
1	119	123	130	135	385.00	5.37
2	135	138	142	182	550.00	11.90
3	183	190	194	216	700.00	16.61
4	220	221	226	245	800.00	25.31
5	246	254	256	283	950.00	35.59
6	328	335	345	385	1050.00	46.11

# incrementos	pe (Kpa)	d (m)	S (m ²)	pc (Kpa)	t (KN/m ²)
1	207.117	0.054	0.0389	317.88	137.90
2	232.891	0.056	0.0406	457.11	293.32
3	247.669	0.058	0.0417	592.33	397.86
4	258.538	0.059	0.0428	681.46	592.01
5	270.979	0.061	0.0441	819.02	807.60
6	297.535	0.066	0.0476	892.46	968.66

Sitio de Investigación 3: Vía a Guayllabamba Ensayo Ficómetro 6

P-1
15.00 m
0.23 m
15.00 m
1.00 m
10.00 KN/m ³

# incrementos	VD15" (cm ³)	VD30'' (cm ³)	VD1' (cm ³)	VF (cm3)	рМ (KPa)	Tmax (KN)
1	240	243	245	283	280.00	11.94
2	290	293	295	320	330.00	14.41
3	330	333	335	355	400.00	17.12
4	360	363	365	385	430.00	18.99
5	390	393	395	415	485.00	20.62
6	420	422	425	440	525.00	23.23
7	442	445	450	465	580.00	26.19
8	467	470	472	485	625.00	28.54

# incrementos	pe (Kpa)	d (m)	s (m ²)	рс (Кра)	t (KN/m ²)
1	272.665	0.061	0.0441	167.34	270.94
2	301.854	0.063	0.0454	188.15	317.75
3	326.512	0.064	0.0466	233.49	367.67
4	345.784	0.066	0.0476	244.22	398.93
5	363.609	0.067	0.0486	281.39	423.92
6	377.505	0.069	0.0495	307.49	469.22
7	390.633	0.070	0.0504	349.37	519.92
8	400.637	0.071	0.0511	384.36	558.88

Ensayo Ficómetro 7

Tipo de suelo:

A. Información del ensayo:	
Sondeo:	P-2
Profundidad:	10.00 m
C. Datos del ensayo:	
Longitud efectiva de la sonda:	0.23 m
h:	10.00 m
ho:	1.00 m
Densidad del agua:	10.00 KN/m ³

# incrementos	VD15" (cm ³)	VD30'' (cm ³)	VD1' (cm ³)	VF (cm3)	рМ (КРа)	Tmax (KN)
1	195	200	205	300	200.00	6.20
2	307	310	315	345	260.00	9.04
3	350	355	357	375	340.00	11.31
4	380	382	383	400	405.00	14.02
5	405	408	410	435	500.00	17.81
6	440	442	445	472	615.00	23.36
7	319	322	326	341	0.00	10.77
8	351	355	359	365	0.00	12.63

# incrementos	# pe d S incrementos (Kpa) (m) (m ²)		s (m ²)	pc (Kpa)	t (KN/m ²)	
1	169.352	0.062	0.0447	140.65	138.83	
2	181.884	0.064	0.0462	188.12	195.60	
3	189.361	0.065	0.0473	260.64	239.34	
4	195.148	0.067	0.0481	319.85	291.34 361.01	
5	202.670	0.068	0.0493	407.33		
6	209.989	0.070	0.0506	515.01	461.52	
7	180.839	0.064	0.0461	-70.84	233.73	
8	186,937	0.065	0.0469	-76.94	269.24	

Sitio de Investigación 4: Sector Batan Alto

Ensayo Ficómetro 8

A. Información del ensayo:	
Sondeo:	P-2
Profundidad:	6.00 m
C. Datos del ensayo:	
Longitud efectiva de la sonda:	0.23 m
h:	10.00 m
ho:	1.00 m
Densidad del aqua:	10.00 KN/m ³

# incrementos	VD15" (cm ³)	VD30'' (cm ³)	VD1' (cm ³)	VF (cm3)	рМ (КРа)	Tmax (KN)
1	122	130	146	211	95.00	1.30
2	236	247	258	324	225.00	5.74
3	329	332	336	375	330.00	9.00
4	381	383	387	425	450.00	13.22
5	427	429	432	470	560.00	16.76
6	473	474	475	496	660.00	20.62
7	502	505	508	531	830.00	28.12

# incrementos	pe (Kpa)	d (m)	S (m ²)	pc (Kpa)	t (KN/m ²)
1	137.796	0.058	0.0416	67.20	31.27
2	176.253	0.063	0.0455	158.75	126.18
3	189.361	0.065	0.0473	250.64	190.45
4	200.584	0.068	0.0490	359.42	269.86
5	209.609	0.070	0.0505	460.39	331.58
6	214.437	0.071	0.0514	555.56	400.80
7	220.551	0.073	0.0527	719.45	534.00

Ensayo Ficómetro 9

A. Información del ensayo:	
Sondeo:	P-6
Profundidad:	13.00 m
C. Datos del ensayo:	
Longitud efectiva de la sonda:	0.23 m
h:	13.00 m
ho:	1.00 m
Densidad del agua:	10.00 KN/m ³

# incrementos	VD15" (cm ³)	VD30'' (cm ³)	VD1' (cm ³)	VF (cm3)	рМ (КРа)	Tmax (KN)
1	195	197	206	255	210.00	3.14
2	270	272	278	298	300.00	10.36
3	302	304	305	305	310.00	10.25
4	312	315	319	340	400.00	13.36
5	355	368	383	420	600.00	20.60

# incrementos	pe (Kpa)	d (m)	S (m ²)	pc (Kpa)	t (KN/m ²)
1	141.557	0.060	0.0431	208.44	72.86
2	152.185	0.062	0.0446	287.81	232.35
3	153.769	0.062	0.0443	296.23	228.64
4	161.178	0.064	0.0460	378.82	290.16
5	175.590	0.068	0.0488	564.41	422.01

Sitio de Investigación 5: Sector Av. 12 de Octubre Ensayo Ficómetro 10

A. Información del ensayo:	
Sondeo:	P-3
Profundidad:	12.00 m
C. Datos del ensayo:	
Longitud efectiva de la sonda:	0.23 m
h:	13.00 m
ho:	1.00 m
Densidad del agua:	10.00 KN/m ³

# incrementos	VD15" (cm ³)	VD30" (cm ³)	VD1' (cm ³)	VF (cm3)	рМ (КРа)	Tmax (KN)
1	180	195	200	250	325.00	7.80
2	260	262	265	280	475.00	14.50
3	285	288	290	305	600.00	20.10
4	305	305	310	325	750.00	23.62
5	326	330	335	350	875.00	28.00
6	350	355	358	370	1000.00	32.34
7	370	373	375	385	1075.00	35.56

# incrementos	pe (Kpa)	d (m)	S (m ²)	рс (Кра)	t (KN/m ²)
1	213.784	0.059	0.0429	251.22	181.71
2	224.503	0.061	0.0440	390.50	329.81
3	232.593	0.062	0.0448	507.41	448.35
4	238.600	0.063	0.0455	651.40	518.85
5	245.610	0.064	0.0464	769.39	603.58
6	250.866	0.065	0.0471	889.13	686.88
7	254.625	0.066	0.0476	960.37	747.03

6.4.2 Ensayos Triaxial

Sitio de Investigación 3: Sector Vía a Guayllabamba

RESISTENCIA AL CORTE ENSAYO TRIAXIAL UU RESUMEN DE RESULTADOS

							HOJA 2 DE 2
				DESCRIPCIÓN Arena limosa	DE LA MUESTRA:		
SONDEO:	P -1			SUCS:	SM		
PROF. (m):	21.00-21.45			MUESTRA:	1.000		
NORMA:	ASTM 2850-03a						
RESUMEN DE	RESULTADOS (DATOS PROMEI	DIO):			48.07E0.00 w-	20 72%	
	CONFISIÓN C=	150.20	4Pa		DENSIDAD HUMEDA am =	10.11 kN/m3	
	ANGLILO DE ERICIÓN & -	16.46	0		DENSIDAD SECA #d=	15.89 kN/m3	
	PRODED DE MUCION, E-	10.40				10.00 10000	

RESULTADOS DE C	ADA PROBETA:						
PRO	BETA 1	PROE	BETA 2	PRC	OBETA 3	PROI	BETA 4
G 3 =	50.00 kPa	G 3 =	200.00 kPa	0 3 =		G 3 =	
w=	20.94%	w =	20.50%	W =		w =	
* m =	18 71 kWm ³	¥d =	19.51 kN/m²	#d =		¥d =	
#d =	15 47 kWm3	#C =	16.19 kN/m2	*C =		9C =	
0-	0.66	0-	0.50	0-		,s 0-	
e-	0.00	e-	0.09	8-	1	e-	
DEF. UNIT	ESF. DESVIADOR	DEF. UNIT	ESF. DESVIADOR	DEF. UNIT	ESF. DESVIADOR	DEF. UNIT	ESF. DESVIADOR
0.00%	0.00	0.00%	0.00	1/9/	(NF d)	1/9	(NFa)
0.15%	93.01	0.15%	130.71				
0.30%	102.35	0.30%	173.69				
0.45%	132.47	0.45%	192.04				
0.60%	137.94	0.60%	256.32				
0.75%	158.49	0.75%	258.86				
0.90%	162.01	0.90%	319.92				
1.05%	169.29	1.05%	335.02				
1.20%	175.61	1.20%	348.12				
1.35%	191.28	1.36%	370.89				
1.50%	205.04	1 51%	375 17				
1.87%	223.84	1.88%	401.74				
2.25%	246.22	2.26%	434.84				
2.62%	271.15	2.64%	436.04				
3.00%	317.16	3.01%	531.72				
3.75%	336.67	3.77%	534.22				
4.50%	373.08	4.52%	531.92				
5.25%	408.88	5.27%	547.31				
6.00%	413.69	6.02%	553.13				
6.75%	418.3E	6.78%	551.45				
7.50%	433.47	7.53%	554.28				
8.25%	434.31	8.28%	560.60				
9.00%	442.01	9.04%	558.68				
10.49%	437.28	10.54%	551.19				
11.99%	432.46	12.00%	542.78				
13.49%	420.92	13.00%	034.33				
14.99%	418.04	10.06%	020.03				
ESOHEMASDELA							
ESQUEIMAS DE LAT	ALLA				1		
		1.1		-		-	
1 42-4							
		1					
		1 +					
			1				
1 N	N I = 1	N	$\sim 1/$				
	8 / I	2		1			
N	······································		a a star a s				20

-

RESISTENCIA AL CORTE ENSAYO TRIAXIAL UU DIAGRAMAS DE MOHR

RESISTENCIA AL CORTE ENSAYO TRIAXIAL UU RESUMEN DE RESULTADOS

Description of LAME STOR: April 2003 SOURCE Protection MARCE OP FILE MARCE OP FILE OP FILE MARCE OP FILEOROP IT MARCE OP FILEOROP IT <								HOJA 2 DE 2	
SANDEG: P.1 ASTUREVICE SUCE::::::::::::::::::::::::::::::::::::	-				DESCRIPCIÓN DE . Arena limosa	LA MUESTRA:			
IPPOF BIO 1000000000000000000000000000000000000	SONDEO:	P.1			SUCS:	SM			
MODULE: ATTI 200030 MILEO 0.01 TOTAL TOTAL RESIMENCE RESULTADOS DATOS DATOS PROBEDIOS MILEO D. 125 00 125 00 MIRE DERSIGNO DE CASO HIGE JANO 125 00 MIRE 125 00 MIRE <td< td=""><td>PROF. (m):</td><td>37.00-37.45</td><td></td><td></td><td>MUESTRA:</td><td>1.000</td><td></td><td></td></td<>	PROF. (m):	37.00-37.45			MUESTRA:	1.000			
RESUMENCE RESULTADOS (DATOS PROMEDO): MIGUEO DE FISICIÓN (P 239 VP) DENSIDAD SECADA PROBETA ANGUEO DE FISICIÓN (P 239 VP) RESULTADOS DE CADA PROBETA TESULTADOS DE CA	NORMA:	ASTM 2850-03a							
ODE SIGN C= MIGUE DE FIRICIÓN (# - 127.59 23.90 IPP 23.90 DESIGNAD INCEDA (# - DESIGNAD INCEDA (# - NELACIÓN DE CA.74 - NELACIÓN DE	RESUMENDE RES	ULTADOS (DATOS PROI	/ED10):						
RESULTADOS DE CADA PROBETA OLSA OLSA OLSA PROBETA 2 PROBETA 3 PROBETA 4 m = 25.5% W = 25.5% W = 7.5 W = 7.5 <th cols<="" td=""><td>AN</td><td>COHESIÓN, c = IGULO DE FRICIÓN, Ø =</td><td>121.59 23.99</td><td>kPa °</td><td>DE</td><td>HUMEDAD, w= NSIDAD HÚMEDA, ym = DENSIDAD SECA, yd =</td><td>27.40% 17.80 kW/m³ 13.97 kW/m³</td><td></td></th>	<td>AN</td> <td>COHESIÓN, c = IGULO DE FRICIÓN, Ø =</td> <td>121.59 23.99</td> <td>kPa °</td> <td>DE</td> <td>HUMEDAD, w= NSIDAD HÚMEDA, ym = DENSIDAD SECA, yd =</td> <td>27.40% 17.80 kW/m³ 13.97 kW/m³</td> <td></td>	AN	COHESIÓN, c = IGULO DE FRICIÓN, Ø =	121.59 23.99	kPa °	DE	HUMEDAD, w= NSIDAD HÚMEDA, y m = DENSIDAD SECA, y d =	27.40% 17.80 kW/m³ 13.97 kW/m³	
PRODETA 1 PRODETA 2 PRODETA 3 PRODETA 4 un = 100.00 P/b un = 200.00 P/b un =					REI	ACIONIDE VACIOS, e-	0.04		
PROBE IA 1 PROBE IA 2 PROBE IA 3 PROBE IA 3 PROBE IA 3 x = 0000 kP2 x = x = x = x = ym = 17.8 MV/m1 ym = 17.2 MV/m1 ym = ym = <td>RESULTADUS DE</td> <td>CADA PROBETA:</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	RESULTADUS DE	CADA PROBETA:			1				
UP UP 20.2% W* UP UP YR 17.05 M/m ² yd = 17.02 M/m ² Yd = <	σ ₁ =	100.00 kPa	ркс 674 =	200.00 kPa	D ₁ =	JBETA 3	ρκυ σ1 =	BETA 4	
m. JOURS m. JOURS m. JOURS m. JOURS m. m. JOURS m. m. JOURS m. m. JOURS m. m. m. JOURS m. m. <th< td=""><td></td><td>39.500/</td><td></td><td>26.000/</td><td></td><td></td><td></td><td></td></th<>		39.500/		26.000/					
Hat 1325 Mitrix Hat Hat 1420 Mitrix Hat	w=	20.09% 17.68 kN/m ²	w =	17.92 kN/m3	w=		w =		
e 087 e 081 e e DEF_UNIT ESF, DESMADOR DEF_UNIT DESMEDIA DE	#d =	13.75 kN/m ³	70 75 =	14.20 kN/m ²	y s =		¥S =		
DEF. UNIT ESF. DESVMOOR DEF. UNIT	e =	0.87	e =	0.81	e =		e =		
Cg3 Ce3 Ce3 <thce3< th=""> <thce3< th=""> <thce3< th=""></thce3<></thce3<></thce3<>	DEF. UNIT	ESF. DESVIADOR	DEF. UNIT	ESF. DESVIADOR	DEF. UNIT	ESF. DESVIADOR	DEF. UNIT	ESF. DESVIADOR	
0.00% 0.00 0.00% 10246 0.00% 0.00 0.00% 20146 0.00% 32047 0.00% 20146 0.00% 32047 0.00% 32146 0.00% 32042 0.00% 32175 0.00% 32032 0.00% 34077 0.00% 44044 1.00% 30776 1.00% 42232 1.90% 44017 1.00% 42232 2.01% 40017 1.00% 42232 2.01% 40017 1.00% 62327 2.01% 40017 1.00% 64313 2.01% 40017 1.00% 64317 2.01% 40075 2.01% 06431 2.01% 40075 2.01% 06431 2.01% 40075 2.01% 6431 2.01% 40075 2.01% 6431 2.01% 40075 2.00% 6431 2.00% 40075 2.00% 60005 2.00%	C%)	(kPa)	C%)	(kPa)	<i>(%</i>)	(kPa)	C))	(kPa)	
0.30% 247.45 0.30% 227.25 0.40% 244.45 0.40% 220.44 0.60% 244.45 0.40% 242.25 0.70% 327.75 0.70% 342.25 0.70% 340.77 0.90% 444.44 1.90% 307.75 1.10% 442.25 1.90% 300.55 1.10% 442.74 1.40% 440.77 2.20% 440.757 2.20% 564.13 2.61% 440.72 2.29% 564.13 2.61% 440.72 2.29% 664.13 2.61% 440.75 2.20% 664.13 2.61% 400.75 0.20% 664.15 0.97% 500.65 0.37% 664.67 0.97% 400.55 0.37% 664.67 0.97% 400.55 0.37% 664.67 0.97% 400.55 0.37% 664.67 0.97% 400.55 0.37% 664.75 0.97% 400.55 0.30% 664.75 0.90% 600.55 0.90% 600.55 0.00% 664.75 0.90% 600.55 0.00% 664.75 0.90% 600.55 0.00% 664.75 0.90% 600.55 0.00% 600.55 0.00% 664.75 0.90% 600.55 0.00% 600.55 0.00% 664.75 0.90% 600.55 0.00% 600.55 0.00% 664.75 0.90% 600.55 0.00% 664.75 0.90% 600.55 0.00% 600.55 0.00% 600.55 0.00% 600.55 0.00% 600.55 0.00% 600.55 0.00% 600.55 0.00% 600.55 0.00% 600.55 0.00% 600.55 0.00% 600.55 0.00% 600.55 0.0	0.00%	0.00 182.4F	0.00%	0.00					
0 47% 247.5 0 47% 220.4 277.7 0 77% 37.2 54 0 77% 327.7 7 0 77% 37.2 54 1 0 7% 327.7 7 0 77% 4422.5 1 1 0 9% 327.7 7 1 0 9% 4422.5 1 1 9% 328.6 5 1 .3% 447.4 1 1 49% 400.6 1 .49% 446.8 7 2 29% 447.5 7 2 .2 4% 564.1 5 2 29% 42.7 7 2 .2 4% 564.1 5 2 29% 507.6 5 0 .2 7% 664.7 1 2 29% 507.6 5 0 .2 7% 664.7 1 2 29% 507.6 5 0 .2 7% 664.7 1 2 29% 507.6 5 0 .2 7% 664.7 1 3 49% 502.7 1 4.9% 664.1 1 3 29% 507.6 5 0 .2 7% 664.7 1 3 29% 500.6 5 0 .2 7% 664.7 1 3 29% 500.6 1 .4 7% 664.1 1 3 29% 500.6 1 .4 9% 600.6 1 4 493% 400.6 1 .4 9% 600.6 1 5 500EMAS DE LAFALLAC	0.30%	215.49	0.30%	257.20					
0.99% 30.1% 0.99% 372.82 0.99% 307.77 0.99% 442.82 1.99% 377.76 1.99% 442.50 1.99% 301.77 1.99% 442.50 1.99% 420.65 1.34% 477.44 1.99% 420.67 1.34% 477.44 1.99% 420.77 1.99% 447.50 2.29% 427.77 2.24% 560.15 2.99% 402.77 2.24% 560.15 2.99% 402.72 2.89% 560.15 2.99% 402.72 2.89% 663.25 5.97% 570.82 6.97% 643.25 5.97% 570.82 6.97% 643.25 5.97% 570.82 6.97% 643.16 6.27% 563.55 11.94% 620.25 1.94% 435.85 11.94% 620.25 1.94% 435.85 11.94% 620.25 1.94% 435.85 11.94% 620.85 1.94% 435.85 11.94% 620.85 1.94%	0.45%	245.49	0.45%	295.44					
0.00% 340.77 0.90% 440.64 1.0% 377.76 1.90% 442.82 1.3% 380.65 1.3% 447.74 1.4% 400.06 1.4% 448.87 1.4% 400.06 1.4% 448.87 1.4% 400.06 1.4% 448.87 2.0% 447.77 2.2% 564.15 2.0% 447.77 2.2% 564.15 2.0% 402.02 2.9% 667.15 2.9% 402.02 2.9% 677.75 3.6% 402.02 2.9% 677.75 3.6% 402.02 2.9% 667.25 3.6% 402.65 0.7% 663.65 3.6% 507.64 67.7% 664.16 3.9% 507.94 67.7% 664.16 664.16 3.9% 507.94 67.7% 664.01 660.16 660.16 3.9% 507.94 67.7% 660.05 660.06 660.06 660.06 660.06 660.06 660.06 660.06 660.06 660.06 660.06	0.75%	321.79	0.75%	372.52					
1.09% 307.7c 1.09% 420.22 1.9% 30.65 1.3% 477.44 1.9% 400.05 1.3% 447.5C 1.9% 400.77 2.0% 447.7C 2.0% 407.77 2.0% 500.74 3.0% 400.77 2.0% 500.74 3.0% 400.77 2.0% 640.82 3.0% 502.07 4.4% 640.82 3.0% 502.07 4.4% 640.82 3.0% 502.07 5.7% 640.76 3.0% 502.07 6.4% 640.25 3.0% 502.07 6.4% 640.25 3.0% 500.14 7.4% 630.55 1.04% 630.55 647.71 13.4% 63.9% 500.05 14.9% 600.85 1.04% 630.55 14.9% 600.85 1.04% 630.55 14.9% 600.85 1.04% 640.115 14.9% 1.04% 640.26	0.90%	340.77	0.90%	404.64					
1998 00962 11364 47744 1998 40062 13464 44437 2998 42017 13786 52975 2998 44757 22986 50615 2998 49627 29986 61157 2998 49625 37786 64332 30736 49635 37786 64325 52296 507.4 52286 64325 5278 507.4 52376 64325 5278 507.4 52376 64325 5278 507.4 52376 64325 5278 507.4 52376 64315 30756 40657 5238 64315 30756 513.5 6778 5214 64316 30976 500.25 50746 60055 114578 40637 149398 60055 114938 40637 149398 60065 1149398 478.05 149398 60065 1149398 478.05 149398 60065	1.04%	357.76	1.04%	432.82					
1.996 400.66 1.496 494.87 1.976 423.17 1.376 532.97 2.246 447.57 2.246 564.15 2.996 480.77 2.246 564.15 2.996 480.77 2.246 564.15 2.996 480.77 2.996 611.57 3.3736 486.55 3.3736 634.87 4.205 502.07 4.496 643.82 5.278 501.62 5.978 643.32 5.778 501.62 5.978 643.32 6.728 647.17 4.496 643.62 3.276 571.32 6.728 647.16 3.278 500.02 3.978 643.32 1.045% 501.42 10.45% 630.55 1.194% 403.96 611.55 11.44% 630.82 1.194% 403.96 11.44% 630.82 611.65 1.194% 403.96 11.44% 600.82 611.65 1.193% 475.02 14.93% 600.82 600.82 6	1.34%	389.65	1.34%	477.44					
107% 42017 107% 20247 204% 440757 204% 556415 204% 46075 204% 55605 204% 46055 3.73% 63407 307% 46055 3.73% 64325 202% 507.46 522% 64325 20% 507.46 522% 647.76 20% 507.46 522% 647.76 20% 507.46 522% 647.76 20% 507.46 622% 647.76 20% 507.46 622% 647.76 30.97% 501.32 6.72% 642.51 30.97% 500.62 39% 620.62 11.94% 403.96 11.44% 620.62 11.94% 403.96 11.44% 620.62 11.94% 403.96 11.44% 600.62 11.94% 470.02 14.93% 600.62	1.49%	400.6E	1.49%	494.87					
291% 497.6 291% 998.000 299% 492.27 299% 911.07 7 4.6% 502.07 4.4% 943.87 943.87 5.2% 507.46 5.29% 943.87 943.85 5.2% 507.46 5.29% 943.85 943.85 5.2% 507.46 5.29% 943.85 943.85 5.2% 507.46 5.29% 943.85 943.85 5.2% 507.46 5.29% 944.51 943.85 8.2% 509.11 7.4% 943.85 944.51 8.9% 509.61 8.2% 964.64 943.85 9.4% 509.42 10.4% 640.51 944.51 9.4% 493.96 11.9% 620.85 944.91 10.4% 43.95 611.15 640.62 944.91 13.4% 496.47 13.4% 600.62 943.95 944.93 14.9% 478.06 14.9% 600.62 943.95 944.93 14.9% 478.06 14.9% 600.62 943.93 94	1.87%	420.17 447.57	1.87%	032.97 564.15					
299% 402.27 2.99% 611.67 3.73% 40% 53 3.73% 502.07 4.43% 643.82 5.22% 507% 510.85 5.97% 643.82 5.7% 510.85 5.97% 643.92 5.7% 500.05 3.9% 644.51 8.9% 500.05 8.9% 640.16 11.94% 433.95 11.94% 620.82 11.94% 443.95 11.94% 620.82 11.94% 443.95 11.94% 600.62 ESQUEMAS DE LAFALLA:	2.61%	469.78	2.61%	595.03					
3.403 44033 3.403 0.407 3.403 007.42 3.2286 94023 3.2286 007.42 3.2286 94023 5.0736 511.32 6.7286 644.51 3.8056 003.02 8.9696 640.16 10.4596 00.911 7.4696 644.51 3.8056 003.02 8.9696 640.02 10.4596 00.914 10.4596 630.55 10.4596 00.914 10.4596 630.55 11.9496 42936 600.65 600.65 13.4398 466.47 13.4396 600.65 14.9396 478.06 14.9396 600.65	2.99%	482.27	2.99%	611.57					
5.22% 507.46 5.22% 6.45.25 5.67% 511.35 6.72% 6.47.85 7.465 50011 7.466 646.16 8.27% 500211 8.27% 6.46.16 8.27% 500211 8.27% 6.46.16 8.27% 500211 8.27% 6.46.16 9.67% 500211 8.27% 6.47.16 9.67% 500305 8.99% 640.16 9.04% 600305 6.00.05 11.94% 433.95 11.94% 43.95 11.94% 600.05	4,48%	490.03 502.07	4.48%	643.85					
597% 5708 5708 64235 7.46% 309.11 7.46% 646.16 8.27% 647.776 646.16 8.27% 640.16 620.85 8.27% 640.16 620.85 9.09% 640.16 620.85 9.09% 640.16 620.85 11.94% 439.96 11.04% 439.96 11.04% 620.85 11.94% 439.96 11.49% 439.96 11.94% 600.65 11.94% 439.96 11.49% 439.96 11.93% 600.65 14.93% 478.02 14.93% ESQUEMAS DE LA FALLA: Image: Contract State Sta	5.22%	507.46	5.22%	645.25					
7.495 509.11 7.495 945.16 8.905 309.05 8.906 640.16 10.43% 301.45 10.43% 630.05 11.94% 433.95 11.94% 630.05 13.43% 486.47 13.43% 611.15 600.65 14.93% 600.65	5.97% 6.72%	510.80 511.30	5.97% 6.72%	648.3c 647.7c					
8.27% 509.51 8.27% 6.44.51 8.95% 509.02 8.95% 600.16 11.94% 439.95 11.94% 620.35 13.45% 493.95 11.94% 620.82 13.45% 493.95 11.94% 620.82 13.45% 493.95 11.94% 620.82 14.93% 478.02 14.93% 600.82 478.02 14.93% 600.82 600.82 ESQUEMAS DE LA FALLA: 600.62 600.62 600.62	7.46%	509.11	7.46%	646.1E					
10.45% 300.0 10.45% 600.6 11.94% 433.95 11.94% 620.25 11.94% 433.95 11.94% 620.26 14.93% 478.02 14.93% 600.62	8.21%	509.51 509.05	8.21%	644.51					
119496 493.96 119496 620.86 134396 496.47 13.396 611.16 149396 478.06 14.9396 600.85 ESQUEMAS DE LA FALLA:	10.45%	501.48	10.45%	630.55					
13 43% 40% 47 13 43% 600 65 14 99% 600 65 ESQUEMAS DE LA FALLA:	11.94%	493.95	11.94%	620.88					
	13.43%	486.47 478.05	13.43%	611.1S 600.65					
	11.0075	110.00	11.0070	000.00					
	ESQUEMAS DE LA	FALLA:							
					–		-		
	·	t	·*						
		4	1	$A \setminus$					
			(
	#		1	F- 11					
		/	N	1 1					
	` <u>L_</u>		المسلة	Land V			L		

Sitio de Investigación 4: Sector Batan Alto

RESISTENCIA AL CORTE ENSAYO TRIAXIAL UU RESUMEN DE RESULTADOS

							HOJA 2 DE 2
				DESCRIPCIÓN DE I Limo arenoso	LA MUESTRA:		
SONDEO: PROF. (m): NORMA :	P -1 SH 2.50-3.00m ASTM 2850-03a			SUCS: MUESTRA:	ML 1.000		
RESUMENDE RES	ULTADOS (DATOS PROI	MED10):				607-1207-0	
AN	COHESIÓN, c = IGULO DE FRICIÓN, Ø =	58.60 26.51	kPa °	DEI REL	HUMEDAD, w= NSIDAD HÚMEDA, ym = DENSIDAD SECA, yd = LACIÓN DE VACÍOS, e =	19.50% 19.17 kW/m³ 16.04 kW/m³ 0.61	
RESULTADOS DE	CADA PROBETA:						
PRO	OBETA 1	PRO	DBETA 2	PRO	OBETA 3	PRO	DBETA 4
G 3 =	50.00 kPa	6 3 =	200.00 kPa	0 3 =		G 3 =	
w = ym = yd =	19.26% 18.28 kNVm² 15.33 kNVm²	w = 7d = 15 =	19.74% 20.06 k№m³ 16.76 k№m³	w = #d = #S =		w = 7d = 75 =	
e =	0.68	e =	0.53	e =		e =	
DEF. UNIT	ESF. DESVIADOR	DEF. UNIT	ESF. DESVIADOR	DEF. UNIT	ESF. DESVIADOR	DEF. UNIT	ESF. DESVIADOR
0.00% 0.10% 0.40% 0.60% 0.60% 0.09% 1.04% 1.99% 1.40% 1.40% 1.40% 1.40% 2.24% 2.24% 2.24% 2.24% 2.24% 2.24% 2.24% 2.26% 3.73% 4.47% 5.22% 5.96% 5.96% 6.7% 6.7% 6.7% 6.29% 3.43% 10.43% 10.43% 10.43% 10.43% 10.43% 10.43% 10.43% 10.43% 10.43%	0.00 21.87 48.42 81.53 107.91 114.36 143.44 152.62 183.47 187.85 201.66 224.26 232.75 242.96 250.16 265.35 269.55 270.06 265.35 270.06 287.91 265.35 270.06 289.55 270.06 289.55 270.06 289.55 270.06 289.55 270.06 289.55 299.66 299.66 299.66 299.66 299.66 299.66 299.66 299.66	0.00% 0.15% 0.30% 0.60% 0.60% 0.74% 1.04% 1.96% 1.40% 1.40% 1.40% 2.20% 2.60% 2.98% 3.72% 4.40% 5.21% 5.21% 5.21% 5.21% 5.33% 1.40% 1.	0.00 95.51 107.64 115.97 170.35 217.14 246.85 276.47 309.74 327.96 344.26 354.11 369.45 388.32 412.56 425.81 438.81 467.71 488.05 502.75 511.92 506.95 467.46 448.02 435.55 406.25				

6.4.3 Ensayos Corte Directo

Sitio de Investigación 1: Sector La Lira

		Y			ER!		E LAS FU	ERZAS A A EXCE	RMAD	AS			
				UNIVERSIDA	D DE I	AS FUERZAS	S ARMADAS - I	ESPE					
				LABORATO	RIO D	E ENSAYOS	DE MATERIAL	ES					
				EN	SAYC	DE CORTE I	DIRECTO						
DESCRIPCION DEL A PNEUMATIC DIRECT, 110 / 220 VAC 50-60 NORMA: ASTM D30: LOCALIZACION MUESTRA FECHA	APARATO /SHEAR RES 0 HZ HM-2 80 ; AASHT	SIDUAL AF 560A.3F O T236, B SITIO DE II P-3 08/0	PARATUS 35 1377 NVESTIGACIÓ 4/2015	N 1			PROYECTO SOLICITA ENSAYÓ VERIFICÓ		TESIS DIEGO O	5UADALUPE			
HUMEDAD No.	1	2	l I	HUME	JAD	1	2			HUMEDAD	1	2	1
TARA	1000000	and and		TAP	Α	Restrates	201222-0	1		TARA	200-0	200300	1
PESO TARA	25 A	49 A		PESOT	ARA	120.02	53 A			PESO TARA	3A 121.02	120.76	1
PESO TAPA + M	117.10			PESOT	ARA	120.02	121.07	1		PESO TARA	121.92	120.76	1
HUMEDA	156.21	154.65		+ N	1	161.65	152.46			+ M	162.95	159.88	
				HUM PESO T									
SECA	150.79	149.18		+ M SE	CA	155.76	148.15			+ M SECA	156.91	154.12	
	-									-			3
% HUMEDAD	17.1%	17.3%		% HUN	1EDA	16.5%	15.9%			% HUMEDA	17.3%	17.3%	
PROMEDIO	17	%		PROM	DIO	1	.6%			PROMEDIO	17	7%	l
Ensayo No. 01 Presión: v Modida	50 MPa			Ensayo Presió	No. n: v	02 100 Mpa	.).			Ensayo No. Presión: v	02 150 Mpa).	
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g =	50 MPa as (cm): 4.98 4.98 2.67 1.660	66.217 109.94 24.8 g/cm 3		Ensayo Presión a= b= h= Volum Peso (g Area (c g =	No. n: v en (a ;) = m 2)	02 100 Mpa 4.98 4.99 2.83 *b*c) = 1.684	70.326066 118.46 24.8502 g/cm3			Ensayo No. Presión: v a= b= h= Volumen (a Peso (g) = Area (cm2) g =	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636): 66.367 108.57 24.95 g/an 3	
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (aru2) g = Carga (kN)	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm)	66.217 109.94 24.8 g/cm3 Vert (mm)	Esfuerzo corte (Kg/cm 2)	Ensayc Presió a= b= h= Volum Peso (g area (c g =	<u>No.</u> n: v <u>en (a</u> m 2) kN)	02 100 Mpa Medidas (cm 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm)	70.326066 118.46 24.8502 g/cm3 Vert (mm)	Esfuerzo corte (Kg/cm 2)]	Ensayo No. Presión: v Na= b= h= Volumen (a Peso (g) = Area (cm2) g = Carga (kN)	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm)): 66.367 108.57 24.95 g/an3 Vert (mm)	Esfuerzo corte (Kg/cm2)
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (an 2) g = Carga (kN) 0.000 0.004	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227	Esfuerzo corte (Kg/cm2) 0.000 0.387	Ensayc Presión a= b= h= Volum Peso (g area (c g = Carga (No. n: v en (a' m 2) kN) .000 019	02 100 Mpa Medidas (cm 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000	Esfuerzo corte (Kg/cm 2) 0.000]	Ensayo No. Presión: v N a= b= h= Volumen (a Peso (g) = Area (cm2) g = Carga (kN) 0.000	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010): 66.367 108.57 24.95 g/cm3 Vert (mm) 0.000	Esfuerzo corte (Kg/cm2) 0.000
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (an2) g = Carga (kN) 0.000 0.094 0.149	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.140	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.033	Esfuerzo corte (Kg/cm 2) 0.000 0.387 0.613	Ensayc Presión a= b= h= Volum Peso (a 8 = Carga (Carga (Carg	No. n: v en (a' m2) m2) kN) .000 .019 .075	02 100 Mpa Medidas (cm 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.070	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.000	Esfuerzo corte (Kg/cm 2) 0.000 0.308		Ensayo No. Presión: v N a= b= N= Volumen (a Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.017 0.016	02 150 Mpa Aedidas (m 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010): 66.367 108.57 24.95 g/cm3 Vert (mm) 0.000	Esfuerzo corte (Kg/cm2) 0.007 0.007
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.194 0.192	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.140 0.210	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.033 0.048 0.06 ²	Esfuerzo corte ((Kg/cm 2) 0.387 0.387 0.398 0.955	Ensayc Presión a= b= h= Volum Peso (a 8 = Carga (Carga (Carg	No. N: V en (a' m 2) kN) .000 .019 .075 .114 .149	02 100 Mpa Medidas (cm 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.020 0.020 0.070 0.030	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.009	Esfuerzo corte (Kg/cm 2) 0.000 0.468 0.468		Ensayo No. Presión: v N b= h= Volumen (a Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.017 0.016 0.016	02 Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010): 108.57 24.95 g/cm3 Vert (mm) 0.000	Esfuerzo corte (Kg/cm2) 0.007 0.063 0.063
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.194 0.232 0.266	50 MPa is (m): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.140 0.210 0.350	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.033 0.048 0.063	Esfuerzo corte (kg/cm 2) 0.613 0.613 0.798 0.955 1.094	Ensayc Presión a= b= h= Volum Peso (a 8 = Carga I Carga I Carga C C C C C C C C C C C C C C C C C C C	No. n: v en (a' m2) kN) .000 .019 .075 .114 .149 .182	02 100 Mpa Medidas (m 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.070 0.130 0.200	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.027	Esfuerzo corte (Kg/cm 2) 0.0708 0.3708 0.468 0.612 0.747		Ensayo No. Presión: v N b= h= Volumen (a Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.017 0.016 0.016 0.017	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010 0.010 0.020): 66.367 108.57 24.95 g/cm3 Vert (mm) 0.000 0.001 0.001	Esfuerzo corte (Kg/cm2) 0.007 0.063 0.063 0.077
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.149 0.236 0.266 0.256 0.256	50 MPa is (m): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.140 0.210 0.350 0.420 0.420	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.033 0.048 0.063 0.078 0.091	Esfuerzo corte ((kg/cm 2) 0.613 0.798 0.955 1.094 1.218 1.228	Ensayc Presión a= b= h= Volum Peso (c 8 = Carga l Carga l Carga l Carga l Carga (c C C C C C C C C C C C C C C C C C C C	No. h: V en (a') = m 2) m 2) .000 .019 .075 .114 .149 .189 .218 .218	02 100 Mpa Medidas (m 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.070 0.130 0.200 0.250 0.450	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.027 0.023	Esfuerzo corte (Kg/cm 2) 0.000 0.078 0.308 0.468 0.612 0.747 0.795		Ensayo No. Presión: v N a= b= h= Volumen (a Peso (g) = Area (cm2) g = Carga (kN) 0.0107 0.016 0.017 0.016 0.017 0.025	02 Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010 0.010 0.020 0.020): 66.367 108.57 24.95 g/cm3 Vert (mm) 0.000 0.001 0.001 0.001	Esfuerzo corte (Kg/cm2) 0.006 0.066 0.070 0.094 0.043
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.149 0.149 0.266 0.226 0.322 0.342	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.140 0.210 0.210 0.230 0.420 0.420 0.420	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.033 0.078 0.003 0.078 0.003 0.078	Esfuerzo corte (kg/cm 2) 0.613 0.798 0.955 1.094 1.218 1.325 1.407	Ensayc Presión a= b= Volum Peso (c 8 = Carga l Carga l Carga l Carga l Carga C C C C C C C C C C C C C C C C C C C	No. 1: V en (a') = m 2) .000 .019 .075 .114 .149 .218 .250 .278	02 100 Mpa Medidas (cm 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.070 0.020 0.070 0.350 0.420 0.420	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.027 0.033 0.038 0.042	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.468 0.612 0.747 0.747 0.795 1.027 1.142		Ensayo No. Presión: v N a= b= h= Volumen (a Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.017 0.016 0.016 0.017 0.025 0.050	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010 0.010 0.020 0.020 0.030 0.050): 66.367 24.95 g/cm3 Vert (mm) 0.000 0.001 0.001 0.001 0.002 0.002	Esfuerzo corte (Kg/cm2) 0.005 0.065 0.070 0.043 0.204
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.149 0.194 0.236 0.266 0.296 0.322 0.342 0.342 0.342	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.140 0.210 0.280 0.380 0.420 0.420 0.490	66.217 109.94 24.8 g/cm3 Vert (mm) 0.0000 0.227 0.033 0.048 0.063 0.078 0.091 0.1011 0.111	Esfuerzo corte ((g/cm 2) 0.000 0.387 0.955 1.094 1.218 1.325 1.407 1.485	Ensayc Presión a= b= Volum Peso (c Area (c 8 = Carga (0 C C C C C C C C C C C C C C C C C C	No. :: v en (a') = m 2) .000 .019 .019 .001 .019 .019 .114 .149 .182 .218 .250 .278 .303	02 100 Mpa Medidas (cm 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.070 0.070 0.130 0.200 0.200 0.350 0.420 0.420 0.420	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.027 0.033 0.038 0.044 0.044	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.468 0.612 0.747 0.895 1.027 1.142 1.244		Ensayo No. Presión: v N a= b= h= Volumen (a Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.017 0.016 0.016 0.017 0.023 0.035 0.050 0.0682	02 150 Mpa Aedidas (rm 5 4.99 2.66 *b*c) = 1.636 Horz (rm) 0.000 0.010 0.010 0.010 0.020 0.020 0.030 0.050 0.050): 66.367 24.95 g/cm 3 Vert (mm) 0.000 0.001 0.001 0.001 0.002 0.002 0.003	Esfuerzo corte (Kg/cm2) 0.006 0.070 0.063 0.070 0.099 0.143 0.200 0.266 0.333
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.149 0.194 0.032 0.266 0.322 0.361 0.376 0.386	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.210 0.280 0.350 0.420 0.420 0.420 0.420 0.570 0.570	66.217 109.94 24.8 g/cm3 Vert (mm) 0.227 0.033 0.048 0.063 0.078 0.091 0.101 0.111 0.121 0.129 0.132	Esfuerzo corte ((kg/cm2)) 0.000 0.387 0.613 0.798 0.955 1.094 1.218 1.325 1.407 1.485 1.547 1.588	Ensayc Presión a= b= h= Volum Peso (s 8 = Carga (8 = Carga (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No. :: v en (a') = m2) .000 .019 .075 .114 .149 .182 .218 .250 .278 .303 .338 .369	02 100 Mpa Medidas (crr 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.070 0.030 0.200 0.200 0.350 0.420 0.420 0.420 0.420 0.570 0.640	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.027 0.033 0.032 0.024 0.024 0.024 0.024 0.044	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.468 0.612 0.747 0.895 1.027 1.122 1.244 1.338 1.515		Ensayo No. Presión: v b= h= Peso (g) = Carga (kN) 0.000 0.017 0.016 0.016 0.016 0.017 0.023 0.035 0.055 0.062 0.098 0.129	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c = 1.636 Horz (mm) 0.000 0.010 0.010 0.010 0.010 0.020 0.020 0.030 0.050 0.060): 66.367 108.57 24.95 g/cm3 Vert (mm) 0.000 0.001 0.001 0.002 0.002 0.003 0.004	Esfuerzo corte (Kg/cm2) 0.065 0.055 0.070 0.143 0.204 0.266 0.333 0.401
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.194 0.322 0.266 0.322 0.342 0.342 0.361 0.376 0.336 0.339	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.140 0.210 0.280 0.350 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420	66.217 109.94 24.8 g/cm3 Vert (mm) 0.227 0.033 0.048 0.063 0.078 0.003 0.0101 0.101 0.111 0.129 0.137	Esfuerzo corte ((Kg/cm 2) 0.0387 0.613 0.798 0.955 1.094 1.218 1.325 1.407 1.485 1.547 1.584 1.547	Ensayc Presión a= b= h= Volum Peso (r Area (c 8 = Carga (c C C C C C C C C C C C C C C C C C C	No. en (a') = m 2) kN) .000 .019 .0218 .250 .278 .303 .338 .369 .400	02 100 Mpa Medidas (cm 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.030 0.200 0.350 0.420 0.420 0.430 0.420 0.430 0.550 0.420 0.420 0.450 0.420 0.450 0.420 0.510 0.420 0.510 0): 70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.015 0.022 0.027 0.033 0.038 0.042 0.044 0.046 0.047	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.468 0.612 0.747 1.027 1.027 1.244 1.388 1.515 1.542		Ensayo No. Presión: v b= h= Volumen (a Peso (g) = g = Carga (kN) 0.0000 0.017 0.016 0.016 0.017 0.023 0.035 0.055 0.065 0.098 0.122 0.098	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.0000 0.010 0.010 0.010 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.050 0.060 0.010): 66.367 108.57 24.95 g/on 3 Vert (mm) 0.000 0.001 0.001 0.001 0.001 0.002 0.003 0.003 0.003 0.004 0.004	Esfuerzo corte (Kg/cm2) 0.006 0.005 0.065 0.065 0.065 0.020 0.143 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.0000 0.0000 0.000000
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.134 0.232 0.361 0.376 0.339 0.407 0.044	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.210 0.210 0.230 0.350 0.420 0.4000 0.4000 0.4000 0.4000 0.400000000	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.038 0.048 0.091 0.101 0.101 0.101 0.101 0.129 0.137 0.149 0.157	Esfuerzo corte ((fg/cm 2) 0.0387 0.613 0.798 1.094 1.218 1.325 1.407 1.485 1.547 1.485 1.642 1.675 1.703	Ensayc Presión a= b= h= Volum Peso (g Area (c 8 = Carga (c Carga (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No. iv en (a') = m2) m2) kN) .000 .019 .025 .114 .149 .182 .218 .250 .278 .338 .369 .400 .429	02 100 Mpa Medidas (cm 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.050 0.020 0.050 0.020 0.050 0	70.326066 1118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.032 0.038 0.038 0.042 0.044 0.046 0.047 0.047	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.612 0.747 0.395 1.027 1.142 1.244 1.388 1.515 1.642 1.642 1.642		Ensayo No. Presión; v a= b= h= Volumen (a (C2) g = Carga (kN) 0.000 0.017 0.016 0.016 0.017 0.023 0.055 0.	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010 0.010 0.010 0.020 0.020 0.030 0.050 0.050 0.050 0.050 0.040 0.0140 0.0140): 108.57 24.95 g/on 3 Vert (mm) 0.000 0.001 0.001 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.004	Esfuerzo corte (Kg/cm2) 0.006 0.065 0.065 0.07 0.143 0.204 0.204 0.243 0.204 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.244 0.243 0.2440 0.2440 0.2440 0.2440 0.2440 0.2440 0.2440 0.2440 0.2440 0.2440 0.2440 0.2440 0.2440 0.2440 0.2440000000000
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (m2) g = Carga (kN) 0.000 0.094 0.149 0.0322 0.266 0.322 0.341 0.336 0.339 0.407 0.414	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.140 0.210 0.280 0.350 0.4200 0.4200 0.4200 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.400000000	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.033 0.048 0.061 0.003 0.048 0.091 0.101 0.101 0.101 0.129 0.137 0.149 0.155 0.155	Esfuerzo corte ((kg/cm 2) 0.000 0.387 0.613 0.798 1.094 1.218 1.325 1.407 1.547 1.547 1.588 1.642 1.675 1.703	Ensayc Presión a= b= h= Volum Peso (g area (c g = Carga (c c c c c c c c c c c c c c c c c c c	No. i: v m (a' m 2) m 2) m 2) kN) .000 .019 .075 .149 .149 .182 .218 .250 .278 .303 .338 .369 .400 .429 .452 .452 .455	02 100 Mpa Medidas (cm 4.99 2.83 *b*c) = Horz (mm) 0.000 0.020 0.070 0.130 0.280 0.280 0.350 0.420 0.420 0.490 0.570 0.640 0.710 0.640 0.710 0.640 0.730 0.860 0.930 1.010	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.033 0.038 0.042 0.044 0.044 0.046 0.047	Esfuerzo corte (Kg/cm 2) 0.000 0.308 0.462 0.612 0.747 0.395 1.027 1.142 1.244 1.388 1.515 1.642 1.762 1.856		Ensayo No. Presión; v. a= b= h= Volumen (a (cm2) g = Carga (kN) 0.000 0.017 0.016 0.016 0.016 0.012 0.035 0.055 0.065 0.098 0.122 0.098 0.122 0.098 0.122 0.168 0.205 0.217 0.271 0.272	02 150 Mpa Aedidas (cm 5 4,99 2,66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010 0.020 0.020 0.020 0.030 0.050 0.050 0.060 0.040 0.010 0.010 0.050 0.050 0.050 0.050 0.050 0.040 0.010 0.010 0.05): (66.367 108.57 24.95 g/cm3 Vert (mm) 0.000 0.001 0.001 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.004 0.005 0.007 0.008 0.007 0.008	Esfuerzo corte (Kg/cm2) 0.000 0.07 0.049 0.204 0.204 0.204 0.333 0.401 0.401 0.439 0.683 0.833 0.833
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (am2) g = Carga (kN) 0.000 0.094 0.149 0.0322 0.361 0.376 0.330 0.361 0.3376 0.339 0.407 0.417 0.417 0.417	50 MPa 50 MPa 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.140 0.280 0.350 0.420 0.420 0.420 0.420 0.490 0.570 0.490 0.400	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.033 0.048 0.061 0.001 0.101 0.111 0.129 0.137 0.149 0.155 0.159 0.159	Esfuerzo corte ((g/g/m 2) 0.000 0.387 0.955 1.094 1.218 1.325 1.407 1.547 1.753 1.773 1.773	Ensayc Presión a= b= h= Volum Peso (g a - a (c a - a (c a - a (c) c	No. i: v en (a' m2) = m2) .000 .019 .075 .019 .075 .019 .020 .019 .025 .019 .025 .0278 .303 .338 .369 .400 .429 .429 .425 .42	02 100 Mpa Medidas (cm 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.020 0.020 0.030 0.280 0.350 0.420 0.420 0.450 0.420 0.450 0.420 0.450 0.420 0.450 0.420 0.450	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.027 0.033 0.038 0.042 0.044 0.046 0.047 0.048 0.049 0.049 0.490 0.049 0.490 0.000 0.002 0.002 0.002 0.004	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.468 0.612 0.747 1.027 1.142 1.224 1.224 1.388 1.515 1.642 1.388 1.515 1.642 1.3656 1.3550 2.045		Ensayo No. Presión; v. b= h= Volumen (a (CR2) g = Carga (kN) 0.000 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.012 0.023 0.055 0.052 0.0682 0.0682 0.023 0.035 0.023 0.023 0.035 0.023 0.035 0.023 0.035 0.023 0.035 0.	02 Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010 0.010 0.020 0.020 0.050 0.050 0.050 0.050 0.050 0.010 0.010 0.010 0.020 0.050 0.010 0.010 0.020 0.050 0.010 0.010 0.010 0.020 0.020 0.010 0.020 0.020 0.010 0.020); 108.57 24.95 g/on 3 Vert (mm) 0.000 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.005 0.007 0.008	Esfuerzo corte ((kg/cm2)) 0.000 0.077 0.042 0.033 0.200 0.333 0.200 0.499 0.683 0.833 0.8366 0.836 0.836 0.836 0.836 0.836 0.8
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.194 0.232 0.266 0.322 0.342 0.341 0.376 0.386 0.399 0.407 0.417 0.421 0.426 0.433	50 MPa 50 MPa 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.140 0.210 0.280 0.350 0.420 0.420 0.350 0.420	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.033 0.048 0.063 0.078 0.001 0.101 0.111 0.129 0.137 0.149 0.155 0.159 0.155	Esfuerzo corte ((kg/cm 2) 0.000 0.387 0.955 1.094 1.218 1.325 1.407 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.716 1.642 1.675 1.703 1.716 1.732	Ensayc Presión a= b= h= Volum Peso (g area (c 8 = Carga (0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C	No. i: v en (a' p) = m2) .000 .019 .075 .114 .149 .182 .218 .303 .338 .369 .429 .429 .429 .425 .498 .515 .534	02 100 Mpa Medidas (cm 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.020 0.020 0.020 0.030 0.280 0.350 0.420 0.420 0.450 0.420 0.450 0.420 0.450 0.420 0.450 0.500 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.450 0.1000	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.033 0.033 0.042 0.044 0.046 0.047 0.048 0.049	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.468 0.612 0.747 1.027 1.142 1.244 1.388 1.515 1.642 1.762 1.856 1.950 2.045 2.115		Ensayo No. Presión; v. a= b= h= Volumen (a (cm2) g = Carga (kN) 0.000 0.017 0.016 0.016 0.016 0.016 0.017 0.023 0.055 0.065 0.0682 0.0682 0.023 0.035 0.023 0.035 0.023 0.035 0.023 0.035	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010 0.010 0.010 0.020 0.030 0.05); 108.57 24.95 g/on 3 Vert (mm) 0.000 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.005 0.007 0.008 0.001 0.001 0.001	Esfuerzo corte ((kg/cm2) 0.006 0.077 0.065 0.077 0.049 0.033 0.266 0.335 0.409 0.683 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.837 0.491 0.683 0.836 0.836 0.836 0.837 0.836 0.837 0.836 0.837 0.836 0.837 0.836 0.837 0.837 0.836 0.8377 0.837 0.837 0.8377 0.837 0.8377 0.8377 0
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.149 0.149 0.149 0.149 0.149 0.322 0.322 0.342 0.322 0.342 0.336 0.3386 0.399 0.0407 0.441 0.441 0.423 0.423 0.433 0.433	50 MPa 50 MPa as (m): 4.98 4.98 2.67 1.660 Horz (mm) 0.070 0.140 0.210 0.210 0.350 0.420 0.350 0.420 0.350 0.420 0.720 0.790 0.790 0.790 0.970 0.9	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.033 0.078 0.043 0.078 0.091 0.111 0.121 0.121 0.121 0.137 0.143 0.155 0.159 0.164 0.171 0.175	Esfuerzo corte ((kg/cm 2) 0.000 0.387 0.955 1.094 1.218 1.325 1.407 1.485 1.325 1.547 1.548 1.645 1.548 1.675 1.703 1.716 1.732 1.753 1.773	Ensayc Presió a= b= h= Volum Peso (j Area (c 8 = Carga (Carga (No. 1: V en (a') = m2) m2) .000 .019 .075 .114 .218 .218 .218 .230 .338 .338 .338 .3400 .429 .429 .425 .425 .534 .534 .534	02 100 Mpa Medidas (cm 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.070 0.030 0.280 0.350 0.420	70.326006 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.027 0.033 0.042 0.044 0.044 0.044 0.044 0.049	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.468 0.612 0.747 1.027 1.142 1.244 1.388 1.515 1.622 1.762 1.356 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.956 1.957 1.957 1.956 1.957 1.957 1.956 1.957 1.957 1.956 1.9577 1.9577 1.9577 1.9577 1.9577 1.9577 1.9577 1.9577 1.9577 1.95777 1.95777 1.95777 1.957777 1.957777777 1.95777777777777777777777777777777777777		Ensayo No. Presión; v / b= h= Volumen (a Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.017 0.016 0.016 0.017 0.023 0.035 0.082 0.082 0.082 0.082 0.082 0.122 0.168 0.217 0.217 0.215 0.350 0.350 0.350 0.035 0.035 0.035 0.0417	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010 0.010 0.010 0.020 0.030 0.050 0.050 0.0430 0.020 0.050 0.0430 0.050): 108.57 24.95 g/cm 3 Vert (mm) 0.000 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.005 0.007 0.008 0.001 0.015 0.017 0.020 0.021	Esfuerzo corte (Kg/cm2) 0.000 0.077 0.065 0.077 0.094 0.143 0.266 0.335 0.409 0.687 0.335 0.409 0.687 0.335 0.409 0.687 0.335 0.409 0.687 0.335 0.409 0.687 0.335 0.409 0.687 0.335 0.409 0.687 0.499 0.687 0.499 0.687 0.111 1.126 6 0.111 1.126 0.088 0.111 0.111 0.111 0.111 0.085 0.094 0.095 0.094 0.095 0.097 0.094 0.095 0.094 0.095 0.094 0.095 0.00
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) Carga (kN) 0.000 0.094 0.149 0.149 0.149 0.149 0.149 0.0266 0.322 0.342 0.342 0.342 0.342 0.342 0.341 0.0407 0.441 0.443 0.433 0.433 0.433 0.433	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.140 0.210 0.2000 0.2000 0.2000 0.200000000	66.217 109.94 g/cm3 Vert (mm) 0.000 0.227 0.033 0.078 0.048 0.091 0.101 0.111 0.121 0.121 0.137 0.137 0.143 0.155 0.159 0.164 0.155 0.159 0.164 0.175 0.175 0.175 0.175	Esfuerzo corte ((kg/cm2)) 0.000 0.387 0.613 0.955 1.094 1.218 1.325 1.407 1.485 1.325 1.547 1.547 1.547 1.547 1.547 1.753 1.773 1.753 1.753 1.782 1.786	Ensayc Presió a= b= Volum Peso (j Area (c 8 = Carga (Carga (Car	No. 1: V en (a') = m 2) m 2) .000 .019 .075 .114 .218 .250 .303 .338 .369 .400 .429 .429 .425 .534 .550 .559	02 100 Mpa Medidas (cm 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0	70.326006 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.027 0.033 0.042 0.044 0.044 0.044 0.049	Esfuerzo corte (Kg/cm2) 0.000 0.468 0.468 0.468 0.468 0.468 0.468 0.477 1.244 1.244 1.338 1.515 1.642 1.356 1.356 1.356 1.356 1.356 1.356 2.245 2.245 2.245 2.258 2.258		Ensayo No. Presión; v / b= h= Volumen (a Peso (g) = Area (cm2) g = Carga (kN) g = Carga (kN) 0.000 0.017 0.016 0.016 0.017 0.023 0.035 0.065 0.082 0.082 0.122 0.168 0.217 0.217 0.217 0.350 0.383 0.447 0.447	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010 0.010 0.010 0.010 0.020 0.030 0.05): 108.57 24.95 g/cm 3 Vert (mm) 0.000 0.001 0.001 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.002 0.003 0.002 0.003 0.003 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.002 0.005 0.002	Esfuerzo corte (Kg/cm2) 0.000 0.077 0.099 0.142 0.266 0.333 0.409 0.499 0.685 0.499 0.685 1.111 1.288 1.1356 1.1566 1.700
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.149 0.149 0.0266 0.2362 0.322 0.366 0.3322 0.366 0.3366 0.3366 0.3366 0.3376 0.3366 0.3366 0.3366 0.3366 0.3366 0.3366 0.3366 0.3376 0.3421 0.441 0.4421 0.443	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.140 0.210 0.210 0.280 0.420 0.4000 0.4000 0.400000000	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.038 0.063 0.038 0.038 0.038 0.038 0.031 0.101 0.121 0.129 0.139 0.143 0.143 0.145 0.159 0.168 0.171 0.178 0.1715 0.178 0.182 0.182	Esfuerzo corte ((kg/cm2) 0.000 0.387 0.0387 0.0955 1.094 1.218 1.325 1.407 1.485 1.547 1.588 1.642 1.675 1.703 1.716 1.733 1.716 1.733 1.782 1.782 1.786 1.843	Ensayc Presión a= b= Volum Peso (a 8 = Carga (a 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C	No. 1: V en (a') = m2) .000 .019 .019 .001 .019 .0278 .114 .218 .230 .278 .333 .338 .338 .338 .338 .338 .338 .338 .338 .338 .338 .338 .534 .559 .572	02 100 Mpa Medidas (cm 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.030 0.020 0.030 0.020 0.030 0.1380 0.1450 0.1450 0.1450 0.15500 0.1550 0.1550 0.1550 0.1550 0.1550	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.009 0.015 0.022 0.027 0.033 0.033 0.038 0.042 0.044 0.044 0.044 0.049	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.468 0.468 0.468 0.747 1.227 1.242 1.244 1.238 1.515 1.642 1.752 1.752 1.755 1.655 2.245 2.245 2.255 2.238		Ensayo No. Presión; v / b= h= Volumen (a Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.017 0.016 0.001 0.003 0.035 0.055 0.050 0.065 0.082 0.082 0.088 0.122 0.168 0.205 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.347 0.447 0.4471 0.4471 0.4471	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010 0.010 0.010 0.020 0.030 0.050 0.050 0.050 0.050 0.0430 0.230 0.370 0.370 0.580 0.5): 66.367 108.57 24.95 g/cm 3 Vert (mm) 0.000 0.001 0.001 0.001 0.001 0.002 0.003 0.003 0.004 0.003 0.003 0.004 0.001 0.002 0.003 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.002 0.022	Esfuerzo corte (Kg/cm2) 0.007 0.065 0.077 0.094 0.143 0.204 0.266 0.333 0.409 0.499 0.687 0.499 0.687 1.111 1.288 1.433 1.433 1.433 1.566 1.700 1.822 1.927 2.033
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peeso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.149 0.032 0.266 0.232 0.361 0.376 0.332 0.361 0.336 0.336 0.339 0.407 0.414 0.414 0.421 0.423 0.433 0.434 0.441	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.210 0.280 0.350 0.4200 0.4200 0.4200 0.420000000000	66.217 109.94 24.8 g/cm3 Vert (mm) 0.227 0.033 0.048 0.063 0.078 0.033 0.078 0.033 0.078 0.031 0.111 0.121 0.129 0.135 0.159 0.1648 0.171 0.175 0.175 0.175 0.175 0.175 0.175 0.182	Esfuerzo corte ((kg/cm2)) 0.900 0.387 0.613 0.798 0.955 1.094 1.218 1.325 1.407 1.485 1.547 1.485 1.547 1.485 1.547 1.485 1.547 1.788 1.642 1.675 1.703 1.716 1.723 1.782 1.782 1.786 1.819 1.823 1.814	Ensayc Presión a= b= h= Volum Peso (c as a carga (c as a carga (c c c c c c c c c c c c c c c c c c c	No. 1: V en (a' a) = m2) .000 .019 .019 .001 .019 .0278 .114 .218 .303 .303 .303 .338 .303 .338 .369 .429 .429 .425 .429 .425 .534 .554 .554 .557 .572 .5777 .5777 .5777 .5777 .5777 .5777 .5777 .5777 .5777 .5777 .5777 .5777 .5777 .5777	02 100 Mpa Medidas (m 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.020 0.020 0.030 0.200 0.200 0.030 0.200 0.030 0.200 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.020 0.030 0.1520 0.1520 0.1600 0.1520 0.1600 0.1520 0.1600 0.1520): 70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.005 0.022 0.027 0.033 0.038 0.042 0.044 0.047 0.048 0.049 0	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.612 0.747 0.895 1.027 1.124 1.338 1.515 1.642 1.762 1.244 1.388 1.515 1.642 1.762 1.245 2.045 2.045 2.045 2.2193 2.255 2.2328 2.239 2.253		Ensayo No. Presión: v b= h= Volumen (a preso (a) = Carga (kN) 0.0000 0.017 0.016 0.016 0.016 0.016 0.017 0.023 0.035 0.050 0.050 0.052 0.052 0.052 0.052 0.052 0.052 0.053 0.052 0.053 0.053 0.053 0.053 0.023 0.017 0.023 0.035 0.023 0.0315 0.027 0.038 0.0417 0.038 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.055	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 *b*c) = Horz (mm) 0.000 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.030 0.050 0.050 0.370 0.350 0.370 0.350 0.): 66.367 108.57 24.95 g/cm3 Vert (mm) 0.000 0.001 0.001 0.001 0.002 0.003 0.004 0.003 0.004 0.005 0.007 0.003 0.001 0.001 0.001 0.002 0.003 0.004 0.001 0.001 0.002 0.002 0.023 0.024 0.025 0.027 0.025 0.027	Esfuerzo corte ((Kg/cm2)) 0.000 0.055 0.055 0.055 0.0401 0.266 0.333 0.400 0.266 0.333 0.400 0.409 0.685 0.833 0.833 1.111 1.286 1.433 1.566 1.422 1.222 0.333 1.256 1.222 0.203 1.222 1.222
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peeso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.149 0.149 0.032 0.266 0.226 0.322 0.342 0.361 0.3361 0.3361 0.3361 0.3361 0.3361 0.3441 0.441 0.4433 0.4441	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.210 0.280 0.350 0.4200 0.4200 0.4200 0.4200 0.420000000000	66.217 109.94 24.8 g/cm3 Vert (mm) 0.227 0.033 0.048 0.063 0.078 0.063 0.078 0.063 0.078 0.0111 0.121 0.129 0.135 0.159 0.164 0.171 0.175 0.159 0.164 0.171 0.175 0.182 0.182 0.188 0.191 0.191	Esfuerzo corte ((Kg/cm 2) 0.000 0.387 0.613 0.798 0.955 1.094 1.218 1.325 1.642 1.642 1.642 1.642 1.675 1.703 1.716 1.732 1.716 1.732 1.763 1.716 1.732 1.7782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782	Ensayc Preside a= b= h= Volum Peso (r Area (c 8 = Carga (r 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C	No. 1: V en (a') = m2) .000 .019 .075 .114 .149 .128 .250 .278 .338 .338 .338 .338 .338 .349 .400 .425 .534 .554 .554 .573 .573 .573	02 100 Mpa Medidas (cm 4.98 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.0350 1.010 1.150 1.230 1.300 1.450 1.680 1.450 1.680): 70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.000 0.0015 0.022 0.038 0.042 0.044 0.044 0.044 0.044 0.049	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.612 0.747 1.027 1.142 1.244 1.388 1.515 1.642 1.762 1.845 1.642 1.762 1.845 1.642 1.762 1.855 1.642 1.752 2.045		Ensayo No. Presión: v a= b= h= Volumen (a peso (g) = Area (cm 2) g = Carga (kN) 0.000 0.017 0.000 0.017 0.000 0.017 0.000 0.017 0.023 0.055 0.05	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 *b*c) = Horz (mm) 0.0000 0.010 0.010 0.010 0.010 0.020 0.030 0.030 0.050 0.050 0.030 0.030 0.050 0.030 0.030 0.050 0.030 0.030 0.050 0.030 0.050 0.030 0.030 0.050 0.030 0.050 0.030 0.030 0.050 0.050 0): 66.367 108.57 24.95 g/gn 3 Vert (mm) 0.000 0.001 0.001 0.001 0.002 0.003 0.004 0.002 0.003 0.004 0.001 0.001 0.001 0.002 0.003 0.004 0.002 0.012 0.021 0.022 0.023 0.024 0.025 0.024 0.025 0.027 0.025 0.027 0.025 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.024 0.024 0.024 0.027 0.027 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025	Esfuerzo corte ((Kg/cm2) 0.007 0.065 0.065 0.065 0.070 0.034 0.204 0.244 0.244 0.235 0.401 0.245 0.335 0.401 0.435 0.838 0.887 1.1117 1.286 1.705 1.826 1.705 1.826 2.033 2.123 2.200
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peeso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.034 0.034 0.034 0.034 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.0414 0.0417 0.0421 0.0425 0.0433 0.0433 0.0435 0.0445	50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.140 0.210 0.210 0.280 0.350 0.420 0.420 0.420 0.420 0.420 0.420 1.090 1.240 1.320 1.240 1.320 1.240 1.250 1.470 1.470 1.420	66.217 109.94 24.8 g/cm3 Vert (mm) 0.227 0.038 0.063 0.078 0.0063 0.078 0.001 0.101 0.101 0.101 0.101 0.101 0.101 0.135 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.164 0.171 0.175	Esfuerzo corte ((%g/cm 2) 0.000 0.387 0.955 1.094 1.218 1.325 1.407 1.485 1.547 1.548 1.642 1.675 1.703 1.716 1.753 1.716 1.753 1.716 1.7732 1.7782 1.7782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782	Ensayc Presión a= b= h= Volum Peso (g Area (c 8 = Carga (0 C C C C C C C C C C C C C	No. 1: V en (a') = m2) .000 .019 .075 .114 .149 .128 .250 .278 .338 .338 .338 .338 .338 .349 .400 .425 .534 .534 .534 .573 .573 .573	02 100 Mpa Medidas (cm 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0.070 0.020	70.326066 1118.46 24.850 g/cm3 Vert (mm) 0.000 0.000 0.009 0.015 0.022 0.034 0.042 0.044 0.044 0.046 0.047 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.049 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.040 0.049 0.0400000000	Esfuerzo corte (Kg/cm2) 0.0078 0.308 0.4612 0.747 0.395 1.027 1.142 1.244 1.388 1.515 1.642 1.762 1.856 1.950 2.045 2.193 2.258 2.293 2.258 2.328 2.328 2.323 2.353 2.353		Ensayo No. Presión; v. a= b= h= Volumen (a (cm2) g = Carga (kN) 0.000 0.017 0.016 0.016 0.016 0.016 0.017 0.023 0.055 0.052 0.058 0.050 0.055 0.217 0.233 0.315 0.335 0.333 0.417 0.4471 0.4471 0.4471 0.4471 0.557 0.557 0.557	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 *b*c) = Horz (mm) 0.000 0.010 0.010 0.010 0.010 0.020 0.050 0.050 0.050 0.050 0.050 0.020 0.020 0.050 0.050 0.020 0.020 0.050 0.020 0.020 0.050 0.020 0.020 0.020 0.050 0.050 0.020 0.050 0.): (66.367 108.57 24.95 g/on 3 Vert (mm) 0.000 0.001 0.001 0.001 0.001 0.002 0.003 0.003 0.003 0.003 0.004 0.001 0.001 0.002 0.002 0.015 0.017 0.020 0.021 0.022 0.023 0.024 0.024 0.024 0.025 0.025 0.025 0.025 0.024 0.025 0.025 0.024 0.025 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.05	Esfuerzo corte (Kg/cm2) 0.007 0.065 0.065 0.07 0.034 0.204 0.204 0.204 0.204 0.204 0.333 0.400 0.495 0.683 0.837 0.401 0.495 0.683 0.837 0.401 0.1288 0.837 0.838 0.837 0.111 1.288 0.837 0.128 0.837 0.128 0.837 0.128 0.837 0.128 0.837 0.128 0.837 0.128 0.837 0.128 0.837 0.1280 0.1280 0.10
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peeso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.0494 0.0494 0.0494 0.0494 0.0494 0.0494 0.0361 0.0376 0.0376 0.0376 0.0386 0.0379 0.0407 0.0414 0.0421 0.0421 0.0425 0.0433 0.0433 0.0434 0.0431 0.0445 0.045	50 MPa 50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.070 0.070 0.070 0.070 0.0210 0.0210 0.0210 0.0200 0.0210 0.0200 0.0210 0.0200 0.0210 0.0200 0.0210 0.0200 0.00000 0.0000 0.000000 0.0000 0.0000000 0.00000	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.033 0.048 0.063 0.078 0.063 0.078 0.001 0.101 0.101 0.101 0.129 0.137 0.149 0.155 0.155 0.155 0.155 0.155 0.164 0.161 0.175 0.178 0.175 0.178 0.185 0.182 0.185 0.191 0.194 0.194 0.194 0.194	Esfuerzo corte ((kg/cm 2) 0.000 0.387 0.613 0.955 1.094 1.218 1.325 1.407 1.588 1.325 1.407 1.588 1.547 1.588 1.642 1.675 1.703 1.716 1.675 1.703 1.732 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.782 1.814 1.813 1.813 1.831 1.831 1.843 1.843	Ensayc Presión a= b= h= Volum Peso (g Area (c g = Carga (Carga (No. 1 V 1 (1) 1 (1)	02 100 Mpa Medidas (cm 4.99 2.83 *b*c) = 1.684 Horz (mm) 0.000 0.020 0	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.000 0.009 0.015 0.022 0.033 0.033 0.038 0.042 0.044 0.046 0.047 0.048 0.049 0.049 0.048 0.049 0.049 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.049 0.048 0.049 0.048 0.049 0.049 0.049 0.048 0.049 0.049 0.049 0.048 0.049	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.612 0.747 0.895 1.027 1.142 1.244 1.388 1.515 1.645 1.627 1.244 1.388 1.515 1.645 1.550 2.045 2.193 2.258 2.295 2.328 2.328 2.328 2.328 2.353 2.353 2.353 2.353 2.353		Ensayo No. Presión; v. a= b= h= Volumen (a (cm2) g = Carga (kN) 0.000 0.017 0.001 0.001 0.001 0.001 0.001 0.003 0.005 0.023 0.035 0.052 0.098 0.122 0.098 0.122 0.098 0.122 0.098 0.122 0.098 0.122 0.058 0.350 0.355 0.557 0.573 0.557 0.573 0.575	02 150 Mpa Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 *b*c) = Horz (mm) 0.000 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.030 0.050 0.050 0.040 0.040 0.030 0.050 0.): 666.367 108.57 24.95 g/cm3 Vert (mm) 0.000 0.001 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.005 0.007 0.008 0.015 0.017 0.022 0.023 0.024 0.024 0.024 0.025 0.025 0.026 0.027 0.026 0.027 0.026 0.026 0.026 0.027 0.026 0.026 0.027 0.026 0.026 0.026 0.026 0.027 0.026 0.027 0.026 0.026 0.026 0.027 0.026 0.027 0.026 0.027 0.027 0.026 0.027	Esfuerzo corte (Kg/cm2) 0.007 0.065 0.065 0.077 0.049 0.144 0.266 0.333 0.401 0.495 0.683 0.833 0.401 0.495 0.683 0.833 0.401 0.495 0.683 0.833 0.401 0.1288 1.117 1.1566 (1.179) 1.822 (2.234 2.200 2.276 2.234 2.2400 2.534 2.129 2.2400 2.544 2.344 2.400 2.545 2.555 2.555 2.5577 2.5577 2.5577 2.5577 2.5577 2.5577 2.5577 2.55777 2.55777 2.557777 2.557777777777
Ensayo No. 01 Presión: v Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm2) g = Carga (kN) 0.000 0.094 0.149 0.149 0.149 0.149 0.149 0.149 0.026 0.026 0.022 0.322 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.441 0.443 0.443 0.445 0.445 0.445 0.445 0.445 0.445	50 MPa 50 MPa as (cm): 4.98 4.98 2.67 1.660 Horz (mm) 0.000 0.070 0.070 0.070 0.210 0.280 0.350 0.420 0.350 0.420 0.400 0.400 0.400 0.	66.217 109.94 24.8 g/cm3 Vert (mm) 0.000 0.227 0.033 0.048 0.063 0.048 0.091 0.101 0.111 0.129 0.137 0.149 0.155 0.159 0.164 0.175 0.159 0.164 0.175 0.178 0.178 0.178 0.178 0.178 0.185 0.188 0.191 0.194 0.194 0.194 0.194	Esfuerzo corte ((kg/cm 2) 0.000 0.387 0.955 1.094 1.218 1.325 1.407 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.547 1.753 1.7716 1.773 1.773 1.773 1.773 1.778 1.831 1.831 1.831 1.847	Ensayc Presión a= b= h= Volum Peso (g area (c 8 = Carga (0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C	No. i: V en (a') = m 2) .0000 .019 .0019 .0019 .019 .019 .0278 .338 .338 .338 .3369 .429 .429 .429 .425 .533 .573 .573 .573 .573 .573 .573 .573	02 100 Mpa Medidas (cm 4.98 4.99 2.83 *b*c) = Horz (mm) 0.000 0.020 0	70.326066 118.46 24.8502 g/cm3 Vert (mm) 0.000 0.000 0.009 0.015 0.022 0.027 0.033 0.042 0.044 0.046 0.047 0.048 0.049	Esfuerzo corte (Kg/cm2) 0.000 0.078 0.308 0.468 0.612 0.747 1.244 1.224 1.227 1.142 1.247 1.242 1.255 2.045 2.115 2.2045 2.115 2.258 2.295 2.235 2.255		Ensayo No. Presión; v. a= b= h= Volumen (a (CR2) g = Carga (kN) 0.000 0.017 0.016 0.016 0.016 0.016 0.017 0.023 0.055 0.0682 0.028 0.217 0.273 0.315 0.350 0.331 0.357 0.357	02 Aedidas (cm 5 4.99 2.66 *b*c) = 1.636 Horz (mm) 0.000 0.010 0.010 0.010 0.010 0.010 0.020 0.030 0.050); (66.367 108.57 24.95 g/on 3 Vert (mm) 0.000 0.001 0.001 0.001 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.002 0.025 0.026 0.02	Esfuerzo corte ((kg/cm2)) 0.006 0.077 0.042 0.042 0.042 0.033 0.033 0.049 0.049 0.049 0.049 0.033 0.049 0.049 0.033 0.049 0.049 0.033 0.049 0.049 0.033 0.049 0.0400000000

Angulo fricción Cohesión

34.38 (o) 1.57 Kg/cm2

Sitio de Investigación 2: Sector Ruta Collas

		K	ECUADOR		/ER:	SIDAD D	E LAS FU			AS TA			
				UNIVERSIDA	D DE	LAS FUERZAS	ARMADAS - I	ESPE					
				LABORATO	RIO	DE ENSAYOS	DE MATERIAL	ES					
				E	VSAYO	DE CORTE E	DIRECTO						
DESCRIPCION DEL A PNEUMATIC DIRECT, 110 / 220 VAC 50-6 NORMA: ASTM D30 LOCALIZACION MUESTRA FECHA	APARATO /SHEAR RE: 0 HZ HM-2 80 ; AASHT	SIDUAL AI 560A.3F TO T236, F SITIO DE I 5-3B 08/0	PARATUS 35 1377 NVESTIGACIÓ 14/2015	DN 2			PROYECTO SOLICITA ENSAYÓ VERIFICÓ		TESIS DIEGO (GUADALUPE			
HUMEDAD No.	1	2	1	HUM	DAD	1	2			HUMEDAD No.	1	2	1
TARA			1	TA	RA	1.4.4		1		TARA			1
PESO TARA	20.33	11.55	1	PESO	TARA	114	2P 13.28			PESO TARA	F8 11.18	13.55	1
PESO TARA + M			1	PESO	TARA		20.20	1		PESO TARA			1
HUMEDA	43.19	31.26		+ HUM	MIEDA	31./6	38.86			+ M HUMEDA	26.33	32.46	
PESO TARA + M	A1 00	30.17	1	PESO	TARA	20.07	26.7			PESO TARA	-24.0	20.40	1
SECA	41.88	50.16		+ M S	ECA	30.07	36./			+ M SECA	24.8	30.48	
% HUMFDAD	6.1%	5 9%		% HU	MEDA	9.1%	9.7%			% HUMEDA	11.2%	11 7%	
20 HOMEDAD	0.170	1 3.370	1	20110	WILDP	J.1/0	J.270			70 HOIVILD	11.2/0	11.70	
PROMEDIO	6	%	J	PROM	IEDIO		9%			PROMEDIO	1	1%	J
Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cn 2)	as (cm): 4.95 4.97 2.81	69.13 82.47 24.602		a= b= h= Volum Peso	nen (a 'g) = 'cm 2)	Medidas (cm 4.98 4.96 2.7 *b*c) =	66.69216 82.9 24.7008			a= b= h= Volumen (a Peso (g) = Area (cm2)	Aedidas (cm 4.97 4.91 2.67 *b*c) =): 65.15521 87.15 24.4027	
g =	1.193	g/cm3		g =		1.243	g/cm3			g =	1.338	g/am3	
Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)	Carga	(kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)		Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	{	0.000	0.000	0.000	0.000
0.079	0.130	0.112	0.328		0.080	0.140	0.010	0.330	1	0.064	0.150	0.005	0.268
0.096	0.200	0.132	0.398		0.100	0.220	0.016	0.413	1	0.100	0.220	0.017	0.418
0.128	0.350	0.170	0.531		0.135	0.360	0.029	0.558	1	0.120	0.370	0.022	0.573
0.141	0.420	0.187	0.585		0.151	0.430	0.036	0.624	{	0.155	0.440	0.031	0.648
0.153	0.490	0.204	0.635		0.183	0.500	0.043	0.861	1	0.185	0.520	0.034	0.774
0.174	0.640	0.235	0.722		0.198	0.650	0.055	0.818		0.229	0.670	0.043	0.958
0.182	0.710	0.251	0.755		0.221 0.244	0.730	0.062	0.913	1	0.247	0.740	0.049	1.033
0.200	0.860	0.281	0.830		0.264	0.880	0.074	1.091	1	0.287	0.890	0.056	1.200
0.206	0.930	0.295	0.854		0.285 0.295	0.950	0.081	1.177 1.219	1	0.305	0.970	0.060	1.275
0.219	1.080	0.324	0.908		0.311	1.100	0.086	1.285	1	0.345	1.120	0.067	1.443
0.225	1.160	0.340	0.933		0.327	1.170	0.085	1.351	1	0.355	1.190	0.069	1.484
0.235	1.300	0.369	0.975		0.356	1.320	0.083	1.471	1	0.385	1.340	0.075	1.610
0.238	1.380	0.386	0.987		0.368	1.390	0.082	1.520	{	0.396	1.410	0.078	1.656
0.245	1.430	0.400	1.000		0.391	1.540	0.082	1.615	1	0.409	1.490	0.082	1.756
0.251	1.590	0.428	1.041		0.402	1.610	0.080	1.661	1	0.428	1.640	0.089	1.790
0.255	1.670	0.442	1.058		0.411	1.580	0.078	1.735		0.437	1.710	0.092	1.827
0.265	1.810	0.500	1.099		0.426	1.830	0.074	1.760	1	0.451	1.870	0.100	1.886
0.269	1.920	0.730	1.116		0.431	1.900 1.980	0.071	1.780	1	0.458	1.940	0.100	1.915 1.937
0.275	2.070	0.730	1.141		0.450	2.050	0.063	1.859	1	0.467	2.100	0.104	1.953
0.279	2.140	0.730	1.157		0.456	2.130	0.059	1.884	ł	0.470	2.120	0.104	1.965
0.282	2.210	0.750	1.170		0.400	2.200	0.540	1.072	4	L 0.4/5	2.131	0.105	1.300

Angulo fricción Cohesión 39.23 (o) 0.87 Kg/cm2

UNIVERSIDAD DE LAS FUERZAS ARMADAS - ESPE

LABORATORIO DE ENSAYOS DE MATERIALES

ENSAYO DE CORTE DIRECTO

DESCRIPCION DEL APARATO PNEUMATIC DIRECT/SHEAR RESIDUAL APARATUS 110 / 220 VAC 50-60 HZ HM-2560A.3F NORMA: ASTM D3080 ; AASHTO T236, BS 1377

LOCALIZACION MUESTRA FECHA

SITIO DE INVESTIGACIÓN 2 S-3B 08/04/2015

PROYECTO TESIS SOLICITA VERIFICÓ

ENSAYÓ

DIEGO GUADALUPE

н	IN/	1EI	٦Δ	D	

No.	1	2
TARA	6A	1A
PESO TARA	119.63	120.47
PESO TARA + M HUMEDA	153.67	159.78
PESO TARA + M SECA	148.9	154.23
% HUMEDAD	16.3%	16.4%
PROMEDIO	169	6

No.	1	2
TARA	48A	51A
PESO TARA	121.86	121.18
PESO TARA + M HUMEDA	155.65	151.62
PESO TARA + M SECA	150.43	146.95
% HUMEDA	18.3%	18.1%
PROMEDIO	18%	6

No.	1	2
TARA	36A	42A
PESO TARA	118.8	119.79
PESO TARA + M HUMEDA	154.45	154.27
PESO TARA + M SECA	150.02	149.95
% HUMEDA	14.2%	14.3%
PROMEDIO	14%	6

INTERVALO DE TIEMPO DE MEDICIONES MEDICIONES: 15 seg. VELOCIDAD DEL ENSAYO: 0,05 mm/min

Ensayo No. 01	
Presión: v	50 MPa
Med	lidas (cm):
a=	4.97
b=	4.98
h=	2.82
Volumen (a*b*c)	= 69.797
Peso (g) =	118.84
Area (cm 2)	24.751
g =	1.703 g/cm3

Carga (kN)		Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
C	000.	0.000	0.000	0.000
C	0.043	0.070	0.115	0.177
C	.071	0.140	0.015	0.293
C	.092	0.210	0.023	0.379
C	.107	0.290	0.029	0.441
C	.120	0.360	0.033	0.495
C	.130	0.430	0.037	0.536
C	1.144	0.510	0.041	0.594
C	1.158	0.580	0.045	0.651
C	.171	0.660	0.048	0.705
C	.187	0.730	0.052	0.771
C	.199	0.810	0.054	0.820
C	.211	0.880	0.058	0.870
C	.224	0.960	0.062	0.923
C	.234	1.030	0.064	0.965
C	.243	1.110	0.067	1.002
C	.255	1.180	0.070	1.051
C	.265	1.260	0.072	1.093
C	.277	1.330	0.075	1.142
C	.285	1.410	0.077	1.175
C	.294	1.480	0.079	1.212
C	.301	1.560	0.082	1.241
C	.309	1.630	0.083	1.274
C	.315	1.700	0.085	1.299
C	.323	1.780	0.087	1.332
C	.328	1.850	0.088	1.352
C	.332	1.930	0.090	1.369
C	.336	2.000	0.092	1.385
C	.341	2.080	0.094	1.406
C	.347	2.150	0.096	1.431
C	.351	2.230	0.098	1.447
				1.447

Ensayo No.	.02				
Presión: v	100 Mpa				
	Medidas (c	m):			
a=	4.9	1			
b= 4.99					
h=	= 2.95				
Volumen (a	a*b*c) =	72.277655			
Peso (g) =		116.31			
Area (cm 2)		24.5009			
g = 1.609 g/cm3					

Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0.000	0.000	0.000	0.000
0.046	0.070	0.952	0.192
0.064	0.140	0.015	0.267
0.100	0.230	0.963	0.416
0.120	0.300	0.968	0.500
0.137	0.370	0.969	0.571
0.155	0.440	0.977	0.646
0.185	0.520	0.983	0.770
0.210	0.590	0.983	0.875
0.229	0.660	0.988	0.954
0.247	0.730	0.991	1.029
0.269	0.800	0.991	1.120
0.287	0.870	0.991	1.195
0.305	0.950	0.992	1.270
0.324	1.020	0.992	1.349
0.345	1.090	0.992	1.437
0.355	1.160	0.992	1.478
0.370	1.230	0.992	1.541
0.385	1.310	0.992	1.603
0.396	1.380	0.992	1.649
0.409	1.460	0.992	1.703
0.420	1.530	0.992	1.749
0.428	1.610	0.992	1.783
0.437	1.680	0.992	1.820
0.444	1.760	0.992	1.849
0.451	1.830	0.992	1.878
0.458	1.910	0.992	1.907
0.462	1.980	0.992	1.924
0.467	2.060	0.992	1.945
0.474	2.140	0.991	1.974
0.480	2.210	0.988	1.999
			1.999

Ensayo No. 02		
Presión: v 1	50 Mpa	
Me	didas (cm):	
a=	4.95	
b=	5	
h=	2.63	
Volumen (a*b	*c) = 65.09	925
Peso (g) =	108	.96
Area (cm 2)	24	.75
g =	1.674 g/cm 3	

Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0.000	0.000	0.000	0.000
0.060	0.070		0.247
0.101	0.150		0.416
0.141	0.220		0.581
0.175	0.300	0.001	0.722
0.205	0.370	0.001	0.845
0.233	0.450	0.001	0.961
0.259	0.530	0.002	1.068
0.286	0.600	0.002	1.179
0.307	0.680	0.003	1.266
0.331	0.750	0.003	1.365
0.353	0.830	0.004	1.455
0.369	0.910	0.005	1.521
0.387	0.990	0.007	1.596
0.404	1.070	0.008	1.666
0.420	1.150	0.012	1.732
0.435	1.220	0.015	1.793
0.450	1.300	0.017	1.855
0.460	1.370	0.020	1.897
0.469	1.450	0.021	1.934
0.480	1.520	0.022	1.979
0.493	1.600	0.023	2.033
0.503	1.670	0.024	2.074
0.511	1.750	0.024	2.107
0.511	1.830	0.024	2.107
0.517	1.900	0.025	2.132
0.523	1.980	0.025	2.156
0.532	2.060	0.026	2.193
0.538	2.140	0.026	2.218
0.538	2.210	0.026	2.218
0.543	2.290	0.026	2.239
			2 239

Angulo fricción Cohesión

38.34 (o) 1.1 Kg/cm2

UNIVERSIDAD DE LAS FUERZAS ARMADAS - ESPE

LABORATORIO DE ENSAYOS DE MATERIALES

ENSAYO DE CORTE DIRECTO

DESCRIPCION DEL APARATO PNEUMATIC DIRECT/SHEAR RESIDUAL APARATUS 110 / 220 VAC 50-60 HZ HM-2560A.3F NORMA: ASTM D3080 ; AASHTO T236, BS 1377

LOCALIZACION MUESTRA FECHA

S-2B 07/04/2015

SITIO DE INVESTIGACIÓN 2

	ENSAYÓ
	VERIFICÓ
DAD	

PROYECTO

SOLICITA

TESIS DIEGO GUADALUPE

No.	1	2
TARA	16A	20A
PESO TARA	121.12	119.62
PESO TARA + M HUMEDA	153.21	146.65
PESO TARA + M SECA	147.01	142.92
% HUMEDAD	23.9%	16.0%
PROMEDIO	209	%

No.	1	2
TARA	21A	10
PESO TARA	120.63	27.54
PESO TARA + M HUMEDA	142.98	56.32
PESO TARA + M SECA	140.19	52.73
% HUMEDA	14.3%	14.3%
PROMEDIO	14%	6

No.	1	2
TARA	33A	32A
PESO TARA	119.29	130.64
PESO TARA + M HUMEDA	139.13	155.42
PESO TARA + M SECA	136.15	151.68
% HUMEDA	17.7%	17.8%
PROMEDIO	18%	ó

INTERVALO DE TIEMPO DE MEDICIONES MEDICIONES: 15 seg. VELOCIDAD DEL ENSAYO: 0,05 mm/min

Ensayo No. 01	
Presión: v	50 MPa
Medic	las (cm):
a=	4.98
b=	4.99
h=	2.91
Volumen (a*b*c) =	72.314
Peso (g) =	104.84
Area (cm 2)	24.85
g =	1.450 g/cm3

Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0	.000 0.000	0.000	0.000
0	.015 0.070	0.012	0.062
0	.022 0.150	0.002	0.090
0	.027 0.220	0.002	0.111
0	.030 0.300	0.002	0.123
0	.033 0.370	0.002	0.136
0	.037 0.450	0.003	0.152
0	.040 0.530	0.004	0.164
0	.042 0.600	0.005	0.172
0	.044 0.680	0.005	0.181
0	.048 0.750	0.005	0.197
0	.050 0.830	0.005	0.205
0	.055 0.910	0.005	0.226
0	.058 0.990	0.005	0.238
0	.063 1.070	0.005	0.259
0	.066 1.150	0.005	0.271
0	.070 1.220	0.005	0.287
0	.074 1.300	0.005	0.304
0	.077 1.370	0.005	0.316
0	.079 1.450	0.005	0.324
0	.082 1.520	0.005	0.337
0	.084 1.600	0.005	0.345
0	.085 1.670	0.005	0.349
0	.087 1.750	0.005	0.357
0	.088 1.830	0.005	0.361
0	.089 1.900	0.005	0.365
0	.090 1.980	0.005	0.370
0	.090 2.060	0.005	0.370
0	.094 2.140	0.005	0.386
0	.098 2.210	0.005	0.402
0	.105 2.290	0.005	0.431
		-	0.431

Ensayo No.	02	
Presión: v	100 Mpa	
	Medidas (cm	ı):
a=	4.98	
b=	4.97	
h=	2.84	
Volumen (a	1*b*c) =	70.291704
Peso (g) =		100.93
Area (cm 2)		24.7506

g = 1.436 g/cm3

Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0.000	0.000	0.000	0.000
0.044	0.070	0.097	0.181
0.062	0.150	0.023	0.256
0.074	0.220	0.030	0.305
0.089	0.300	0.037	0.367
0.099	0.370	0.043	0.408
0.106	0.440	0.049	0.437
0.118	0.520	0.054	0.486
0.127	0.600	0.059	0.524
0.135	0.680	0.063	0.557
0.141	0.750	0.064	0.581
0.150	0.820	0.067	0.618
0.157	0.900	0.069	0.647
0.164	0.970	0.071	0.676
0.171	1.040	0.073	0.705
0.176	1.120	0.074	0.726
0.180	1.190	0.076	0.742
0.187	1.270	0.077	0.771
0.192	1.340	0.076	0.792
0.197	1.420	0.080	0.812
0.202	1.500	0.080	0.833
0.206	1.570	0.081	0.849
0.210	1.650	0.081	0.866
0.213	1.720	0.081	0.878
0.216	1.800	0.081	0.891
0.218	1.880	0.081	0.899
0.219	1.950	0.081	0.903
0.221	2.030	0.082	0.911
0.223	2.100	0.082	0.919
0.226	2.180	0.082	0.932
0.230	2.250	0.083	0.948
			0.948

Presión: v 150	Mpa
Medie	das (cm):
a=	4.97
b=	4.97
h=	2.6
Volumen (a*b*c	= 64.22234
Peso (g) =	88.33
Area (cm 2)	24.7009
g =	1.375 g/cm3

Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0.000	0.000	0.000	0.000
0.063	0.070	0.241	0.260
0.092	0.140	0.045	0.380
0.113	0.210	0.063	0.467
0.132	0.290	0.079	0.545
0.147	0.360	0.095	0.607
0.162	0.430	0.110	0.669
0.174	0.510	0.124	0.719
0.185	0.580	0.138	0.764
0.195	0.650	0.150	0.806
0.205	0.730	0.160	0.847
0.211	0.800	0.172	0.872
0.223	0.880	0.182	0.921
0.230	0.950	0.190	0.950
0.230	1.030	0.194	0.950
0.233	1.100	0.201	0.963
0.238	1.180	0.208	0.983
0.243	1.250	0.215	1.004
0.247	1.330	0.218	1.020
0.251	1.410	0.220	1.037
0.255	1.480	0.220	1.053
0.258	1.560	0.224	1.066
0.262	1.630	0.226	1.082
0.266	1.700	0.227	1.099
0.271	1.780	0.230	1.120
0.274	1.850	0.231	1.132
0.279	1.930	0.231	1.153
0.284	2.010	0.231	1.173
0.287	2.080	0.233	1.186
0.291	2.160	0.236	1.202
0.293	2.240	0.236	1.210
	•		

Cohesión

Sitio de Investigación 3: Sector Vía a Guayllabamba

		ų	ECUADOR				E LAS FU			DAS			
				UNIVERSI	DAD DE I	LAS FUERZAS	ARMADAS - I	ESPE					
				LABOR	ATORIO L	DE ENSAYOS	DE MATERIAL	ES					
DESCRIPCION DEL A PNEUMATIC DIRECT 110 / 220 VAC 50-6 NORMA: ASTM D30	APARATO /SHEAR RES 0 HZ HM-2 80 ; AASHT	51DUAL AF 560A.3F 10 T236, B	ARATUS		ENSATU	DECORTE	JIRECIO						
LOCALIZACION		SITIO DE II	√VESTI GACIÓ	N 3			PROYECTO		TESIS				
MUESTRA FECHA		P-1 20/0	3/2015				solicii a Ensayó Verificó		DIEGO	guadalupe			
HUMEDAD			1	HL	IMEDAD			1		HUMEDAD			r
No.	1	2			NO.	1	2			No.	1	2	
PESO TARA	C 110	29 A		PE	SOTARA	34 A	49 A			PESOTARA	20 A	32 A	
PESO TARA + M	172.00	105.66		PE	SOTARA	15450	15717			PESO TARA	151.00	166.75	
HUMEDA	175.09	105.00		н	+ M UMEDA	134.32	137.17			+ M HUMEDA	131.33	100.75	
PESO TARA + M SECA	159.44	170.79		PE: + N	SO TARA 1/ SECA	149	147.33			PESO TARA + M SECA	146.8	157.64	
% HUMEDAD	35.3%	29.3%		%1	Humeda	19.1%	33.2%			% HUMEDA	19.1%	33.7%	
PROMEDIO	32	%		PR	OMEDIO	2	6%			PROMEDIO	20	5%	
Medida a= b= h= Volumen (a*b*c) = Peso (g) = Area (cm 2) g =	1.435	63.114 90.54 24.751 g/cm3		a= b= Vo Pe g=	lum en (a' so (g) = ea (cm 2)	Medidas (cm 4.93 4.93 2.73 *b*c) =): 66.352377 99.2 24.3049 g/cm3			a= b= h= Volumen (a Peso (g) = Area (cm2) g =	Aedidas (cm 4.94 4.91 2.98 *b*c) =): 72.28109 98.57 24.2554 g/an3	
Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)	Ca	rga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)		Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000
0.052	0.070	0.967	0.214		0.047	0.070	0.000	0.197		0.050	0.070 0.140	0.210	0.210
0.090	0.220	0.111	0.371 0.458		0.126	0.220	0.015	0.529		0.109	0.210	0.016	0.459
0.120	0.370	0.184	0.495		0.174	0.370	0.020	0.731	1	0.158	0.350	0.023	0.665
0.133	0.440	0.216	0.548		0.191	0.450	0.022	0.802		0.187	0.430	0.025	0.787
0.155	0.580	0.280	0.639		0.231	0.600	0.024	0.970		0.238	0.580	0.030	1.001
0.185	0.730	0.339	0.763		0.240	0.750	0.024	1.050		0.235	0.730	0.035	1.182
0.197	0.800	0.370	0.812		0.272	0.830	0.026	1.142 1.197		0.301	0.800	0.038	1.266
0.220	0.950	0.426	0.907		0.300	0.980	0.028	1.260		0.332	0.960	0.040	1.397
0.231	1.030	0.453	1.010		0.312	1.060	0.029	1.310		0.348	1.030	0.042	1.464
0.253	1.180	0.506	1.043		0.341	1.210	0.031	1.432		0.378	1.180	0.045	1.590
0.277	1.330	0.555	1.142		0.385	1.360	0.034	1.616		0.394	1.340	0.049	1.658
0.285	1.390	0.579	1.175		0.399	1.430 1.510	0.034	1.675		0.402	1.410 1.480	0.052	1.691
0.301	1.540	0.625	1.241		0.424	1.590	0.034	1.780		0.426	1.560	0.056	1.792
0.315	1.690	0.666	1.299		0.447	1.740	0.041	1.877		0.444	1.700	0.056	1.868
0.323	1.760 1.840	0.687	1.332 1.352		0.453	1.820 1.890	0.044	1.902 1.902	1	0.456	1.780 1.860	0.062	1.918 1.948
0.332	1.910	0.728	1.369		0.455	1.970	0.044	1.910		0.472	1.940	0.067	1.986
0.336	2.060	0.747	1.385		0.457	2.050	0.046	1.919		0.480	2.010	0.068	2.019
0.336	2.140	0.783	1.385		0.457	2.220	0.046	1.919		0.492	2.160	0.072	2.070
0.341	2.210	100.0	1.400	L	0.458	2.260	0.047	1.323		0.500	2.240	0.076	2.103

34.89 (o) 1.11 Kg/cm2

			ECUADOR	INNU	VACION	PARA L	AEXCE	LENCIA			
				UNIVER SIDAD D	e las fuerza	S ARMADAS - I	ESPE				
				LABORATORIO	D DE ENSAYOS	DE MATERIAL	ES				
				ENSA	YO DE CORTE	DIRECTO					
DESCRIPCION DEL A PNEUMATIC DIRECT/ 110 / 220 VAC 50-60 NORMA: ASTM D303	PARATO /SHEAR RES 0 HZ HM-2 80 ; AASHT	51DUAL AF 560A.3F O T236, E	PARATUS 85 1377								
		SITIO DE II	NVESTIGACIÓ	N 3		PROYECTO		TESIS			
FECHA		20/0	3/2015	- -		ENSAYÓ		DIEGO GUADALUPE			
						VERIFICO				•	
HUMEDAD No.	1	2	1	HUMEDA No.	D 1	2		HUMEDAD No.	1	2	
TARA	36	F8		TARA	57	54		TARA	114	2P	
PESO TARA	13.6	11.21		PESO TAF	A 20.4	11.63		PESO TARA PESO TARA	11.56	13.31	
PESO TARA + M HUMEDA	44.13	38.45		+ M HUMED	39.91 A	31.16		+ M HUMEDA	29.79	37.73	
PESO TARA + M SECA	39.93	34.76		PESO TAR + M SECA	A 37.15	28.44		PESO TARA + M SECA	28	35.66	
% HUMEDAD	16.0%	15.7%		% HUME	DA 16.5%	16.2%		% HUMEDA	10.9%	9.3%	
PROMEDIO	16	%		PROMED	0	16%		PROMEDIO	10	0%	
INTERVALO DE TIEM	PO DE MEE		MEDICIONE	S: 15 seg.							
VELUCIDAD DEL ENS	AYU: 0,051	nm/min	,				15				
Ensayo No. 01 Presión: v	50 MPa			Ensayo N Presión: N	o. 02 / 100 Mpa			Ensayo No. Presión: v	02 150 Mpa		
Medida	is (cm):			100	Medidas (cn	n):			Medidas (cm):	
a= b=	4.99		1	a= b=	4.8			a= b=	4.91		
h=	2.7	2		h=	2.74			h=	2.84		
Volumen (a*b*c) = Peso (g) =		66.557		Volumen Peso (g) =	(a*b*c) =	65.76		Volumen (a Peso (g) =	*b*c) =	68.60645	
Area (cm 2)		24.651		Area (cm:	2)	24		Area (cm 2)		24.1572	
g =	1.557	g/cm3		g =	1.412	g/cm3		g =	1.267	g/am3	
Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)	Carga (kN) Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)	Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0.000	0.000	0.000	0.000	0.0	000.00	0.000	0.000	0.000	0.000	0.000	0.000
0.026	0.060	0.121	0.108	0.04	14 0.070	0.043	0.187	0.057	0.060	0.000	0.241
0.042	0.210	0.003	0.228	0.0	31 0.210	0.010	0.344	0.101	0.210	0.012	0.342
0.065	0.280	0.022	0.269	0.0	0.290	0.023	0.404	0.118	0.280	0.018	0.498
0.077	0.350	0.027	0.319	0.1	0.430	0.029	0.455	0.135	0.350	0.020	0.570
0.092	0.490	0.034	0.381	0.11	25 0.500	0.043	0.531	0.164	0.490	0.023	0.693
0.098	0.570	0.038	0.406	0.13	32 0.580 37 0.650	0.049	0.561	0.180	0.570	0.024	0.760
0.105	0.720	0.049	0.435	0.14	16 0.730	0.062	0.621	0.210	0.710	0.025	0.887
0.108	0.790	0.053	0.447	0.1	0.800	0.068	0.638	0.225	0.790	0.026	0.950
0.111	0.860	0.056	0.439	0.1	57 0.880	0.074	0.689	0.238	0.870	0.027	1.003
0.120	1.020	0.063	0.497	0.10	59 1.030	0.086	0.719	0.246	1.020	0.029	1.039
0.125	1.090	0.067	0.517	0.1	/5 1.100 30 1.180	0.086	0.744	0.249	1.100	0.030	1.052 1.064
0.137	1.240	0.070	0.567	0.1	35 1.260	0.083	0.787	0.254	1.250	0.033	1.073
0.141	1.320	0.075	0.584	0.1	1.330	0.083	0.808	0.256	1.320	0.034	1.081
0.141	1.390	0.078	0.588	0.1	9 <u>1.410</u>	0.082	0.846	0.261	1.400	0.034	1.102
0.145	1.540	0.084	0.600	0.20	05 1.560	0.081	0.872	0.266	1.550	0.034	1.124
0.149	1.620	0.089	0.617	0.20	1.630	0.080	0.889	0.268	1.620	0.038	1.132

Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0.000	0.000	0.000	0.000
0.026	0.060	0.121	0.108
0.042	0.130	0.005	0.174
0.055	0.210	0.017	0.228
0.065	0.280	0.022	0.269
0.077	0.350	0.027	0.319
0.086	0.420	0.031	0.356
0.092	0.490	0.034	0.381
0.098	0.570	0.038	0.406
0.101	0.640	0.043	0.418
0.105	0.720	0.049	0.435
0.108	0.790	0.053	0.447
0.111	0.860	0.056	0.459
0.114	0.940	0.060	0.472
0.120	1.020	0.063	0.497
0.125	1.090	0.067	0.517
0.131	1.170	0.069	0.542
0.137	1.240	0.070	0.567
0.141	1.320	0.075	0.584
0.141	1.390	0.078	0.584
0.142	1.470	0.082	0.588
0.145	1.540	0.084	0.600
0.149	1.620	0.089	0.617
0.152	1.700	0.092	0.629
0.155	1.770	0.094	0.642
0.159	1.840	0.100	0.658
0.161	1.920	0.100	0.666
0.164	1.990	0.101	0.679
0.167	2.070	0.104	0.691
0.169	2.140	0.104	0.700
0.170	2.210	0.105	0.704
			0.704

Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0.000	0.000	0.000	0.000
0.044	0.070	0.043	0.187
0.065	0.140	0.010	0.276
0.081	0.210	0.016	0.344
0.095	0.290	0.023	0.404
0.107	0.360	0.029	0.455
0.116	0.430	0.036	0.493
0.125	0.500	0.043	0.531
0.132	0.580	0.049	0.561
0.137	0.650	0.055	0.582
0.146	0.730	0.062	0.621
0.150	0.800	0.068	0.638
0.157	0.880	0.074	0.668
0.162	0.950	0.081	0.689
0.169	1.030	0.086	0.719
0.175	1.100	0.086	0.744
0.180	1.180	0.085	0.765
0.185	1.260	0.083	0.787
0.190	1.330	0.083	0.808
0.195	1.410	0.082	0.829
0.199	1.480	0.082	0.846
0.205	1.560	0.081	0.872
0.209	1.630	0.080	0.889
0.213	1.700	0.078	0.906
0.215	1.780	0.076	0.914
0.218	1.850	0.074	0.927
0.223	1.920	0.071	0.948
0.228	2.000	0.067	0.969
0.234	2.080	0.063	0.995
0.237	2.150	0.059	1.008
0.241	2.230	0.540	1.025
			1.025

Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0.000	0.000	0.000	0.000
0.057	0.060	0.000	0.241
0.081	0.130	0.012	0.342
0.101	0.210	0.015	0.427
0.118	0.280	0.018	0.498
0.135	0.350	0.020	0.570
0.152	0.420	0.022	0.642
0.164	0.490	0.023	0.693
0.180	0.570	0.024	0.760
0.195	0.650	0.024	0.824
0.210	0.710	0.025	0.887
0.225	0.790	0.026	0.950
0.238	0.870	0.027	1.005
0.241	0.940	0.028	1.018
0.246	1.020	0.029	1.039
0.249	1.100	0.030	1.052
0.252	1.170	0.031	1.064
0.254	1.250	0.033	1.073
0.256	1.320	0.034	1.081
0.261	1.400	0.034	1.102
0.264	1.470	0.035	1.115
0.266	1.550	0.034	1.124
0.268	1.620	0.038	1.132
0.267	1.700	0.041	1.128
0.270	1.780	0.044	1.140
0.271	1.850	0.044	1.145
0.272	1.920	0.044	1.149
0.278	1.990	0.046	1.174
0.278	2.070	0.046	1.174
0.279	2.140	0.046	1.179
0.281	2.220	0.047	1.187
			1.187

Angulo fricción Cohesión

25.79 (o) 0.49 Kg/cm2

Sitio de Investigación 4: Sector Batan Alto

Angulo fricción Cohesión

35.69 (o) 0.96 Kg/cm2

UNIVERSIDAD DE LAS FUERZAS ARMADAS - ESPE

LABORATORIO DE ENSAYOS DE MATERIALES

ENSAYO DE CORTE DIRECTO

PROYECTO

SOLICITA

ENSAYÓ

VERIFICÓ

TESIS

DIEGO GUADALUPE

DESCRIPCION DEL APARATO PNEUMATIC DIRECT/SHEAR RESIDUAL APARATUS 110 / 220 VAC 50-60 HZ HM-2560A.3F NORMA: ASTM D3080 ; AASHTO T236, BS 1377

LOCALIZACION MUESTRA FECHA

SITIO DE INVESTIGACIÓN 4 P-6 02/04/2015

No.	1	2	
TARA	F8	57	
PESO TARA	11.17	20.31	
PESO TARA + M HUMEDA	34.77	43.63	
PESO TARA + M SECA	28.79	37.76	
% HUMEDAD	33.9%	33.6%	
PROMEDIO	EDIO 34%		

No.	1	2
TARA	2P	36
PESO TARA	13.25	13.52
PESO TARA + M HUMEDA	38.77	38.96
PESO TARA + M SECA	32.551	32.77
% HUMEDA	32.2%	32.2%
PROMEDIO	32%	6

HUMEDAD No TARA 114 54 PESO TARA 11.55 11.47 PESO TARA 32.98 37.96 + M HUMEDA PESO TARA 31.72 27.88 + M SECA 6 HUMED 31.19 30.9% 31% PROMEDIO

INTERVALO DE TIEMPO DE MEDICIONES MEDICIONES: 15 seg. VELOCIDAD DEL ENSAYO: 0,05 mm/min

Ensayo No. 01	
Presión: v	50 MPa
M	edidas (cm):
a=	5.00
b=	5.00
h=	2.94
Volumen (a*b*	c) = 73.5
Peso (g) =	115.9
Area (cm 2)	25
g =	1.577 g/cm3

Area (0112) n -		1 577	25 a/cm3	
6		1.077	B/ cm o	
Carga (kN)		Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
	0.000	0.000	0.000	0.000
	0.026	0.020	0.005	0.106
	0.042	0.050	0.012	0.171
	0.055	0.090	0.021	0.224
	0.063	0.130	0.028	0.257
	0.074	0.130	0.033	0.302
	0.086	0.200	0.040	0.351
	0.092	0.270	0.050	0.376
	0.098	0.340	0.059	0.400
	0.101	0.410	0.068	0.412
	0.105	0.480	0.076	0.429
	0.108	0.550	0.084	0.441
	0.111	0.630	0.093	0.453
	0.114	0.700	0.100	0.465
	0.120	0.780	0.108	0.490
	0.125	0.850	0.117	0.510
	0.131	0.920	0.127	0.535
	0.137	1.000	0.137	0.559
	0.141	1.080	0.149	0.576
	0.141	1.150	0.157	0.576
	0.142	1.230	0.168	0.580
	0.145	1.300	0.178	0.592
	0.149	1.370	0.188	0.608
	0.152	1.450	0.202	0.620
	0.155	1.520	0.215	0.633
	0.159	1.600	0.227	0.649
	0.161	1.670	0.238	0.657
	0.164	1.750	0.250	0.669
	0.167	1.820	0.261	0.682
	0.169	1.900	0.273	0.690
	0.170	1.970	0.284	0.694
				0.694

Ensayo No	0.02	
Presión: v	100 Mpa	
	Medidas (cm):	
a=	5.00	
b=	5.00	
h=	2.77	
Volumen ((a*b*c) =	69.25
Peso (g) =		113.17
Area (cm 2)	25

Area (cm 2)	
g =	1.634 g/cm3

Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
0.000	0.000	0.000	0.000
0.027	0.050	0.000	0.110
0.044	0.120	0.037	0.180
0.059	0.190	0.054	0.241
0.073	0.260	0.072	0.298
0.087	0.330	0.084	0.355
0.104	0.400	0.095	0.424
0.119	0.480	0.107	0.486
0.132	0.550	0.117	0.539
0.145	0.620	0.126	0.592
0.155	0.700	0.136	0.633
0.167	0.770	0.145	0.682
0.176	0.850	0.151	0.718
0.185	0.920	0.158	0.755
0.194	1.000	0.160	0.792
0.203	1.080	0.164	0.829
0.211	1.150	0.168	0.861
0.217	1.230	0.170	0.886
0.224	1.300	0.173	0.914
0.231	1.370	0.176	0.943
0.238	1.450	0.181	0.971
0.244	1.520	0.189	0.996
0.250	1.590	0.196	1.020
0.256	1.670	0.200	1.045
0.261	1.740	0.209	1.065
0.266	1.810	0.217	1.086
0.271	1.890	0.227	1.106
0.275	1.960	0.238	1.122
0.280	2.040	0.252	1.143
0.284	2.110	0.262	1.159
0.289	2.190	0.268	1.180
			1 1 80

Ensayo No.)2
Presión: v	150 Mpa
Ν	ledidas (cm):
a=	5.00
b=	5.00
h=	2.71
Volum en (a	^e b*c) = 67.75
Peso (g) =	107
Area (cm 2)	25
g =	1.579 g/cm3

1.579 g/cm3

carga (Kiv)	Horz (mm)	Vert (mm)	corte (Kg/cm2)
0.000	0.000	0.000	0.000
0.043	0.060	0.000	0.176
0.071	0.130	0.005	0.290
0.092	0.200	0.009	0.376
0.107	0.270	0.013	0.437
0.120	0.350	0.017	0.490
0.130	0.420	0.021	0.531
0.144	0.490	0.025	0.588
0.158	0.570	0.030	0.645
0.171	0.640	0.034	0.698
0.187	0.720	0.042	0.763
0.199	0.790	0.043	0.812
0.211	0.860	0.044	0.861
0.224	0.930	0.046	0.914
0.234	1.010	0.048	0.955
0.243	1.080	0.049	0.992
0.255	1.150	0.055	1.041
0.265	1.230	0.052	1.082
0.277	1.300	0.053	1.131
0.285	1.380	0.054	1.163
0.294	1.450	0.057	1.200
0.301	1.520	0.060	1.229
0.309	1.600	0.063	1.261
0.315	1.670	0.065	1.286
0.323	1.750	0.066	1.318
0.328	1.820	0.067	1.339
0.332	1.900	0.069	1.355
0.336	1.980	0.070	1.371
0.341	2.050	0.072	1.392
0.347	2.130	0.073	1.416
0.351	2.200	0.075	1.433

36.46 (o) 0.36 Kg/cm2

Sitio de Investigación 5: Sector Av. 12 de Octubre

			v),E		5F		Ε			
UNUMERIAD OL LASTURIZZA AMUNCAS - ENER LABORATORIO DE ENANCIS IL 10/02/2014/57.04.01102/07.05.06.137 TOTORIO DE ENANCIS IL 10/02/2014/07.06.01.0						SIDAD D Ación	E LAS FU PARA L	ERZAS AI A Exce	RMADAS			
	UNIVERSIDAD DE LAS FUERZAS ARMADAS - ESPE											
Description per la participa de la parteipa de la parteipa de la participa de la partita de la partici	LABORATORIO DE ENSAYOS DE MATERIALES											
Dispersion Dispersion <td></td> <td></td> <td></td> <td></td> <td>ENSAYO</td> <td>D DE CORTE I</td> <td>DIRECTO</td> <td></td> <td></td> <td></td> <td></td> <td></td>					ENSAYO	D DE CORTE I	DIRECTO					
NORMA. STM D0380 (.ASM1010254, 65177 LOCAL ZAM MON 120 D0101/LATE 00-C0115 TESE NUMEXIMA D0101/LATE 00-C0115 D01001/LATE 00-C0115 NUMEXIMA D01001/LATE 00-C0115 D01001/LATE 00-C0115 NUMEXIMA D01001/LATE 00-C0115 NUMEXIMA D01001/LATE 00-C0115 NUMEXIMA D01001/LATE 00-C0115 NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMA D01001/LATE 00-C0115 NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMA D01001/LATE 00-C0115 NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMAL D01001/LATE 00-C0115 NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMAL D01001/LATE 00-C0115 NUMEXIMA D1100/LATE 00-C0113 NUMEXIMA NUMEXIMA NUMEXIMAL D01001/LATE 00-C0115 NUMEXIMA D1100/LATE 00-C0113 NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMAL D01001/LATE 00-C0115 NUMEXIMA D1100/LATE 00-C0115 NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMA NUMEXIMA	DESCRIPCION DEL A PNEUMATIC DIRECT, 110 / 220 VAC 50-6	PARATO SHEAR RES 0 HZ HM-2	SIDUAL AF 560A.3F	PARATUS								
NUESTRA FEGUA P3 20/20/2015 SOLCIA HAMEDO VERPEÓ DECOCUADALLEE HAMEDO HAMEDO HAMEAO INA- 144 103 1 2 104A 2 104A 1 10 104A 1 10 104A 2 10 104A 1 10 104A 1 10 104A 2 10 104A 1 10 104A 1 104 104A 1 104 104A	NORMA: ASTM D30	80 ; AASHT	OT236, B	IS 1377	N 5		PROYECTO		TESIS			
HAMEDAD HEAMEDAD HEAMEDAD HEAMEDAD 174AA 57 51 1750 174A 43.29 31.26 1850 174A 43.29 31.26 1850 174A 41.88 30.16 1850 174A 30.27 36.71 1850 174A 30.24 11.18 13.29 1850 174A 30.17 11.18 13.29 1850 174A 30.17 11.18 13.29 1850 174A 11.18 13.29 11.18 12.29 18	MUESTRA FECHA		P-3 02/0	4/2015			solicita Ensayó Verificó		DIEGO GUADALUPE			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	HUMEDAD				HUMEDAD				HUMEDAD			
TAPA 52 TAPA T	No.	1	2		No.	1	2		No.	1	2	
PSO 10A 20.33 11.55 PSO 10A 11.5 12.20 PSO 10A 43.19 31.26 11.5 12.20 PSO 10A 11.80 12.32 PSO 10A 41.88 30.16 31.76 38.86 PSO 10A 26.83 32.46 PSO 10A 41.88 30.16 SHUMEDA 51.59 PSO 10A 26.83 32.46 PSO 10A 6.33 5.99 PSO 10A 36.7 SHUMEDA 91.5 92.5 PROMEDO 6% PSO 10A 26.83 32.46 PSO 10A 26.83 32.46 PSO 10A 6.33 5.99 PSO 10A 92.5 PSO 10A PSO 10A 11.80 11.28 11.75 PSO 10A	TARA	57	54			114	2P		TARA	F8	36	
HAMEDA 43.1 32.20 + M 33.76 33.86 + M 26.33 27.46 PESO TANA - M 41.89 30.16 + M SECA - M SECA - M SECA 24.83 30.46 SHEAMTINDO 6.15 5.92 - M SECA - M SECA 24.83 30.46 YESO TANA - M SECA - M SECA 24.83 30.46 - M SECA 24.83 30.46 YESO TANA - M SECA - M SECA - M SECA 24.83 30.46 - M SECA - M SECA <td>PESO TARA + M</td> <td>20.33</td> <td>11.55</td> <td></td> <td>PESOTARA</td> <td>11.5</td> <td>13.28</td> <td></td> <td>PESOTARA</td> <td>11.18</td> <td>13.55</td> <td></td>	PESO TARA + M	20.33	11.55		PESOTARA	11.5	13.28		PESOTARA	11.18	13.55	
PSC TARA + M 41.88 30.16 PSC TARA 30.07 36.7 SEGA 5.91 PSC TARA 30.07 36.7 PROMEDO 6.713 5.91 PSC TARA 30.07 PROMEDO 6.713 5.91 PSC TARA 30.07 PROMEDO 6.713 5.91 PSC TARA 7.82 PROMEDO 6.713 5.91 PSC TARA 7.82 Valcoca 7.86 PSC TARA 7.82 PSC TARA 7.82 Valcoca 7.86 PSC TARA 7.82 PS	HUMEDA	43.19	31.26		+ M HUMEDA	31.76	38.86		+ M HUMEDA	26.33	32.46	
SEA I-M SEA I-M SEA I-M SEA I-M SEA SHUMEDAD 6.15 5.95 SHUMEDAD 915 SHUMEDAD 11.25 11.75 PROMEDD 6.5 SHUMEDAD 915 SHUMEDAD 11.25 11.75 PROMEDD 6.5 SHUMEDAD 955 SHUMEDAD 11.25 11.75 Presion v 50 MP2 SHUMEDAD 955 SHUMEDAD 11.25 11.75 Presion v 50 MP2 SHUMEDAD SHUMEDAD 11.25 11.75 Presion v 50 MP2 SHUMEDAD	PESO TARA + M	41.88	30.16		PESO TARA	30.07	36.7		PESO TARA	24.8	30.48	
SHUMEDD 6.1% 5.9% SHUMEDD 9.1% 9.2% SHUMEDD 11.2% 11.7% PRCMEDD 6% PRCMEDD 9% PRCMEDD 1% PRCMEDD 11.5% NIEWADD DE IEMPO RE MEDICINES MEDICINES: 15 seg. PREMIN: V 100 Mpa Presiden: V Stago No. 07 PREMIN: V Medidas (cm): a: 496 b: 497 b: 497 b: 497 b: 496 b: 496 b: 496 b: 496 b: 496 b: <td>SECA</td> <td></td> <td></td> <td></td> <td>+ M SECA</td> <td></td> <td></td> <td></td> <td>+ M SECA</td> <td></td> <td></td> <td></td>	SECA				+ M SECA				+ M SECA			
PROMEDIO 6% PROMEDIO 9% ROMEDIO 11% NERVALO DE TEMPO DE MEDICIONES MEDICIONES 15 seg. VILCICADO DEL TEMPO DE MEDICIONES MEDICIONES 15 seg. Presión: v 100 Mpa Presión: v 100 M	% HUMEDAD	6.1%	5.9%		% HUMEDA	9.1%	9.2%		% HUMEDA	11.2%	11.7%	
NTERVALODE TEMPO DE MEDICIONES MEDICIONES 15 seg. Ensago No. 01 Presión: v Soma A 96 b 4.96 b 2.74 Yolama (aftrive): 6.528976 Yolama (aftrive): 6.528976 Res (an2) 24.66 Yolama (aftrive): 6.528976 Res (an2) 24.67 Yolama (aftrive): 6.528976 Res (an2) 24.68 Res (an2) 24.53 Rea (an2) 24.67 Yolama (aftrive): 6.528976 Res (an2) 24.68 Optimized (aftrive): 6.538976 Res (an2) 24.53 Res (an2) 24.57 No Res (an2) 24.56 No No Res (an2) 24.57 No Res (an2) 24.57 Res (an2)<	PROMEDIO	69	%		PROMEDIO		9%		PROMEDIO	1.	1%	1
NTERWOOR MEDICICONES: 15 seg: Seg: 10:10:10:10:10:10:10:10:10:10:10:10:10:1												
Finspo No. 01 Ensayo No. 02 Freedon: v 100 Mpa Freedon: v 100 Mpa medidus (m): a= 4.96 - 4.96 -	INTERVALO DE TIEM	PO DE MEE		MEDICIONES	: 15 seg.							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ATO: 0,051								antions -		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ensayo No. 01 Presión: v	50 MPa			Ensayo No. Presión: v	02 100 Mpa			Ensayo No. Presión: v	02 150 Mpa		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Medida a=	is (am): 4.96	0		a=	Medidas (cm 4.96	1):		a=	Medidas (cm 4.93):	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	b=	4.96			b=	4.93			b=	4.98		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	n= Volumen (a*b*c) =	2.74	67.408		n= Volumen (a	2.67 I*b*c) =	65.288976		n= Volumen (a	2.66 I*b*c) =	65.30672	
g- 1.323 g- 1.321 g- 1.321 g- 1.326 g- 1.376 g/m Carga (kN) Horz (m) Vert (m) Eshierzo corte (kg/cn2) Carga (kN) Horz (m) Vert (mn) Eshierzo corte (kg/cn2) Carga (kN) Horz (m) Vert (mn) Eshierzo corte (kg/cn2) 0.000 0.00	Peso (g) = Area (cm 2)		89.2 24.602		Peso (g) = Area (cm 2)		86.26 24.4528		Peso (g) = Area (cm 2)		89.86 24.5514	
Horz (mm) Vert (mm) Eshuerzo (orte (mg/m2) Eshuerzo (orte (mg/m2) Eshuerzo (orte (mg/m2) Eshuerzo (orte (mg/m2) 0.000	g =	1.323	g/cm3		g =	1.321	g/cm3		g =	1.376	g/am 3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)	Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)	Carga (kN)	Horz (mm)	Vert (mm)	Esfuerzo corte (Kg/cm2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.050	0.060	0.730	0.207	0.017	0.070	0.043	0.071	0.046	0.070	0.121	0.191
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.096	0.200	0.132	0.398	0.062	0.220	0.016	0.259 0.342	0.100	0.220	0.017	0.416
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.128	0.350	0.170	0.531	0.087	0.360	0.029	0.363	0.137	0.370	0.027	0.569
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.141	0.490	0.204	0.635	0.112	0.430	0.043	0.601	0.133	0.440	0.031	0.769
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.164	0.570 0.640	0.220	0.680	0.173	0.580	0.049	0.722	0.210	0.590 0.670	0.038	0.873
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.182	0.710	0.251	0.755	0.221	0.730	0.062	0.922	0.247	0.740	0.049	1.027
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.192	0.860	0.265	0.830	0.244	0.880	0.068	1.102	0.269	0.820	0.053	1.118
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.206	0.930	0.295	0.854 0.879	0.285	0.950	0.081	1.189 1.210	0.305	0.970	0.060	1.268 1.347
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.219	1.080	0.324	0.908	0.311	1.100	0.086	1.298	0.345	1.120	0.067	1.434
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.230	1.230	0.353	0.954	0.340	1.250	0.083	1.419	0.370	1.260	0.009	1.538
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.235	1.300	0.369	0.975	0.356	1.320 1.390	0.083	1.486 1.536	0.385	1.340 1.410	0.075	1.600 1.646
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.243	1.450	0.400	1.008	0.381	1.470	0.082	1.590	0.409	1.490	0.082	1.700
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.251	1.520	0.428	1.041	0.402	1.610	0.080	1.678	0.428	1.640	0.089	1.779
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.255	1.670 1.740	0.442	1.058 1.087	0.411	1.680 1.760	0.078	1./15 1.753	0.437	1.710 1.790	0.092	1.816 1.845
0.271 2.000 0.730 1.141 0.450 2.050 0.671 1.390 0.760 1.390 0.601 1.390 0.271 2.000 0.730 1.124 0.440 1.980 0.067 1.836 0.462 2.020 0.100 1.990 0.275 2.070 0.730 1.141 0.450 2.050 0.063 1.878 0.467 2.100 0.104 1.941 0.279 2.140 0.730 1.157 0.456 2.130 0.059 1.903 0.474 2.170 0.104 1.941 0.282 2.210 0.730 1.170 0.458 2.200 0.540 1.911 0.480 2.250 0.105 1.995 1.170 1.170 1.170 1.911 1.911 1.941	0.265	1.810	0.500	1.099	0.426	1.830	0.074	1.778	0.451	1.870	0.100	1.874
0.275 2.070 0.730 1.141 0.450 2.050 0.063 1.878 0.467 2.100 0.104 1.941 0.279 2.140 0.730 1.157 0.456 2.130 0.059 1.903 0.474 2.170 0.104 1.941 0.282 2.210 0.730 1.170 0.458 2.200 0.540 1.911 0.480 2.250 0.105 1.995 1.170 1.170 1.170 1.911 1.911 1.911 1.901 1.901	0.209	2.000	0.730	1.124	0.440	1.980	0.067	1.836	0.458	2.020	0.101	1.920
0.282 2.210 0.730 1.170 0.458 2.200 0.540 1.911 0.480 2.250 0.105 1.995 1.170 1.911 1.911	0.271			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.00 (SACO) -		12221002000000					
	0.271 0.275 0.279	2.070 2.140	0.730	1.141 1.157	0.450	2.050 2.130	0.063	1.878 1.903	0.467 0.474	2.100 2.170	0.104	1.941 1.970

Angulo fricción Cohesión

39.53 (o) 0.87 Kg/cm2

6.4.4 Formato para el Ensayo de Ficómetro

ENSAYO DE FICOMETRO

Proyecto:	N° Ensayo:
Sondeo:	Nivel Freático:
Profundidad del ensayo:	SUCS:

CALIBRACION DE LA SONDA.

VOLUMEN	PRESION	DIAMETRO
V (cm³)	Pr (bar)	Ds (cm)

DRESIÓN (BAR)		1	2	3	4	5	6	7	8	9
PRESION (BAR)	TIEMPO (seg)	0	15	30	60	90	120	150	180	210
	VOL (cm3)									
	TENSIÓN (KN)	/	/							

		1	2	3	4	5	6	7	8	9
PRESION (BAR)	TIEMPO (seg)	0	15	30	60	90	120	150	180	210
	VOL (cm3)					/	/	/		
	TENSIÓN (KN)									

		1	2	3	4	5	6	7	8	9
PRESION (BAR)	TIEMPO (seg)	0	15	30	60	90	120	150	180	210
	VOL (cm3)									
	TENSIÓN (KN)									

DRESIÓN (RAR)		1	2	3	4	5	6	7	8	9
PRESION (BAR)	TIEMPO (seg)	0	15	30	60	90	120	150	180	210
	VOL (cm3)									
	TENSIÓN (KN)	/	/							

		1	2	3	4	5	6	7	8	9
PRESION (BAR)	TIEMPO (seg)	0	15	30	60	90	120	150	180	210
	VOL (cm3)					/	/	/	/	
	TENSIÓN (KN)									

DRESIÓN (BAD)		1	2	3	4	5	6	7	8	9
PRESION (BAR)	TIEMPO (seg)	0	15	30	60	90	120	150	180	210
	VOL (cm3)									
	TENSIÓN (KN)									

DRESIÓN (PAR)		1	2	3	4	5	6	7	8	9
PRESION (BAR)	TIEMPO (seg)	0	15	30	60	90	120	150	180	210
	VOL (cm3)									
	TENSIÓN (KN)									

		1	2	3	4	5	6	7	8	9
PRESION (BAR)	TIEMPO (seg)	0	15	30	60	90	120	150	180	210
	VOL (cm3)									
	TENSIÓN (KN)	/	/							

6.4.5 Registro Fotográfico

> Trabajo de Campo – Ensayo de Ficómetro

Figura 6.1. Ensayo Ficómetro en el Sito de Investigación 3

Figura 6.2. Calibración de la sonda, Sito de Investigación 3.

Figura 6.3. Toma de datos de calibración, Sito de Investigación 3.

Figura 6.4. Ingreso de la sonda, Sito de Investigación 3.

Figura 6.5. Colocación del equipo de superficie, Sito de Investigación 3.

Figura 6.6. Colocación del equipo de superficie, Sito de Investigación 3.

Figura 6.7. Proceso de extracción de la sonda mediante el gato hidráulico, Sito de Investigación 3.

Figura 6.8. Material que queda entre los dientes anulares de la sonda, Sito de Investigación 3.

Figura 6.9. Ensayo Ficómetro en el Sito de Investigación 4.

Figura 6.10. Ensayo Ficómetro en el Sito de Investigación 4.

> Trabajo de Laboratorio – Ensayo de Corte Directo

Figura 6.11. Tallado del material.

Figura 6.12. Tallado del material.

Figura 6.13. Muestras talladas para Ensayo de Corte Directo

Figura 6.14. Ensayo de Corte Directo.

Figura 6.15. Falla de la muestra en Ensayo de Corte Directo