

"DISEÑO, CONSTRUCCIÓN E IMPLEMENTACIÓN DE UN SISTEMA AUTOMATIZADO PARA EL EMPAQUETADO DE HUEVOS EN LA EMPRESA GRANPIAVE Cía. Ltda."

SANGOLQUÍ, JULIO 2016

AUTORES: ALEX SANTIAGO MARTÍNEZ MEZA EDWIN JAVIER QUINCHIMBA CÓNDOR

DIRECTOR: ING. BYRON CORTÉZ

SANGOLQUÍ, JUNIO 2016

Objetivo General

Diseñar, construir e implementar un sistema automatizado para el empaquetado de huevos

Objetivos específicos

• Diseñar y construir la estructura mecánica.

• Implementar un sistema electrónico.

• Establecer un control óptimo que no afecte a la calidad del producto.

• Realizar pruebas de funcionalidad y rendimiento.

Justificación e Importancia

La automatización de procesos busca un cambio en la productividad, optimizando tiempos de producción, facilitando trabajos complejos a los operarios. Se automatiza un proceso para tener beneficio económico y social.

La industria ecuatoriana está en proceso de cambio, desea modernizar sus procesos. En nuestro caso se realiza una importante inversión en innovación e investigación.

Marco Teórico

Manejo de la producción de huevos

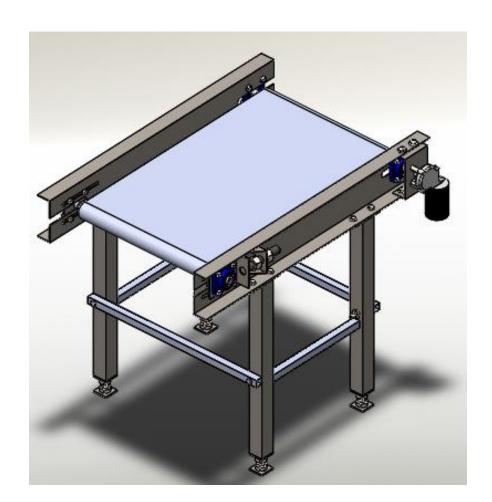
El punto clave en el manejo de huevos dentro de cualquier tipo de galpón, es la rapidez con la que son retirados, entre lo más pronto posible son retirados mejor, debido a que el medio ambiente es favorable a suciedad y contaminación de la cascara, con el fin de tener el menor número de huevos rotos y sucios.

Jaula de Postura Recolección Manual

Recolecciones en galpones automatizados

Buenas Prácticas de Manufactura

- Son una herramienta básica para la obtención de productos seguros para el consumo humano, que se centralizan en la higiene y forma de manipulación.
- La aplicación de Buenas Prácticas de Manufactura, reduce significativamente el riesgo de presentación de toxi-infecciones a la población consumidora al protegerla contra contaminaciones.

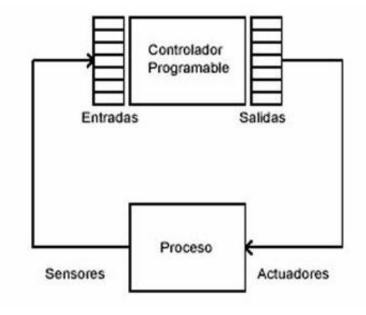


Bandas Transportadoras

- También conocida como cinta transportadora es un sistema de transporte continuo conformado por una banda que se desplaza entre dos rodillos.
- Es muy común ver estos equipos desde una industria pesada como la mecánica, metalúrgica o en la extracción de minerales hasta en los supermercados o tiendas para la transportación de los productos frente al vendedor.

CADENAS TIPO HOLLOW PIN.

• La diferencia de estas cadenas de las convencionales está en su pasador que es hueco en el cual se pueden implementar accesorios para crear sistemas de transporte de carga en especial aquellos que son de rodillos.



CONTROLADORES LÓGICOS PROGRAMABLES (PLC)

Son dispositivos electrónicos que puede ser programado por el usuario, en el cual se puede realizar las instrucciones para poder controlar un proceso, el PLC está diseñado para múltiples señales de entrada y de salida, inmunidad al ruido eléctrico y resistencia a la vibración y al impacto.

SISTEMAS HMI.

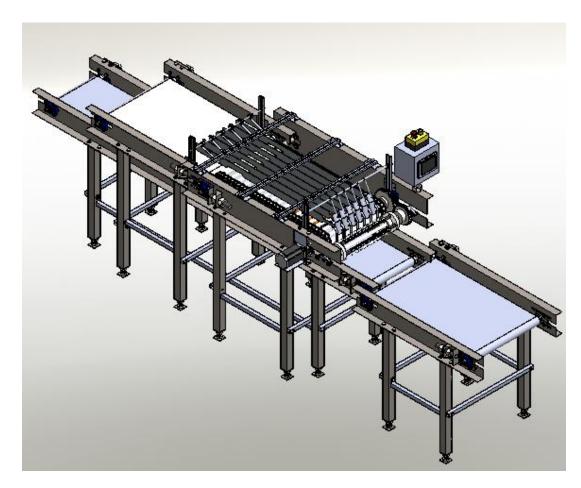
- Las siglas HMI significan "Human Machine Interface" o "Interfaz Hombre – Máquina".
 Son ampliamente utilizados en la industria para el monitoreo, supervisión, control y seguimiento de procesos.
- El HMI más común utilizado en automatizaciones a nivel de campo y proceso, son pantallas Touch Screen, en donde el manejo de gráficos, valores numéricos o alfanuméricos, manejo de alarmas y otras aplicaciones se las puede realizar de manera sencilla.

CAPÍTULO 3 SELECCIÓN DE ALTERNATIVAS

Desarrollo de la función de calidad (QFD).

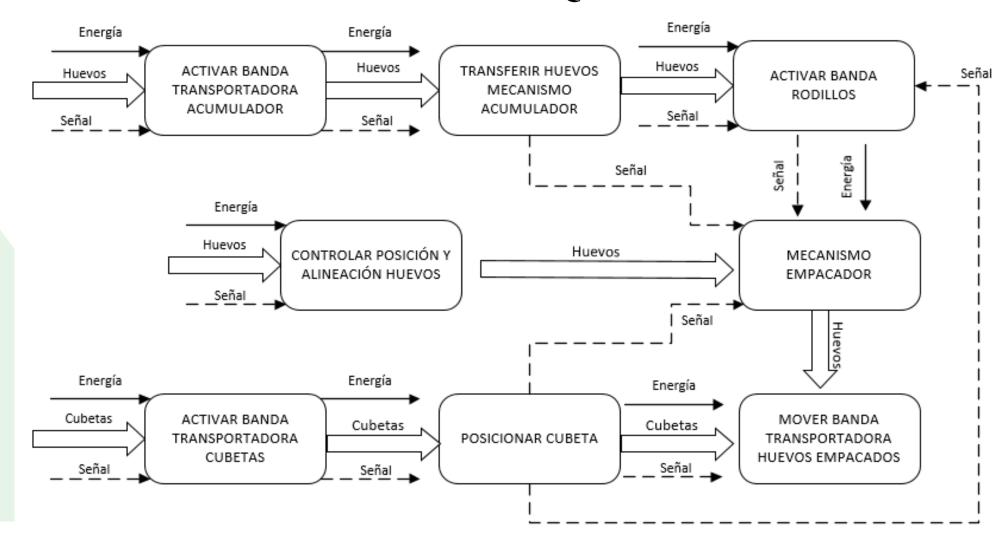
- Es una manera técnica de definir un producto o servicio considerando las necesidades y requerimientos de los usuarios. (Riba, 2002).
- La casa de la calidad nos entrega como requerimientos técnicos de mayor importancia: Tipos de actuadores y control, Mecanismo empacador, HMI, Equipos y materiales accesibles.

Casa de la calidad aplicada al proyecto.

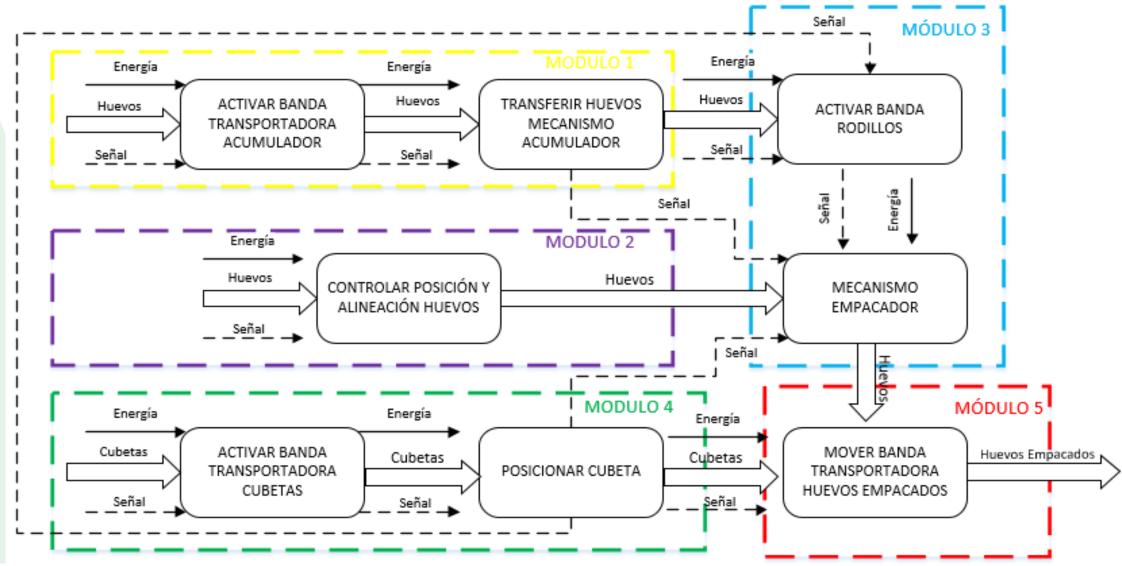

	Specification of the state of t	Buenas Práctica de manufactura	Sistema Modular	HMI (Interfaz Hombre Máquina)	Conexión eléctrica acorde a la red nacional elé	Mecanismo empacador	Equipos y materiales accesibles	Mecanismo Posicionador	Tipo de actuadores y control	Frenc de emengencia	Control automático	Despilegue de afarmas	Programación registros	Producto propio	Competencia YAMASA 🙃	Competencia SANGVO	Objetivos	Indice de majore	Factor de venta	(mportancia	Penderación	Ponderación en %
1 8	Estructura para manejo de alimentos	•				0	∇	0						1	3	4	4	4	1	4	16	5.432
2 8	Fácil instalación	0	•		0	•	0	•	0					1	4	4	5	5	1.2	4	24	8.147
3 8	Controles intuitivos			•			∇		0		∇			1	4	5	5	5	1.5	5	37.5	12.73
4 8	Consoi do stáctrica				•				0					1	3	3	4	4	1.5	5	30	10.18
5 B	Empaquetado en bandejas estándar 5º6					•		0						1	5	5	5	5	1	5	25	8.487
6 0	Bajo costo	∇				•	•	0	•		0			1	2	3	5	5	1.5	4	30	10.18
7 0	Huevos orientados para su apilación							•	∇					1	4	5	5	5	1.2	4	24	8.147
8 0	Sistema preciso		0			0	∇	∇	•		∇			1	4	4	5	5	1.5	5	37.5	12.73
9 0	Cuidado del operario	∇								•	∇			1	3	4	4	4	1.2	4	19.2	6.518
10 E	Mínima intervención humana			∇		0		∇			•			1	4	4	4	4	1	3	12	4.074
11 E	Sistema confiable			∇		О				∇		•		1	4	4	5	5	1.5	4	30	10.18
12 E	Wisualización de datos de producción			0								∇	•	4	3	1	5	1.25	1.5	5	9.375	3.183
																					294.6	100
	Producto propio	1	1	1	1	1	1	1	1	1	1	1	1									
	Competencia YAMASA	4	3	3	3	4	3	4	4	4	4	3	4									
	Competencia SANOVO	4	2	1	3	4	3	3	4	4	4	1	1									
	Incidencia	224	288	525	360	975	450	696	1050	192	180	300	84.38	5324								
	Incidencia en %	4.207	5.409	9.86	6.761	18.31	8.452	13.07	19.72	3.606	3.381	5.634	1.585	100								

Especificación del producto.

- Buenas Prácticas de Manufactura.
- Interfaz Hombre Máquina.
- Tipos de actuadores y control.
- Sistema Modular.
- Equipos y materiales accesibles.
- Mecanismo empacador.

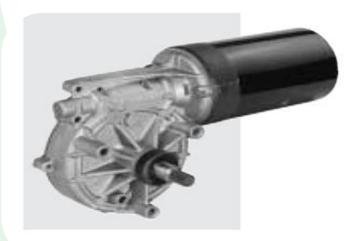


ANÁLISIS FUNCIONAL


PROCESO DE EMPAQUETADO

MÓDULOS FUNCIONALES

Modularidad del Equipo



Módulos	Requerimientos Funcionales	Estructura Funcional
	Motores	Actuador Banda transportadora
Módulo I	Cinta Transportadora	Material Cinta transportadora
	Sensores	Determinar presencia acumulador huevos
Módulo II	Rieles Guías	Material rieles guías
	Mecanismo empacador	Forma de empaquetado
	Control del sistema	Controlador a utilizar
Módulo III	Interfaz Hombre Máquina	Interfaz amigable
	Sensores	Presencia huevos en el acumulador
	Motores	Actuador del mecanismo empacador
	Cinta transportadora	Material cinta transportadora
Módulo IV	Sensores	Determinar presencia cubeta vacía
	Motores	Actuador Banda transportadora
Módulo V	Cinta transportadora	Material cinta transportadora
NAUGUIO-V	Motores	Actuador Banda transportadora

MODULO I: MOTORES

Motor BOSCH

Motor Trifásico

Motor a pasos

CONCLUSIÓN


	MOTORES											
Conclusión			Potencia	Precisión de Movimientos	Σ	Ponderación						
DC	0,178	0,0974	0,0086	0,02129	0,306	1						
\mathbf{AC}	0,067	0,0061	0,1379	0,00354	0,215	4						
Pasos	0,095	0,0517	0,0517	0,04792	0,246	2						
Servomotor	0.039 0,0517		0,0948	0,04792	0,234	3						
			Suma		1,00							

De acuerdo a las directrices de diseño planteadas, la mejor opción que se adapta a los requerimientos es un motor DC con caja reductora.

MODULO I: CINTA TRANSPORTADORA

Cinta Transportadora P22 – 76

Cinta Transportadora C07JF

Cinta Transportadora UPRO 213W

CONCLUSIÓN

	Cinta Transportadora											
Conclusión	Fácil Limpieza	Manipulación suave y segura	Resistencia Desgaste	Revestimiento antimicrobianos	Σ	Ponderación						
Goma Natural P22-76	0,108	0,0098	0,02614	0,0343	0,178	3						
C07JF	0,153	0,0139	0,28758	0,0833	0,538	1						
UPRO 213W	0,063	0,00571	0,15686	0,0588	0,284	2						
				Suma	1,000							

El tipo de cinta transportadora que cumple las especificaciones de diseño es la denominada C07JF, cinta disponible en el mercado y es utilizada en la manipulación de alimentos.

MODULO I: SENSORES

Sensores ópticos

Finales de carrera de precisión

CONCLUSIÓN

			Sensores			
Conclusión	Costo	Facilidad Implementación	Resolución	Disponibilidad	Σ	Ponderación
Ópticos	0,176	0,0648	0,0457	0,06481	0,352	2
Capacitivos	0,029	0,0648	0,0076	0,06481	0,167	3
Fines de carrera	0,324	0,2037	0,0839	0.2037	0,815	1
				Suma	1	

Los sensores a utilizar en este módulo serán fines de carrera, los cuales cumplen con todas las especificaciones necesarias para el correcto funcionamiento en el acumulador.

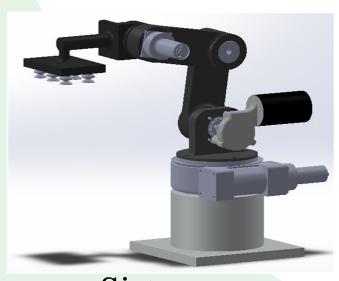
MODULO II: MATERIAL RIELES GUIAS

Cromado

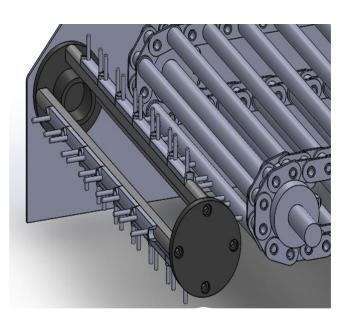
Acrílico

Acero Inoxidable

CONCLUSIÓN


	Guías											
Conclusión	Costo	Fácil Limpieza	Vida útil	Σ	Ponderación							
Cromado	0,289	0,0648	0,0918	0,445	1							
Acrílico	0,289	0,065	0,0378	0,391	2							
Acero Inoxidable	0,034	0,065	0,0648	0,164	3							
			Suma	1								

Se utilizara platina de acero para la fabricación de las guías, posteriormente se realizara el recubrimiento en cromo para su utilización en contacto con alimentos.



MODULO III: MECANISMO EMPACADOR

Sistema Neumático

Sistema Rodillos

Sistema tipo acordeón

CONCLUSIÓN

		Med	canismo Empaca	dor		
Conclusión	onclusión Costo		to Complejidad Sistema Mantenimiento		Σ	Ponderación
Sistema Neumático	0,018	0,0086	0,00115	0,1568	0,185	3
Sistema Rodillos	0,295	0,1162	0,01845	0,0833	0,513	1
Sistema tipo acordeón	0,157	0,0516	0,0098	0.0833	0,302	2
				Suma	1	

El mecanismo empacador a diseñar, de acuerdo a varios factores y requerimientos del cliente será el sistema de rodillos.



MODULO II: CONTROL DE PROCESO

PLC

Arduino

Microcontrolador PIC Control por contactores y relés

CONCLUSIÓN

	Controlador											
	Conclusión	Costo	Facilidad de	Ambiente	Compatibilidad	∇	Ponderación					
		Costo	Implementación Industrial		Companiomdad		Tonderacion					
	PIC	0,014	0,0182	0,0409	0,0993	0,172	3					
	Arduino	0,01	0,0441	0,0409	0,0993	0,194	2					
	PLC	0,005	0,0830	0,1868	0,1868	0,462	1					
	Contactores	0,001	0,0311	0,1284	0,0116	0172	4					
					Suma	1						

Se decide utilizar un controlador lógico programable PLC, posteriormente se decidirá que PLC podemos encontrar disponible en el mercado nacional y sus especificaciones para nuestras necesidades.

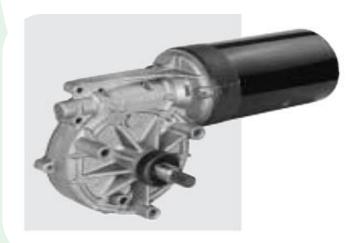
MODULO III: INTERFAZ HUMANO-MAQUINA

Touch-Panel HMI

Display LCD

Computador

CONCLUSIÓN


	Solución A> Solución B										
Conclusión	Costo	Comunicación	Tamaño ergonómico	Interfaz amigable	Σ	Ponderación					
Touch Panel	0,01	0,1181	0,1528	0,2222	0,503	1					
Computador	0,002	0,1181	0,0139	0,2222	0,356	2					
Display LCD	0,018	0,0139	0,0833	0,0261	0,141	3					
				Suma	1						

Se utilizará un Touch panel que cumple con las especificaciones necesarias para nuestra aplicación, además existen diferentes modelos, las especificaciones se determinaran en el diseño electrónico posterior.

MODULO III: MOTORES

Motor BOSCH

Motor Trifásico

Motor a pasos

CONCLUSIÓN

	MOTORES											
Conclusión	Costo	Facilidad control	Potencia	Precisión de Movimientos	Σ	Ponderación						
DC	0,034	0,00093	0,1269	0,0149	0,176	4						
AC	0,090	0,0056	0,0079	0,0896	0,193	3						
Pasos	0,062	0,0126	0,0675	0,2016	0,343	1						
Servomotor	Servomotor 0.006		0,0675	0,2016	0,287	2						
				Suma	1,00							

El motor a pasos será el que se va utilizar de acuerdo a los requerimientos de precisión y potencia que son los más significativos para la elección, teniendo en cuenta el costo como un parámetro también importante.

MODULO IV: SENSORES

Sensores ópticos

Se decidió utilizar un sensor óptico para la detección de la cubeta vacía.

Finales de carrera de precisión

CAPÍTULO 4: DISEÑO

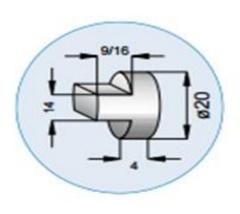
BANDA TRANSPORTADORA (Norma DIN 17100 e ISO 1129)

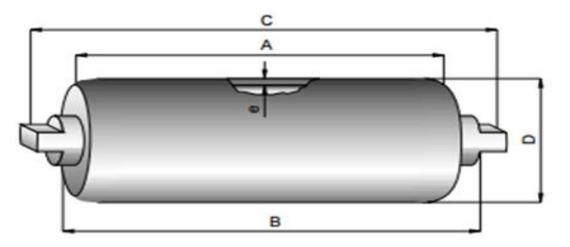
Recomendación de diámetro de rodillos por ancho de banda

Tabla J

BANDA	400	500	650	800	1000	1200	1400	1600	1800	2000	2200
ø Rodillo											
63,5	X	X	X								
70		x	x	x							
76		X	X	x	x						
89		X	x	x	x						
102			x	x	x	x					
108			x	x	x	x	x				
127				x	x	x	x	x			
133				x	x	x	x	x			
152,4						x	x	x	x		
159						x	x	x	X		
193,7									x	x	x

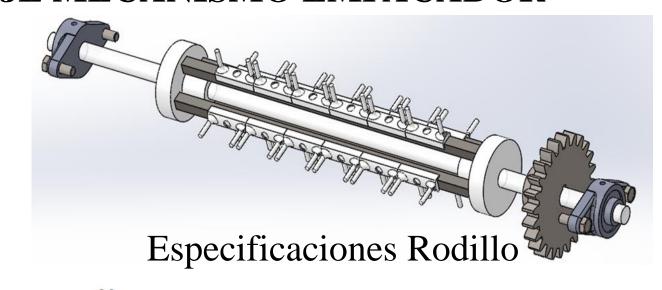
Recomendaciones diámetro rodillos (Rotrans S.A., 2016)

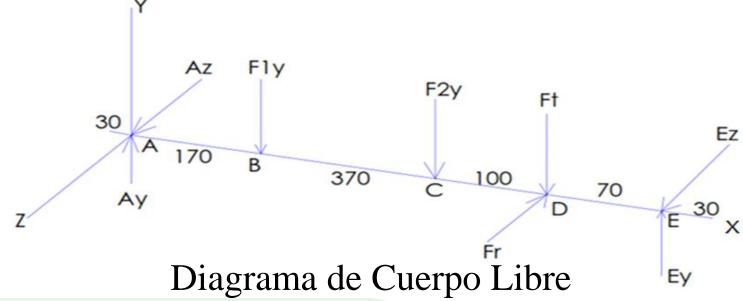



CAPÍTULO 4: DISEÑO BANDA TRANSPORTADORA

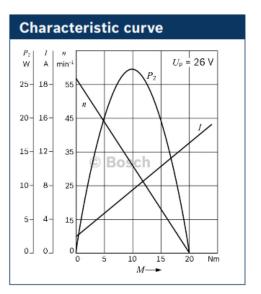
RODAMIENTO 6204 EJE Ø20

	DIÁMETRO RODILLO (mm)	D	63,5	70	76	89	102	108	127	133	152	159
Serie	ESPESOR DE TUBO (mm)	8	3	3	3	3	3,6	3,8	4	4	4,5	5
	CONSTANTE PESO RODILLO	T	1	1,1	1,2	1,3	1,6	1,8	2	2,2	2,4	3
M/S-20	CONSTANTE PESO P. MÓVILES	T1	1	1,2	1,2	1,4	2	2,3	2,8	2,9	3,3	4




Especificaciones Rodillo

CAPÍTULO 4: DISEÑO DISEÑO EJE MECANISMO EMPACADOR



Notación Empleada

Descripción	Símbolo	Unidad
Potencia transmitida	Н	kw
Par de torsión	Т	N.m
Velocidad angular	w	$\frac{rad}{s}$
Carga transmitida	W_t	kN
Fuerza componente radial	F^r	kN
Fuerza componente tangencial	F^t	kN
Resistencia a la tensión	S_{ut}	MPa (Kpsi)
Resistencia a la fluencia	S_y	MPa (Kpsi)
Fuerza tangencial del engrane 2 sobre el engrane 3	F_{23}^{t}	kN

Curva Característica Motor Bosch

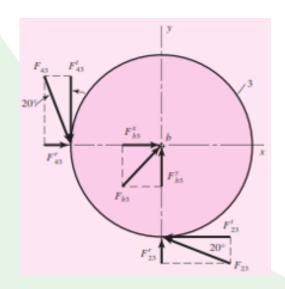
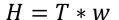



Diagrama cuerpo libre del engrane

$$H = 0.06283 \ Kw$$

$$W_t = \frac{60000*H}{\pi*d*n} = 0.1667 \text{ kN}$$
 Carga Transmitida

$$W_{t2} = F_{23}^t$$

$$F^r = F^t * \tan \emptyset$$

$$F_{23}^r = F_{23}^t * \tan 20^\circ = 0.061 \, KN \downarrow$$

$$F_{32}^r = F_{32}^t * \tan 20^\circ = 0.061 \, KN \uparrow$$

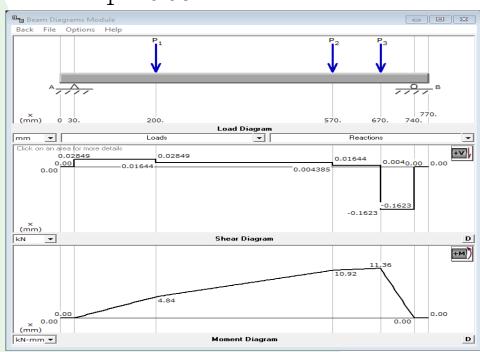
Con un acero AISI 1018

$$S_{ut} = 440 MPa (64 Kpsi)$$

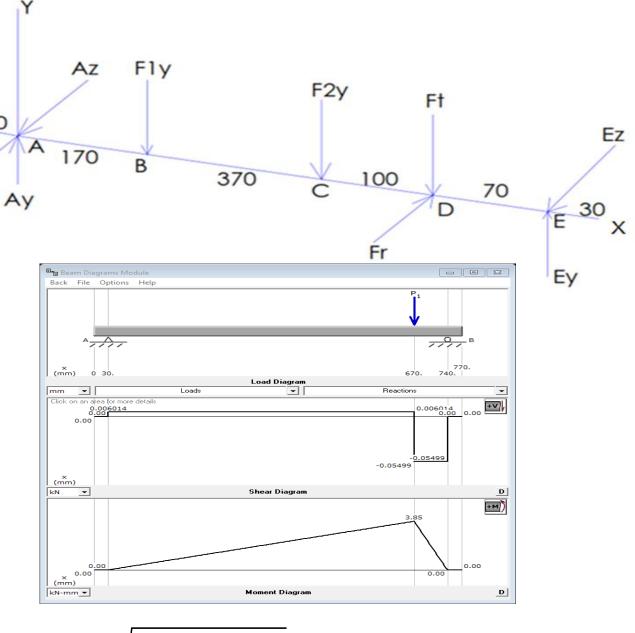
$$S_y = 370 MPa (54 Kpsi)$$

Fuerza en los soportes:

$$F_{1,2y} = 1.2299 \text{ kg} * 9.8 \text{ m/s2} = 0.01205 \text{ kN}$$


Diseño a fatiga:

$$F_{1y} = P1 = 0.01205 \text{ kN}$$


$$F_{2y} = P2 = 0.01205 \text{ kN}$$

$$W_{t2} = F^t = P3 = 0.1667 \text{ kN}$$

$$F^r = P_1 = 0.061 \, KN$$

$$M_{xy1} = 11.36 \text{ KN.mm}$$

 $M_{xz1} = 3.85 \text{ KN.mm}$

$$M_{m\acute{a}x1} = \sqrt{{M_{xy1}}^2 + {M_{xz1}}^2} = 12 \text{ N.m}$$

30

Limite de resistencia a la fatiga

Descripción	Símbolo	
Factor de superficie	k_a	
Factor de tamaño	k_b	
Factor de carga	k_c	
Factor de temperatura	k_d	
Factor de confiabilidad	k_e	
Factor de efectos varios	k_f	
Límite de resistencia a la fatiga	S_e	

$$Se = k_a k_b k_c k_d k_e k_f (0.5 * S_{ut})$$

$$Se = 178 MPa$$

Usamos el criterio de ED-Goodman

$$d = \left\{ \frac{16n}{\pi} \left(\frac{2(k_f M_a)}{Se} + \frac{\left[3(k_{fs} T_m)^2\right]^{\frac{1}{2}}}{S_{ut}} \right) \right\}^{\frac{1}{3}}$$

$$d = 14.31 \, mm \approx 0.56 \, plg$$

$$d = \frac{3}{4} plg$$

Factor de seguridad

$$M_{m\acute{a}x} = 12 \ kN.mm$$

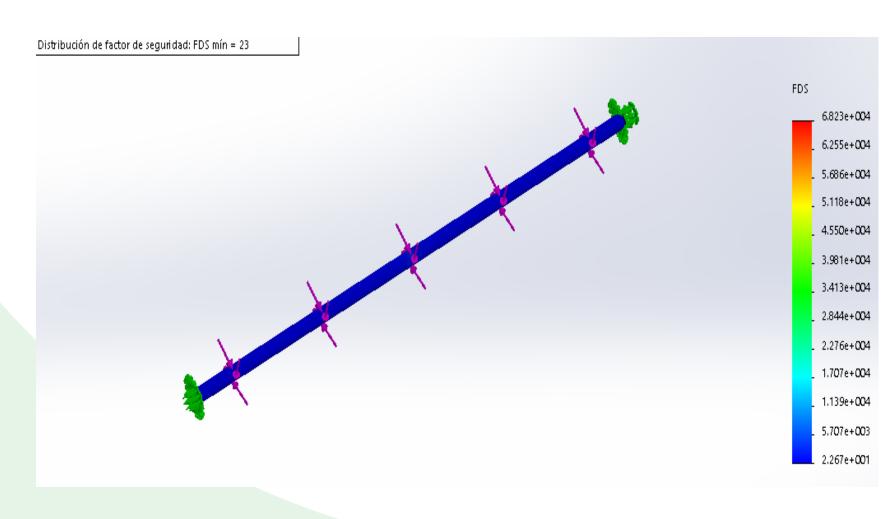
$$\sigma_{\chi} = \frac{M_D * y}{I} = \frac{M_D * r}{\frac{\pi * r^4}{4}} = 0.0177 \frac{kN}{mm^2}$$

$$\tau_{xy} = \frac{T * \rho}{J} = 0.01473 \; \frac{kN}{mm^2}$$

$$\sigma_{1,2} = \frac{\sigma_x}{2} \pm \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_{xy}^2}$$

$$\sigma_1 = 26 MPa$$

$$\sigma_2 = 8.33 \, MPa$$


$$\tau_{Max} = \frac{\sigma_1 - \sigma_2}{2} = 8.835 MPa$$

$$n = \frac{0.5 * S_y}{\tau_{Max}} = \frac{0.5 * 370}{8.835} = 20.94$$

Engrane

Datos conocidos.

Relación
$$r = \frac{5}{4}$$
 Distancia entre centros $\frac{d_1 + d_2}{2}$ $min = 124mm$ $max = 137mm$

Por disponibilidad en el laboratorio y tiempo de maquinado se escoge una fresa de $m=3\,$

Se determina el número de dientes

$$r = \frac{z2}{z1}, \qquad m = \frac{d1}{z1} \ m = \frac{d2}{z2}$$

$$z1 = \frac{5(d_1 + d_2)}{9m} = z1 = 40$$

$$z2 = \frac{4(d_1 + d_2)}{9m} = z2 = 50$$

Por lo tanto $\frac{d_1+d_2}{2} = 135mm$

Sistema de rodillos

Para determinar el ancho de cara (F) intervalo donde la carga se distribuye uniformemente

De donde paso diametral $Pd=\frac{z}{d}$ define el tamaño del diente relacionándolo con el diámetro primitivo

Nuestro rango esta en 15mm~a~30mm

Utilizamos F= 25mm

El diámetro cubo es igual: datos cortes

La longitud cubo = 15mm

Ancho total = F + distancia cubo = 40mm

Factor de seguridad Engrane

Diámetro de paso:

$$m = \frac{d}{Z}$$

$$d = 3(50) = 150 \, mm$$

Factor de diseño: n = 2

Esfuerzo de flexión permisible:

Paso diametral:

$$P = \frac{Z}{d} = \frac{50 \text{ dientes}}{5.91 \text{ plg}} = 8.46 \frac{\text{dientes}}{\text{plg}}$$

$$\sigma_{perm} = \frac{S_y}{n} = 6 \text{ kpsi}$$

Velocidad en la línea de paso:

$$V = \frac{\pi * d * n}{12} = 92.83 \frac{ft}{min}$$

Factor de velocidad:

$$K_v = \frac{1200 + V}{1200} = 1.07$$

Factor de forma: Y=0.409 para 50 dientes.

Carga trasmitida:

$$W^t = \frac{F * Y * \sigma_{perm}}{K_v * P} = 213.1 \ lbf$$

AGMA define Coeficiente elástico

$$C_p = \left[\frac{1}{\pi \left(\frac{1 - v_p^2}{E_p} + \frac{1 - v_G^2}{E_G} \right)} \right]^{1/2} = 455.95$$

Relación de Poisson: v = 0.28

Modulo elástico: $E = 8300 \frac{N}{mm^2} = 1203.81 \text{ kpsi}$

Radios de curvatura en los puntos de paso:

$$d_P = 5.67 \ plg$$

$$d_G = 7.08 \, plg$$

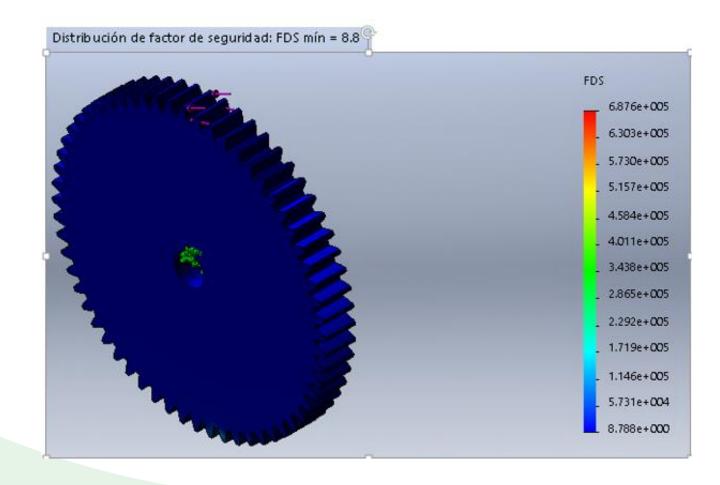
$$r_1 = \frac{d_P * \sin 20^\circ}{2} = 0.969 \ plg$$
 Esfuerzo de contacto:

$$r_2 = \frac{d_G * \sin 20^\circ}{2} = 1.21 \ plg$$

$$r_2 = \frac{d_G * \sin 20^\circ}{2} = 1.21 \ plg$$
 $\sigma_C = -Cp \left[\left(\frac{K_v * W^t}{F * \cos 20} \right) \left(\frac{1}{r_1} + \frac{1}{r_2} \right) \right]^{1/2} = -10914.27 \ psi$

Esfuerzo a la fatiga en la superficie:

$$S_C = 0.32 H_B (kpsi) = 27.2 kpsi$$



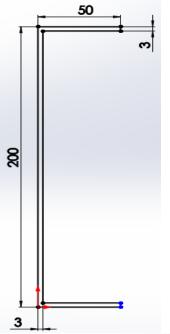
Factor de seguridad:

$$n = \frac{S_c^2}{\sigma_c^2} = \frac{\text{Esfuerzo a la fatiga en la superficie}}{\text{Esfuerzo de contacto}}$$

$$n = \frac{S_c^2}{\sigma_C^2} = 6.22$$

Cálculos esfuerzo cortante perfil U

$$\tau = \frac{V * Q}{I * b} = 4.14 MPa$$


$$Q = A'Y' = 43804.0512 \ mm^3$$

 $I = 1854752.36 \ mm^4$

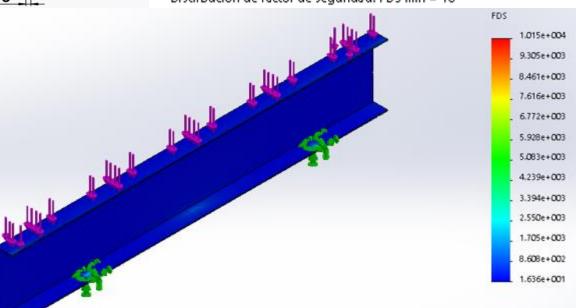
Resistencia a la fluencia acero ASTM A36

$$S_y = 250 MPa$$

Factor de seguridad:

$$n = \frac{0.5 \, S_y}{\tau} = 20.53$$

ESPE INGENIERÍA MEGATRÓNIGA


V: Fuerza Cortante

Q: Momento Estático

Y': Distancia al centro de gravedad en

dirección vertical

Nombre de estudio:Análisis estático 1(-Predeterminado-) Tipo de resultado: Factor de seguridad Factor de seguridad1 Criterio: Automático Distribución de factor de seguridad: FDS mín = 16

Esfuerzo en soportes

$$L = 800mm$$

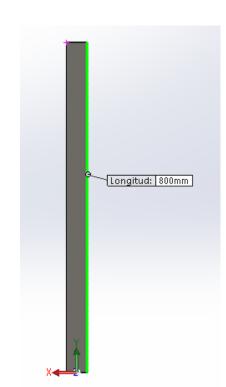
$$I = 757x10^6 mm^4$$

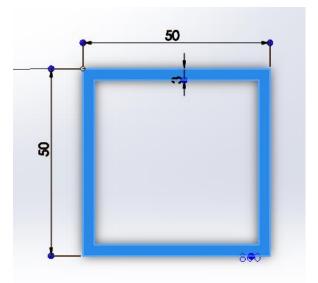
Por ser columna empotrada en sus dos extremos

Longitud efectiva: $L_e = 0.5L = 400 \text{ mm}$

Radio de giro:

$$r = \sqrt{\frac{I}{A}} = 137,56mm$$


Lo que indica que se analizara como columna corta donde $\sigma_{crit} = \sigma_y$


$$A_{esfuerzo} = 564mm^2$$

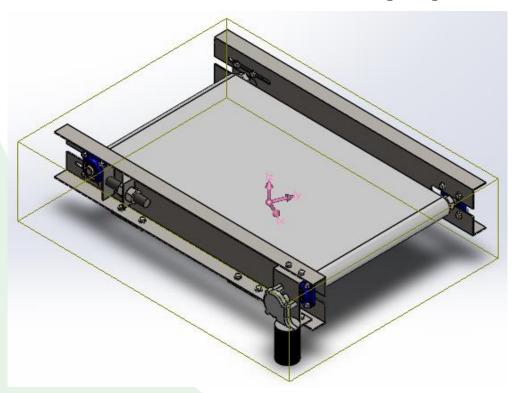
$$F = 526.064 N$$

$$\sigma = \frac{F}{A_{esfuerzo}}$$

$$\sigma = 0.933 MPa$$

$$n = \frac{0.5 * \sigma_y}{\sigma}$$

$$n = 91.1$$


Q Q 😽 👣 🔑 🎒 - 🗇 - 66 - 🤚 🔬 - 🚞 -Nombre del modelo:Tubo estructural 800mm Nombre de estudio:Análisis estático 1(-Predeterminado-) Tipo de resultado: Factor de seguridad Factor de seguridad1 Criterio: Automático Distribución de factor de seguridad: FDS mín = 88 Longitud: 800mm FDS 3.210e+002 3.016e+002 2.822e+002 2.628e+002 2.434e+002 2.239e+002 2.045e+002 1.851e+002 1.657e+002 1.463e+002 1.269e+002 1.075e+002 8.807e+001

CÁLCULO POTENCIA MOTOR DC

$$T = I * \propto$$

$$P[HP] = T[kg * m] * \frac{rpm}{716,2}$$
$$P = 0.1415[HP]$$

$$T = 5.0675 N * m$$

Descripción	Especificación	
Material Banda Transportadora	C07JF	
Ejes	Acero 1018	
Estructura	Acero ASTM A36	
Rodillo motriz y conducido	Acero ASTM A513	

$$I = 7,654 kg * m^2$$

Con una velocidad angular de trabajo:

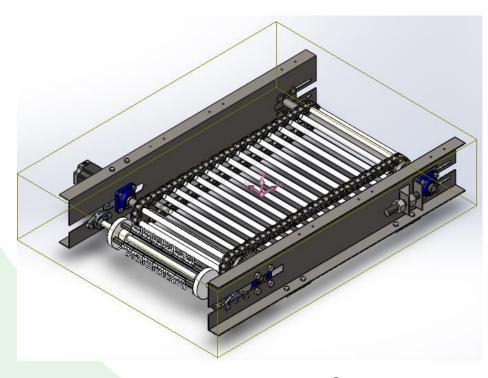
$$w = 20 \frac{rev}{min} = 0.33 \frac{rev}{s}$$

Aceleración angular

$$\propto = \frac{w_f - w_0}{t_f - t_0} = 0.666 \frac{rev}{s^2}$$

Multiplicando por un factor de seguridad de 1,5

$$P = 0.2123 \approx 1/4[HP]$$


Características	Magnitud (unidad)	
Voltaje de operación	24 V	
Corriente Nominal	5 A	
Potencia nominal	46 W	
Torque	10 Nm	
Rotación Nominal	60 rpm	
Protección IP	IP 44	

CALCULO POTENCIA MOTOR A PASOS

 $I = 13,1169 \ kg * m^2$

$$T = I * \propto = 8.7341 N * m$$

Descripción	Especificación	
Rodillos cadena	Nylon 6	
Eje conductor y conducido	Acero 1080	
Estructura	Acero ASTM A36	
Eje mecanismo empacador	Acero 1018	
Piñón	Acero ANSI 80B 10	
Cadena Hollow Pin	Acero Inoxidable ISO 9001	
Cadena Honow Pin	ANSI 80HP	
Engranes	Nylon 6	

Con una velocidad angular de trabajo:

$$w = 20 \frac{rev}{min}$$

Aceleración angular

$$\propto = \frac{w_f - w_0}{t_f - t_0} = 0.666 \frac{rev}{s^2}$$

Motor Pasos XINJE 86BYGH 156

Características	Magnitud (unidad)	
Voltaje de operación	24 V	
Corriente Nominal	4.2 A	
Torque	12 N.m	
Ángulo Paso	1.8°	

86BYGH

Driver Xinje DP-508

Características	Mínima	Máxima
Corriente Salida [A]	1.4	5
Tensión Alimentación Entrada [V]	20	80
Corriente de Entrada Lógica [mA]	7	16
Frecuencia Pulsos [kHz]	0	200

Sensor infrarrojo cilíndrico de conmutación óptica: F&C DR18 – S40NC

Características:

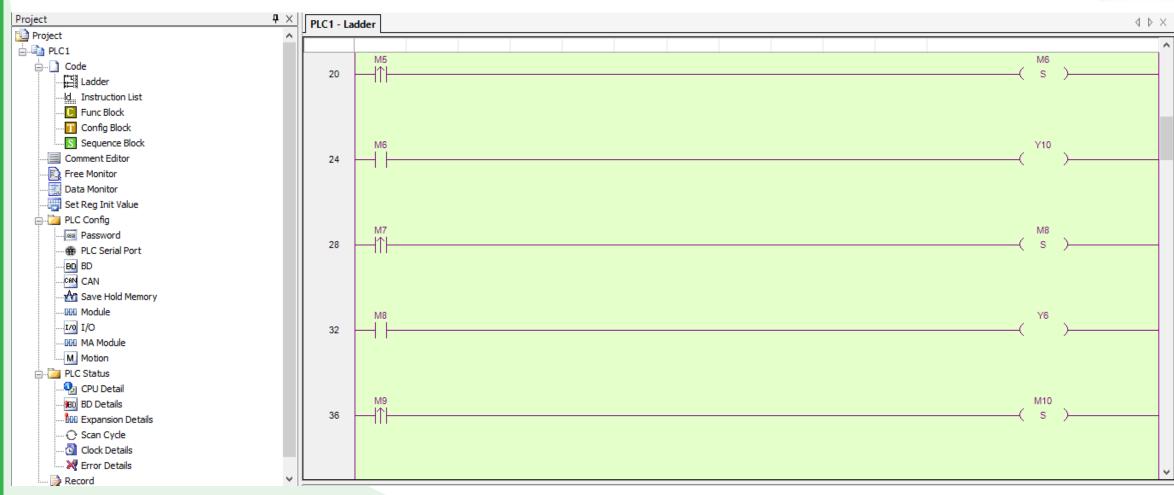
Modo detección: NPN NO - NC

Distancia detección: 40 cm

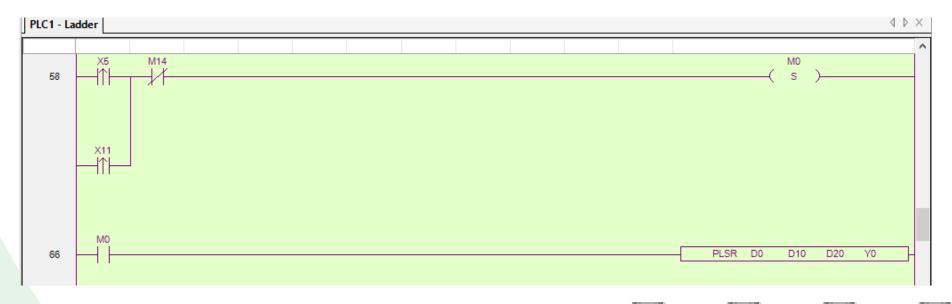
Trabaja con referencia a 0 V

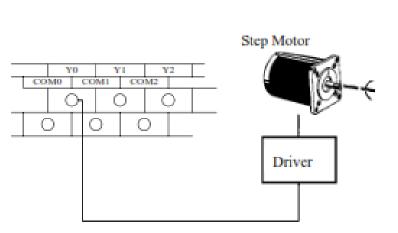
CONTROLADOR LÓGICO PROGRAMABLE (PLC)

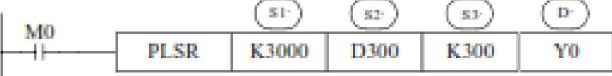
PLC XINJE XCM-24T3-E/C


Características	Magnitud (unidad)
Voltaje de entrada	110 - 220 [VAC]
Modo de programación	Escalera – Instrucciones
Velocidad de procesamiento	0.5 μs
Puertos I/O	18 entrada / 14 salida (3 salidas rápidas PWM)

PROGRAMACIÓN ESCALERA







CONTROLADOR LÓGICO PROGRAMABLE: PLC XINJE XCM-24T3-E/C

S1: Frecuencia 0~400KHz

S2: Numero de pulsos salida.

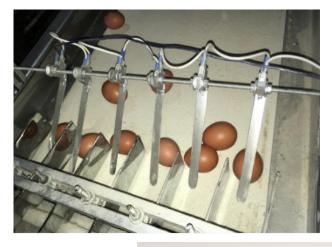
S3: Aceleración – desaceleración

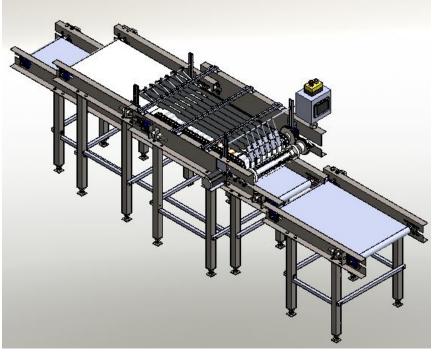
D: Salida Y0 - Y1 - Y2

Interfaz Hombre – Máquina (HMI)

HMI XINJE TH - 465 – MT

Características	Magnitud (unidad)	
Voltaje de entrada	20 – 28 [VDC]	
Consumo de corriente	130 mA	
Interfaz	RS - 232 / RS - 485	
Tamaño de la pantalla	4.3 pulgadas	
Resolución	480 * 272	
Memoria	8 MB	




VALORES CALIBRACIÓN MÁQUINA

Parámetros	Valores
Velocidad Motor Banda acumulador	6 a 20 (rpm)
Altura mecanismo detector	70 a 85 (mm)
Angulo Mecanismo detector respecto a la banda	45°
Distancia Banda Acumulador y banda de rodillos	8 a 13 (mm)
Sensibilidad sensor detector cubeta vacía	50 a 60 %
Velocidad Motor Banda cubeta vacía	6 a 20 (rpm)
Sensibilidad sensor detector cubeta vacía	15 a 20 %
Guías separación entrada banda rodillos	75 a 85 (mm)
Guías separación salida banda rodillos	50 a 55 (mm)
Altura retenedores	100 a 115 (mm)
Cantidad de pulsos motor a pasos de la banda de rodillos	180 (pulsos)
Valor aceleración Motor a pasos	250 a 300
Distancia Banda cubetas vacías y banda huevos empacados	8 a 20 (mm)
Velocidad Motor Banda salida huevos empacados	6 a 20 (rpm)

RESULTADOS

El mecanismo recogedor en promedio entrega al sistema 2 huevos por segundo.

Para empacar 6 huevos por hilera desde que se enciende la maquina hasta que lleguen al sistema posicionador el tiempo que se tarda en promedio es de 2 minutos con 50 seg y de empacado de una cubeta es de 42 segundos más el tiempo que se demora en detectar una nueva cubeta vacía es de 3,5 segundos lo que en promedio nos da **75 cubetas por hora lo que**

implica 2250 huevos por hora.

RESULTADOS

Para empacar 6 huevos por hilera desde que se enciende la maquina hasta que lleguen al sistema posicionador el tiempo que se tarda en promedio es de 2 minutos con 50 segundo y de empacado de una cubeta es de 47 segundos más el tiempo que se demora en detectar una nueva cubeta vacía es de 3,5 segundo lo que en promedio nos da 67 cubetas por hora lo que implica 2010 huevos por hora.

COSTO FABRICACION SISTEMA EMPACADOR

SISTEMA		MAQUINARIA Y HERRAMIENTA			TOTAL POR SISTEMA
ACUMULADOR	391,13	75,25	131,26	40,78	638,42
POSICIONADOR	122,28	209,01	61,8	32,78	425,86
EMPACADOR	3218,19	437,30	787,58	114,80	4557,86
PRODUCTO EMPACADO	245,68	75,25	131,26	43,78	495,97
			ŕ	Í	
TOTAL	3977,27	796,81	1111,96	232,12	6118,12

Conclusiones

- Se diseñó, construyó e implemento un sistema automatizado para el empaquetado de huevos, que cumple con los requerimientos del cliente.
- Es importante al diseñar y construir la estructura mecánica el dimensionamiento de cada uno de los componentes estructurales de la máquina en relación con el espacio de trabajo que ocupará, para su óptimo funcionamiento.
- Cuando el sistema mecánico está bien diseñado la implementación del sistema electrónico es más simple, el cual es de fácil acceso para su calibración y mantenimiento, lo que permite realizar una programación por medio de diagramas secuenciales.

Conclusiones

- La operación del sistema debe ser de fácil manipulación lo que permita al operario maniobrar el sistema de manera que no afecte la calidad del producto.
- Es de suma importancia la realización de pruebas de funcionalidad y rendimiento del sistema para determinar los parámetros correctos de calibración de los diferentes actuadores que intervienen el proceso de empacado de huevos, ya que se debe garantizar que el producto no sufra daños en sus características organolépticas y para sacar el máximo rendimiento posible de la máquina.

Recomendaciones

- Es de suma importancia revisar el balanceo dinámico de los diferentes componentes mecánicos rotativos para que no se presenten vibraciones que afecten el proceso de empacado y para alargar la vida útil de dichos elementos.
- Para que el sistema de empacado de huevos sea eficiente se debe tomar en cuenta la cantidad de huevos que llegan al acumulador, ya que la maquina estará esperando a que los sensores capten presencia para empezar un ciclo de empacado si el abastecimiento es deficiente la máquina pasa mucho tiempo en reposo.

Recomendaciones

- Es necesario la limpieza periódica de los elementos que estén en contacto de forma directa con los huevos.
- Revisar, limpiar, ajustar, lubricar periódicamente los elementos mecánicos que intervienen en el proceso de empacado de huevos para alargar la vida útil de todo el sistema en espacial las partes que soportan las bandas ya que estas poseen un factor de estiramiento.
- El operario debe ser capacitado para manipular la máquina de manera correcta acatando las instrucciones de funcionamiento para evitar que se pueda producir cualquier tipo de percance tanto en el sistema como accidentes en el operario de tipo personal.

...gracias por su atención