

DEPARTAMENTO DE ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA EN PETROQUÍMICA

MODELAMIENTO Y SIMULACIÓN DE UN CONTROLADOR MEDIANTE MPC DE UN MOLINO DE RODILLOS DE ALTA PRESIÓN (HPGR).

Fernando Cepeda V.

Ph.D. Eduardo Vyhmeister, Tutor

CONTENIDO 2
INTRODUCCIÓN
Modelación Simulación del Control predictivo mpc
RESULTADOS EXPERIMENTALES CONCLUSIONES

INTRODUCCIÓN

Eficiencia Energética

Tecnología HPGR

Tendencia al gigantismo

 $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$

†††††(Schoener., 1979)

Instalación Cerro Verde Perú (Castell, 2005)

INTRODUCCIÓN

High Pressure Grinding Rolls

(Klymoswsky et al., 2002)

INTRODUCCIÓN

Contenido	6
INTRODUCCIÓN	
MODELACIÓN SIMULACIÓN DEL CONTROL PREDICTIVO MPO	
RESULTADOS EXPERIMENTALES CONCLUSIONES	
	ΡΙ

Modelación: Prechancado

Modelación: Consumo de Energía Específico

Ángulo de compresión inter partícula

$$\cos(a_{IP}) = \frac{1}{2D} \left[(s0+D) + \sqrt{(s0+D)^2 - \frac{4 \cdot s0 \cdot \rho_e \cdot D}{\rho_a}} \right]$$

$$Z = \frac{D}{2} \cdot sen(\alpha_{IP})$$

Altura de la zona de chancado

 $\mathbf{k}(\mathbf{T}) = A \cdot \exp\left(-\frac{E_a}{RT}\right)$

12

CAMINO A LA EXCELENCIA

 $B_i(\mathbf{x}_i) = \alpha_1 \cdot \left(\frac{x_i}{x_2}\right)^{\alpha_2} + (1 - \alpha_1) \cdot \left(\frac{x_i}{x_2}\right)^{\alpha_3}$

Parámetro de selectividad bij (Austin et al.,1972)

 $\longrightarrow K(i) = k_0(i) e^{\binom{E(i)}{p}}$

Modelación: Capacidad de Tratamiento

Simulación del Control Predictivo MPC

Velocidad periférica de los rodillos, U

Distancia entre los rodillos fijo y flotante, s0

Tamaño de partícula bajo el cual se encuentra el 80% en peso, *p80*

Densidad del centro de masa del último bloque, rocm

$$\begin{split} \min_{\Delta U} \sum_{i=1}^{P} \left[\left[\Gamma \cdot (\hat{\mathbf{y}}(\mathbf{k}+1) - \mathbf{y}_{set}) \right]^2 - \left[\Lambda \cdot \Delta u(\mathbf{k}+\mathbf{i}+1) \right]^2 \right] \\ \Delta u &= 0 \quad i = M, M+1, \dots P \\ \Delta U_{\min} &\leq \Delta u(\mathbf{k}+\mathbf{i}+1) \leq \Delta U_{\max} \\ U_{\min} &\leq u(\mathbf{k}) \leq U_{\max} \\ Y_{\min} &\leq \hat{\mathbf{y}}(\mathbf{k}+1) \leq Y_{\max} \end{split}$$

Simulación del Control Predictivo MPC

nlcmpc Toolbox

17

CAMINO A LA EXCELENCIA

Simulación del Control Predictivo MPC

$$ryuwt \longrightarrow \begin{bmatrix} r \ ywt \ uwt \end{bmatrix} \longrightarrow r = \begin{bmatrix} r_1(1) & r_2(1) & \cdots & r_{ny}(1) \\ r_1(2) & r_2(2) & \cdots & r_{ny}(2) \\ \vdots & \vdots & \cdots & \vdots \\ r_1(N) & r_2(N) & \cdots & r_{ny}(N) \end{bmatrix}$$

$$yulim \longrightarrow [ylim ulim] \longrightarrow ulim = \begin{bmatrix} u_{\min,1}(1) & \cdots & u_{\min,nu}(1) \\ u_{\min,1}(2) & \cdots & u_{\min,nu}(2) \\ \vdots & \cdots & \vdots \\ u_{\min,1}(N) & \cdots & u_{\min,nu}(N) \end{bmatrix} \begin{bmatrix} u_{\max,1}(1) & \cdots & u_{\max,nu}(1) \\ u_{\max,1}(2) & \cdots & u_{\max,nu}(2) \\ \vdots & \cdots & \vdots \\ u_{\max,1}(N) & \cdots & u_{\max,nu}(N) \end{bmatrix} \begin{bmatrix} \Delta u_{\max,1}(1) & \cdots & \Delta u_{\max,nu}(1) \\ \Delta u_{\max,1}(2) & \cdots & \Delta u_{\max,nu}(2) \\ \vdots & \cdots & \vdots \\ \Delta u_{\max,1}(N) & \cdots & \Delta u_{\max,nu}(N) \end{bmatrix} \end{bmatrix}$$
$$u_{\min,j}(k) = -inf, \qquad u_{\max,j}(k) = inf,$$

$$ud0 \longrightarrow [u0 d0] \longrightarrow u0 = 0 \quad y d0 = 0.$$

Resultados experimentales: Modelamiento

Constante de velocidad de molienda y elementos de cálculo

Resultados obtenidos

- [%] Acumulado pasante total
- L Simulación del Control MPC
- Constante de velocidad de molienda y elementos de cálculo

TAMAÑO DE PARTÍCULA [mm]	CONSTANTE DE VELOCIDAD DE MOLIENDA $K(i)$ [s ⁻¹]
31,5	87,7427
22,4	141,0232
16	71,4271
11,2	41,3054
8	25,2115
5,6	12,5626
2,8	2,0494
1	0,6346
0,5	0,4914
0,315	0,4112
0,2	0,3093

Resultados experimentales: Modelamiento

• [%] Acumulado pasante total

TAMAÑO DE PARTÍCULA [mm]	FACTOR PREEXPONENCIAL k_0 (i)	POTENCIA MÍNIMA PARA LA FRACTURA DE PARTÍCULAS E(1) [W]
31,5	87,7458	1,4061
22,4	141,0297	1,8519
16	71,4295	1,3116
11,2	41,3067	1,1888
8	25,2123	1,1507
5,6	12,5630	1,1341
2,8	2,0495	1,1294
1	0,6347	1,1258
0,5	0,4915	1,1284
0,315	0,4112	1,1271
0,2	0,3093	1,1193

Factor preexponencial k0 vs Tamaño de partícula

Resultados experimentales: Modelamiento

• [%] Acumulado pasante total

Los datos de medición del equipo HPGR corresponden a la Planta concentradora "La Esperanza" que se encuentran reportados en el trabajo: Alarcón, Osvaldo. (2012). Modelación y simulación dinámica de un molino de rodillos de alta presión (HPGR), para conminución de minerales de cobre. Santiago-Chile.

Características		Límites de operación	VARIABLES	RANGO DE OPERACIÓN
Calacteristicas	0!	L.C.	Diámetro de rodillos, D	0,5 – 2,8 [m]
	Superior	Interior	Largo de rodillos (ancho), L	0,2-1,8 [m]
Gap operacional, SO,[M]	0,016	0,024	Gap operacional, s0	0,02D-0,03D [m]
Velocidad periférica de los rodillos.			Capacidad de tratamiento, Gs	30-3000 [ton/hora]
U.[m/s]	0,1	1,21	Fuerza de molienda, F	2000 – 20000 [kN]
- ,, , Madable			R_p	20 – 300 [bar]
Yariables controladas			Potencia instalada máxima. P	2 x 3000 [kW]
Tamaño de partícula bajo el cual se encuentra el 80% en peso del total de	0	15	Velocidad periférica de los rodillos, U	$U \le 1,35 \sqrt{D}$ [m/s] si D < 1,7 [m] U \le D [m/s] si D ≥ 1,7 [m]
mineral chancado, <i>p</i> 80, [MM]			Consumo de energía específica, ${W}$	1-3 [kWh/ton]
Densidad aparente del material en la	_			
zona de extrusión, <i>rocm</i> , [kg/m ³]	0	2500		

Límites de operación de las variables manipuladas Rangos operacionales a nivel laboratorio e industrial y controladas

(Alarcón, 2012)

$$\frac{X - X_{\min}}{X_{\max} - X_{\min}}$$

• Control MPC con inclusión del 5% de ruido

CAMINO A LA EXCELENCIA

CONTENIDO 2	27
INTRODUCCIÓN MODELACIÓN SIMULACIÓN DEL CONTROL PREDICTIVO MPC RESULTADOS EXPERIMENTALES	
CONCLUSIONES	E

- Resultados satisfactorios modelamiento (error de predicción menor al 2.5%).
- Constante de velocidad dependiente de la potencia de giro de los rodillos.
- Densidad del centro del masa no afectada por variables manipuladas.
- Correcto control de un problema MISO.

Obtener modelos matemáticos explícitos que permitan calcular de manera directa los parámetros que sean necesarios.

Para el desarrollo de trabajos futuros en el modelamiento y control del HPGR considerar y estudiar como variables manipuladas a la presión de operación y al flujo de alimentación.

2	C:\Users\Fer\Desktop\LulsFeR\pruebas_matlab\rodillogeneralok.m	- 8
<u>F</u> ile <u>E</u>	dit Iext <u>Go</u> <u>C</u> ell T <u>o</u> ols De <u>bug</u> <u>D</u> esktop <u>W</u> indow <u>H</u> elp	
: 🖺 🛍	📰 🖇 ᄟ 🖄 🕫 🔍 🍓 🖅 - 👪 🌩 🔶 🈥 - 🔂 🗐 👘 🗊 🗐 🌆 Stack: Base 🗸 🥠	
*8 🕼	- 1.0 + ÷ 1.1 × 🕸 🕸 0.	
1	function rodillogeneralok	
2 -	valoresiniciales=[1.8;1.8;1.8;1.8;1.8;	
3	4.7411e-6;	4.7411e-6; 4.7411e-6; 4.7411e-6; 4.7411e-6; 4.7411e-
4	4.2377e-6; 4.2377e-6; 4.2377e-6; 4.2377e-6; 4.2377e-6; 4.2377e-6; 4.2377e-6; 4.2377e-6; 4.2377e-6;	4.2377e-6; 4.2377e-6; 4.2377e-6; 4.2377e-6; 4.2377e-
5	3.8612e-6; 3.8612e-6; 3.8612e-6; 3.8612e-6; 3.8612e-6; 3.8612e-6; 3.8612e-6; 3.8612e-6;	3.8612e-6; 3.8612e-6; 3.8612e-6; 3.8612e-6; 3.8612e-
6	3.6108e-6; 3.6108e-6; 3.6108e-6; 3.6108e-6; 3.6108e-6; 3.6108e-6; 3.6108e-6; 3.6108e-6;	3.6108e-6; 3.6108e-6; 3.6108e-6; 3.6108e-6; 3.6108e-
7	3.4857e-6; 3.4857e-6; 3.4857e-6; 3.4857e-6; 3.4857e-6; 3.4857e-6; 3.4857e-6; 3.4857e-6;	3.4857e-6; 3.4857e-6; 3.4857e-6; 3.4857e-6; 3.4857e-
8 -	<pre>[t,d]=ode1(@rodos,0,60, valoresiniciales,0.0001);</pre>	
9 -		
10 -	d(1:600,1:5)	
11 -	figure(1)	
12 -	plot(t(1:600),d(1:600,1),t(1:600),d(1:600,2),t(1:600),d(1:600,3),t(1:600),d(1:600,4),t(1:600),d(1:600,5))	hold on;
13 -	<pre>xlabel('Tiempo [s]')</pre>	
14 -	<pre>ylabel('Densidad [ton/cm^3]')</pre>	
15 -	<pre>legend('rocm5','rocm4','rocm2','rocm1')</pre>	
16	<pre>%figure(2)</pre>	
17	<pre>\$plot(t,d(6),t,d(7),t,d(8),t,d(9),t,d(10),t,d(11),t,d(12),</pre>	
18	<pre>%t,d(13),t,d(14),t,d(15),t,d(16),t,d(17),t,d(18)),hold on;</pre>	
19 -	end	
20	<pre>function vectorode =rodos(t, vectorvariablesdep)</pre>	
21 -	<pre>load('voli.mat', 'voli');</pre>	
22 -	load('vol2.mat','vol2');	
23 -	<pre>load('vol3.mat', 'vol3');</pre>	
24 -	<pre>load('vol4.mat','vol4');</pre>	
25 -	<pre>load('vol5.mat','vol5');</pre>	
26 -	<pre>load('L.mat','L');</pre>	
27 -	load('s0.mat','s0');	
28 -	<pre>load('D.mat','D');</pre>	
29 -	<pre>load('U.mat','U');</pre>	
30 -	load('n.mat','n');	
31 -	<pre>load('NB.mat', 'NB');</pre>	
32 -	<pre>load('Ppb.mat', 'Ppb');</pre>	
22 -	Ined/th watt this.	,
<		>

• Cálculo de la granulometría total por bloque empleando la tasa de ruptura "i" en cada bloque

2	C:\Users\Fer\Desktop\LulsFeR\pruebas_matlab\rodillogeneralok5.m*	- 0 ×
<u>F</u> ile <u>E</u> di	it <u>Text Go C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp	
100		
· += c=		
1	function radillageneralats	
2 -	valoresiniciales=[0.001:0.001:0.001:0.001:0.001:0.001:0.001:0.001:0.001:0.001:0.001:0.001:	^
3 -	trango=[0 40];	
4 -	<pre>[t.d]=ode45(@rodos.trango, valoresiniciales);</pre>	
5 -		-
6 -	a T	
7 -	figure(1)	
8 -	plot(t,d), hold on;	
9 -	<pre>xlabel('Tiempo [s]');</pre>	
10 -	<pre>ylabel('Fracciones másicas [kg/kg(T)]');</pre>	
11 -	<pre>legend('rocm');</pre>	
12 -	end	
13	function vectorode =rodos(t, vectorvariablesdep)	
14	adefinicion de variables dependientes	
15 -	<pre>p(1)=vectorvariablesdep(1);</pre>	
16 -	<pre>p(2) =vectorvariablesdep(2);</pre>	
17 -	p(3)=vectorvariablesdep(3);	
18 -	<pre>p(4) =vectorvariablesdep(4);</pre>	
19 -	<pre>p(5)=vectorvariablesdep(5);</pre>	
20 -	p(6)=vectorvariablesdep(6);	
21 -	<pre>p(7) =vectorvariablesdep(7);</pre>	
22 -	<pre>p(8) =vectorvariablesdep(8);</pre>	
23 -	<pre>p(9)=vectorvariablesdep(9);</pre>	
24 -	<pre>p(10) =vectorvariablesdep(10);</pre>	
25 -	<pre>p(11) =vectorvariablesdep(11);</pre>	
26 -	<pre>p(12) =vectorvariablesdep(12);</pre>	
27	<u>2</u> * * * * * * * * * * * * * * * * * * *	
28 -	fipHPGR=[0.0179 0.5111 0.1519 0.0642 0.0482 0.0579 0.0435 0.0232 0.0126 0.0112 0.0107 0.0477];	
29 -	Gs=7.412055556; %kg/s	
30 -	rocm=1947;%kg/m^3	
31 -	vol=0.00001959;%m^3	
32 -	Hk=rocm*vol;	
33		× v
		>
	vadillageneralak5 In 0	Col 22 01/5

• Cálculo de la granulometría total por bloque empleando la cinética de molienda propuesta

• Cinética de molienda

$$\frac{d(Mrodillos \cdot mi)}{dt} = -si \cdot Mrodillos \cdot mi$$

$$\frac{dmi}{dt} = -si \cdot mi$$

$$\frac{dmi}{dt} = bij \cdot sj \cdot mj$$

• Matriz de Reid

$$\begin{bmatrix} A_{ij,k} = 0, & sii < j \\ A_{ij,k} = \sum_{l=1}^{i-1} \frac{b_{il} \cdot s_{l,k}}{s_{i,k} - s_{j,k}} \cdot A_{ij,k}, & sii > j \\ A_{ij,k} = f(i)_{IP} - \sum_{l=1}^{i-1} A_{ij,k}, & sii = j \end{bmatrix}$$

• Velocidad específica de fractura

$$\ln(\mathbf{S}_{iE}/\mathbf{S}_{1E}) = \zeta_1 \cdot \ln\left(\frac{\overline{x}_i}{\overline{x}_1}\right) + \zeta_2 \cdot \ln\left(\frac{\overline{x}_i}{\overline{x}_1}\right)^2$$

- (Herbst et al., 1980)
- Potencia por bloque

$$P_{k} = 2 \cdot F \cdot sen\left(\frac{\alpha_{IP}}{2}\right) \cdot U \cdot \frac{(L^{2} - 4 \cdot y_{k}^{2})}{\sum_{j=1}^{NB} (L^{2} - 4 \cdot y_{k}^{2})}$$

$$y_k = \frac{L}{2 \cdot NB} \cdot (2 \cdot k - NB - 1)$$

• Carga interna de material

$$H_k = \frac{1}{NB} \cdot G_s \cdot \frac{Z}{3600 \cdot U}$$

- Granulometría total
- $f(\mathbf{i})_{tp} = \frac{1}{NB} \cdot \sum_{k=1}^{NB} p(\mathbf{i})_{IP,k}$ $E = \frac{1}{2} \cdot a \cdot NB$
- Granulometría por efecto de borde

$$f(\mathbf{i})_{ep} = \frac{1}{E} \cdot \left[\sum_{k=1}^{[E]} p(\mathbf{i})_{IP,k} + (E - [E]) \cdot p(i)_{IP,[E]} \right]$$

• Granulometría de producto centro

$$f(i)_{cp} = \frac{1}{1-a} \cdot \left(f(i)_{tp} - f(i)_{ep} \right)$$

Entorno de simulación

Muchas Gracias

