

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA

PROYECTO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERÍA EN MECATRÓNICA

Diego Fabian Morales Reinoso

TUTOR: Ing. Marco Singaña

Latacunga, Mayo del 2016

TEMA:

"DISEÑO E IMPLEMENTACIÓN DEL SISTEMA DE CONTROL DE UNA PRÓTESIS BIÓNICA DE 7 GRADOS DE LIBERTAD UTILIZANDO MATERIALES INTELIGENTES Y CONTROL MIOELÉCTRICO ADAPTADA PARA VARIOS PATRONES DE SUJECIÓN."

INDICE:

- OBJETIVOS.
- CAPÍTULO I: FUNDAMENTOS TEÓRICOS
- CAPÍTULO II: DISEÑO, SELECCIÓN Y DESARROLLO
- CAPÍTULO III: IMPLEMENTACIÓN
- CAPÍTULO IV: PRUEBAS Y RESULTADOS
- CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES

Objetívo general

Diseñar e implementar del sistema de control de una prótesis biónica de 7 grados de libertad utilizando materiales inteligentes y control mioeléctrico adaptada para varios patrones de sujeción.

Objetivos específicos

- Analizar el movimiento natural de la mano a partir de su biomecánica, y replicarlo a través de la prótesis.
- Diseñar el lazo de control que mejor se adapte para el manejo de las señales de control bajo la plataforma de libre acceso.
- Implementar las placas de acondicionamiento para el manejo de las señales de control tanto de sensores como actuadores.
- Evaluar el funcionamiento, selección y control de materiales inteligentes y de sensores electromiográficos implementados en la prótesis.

CAPÍTULO I : ESTADO DEL ARTE

- > BIOMECÁNICA DE LA MANO
- > PRÓTESIS EN EL SIGLO XXI
- > SENSORES PARA PRÓTESIS
- > SEÑAL MIOELÉCTRICA
- > SISTEMAS DE CONTROL
- MATERIALES INTELIGENTE

Biomecánica de la mano

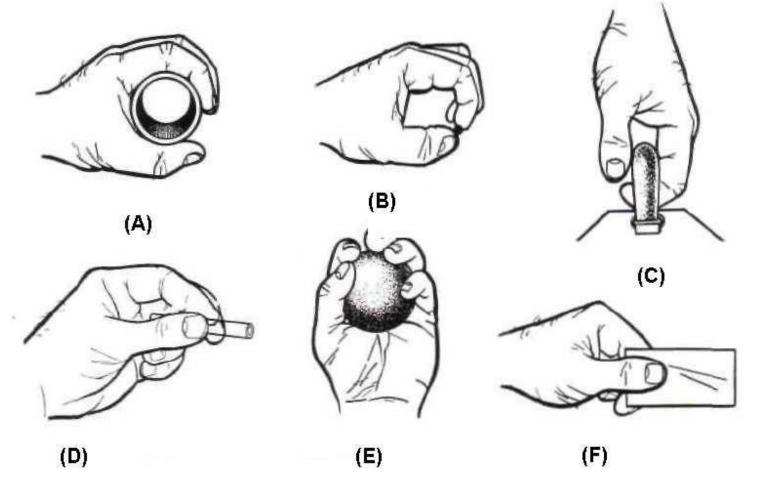
La mano es un órgano móvil de elevada complejidad y con múltiples facetas. Se valora y juzga en función de su rendimiento y disponibilidad tanto en las tareas prensiles delicadas como en los patrones de toma de fuerza."

Bíomecánica de la mano

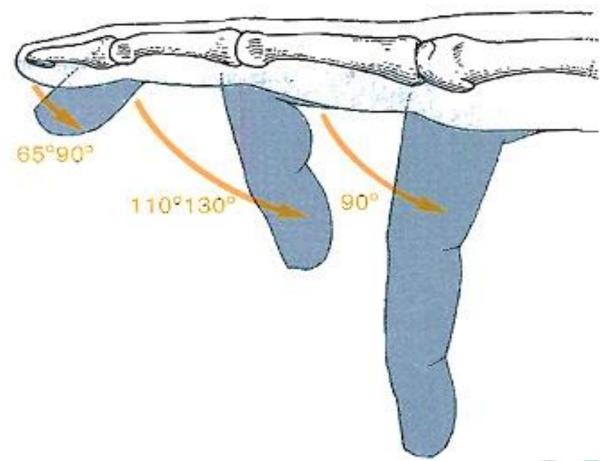
Falanges de los dedos

metacarpianos (•), falanges proximales (•), falanges medias (•) falanges distales (•)

Bíomecánica de la mano

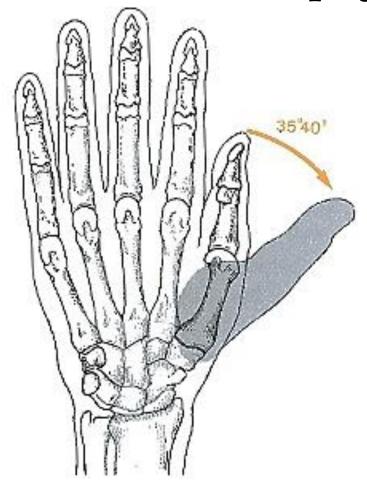

Articulaciones de los dedos

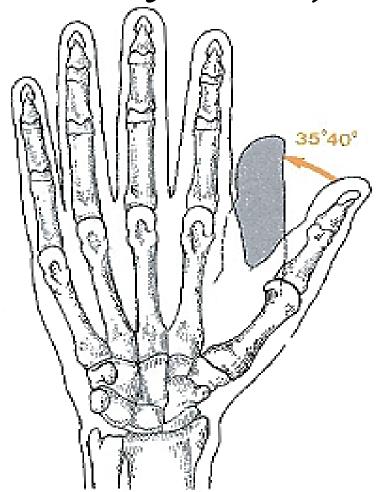
Biomecánica de la mano



(A) Cilíndrico, (B) de punta, (C) de gancho, (D) palmar, (E) esférico, (F) lateral

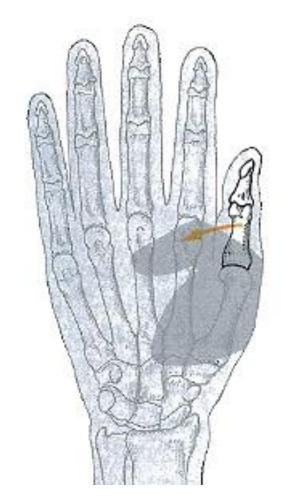
Bíomecánica de la mano


Movimiento de Flexión-extensión.

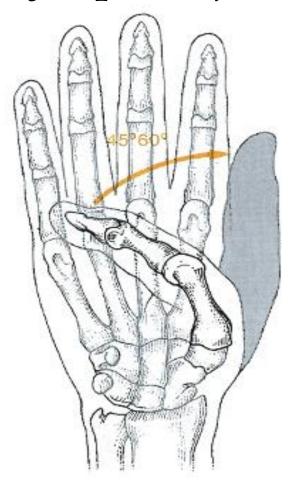


Biomecánica de la mano

Movimientos del dedo pulgar. (Abducción y Aducción)

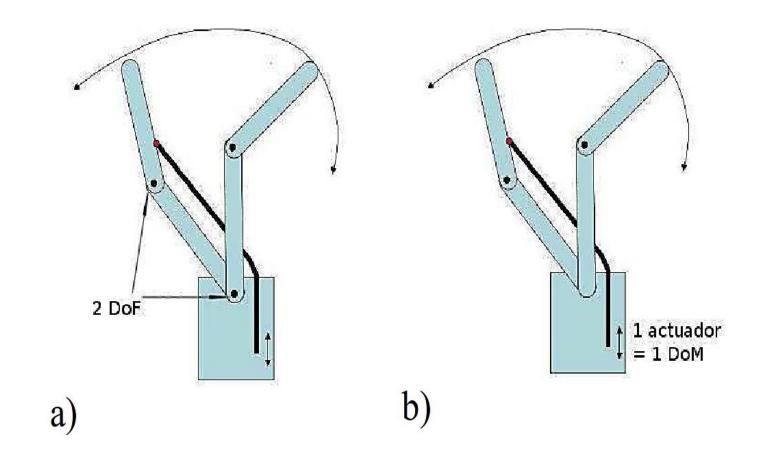


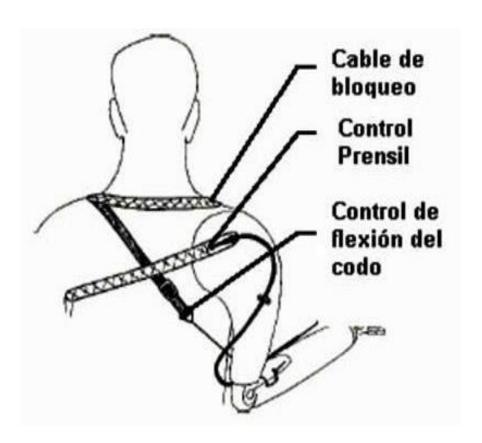




Biomecánica de la mano

Movimientos del dedo pulgar. (Oposición y Reposición)




Una prótesis es un dispositivo desarrollado que reemplazara cierta medida las funciones de una parte o de un miembro completo del cuerpo humano, que ha sido afectado, la misma que contribuirá con el paciente en su desarrollo físico y psicológico.

Prótesis Mecánicas

Prótesis Eléctricas

MyoHand VariPlus

Prótesis Mioeléctricas

Prótesis Biónicas

Michelangelo

 a) I-Limb con guante cosmético

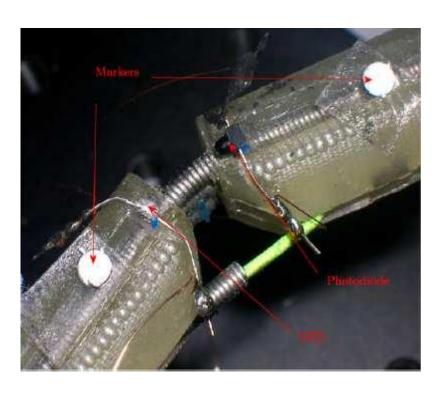
 b) I-Limb sin guante cosmético.

c) Sensor Speed de Otto Bock.

Antropomorfismo

Hace referencia a las características de la prótesis que la asemejan a la extremidad humana, desde el número de dedos, la apariencia exterior, hasta la forma de la mano

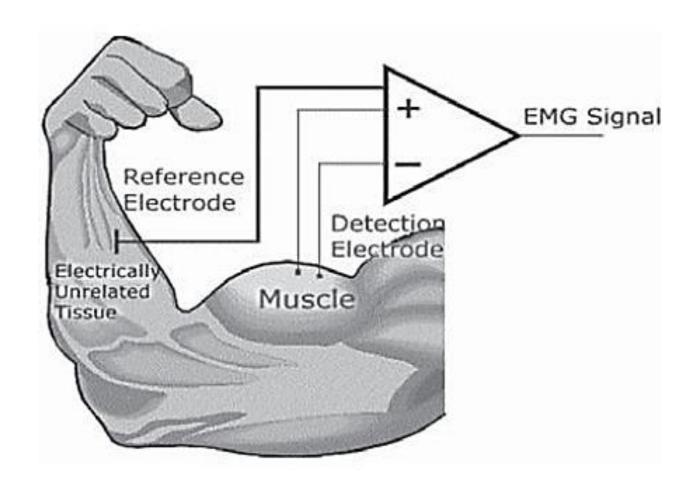
Sensores para Prótesis


Una de las actividades que resultan más complejas donde se integran acciones motoras y sensitivas es al momento de tomar algo con la mano

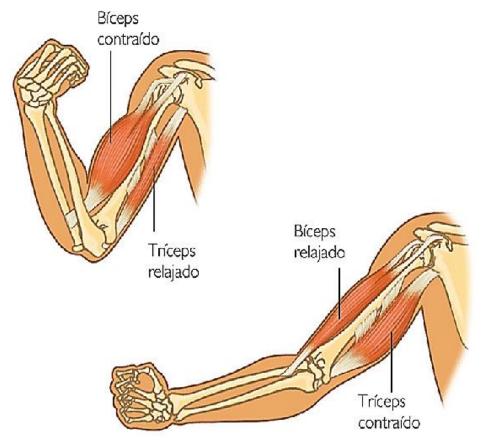
Estímulo y características	Sensor Biológico	Sensor Artificial
Fuerza: Medida de presión aplicada por una zona del	Terminaciones nerviosas,	Galgas, Piezoeléctricos,
dispositivo de agarre. Puede ser medida con algún dispositivo	Merkel, Ruffini,	Celdas de Carga
externo a la prótesis. Tacto: Medida continúa de las	Paccini Terminaciones	
fuerzas ejercidas en un array.	nerviosas,	Resistivos, Capacitivos
Proporciona información muy difusa sobre el contacto.	Merkel, Ruffini	
Posición: Medida de la situación de los puntos más característicos del objeto en las superficies táctiles	Terminaciones nerviosas, Meissner, Merkel	Resistivos, Capacitivos, Ópticos

Sensores para Prótesis

Sensores Ópticos

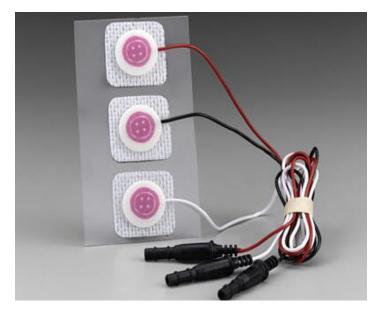


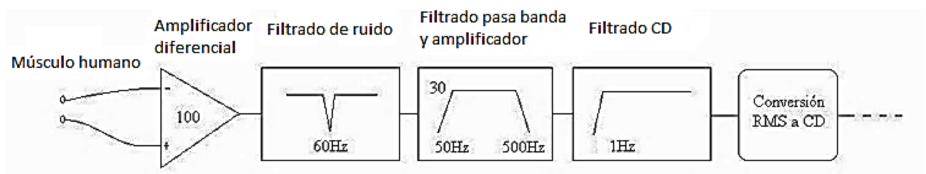
Sensores de Fuerza


Señal Mioeléctrica

Señal Mioeléctrica

La señal mioeléctrica (EMG) es una señal eléctrica que se produce cuando un músculo se contrae, si bien es tenue, es susceptible de ser medida con el equipo apropiado.

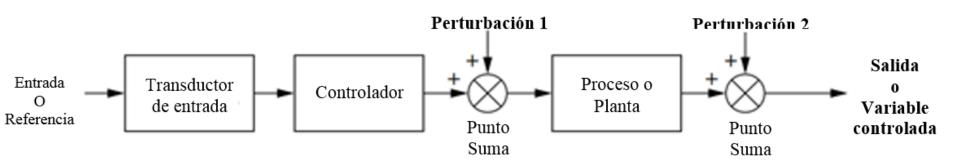



La señal EMG que se mide contiene una suma de los trenes de MUAPs, ponderados por la posición y tamaño de las fibras

Señal Mioeléctrica

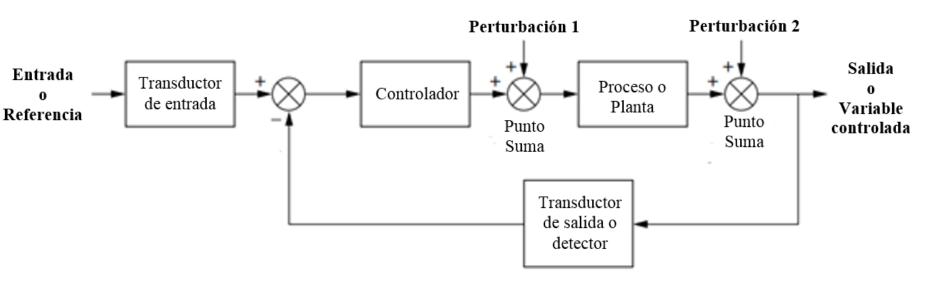
Sensor

Adquisición Señal Mioeléctrica



Sistema de Control

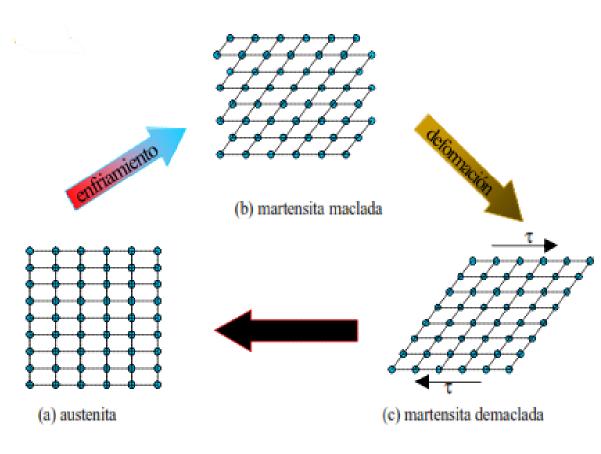
Lazo Abierto



Sistema de Control

Lazo Cerrado

Tarjeta de Control

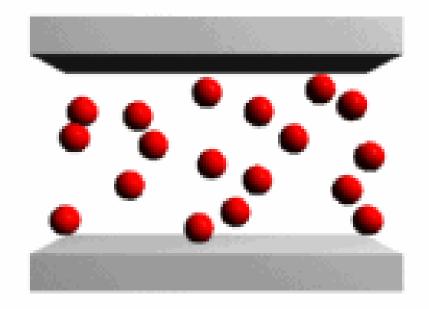


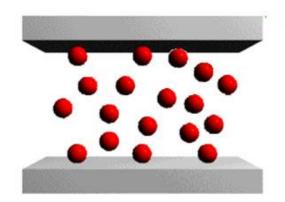
Es una unidad de control que posee un chip de memoria no volátil, y microprocesadores que permiten ejecutar la programación que se encuentra en la memoria mencionada.

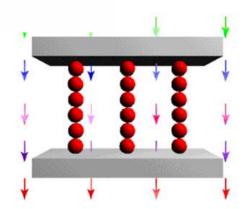
Aleaciones con memoria de forma.

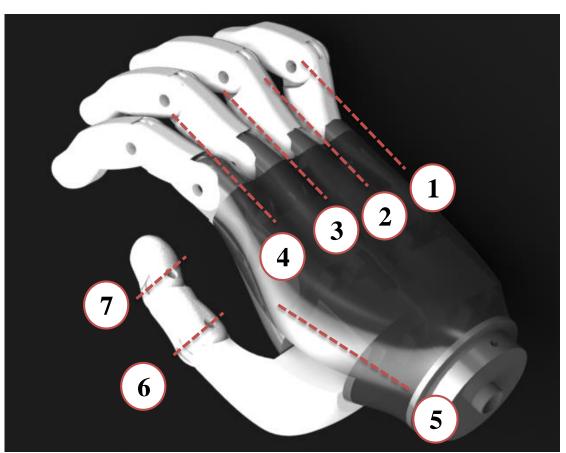
Las aleaciones con memoria de forma son aleaciones metálicas tras que una deformación visible físicamente vuelven a su forma original después de ser elevada la temperatura de la aleación

En el plano electrónico ofrece varias ventajas como lo son el encender y apagar con gran rapidez la corriente que circula por el alambre de Nitinol, así el calor se dispersa uniformemente lo que evitas puntos extremos de calentamiento


en la elaboración de dispositivos para rehabilitación,

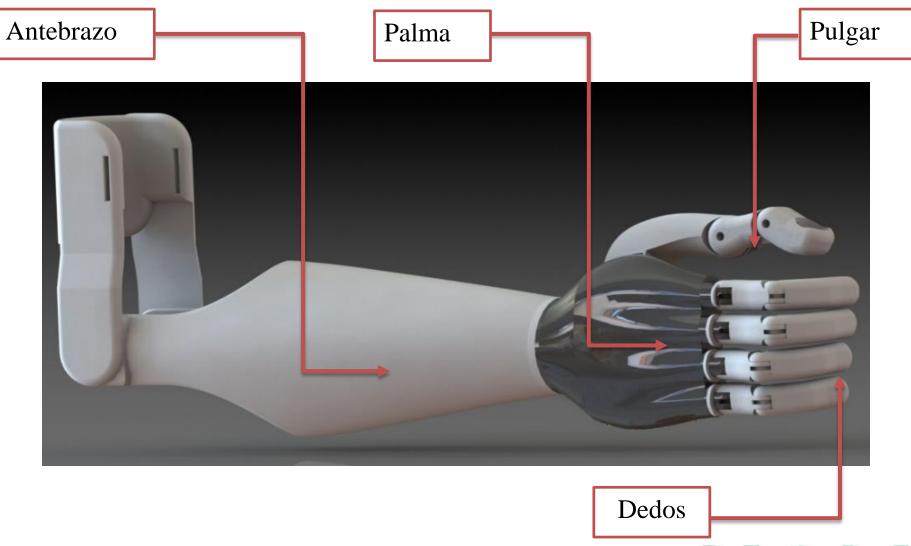




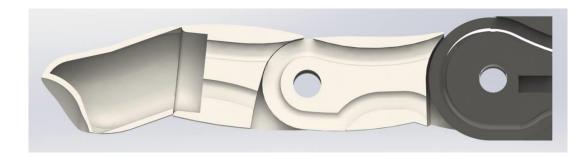


CAPÍTULO II :DISEÑO Y CONSTRUCCIÓN

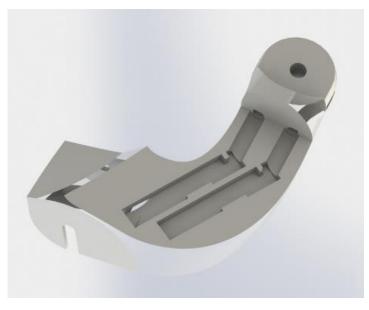
- > MODELO GEOMÉTRICO Y MECÁNICO
- > DISEÑO DEL SISTEMA ELECTRÓNICO
- > SELECCIÓN DE ELEMENTOS
- > DISEÑO DE CIRCUITOS
- DIAGRAMA DE CONEXIONES
- DISEÑO DEL SISTEMA DE CONTROL


Modelo Geométrico

Dedo	# Grados de	# Grados de
	Libertad	movilidad
Pulgar	3	3
Índice	2	1
Medio	2	1
Anular	2	1
Meñique	2	1


Modelo Mecánico

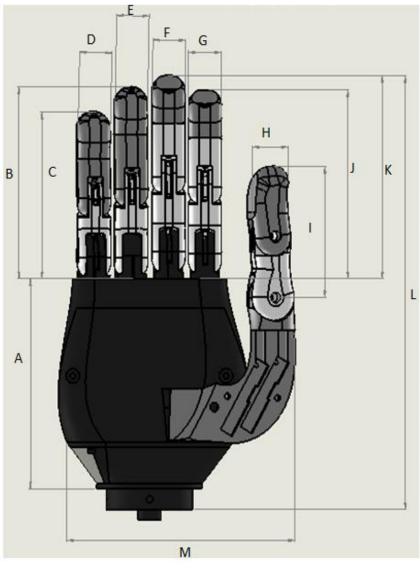
Modelo Mecánico - Región Dedos



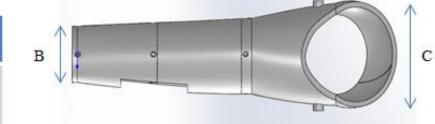
Falange	Dedo Índice (mm)	Dedo Medio (mm)
Distal	24	24
Media	25	27
Proximal	33	37
Total	82	88

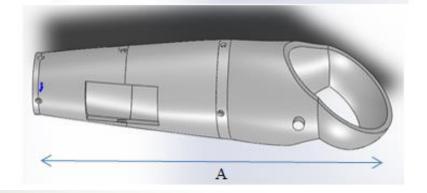
Norma DIN 33 402-2, que especifica medidas estándar del tamaño de la mano, que según (Melo, 2009) asegura un prototipo estético y funcional en relación a una mano real

Modelo Mecánico - Región Pulgar



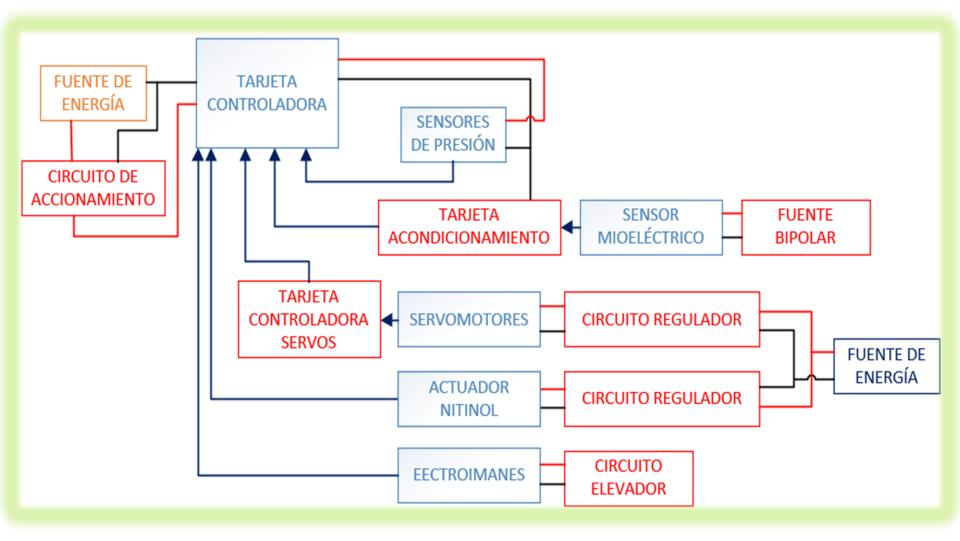
Modelo Mecánico - Región Palma


Letra	Descripción	Valor [cm]
Α	Largo de la palma de la mano	10,25
В	Largo del dedo anular	9,35
С	Largo del dedo meñique	8,15
D	Ancho del dedo meñique	1,74
Е	Ancho del dedo anular	1,69
F	Ancho del dedo medio	1,69
G	Ancho del dedo índice	1,7
Н	Ancho del dedo pulgar	1,83
ı	Largo del pulgar	6,41
J	Largo del índice	9,21
K	Largo del medio	9,91
L	Largo total de la mano	20,16
M	Ancho de la mano incluyendo dedo pulgar	11,84


Modelo Mecánico - Región Antebrazo

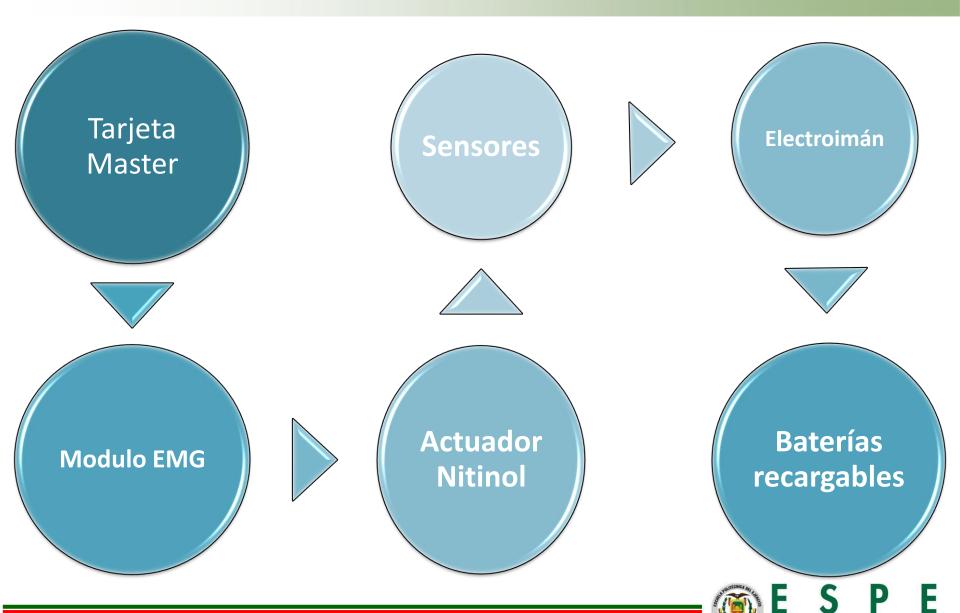
Letra	Descripción	Valor [cm]
Α	Largo del antebrazo	27,5
В	Ancho unión con la palma	5,5
С	Ancho de interfaz con el muñón	10

Diseño del Sistema Electrónico


Reconocimiento de movimiento Muscular.

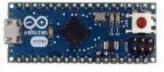
Procesamiento de Señal.

Movimiento de los dedos en patrones funcionales.

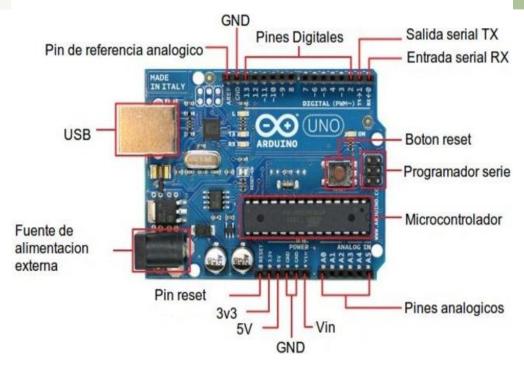


Diseño del Sistema Electrónico

Selección de Elementos Electrónicos



Selección Tarjeta Controladora



Característica de Arduino	UNO	Leonardo	DUE	Micro
microcontrolador	Atmega 328	Atmega 32U4	AT91SAM3X8 E	ATmega32u4
Velocidad de reloj	16 MHz	16 MHz	84 MHz	16 MHz
Pines digitales de E/S	14	20	54	20
Memoria de datos (SRAM)	2 Kb	2.5 Kb	96 Kb	2.5 KB
Largo	68,8 mm	68,6 mm	101,52 mm	48 mm
Ancho	53,4 mm	53,3 mm	53,3 mm	18 mm
Peso	25 g	20 g	36 g	13 g

Selección Tarjeta Controladora

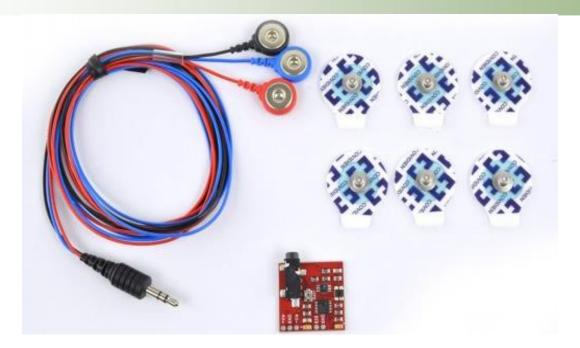
- 14 canales digitales de E/S que permitirá controlar los servomotores las mismas que se utilizaran en el manejo del actuador de Nitinol y los electroimanes,
- Reducido tamaño, que contribuye a la portabilidad de la aplicación,
- · Bajo consumo de energía,
- La velocidad de respuesta proporcionada por el chip ATmega 328 de 16 Mhz.

Selección Sensor de Presión

				HIF, THE .	
Descripción	FSR 400 SHORT	FRS 400	FSR 402 SHORT	FSR 402	FSR 406
Mínima res.	0,2 N	0,2 N	0,2 N	0,2 N	0,2 N
Rango de Sensibilidad	0,2N - 20N	0,2N - 20N	0,2N - 20N	0,2N - 20N	0,2N - 20N
Dimensiones	5,08 x 15,8 mm	5,08 x 38,1	12,7 x 14,8mm	12,7 x 56,34 mm	38,1 x 83,09 mm

Selección Sensor de Presión

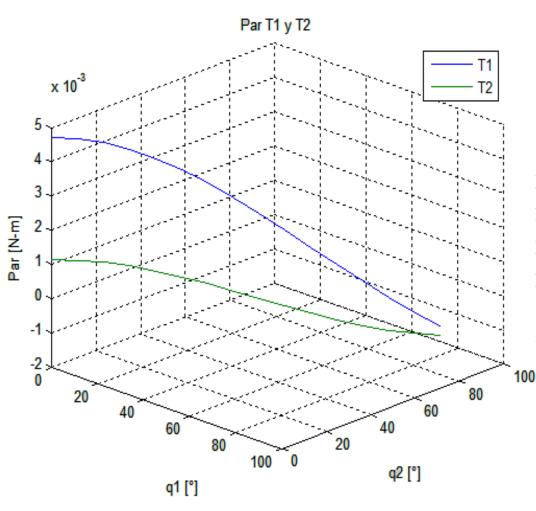
General		
PARAMETER	VALUE	NOTES
Force Sensitivity Range	~0.2 to 20N	Dependent on mechanics
Break Force (Activation Force)	~0.2N min	Dependent on mechanics and FSR build
Part-to-Part Force Repeatability	± 6% of established nominal	With a repeatable actuation system, single lot.
Single Part Force Repeatability	± 2% of initial reading	With a repeatable actuation system



Selección Sensor Mioeléctrico

	O SHE	
Tarjeta	Muscle Sensor V3	EMG Detector
Voltaje de Fuente (Vs)	$\pm 3,3$ V ± 18 V	3,3 V- 5V
Ganancia	20,700 X	-
Voltaje de Salida	$+V_{S}$	1,5V - 3,3V
Largo	29 mm	21 mm
Ancho	25,5 mm	43 mm

Selección Sensor Mioeléctrico



- ✓ Permite la comunicación con la tarjeta arduino uno ya que es al igual una tarjeta de software libre, el voltaje de trabajo se encuentra especificado entre los 0 y 5 V.
- ✓ Es adecuada para realizar un electromiograma monitoreando y recogiendo información del sensor mioeléctrico.
- ✓ Permite la regulación de la señal generada en la salida.

Selección Servomotores

La formulación Lagraniana establece que:

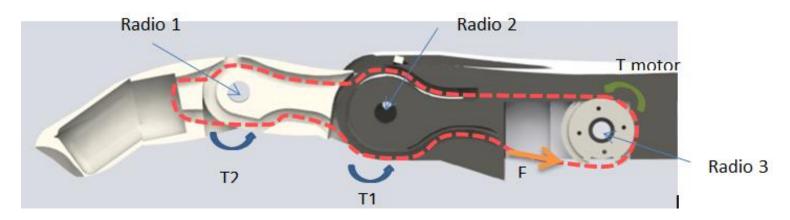
$$L = E_c + E_p$$

$$\tau_i = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i}$$

En donde:

L: Función Lagraniana

Ec: Energía Cinética


Ep: Energía Potencial

Qi: Coordenadas generalizadas (en este caso las articulares)

Ti: Fuerza o pares aplicados sobre el grado de libertad qi.

Selección Servomotores

$$Carga = 500 gr$$

$$\tau_1 = 0.2843 [N.m]$$

$$\tau_2 = 0.1189 [N.m]$$

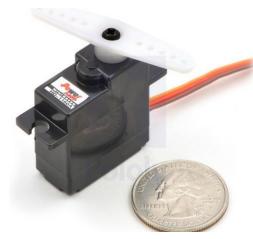
Radio 1 5,25 mm

Radio 2 7,75 mm

Radio 3 7,15 mm

Prensión de objetos T = 2,67 kg.cm

Levantamiento de carga T = 2,45 kg.cm



Selección Servomotores - Región Dedos

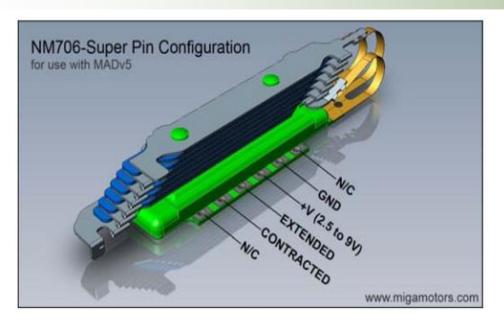
	cal Affician		
Modelo	Power HD mini Servo 1160A	Digital Servo GS-D9257	Servo 3688HB
Velocidad sin carga	0.12 sec/60°	0,07 sec/60°	0,08 sec/60°
Corriente sin carga	160 mA	300 mA	220 mA
Torque	2.8 Kg-cm	4,5 kg-cm	2,5 kg-cm
Corriente a rotor bloqueado	680 mA	2200 mA	1300 mA

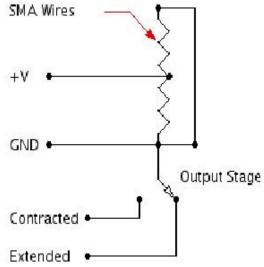
Selección Servomotores - Región Dedos

Ord.	Nombre	Voltaje = 4,8 V	Voltaje = 6 V
1	Velocidad sin carga	0.12 sec/60°	0.11 sec/60°
2	Corriente sin carga	160 mA	180 mA
3	Torque	0,196 N-m	0,2647 N-m
4	Corriente a rotor bloqueado	680 mA	800 mA
5	Corriente en reposo	4 mA	5 mA

Selección Servomotores - Región Pulgar

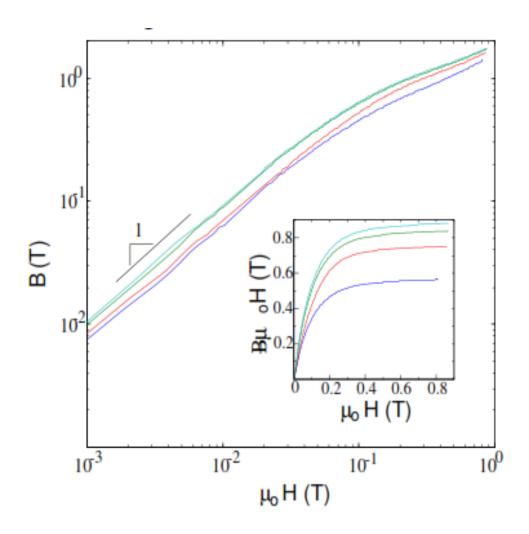
	WWW. pokidu. com		
Modelo	Servo HD-1440A	Feetech Fs90r	Sub-micro servo
Velocidad sin carga	0,10 sec/60°	0,07sec/60°	0,07 sec/60°
Corriente sin carga	110 mA	200 mA	100 mA
Torque	1 kg-cm	18 oz-in	6 oz-in
Corriente a rotor bloqueado	320 mA	600 mA	200 mA


Selección Servomotores - Región Pulgar

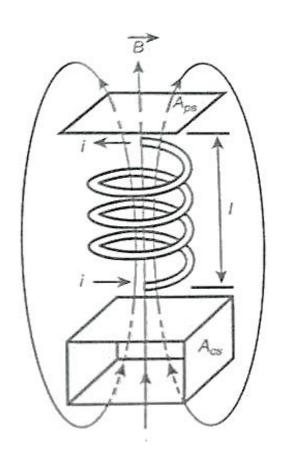


Ord	Nombre	4.8V	6.0V
1	Velocidad sin carga	0.12 sec/60°	0.10 sec/60°
2	Corriente sin carga	100 mA	110mA
3	Torque	0,078 N-m	0,098 N-m
4	Corriente a rotor bloqueado	270 mA	230 mA
5	Corriente en reposo	4 mA	5 mA

Selección Actuador de Nitinol



Voltaje	4 V
Corriente	470 mA
Resistencia	8,5 Ohms
Contracción	4 mm
Carga Máxima	70 g
Peso	1,1 g
Ciclo de vida	1000000+
Temperatura	-70 - 75 °C
Óptima	


Selección Electroiman

Un fluido que contiene 30% de hierro se satura alrededor de 0,04 Tesla siendo este el valor de la densidad a generar por el electroimán.

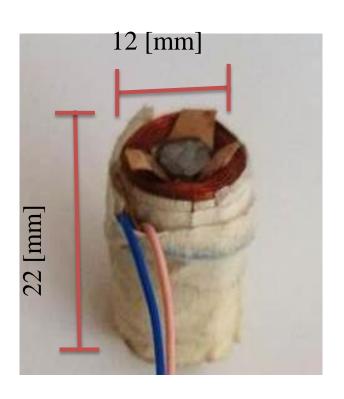
Selección Electroiman - Region Dedos

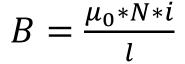
$$B = \frac{\mu_0 * N * i}{l}$$

Dónde:

B densidad de flujo magnético

N es el número de espiras,


l es la longitud de la bobina


i es la longitud

 μ_0 es la permeabilidad del espacio libre igual a $4\pi*10^{-7}$.

Selección Electroiman - Region Dedos

Ord	Descripción	Valor
1	Numero de vueltas	2000 vueltas
2	Voltaje	20,25 V
3	Resistencia	46,27 ohm
4	Amperaje	0,437 A
5	Fuerza	0,109 N

Selección Electroiman - Region Pulgar

Ord	Descripción	Valor
1	Diámetro	20 mm
2	Longitud	15 mm
3	Potencia	3W
4	Voltaje	12V
5	Peso	15 gr
6	Fuerza de sujeción	25N

Selección Baterías

#	Elemento Electrónico	Voltaje	Io (A)	In (A)	Imax (A)	Fuente
4	Power HD Mini Servo HD-1160A*	6	0,18	0,8	3,20	DC
1	Power HD Sub-Micro Servo HD-1440A*	6	0,11	0,32	0,32	DC
1	Muscle Wire Actuator	7,4	0,18	0,9	0,41	DC
1	Arduino Micro	9	-	-	0,52	DC
1	Micro Maestro 6- Channel USB Servo Controller	5	-	-	0,03	DC
1	Muscle Sensor V3.	9	-	-	0,5	Fuente Bipolar
2	Electroimán diseñado.	19	-	-	0,62	Elevador
1	Electroimán ZYE1- P20/15	19	-	-	0,25	Elevador

Amperaje Total = 4,46 A

Selección Baterías

#	Descripción		V (V)	I (A)	Dimensiones (mm)
1	Polymer Lithium Ion Battery - 2200mAh 7.4v		7,4	2,2	138,5x47,5x 24.5
2	Polymer Lithium Ion Battery - 1000mAh 7.4v		7,4	1	70x35x18
3	First Power FP645	First Power & C	6	4,5	70x47x101
4	Gp NiMH Battery T160	And Anthony States of the Control of	3,6	0,6	47x42x15

Selección Baterías

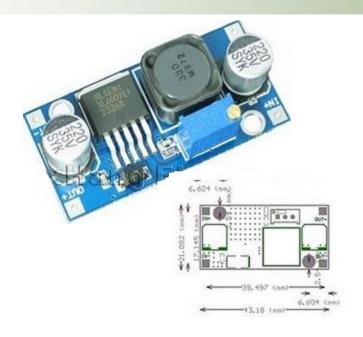
$$tiempo\ descarga = rac{carga\ el {\'e}trica\ de\ la\ bater\'ia}{consumo\ el {\'e}ctrico\ de\ los\ dispositivos}$$

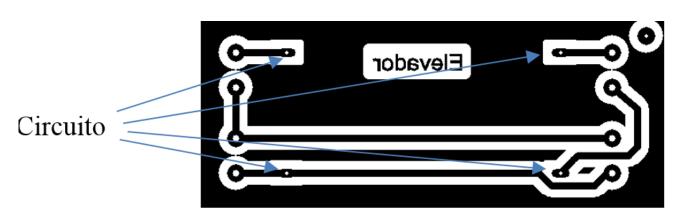
tiempo de descarga =
$$\frac{7,9 [A.h]}{4,46 [A]}$$

 $tiempo\ de\ descarga = 1,71\ [h]$

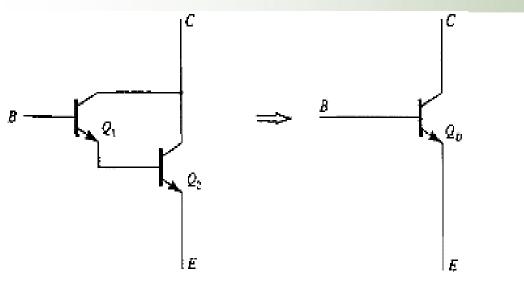
El tiempo de duración es de 1 hora y 43 minutos a demanda máxima

Selección del Circuito Elevador



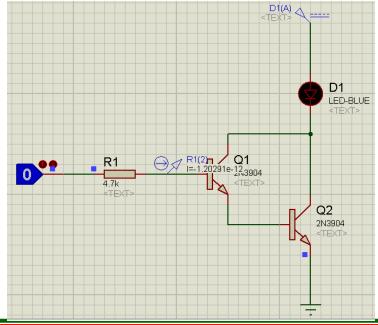

Modelo	DSN 6009 Boost	DC-DC
	Module	600W
Rango de Entrada	3 V- 32V	10 V - 60 V
Rango de Salida	5 V- 35V	12 V - 80V
Corriente de Entrada	4:00 AM	10:00 AM
Eficiencia de conversión	> 94%	> 95%
Frecuencia de	400 Khz	-
conmutación.		
Temperatura	-40 °C ~ +85 °C	-

Diseño del Circuito Elevador



DSN 6009 Boost Module

Diseño del Circuito del Nitinol



$$\beta_D = \beta_1 \cdot \beta_2$$

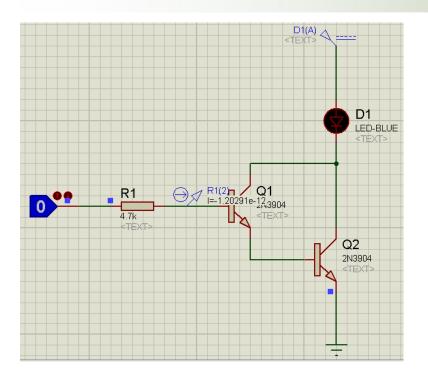
$$\beta_D = (\beta_1)^2$$

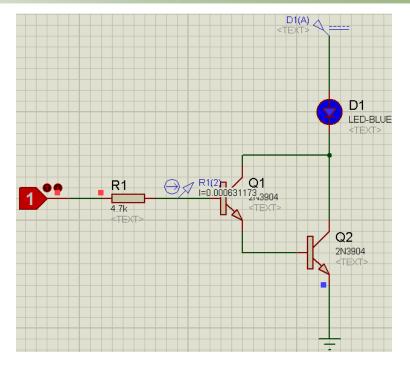
$$\beta_D = (100)^2$$

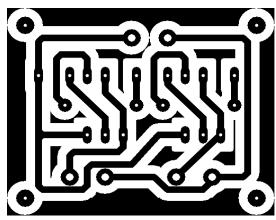
$$\beta_D = 10.000$$

Diseño del Circuito del Nitinol

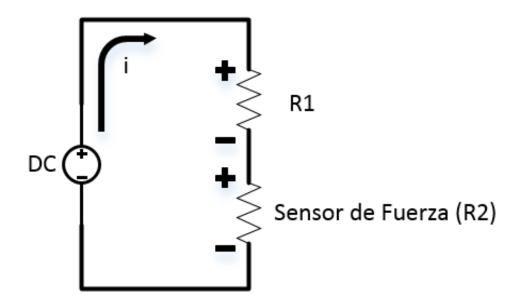
Siglas	Descripción	Valor
V_{cc}	Voltaje Fuente.	5 V
V_{BE}	Voltaje Base-Emisor	1,3 V
R_B	Resistencia de la Base	$4,7~\mathrm{K}\Omega$
$oldsymbol{eta}_D$	Ganancia de Corriente	10.000
R_E	Resistencia Emisor (Nitinol)	8,5 Ω


$$I_B = \frac{V_{CC} - V_{BE}}{R_B + \beta_D R_E}$$


$$I_B = \frac{5 - 1.3}{4.7K\Omega + 10.000(8.5\Omega)}$$


$$I_B = 0.041 \, mA$$

Diseño del Circuito del Nitinol



La regla del divisor de voltaje descrita en (Boylestad R. L., 2004) en el análisis de circuitos en serie "el voltaje en los elementos resistivos se dividirá en función de los niveles de resistencia"

Nom.	Descripción	Valor	
V_{DC}	Voltaje Fuente.	5 V	
R_2	Sensor de Fuerza.	Min 1 KΩ Max	
Z		100 ΚΩ	
R_1	Resistencia 1	4,7 ΚΩ	
I	Corriente del circuito	Por determinar	
V_1	Voltaje R ₁	Por determinar	
V_2	Voltaje de Salida	$0\mathrm{N} \to 0~\mathrm{V}$	
		$20N \rightarrow 5 V$	

$$\sum V = 0$$

$$-V_{DC} + V_1 + V_2 = 0$$

$$V_{DC} = V_1 + V_2$$

$$V_{DC} = i.R_1 + i.R_2$$

$$V_{DC} = i.(R_1 + R_2)$$

$$i = \frac{V_{DC}}{(R_1 + R_2)}$$

$$V_2 = i.R_2$$

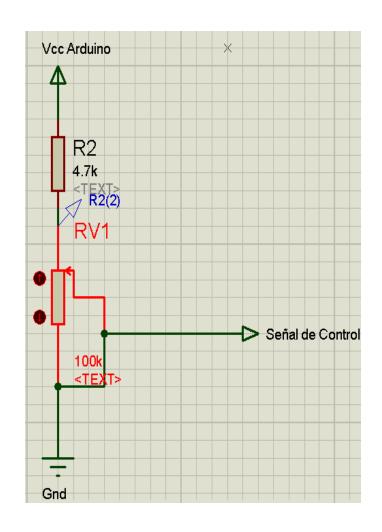
$$V_2 = \frac{V_{DC}}{(R_1 + R_2)} \cdot R_2$$

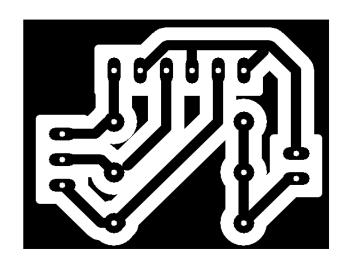
Fuerza de 20 $\mathcal N$

$$V_2 = \frac{V_{DC}}{(R_1 + R_2)} \cdot R_2$$

$$V_2 = \frac{5 V}{4.7k\Omega + 100K\Omega}.100K\Omega$$

$$V_2 = 4,77V$$

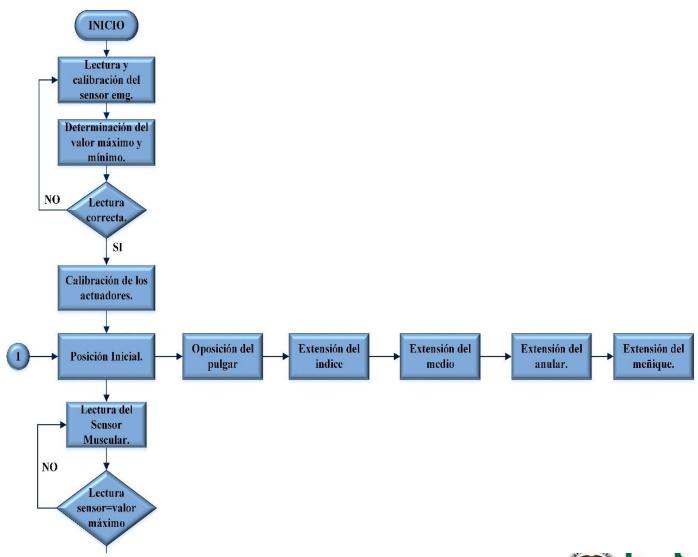

Fuerza de 0 N


$$V_2 = \frac{V_{DC}}{(R_1 + R_2)} \cdot R_2$$

$$V_2 = \frac{5 V}{4.7k\Omega + 1K\Omega}.1K\Omega$$

$$V_2 = 0.87V$$

Diseño del Sistema de Control


Constituye la esencia intangible del dispositivo protésico

Adquirir las señales analógicas externas, procesarlas y enviar las señales de control

Configuración de los movimientos para los diferentes de patrones de sujeción

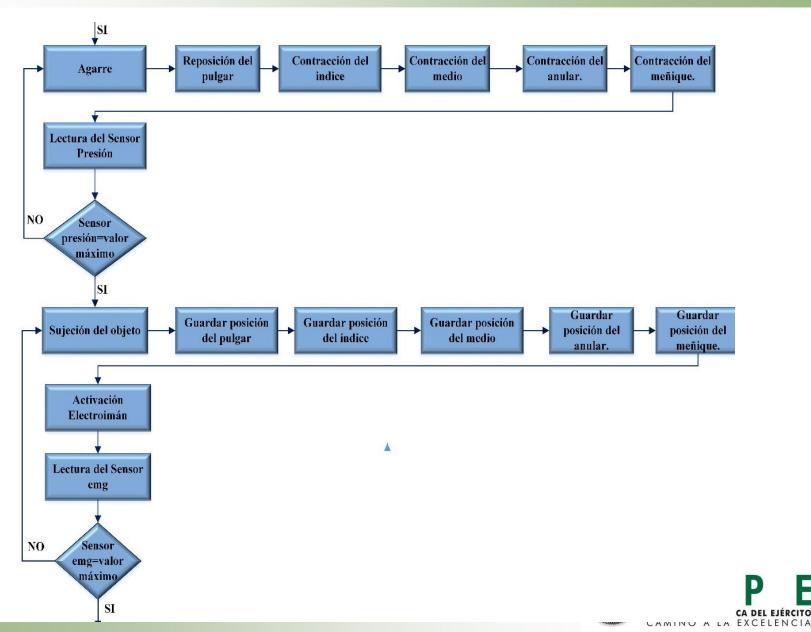


Diagrama de Flujo

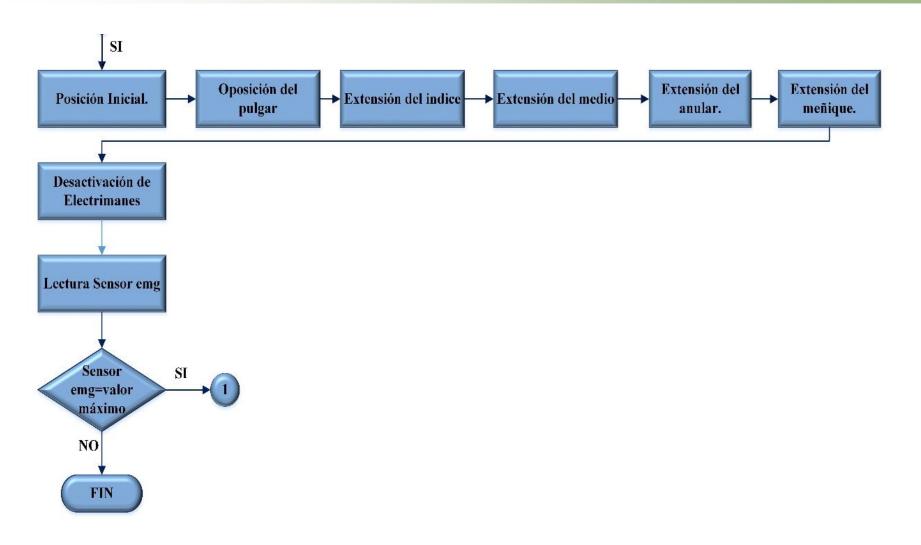


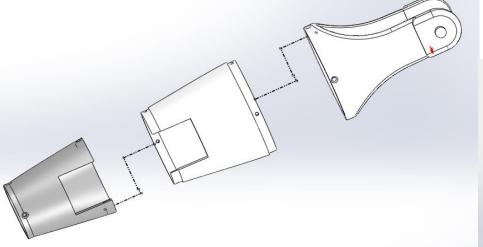
Diagrama de Flujo

Diagrama de Flujo

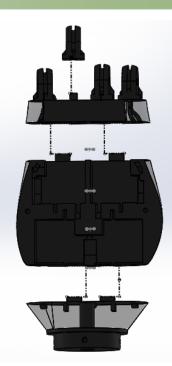
Diagrama de Flujo

Donde:

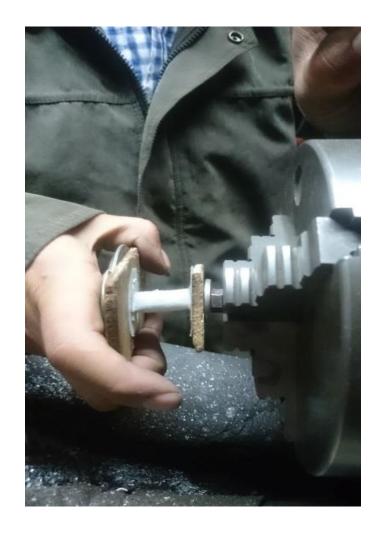
- > Sensor EMG: Es la el valor de la lectura del sensor electromiográfico.
- ➤ Valor Máximo: Valor máximo configurado del sensor electromiográfico.
- Valor Mínimo: Valor mínimo configurado del sensor electromiográfico.
- ➤ Valor Medio: Valor configurado del sensor electromiográfico, menor al valor máximo pero mayor al valor mínimo

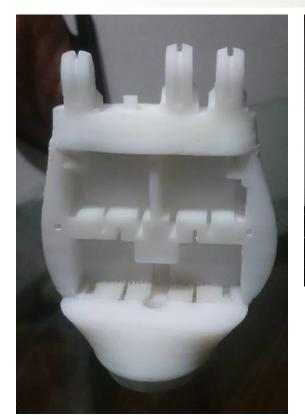


CAPÍTULO III IMPLEMENTACIÓN


- **>**CONSTRUCCIÓN DEL PROTOTIPO
- > ENSAMBLAJE DEL PROTOTIPO
- >ELABORACIÓN DE LAS PLACAS DE CONTROL
- > ENSAMBLAJE DE COMPONENTES
- ► ELABORACIÓN GUANTE DE LATEX
- ➤IMPLEMENTACIÓN DEL SISTEMA DE CONTROL

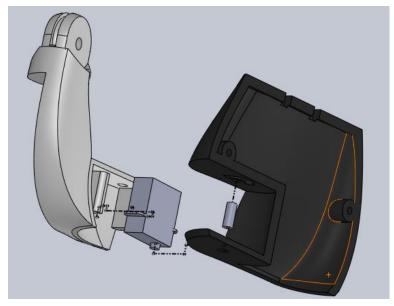
Construcción del Prototipo

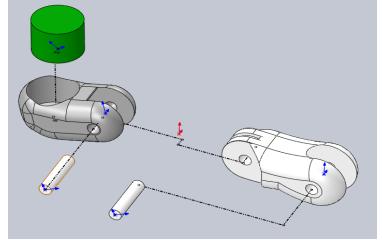

Construcción del Prototipo

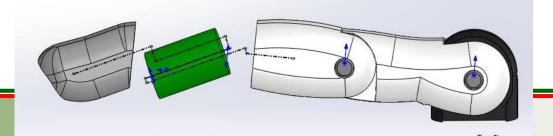


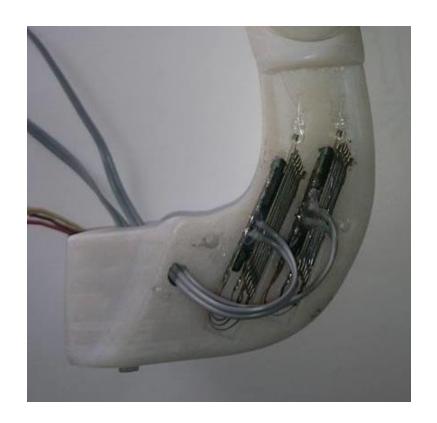
Construcción del Prototipo

Ensamblaje del Prototipo






Ensamblaje del Prototipo



ENSAMBLAJE DEL PROTOTIPO

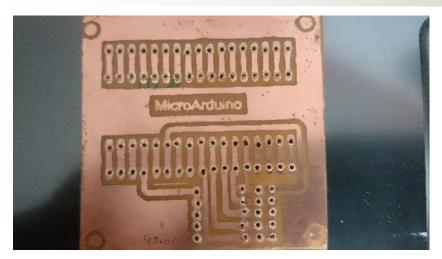
ENSAMBLAJE DEL PROTOTIPO

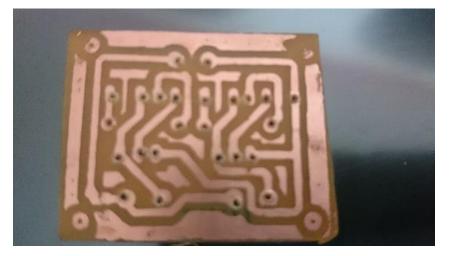
Elaboración de las placas de control

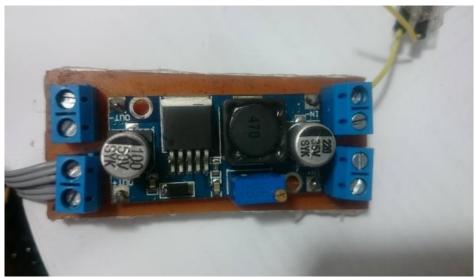
Se usa la técnica transferencia de calor, cuya principal propiedad es que el diseño puede ser impreso en un papel termotransferible, posteriormente mediante calor y presión, se transfiere el diseño a la placa de cobre de manera fácil, rápida y económica

Elaboración de las placas de control

Técnica de corrosión de cobre de la placa


Sumergir completamente la placa en un medio ácido


Comenzará a corroer el cobre



Elaboración de las placas de control

Ensamblaje de Componentes

Ensamblaje de Componentes

Ensamblaje de Componentes

Elaboración del Guante de Latex

Implementación del Sistema de

Control Archivo Editar Sketch Herramientas Ayuda

finalfinal §

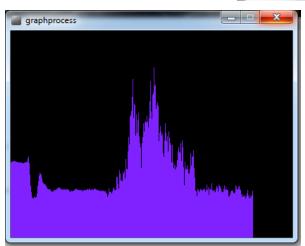
#include <Servo.h>

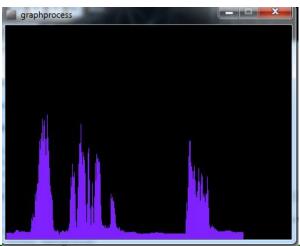
ARDUINO 1.6.8

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. It runs on Windows, Mac OS X, and Linux. The environment is written in Java and based on Processing and other open-source software.

This software can be used with any Arduino board. Refer to the Getting Started page for Installation instructions.

```
Servo myservol; // crea un objeto servo
Servo myservo2;
Servo myservo3;
Servo myservo4;
Servo myservo5;
int smaflexion=11:
int smaextension=12:
int led=13:
int electropulgar=4;
int electromedio=7;
int electroindice=8;
int x=0;
int sm=0:
int sl=0;
int s2=0:
int posl=5;
int pos2=170;
int pos3=5;
int pos4=170;
```



CAPÍTULO IV PRUEBAS Y RESULTADOS


- >PRUEBAS DE SENSORES
- >PRUEBAS DE MOVIMIENTO
- >PRUEBAS DE CARGA
- >PRUEBAS DE AGARRE
- >PRUEBAS DE PRESION
- **≻VALIDACIÓN DE LA HIPÓTESIS**
- >ANÁLISIS ECONÓMICO

Pruebas de Sensores

Pruebas de Sensores

© COM11 (Arduino Micro)

l .	
sensor = 522	output = 130
sensor = 381	output = 94
sensor = 377	output = 93
sensor = 456	output = 113
sensor = 411	output = 102
sensor = 389	output = 96
sensor = 378	output = 94
sensor = 384	output = 95
sensor = 409	<pre>output = 101</pre>
sensor = 421	output = 104
sensor = 413	output = 102
sensor = 377	output = 93
sensor = 380	output = 94
sensor = 421	output = 104
sensor = 387	output = 96
sensor = 304	output = 75
sensor = 290	output = 72
sensor = 377	output = 93
sensor = 398	output = 99
sensor = 390	output = 97
sensor = 373	output = 92
sensor = 362	output = 90
sensor = 368	output = 91
sensor = 370	output = 92
sensor = 374	output = 93
sensor = 375	output = 93
sensor = 377	output = 93
sensor = 395	output = 98
sensor = 884	output = 220
sensor = 884	output = 220
sensor = 884	output = 220
sensor = 884	output = 220
sensor = 884	output = 220
sensor = 884	output = 220
sensor = 793	output = 197
sensor = 246	output = 61

La prueba es satisfactoria, al observarse el correcto monitoreo de la actividad muscular, es decir un valor de 0 en la entrada analógica de arduino en extensión y de 255 en contracción

Pruebas de Sensores

COM11 (Arduino Micro)

S3 sin induccion:34 S1 sin induccion:24 S3 sin induccion:34 S1 sin induccion:24 S3 sin induccion:34 S1 sin induccion:25 S3 sin induccion:34 S1 sin induccion:25 S3 sin induccion:35 S1 sin induccion:25 S3 sin induccion:33 S1 sin induccion:25 S3 sin induccion:33 S1 sin induccion:24 S3 sin induccion:35 S1 sin induccion:25 S3 sin induccion:33 S1 sin induccion:25 S3 sin induccion:34 S1 sin induccion:25 S3 sin induccion:35 S1 sin induccion:24 S3 sin induccion:34 S1 sin induccion:25 S3 sin induccion:34 S1 sin induccion:25 S3 sin induccion:34 S1 sin induccion:25 S3 sin induccion:38 S1 sin induccion:25 S3 sin induccion:37 S1 sin induccion:25 S3 sin induccion:36 S1 sin induccion:25 S3 sin induccion:37 S1 sin induccion:25 S3 sin induccion:37

S3 con induccion:86 S1 con induccion:30 S3 con induccion:86 S1 con induccion:30 S3 con induccion:87 S1 con induccion:30 S3 con induccion:86 S1 con induccion:30 S3 con induccion:88 S1 con induccion:30 S3 con induccion:86 S1 con induccion:30 S3 con induccion:88 S1 con induccion:30 S3 con induccion:89 S1 con induccion:31 S3 con induccion:89 S1 con induccion:30 S3 con induccion:89 S1 con induccion:31 S3 con induccion:88 S1 con induccion:31 S3 con induccion:88 S1 con induccion:30 S3 con induccion:88 S1 con induccion:30 S3 con induccion:88 S1 con induccion:30

S3 con induccion:88

S1 con induccion:30

S3 con induccion:87

© COM11 (Arduino Micro)

La prueba se realiza aplicando un fuerza constante de 2,45 N, es decir de 250 g, y se obtiene un voltaje de salida es de 0,7 V, validando el manejo del sensor de presión.

Pruebas de Movimiento

Dedo	Extensión	Flexión
Índice	0°	170°
Medio	180°	0°
Anular	0°	180°
Meñique	175°	0°
Pulgar	170°	80°

PRUEBAS DE MOVIMIENTO

Dedo	Valor establecido.	Valores Medidos					Rango medido	Error (%)
		1	2	3	4	5	(promedio)	
Índice	0° a 170°	0°-171°	1°-172°	0°-173°	0°-173°	0°-172°	0° a 172°	1,18
Medio	180° a 0°	179°-0°	181°-0°	178°-1°	181°-0°	179°-0°	178° a 1°	0,56
Anular	0° a 180°	0°-178°	2°-180°	2°-182°	0°-172°	0°-172°	2° a 180°	1,18
Meñique	175° a 0°	178°-2°	176°-1°	175°-1°	176°-1°	175°-2°	175° a 1°	0,57
Pulgar rotación	170° a 80°	170°- 78°	169°- 80°	170°- 77°	171°- 78°	172°- 80°	170° a 78°	2,22
Pulgar Flexión Extensión	0° a 15°	0°-14°	0°-13°	0°-12°	0°-15°	0°-11°	0° a 13°	13,33

Pruebas de Agarre

Prueba de carga

Carga máxima de 2 kg

Prueba de agarre en gancho

Puede sujetar desde agarraderas de 5 mm hasta 2 cm, con un peso máximo de 2 kg

Pruebas de Agarre

Agarre de precisión

Minimo → Grosor de una hoja de papel Maximo → Objeto de 5 cm de lado

Agarre de Trípode

Pruebas de Presión

Pruebas de Presión

# Interacción	Sin Campo magnético (N)		Con Campo magnético (N)		Porcentaje de aumento (%)		
	Sensor 1	Sensor 2	Sensor 1	Sensor 2	Sensor 1	Sensor 2	
1	1,88	2,67	2,75	6,75	45,83	152,94	
2	1,88	2,67	2,67	6,98	41,67	161,76	
3	1,96	2,59	2,59	6,59	32	154,55	
4	1,96	2,90	2,75	6,51	40	124,32	
5	1,96	2,90	2,67	6,67	36	129,73	
6	1,96	2,82	2,59	6,82	32	141,67	
7	1,88	2,75	2,75	7,06	45,83	157,14	
8	1,88	2,90	2,75	6,90	45,83	137,84	

¿El diseño e implementación del sistema de control para una prótesis de mano de 7 grados de libertad permitirá realizar movimientos básicos de agarre para la ejecución de tareas cotidianas a una persona con amputación transradial debajo del codo?

El test ARAT, es un instrumento evaluativo diseñado por (Hsuah, Lee, & Hsieh, 2002) concluyendo en una test confiable, mismo que valora el desempeño funcional y las destrezas de la mano humana, mediante 19 actividades, distribuidas en 4 etapas dentro de los cuales se tiene:

- Alcance.
- Agarre.
- Sujeción.
- Movimiento Bruto.

Ord	Etapa	Descripción	Si	No	# de
			cumple	cumple	pruebas
1		Sujetar un bloque de madera 10 cm	0	5	5
2		Sujetar un bloque de madera 2,5 cm	5	0	5
3	ınce	Sujetar un bloque de madera 5 cm	5	0	5
4	Alcance	Sujetar un bloque de manera 7,5 cm	0	5	5
5	Ţ	Sujetar pelota de 7,5 cm de diámetro	0	5	5
6		Sujetar una madera de 10*2,5*1 cm	5	0	5
7		Poner agua de vaso a vaso	3	2	5
8	Agarre	Sujetar tubo de 2,25 cm diámetro.	5	0	5
9	96	Sujetar tubo de 1*16 cm	5	0	5
10	7	Sujetar Arandela de 3,5 cm	0	5	5
11		Sujetar rodamiento de bolas de 6 mm entre anular y pulgar	0	5	5
12	ón	Sujetar canica de 1.5 cm índice y pulgar	5	0	5
13	Sujeción	Sujetar rodamiento de bolas medio y pulgar	5	0	5
14	Su	Sujetar rodamiento de bolas índice y pulgar	5	0	5
15		Sujetar canica entre anular y pulgar	0	5	5
16	nto	Sujetar canica entre medio y pulgar	5	0	5
17	Movimiento Bruto	Ubicar la mano atrás de la cabeza	5	0	5
18	ovij Br	Ubicar la mano encima de la cabeza	5	0	5
19	\geq	Ubicar la mano en la boca	5	0	5
		Suma Total	63	32	95

Se usará la prueba de independencia de chi cuadrado, la cual describe si existe o no relación entre dos variables

- H₁ (Hipótesis Alternativa): Existe relación entre el cumplimiento de las actividades planteadas en el Action Research Arm Test o ARAT, con el diseño del sistema de control del dispositivo protésico.
- H_o (Hipótesis nula): No existe relación.

$$\lambda^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

En donde:

 λ^2 Chi cuadrado

O_i Frecuencia absoluta observado

 E_i Frecuencia esperada

El cálculo de la frecuencia esperada para el caso de "si cumple", multiplicando el número de repeticiones realizadas de cada prueba, con la suma total de pruebas superadas, todo esto divido para el número total de pruebas realizadas.

Freq. Esperada.
$$SI = \frac{5*65}{95} = 3,32$$

La frecuencia esperada en el caso de "no cumple" se determina, del producto entre el número de interacciones de la prueba realizada y la suma del número total de las pruebas no superadas, dividido para el número total de pruebas realizadas.

Freq.Esperada.NO =
$$\frac{5*32}{95}$$
 = 1,68

$$(\# de \ pruebas - 1) * (\# de \ opciones - 1)$$

 $(19 - 1) * (2 - 1) = 18$

					, , ,		
Condición/ Prueba	0	E	(O-E)	(O-E)2	(O-E)2/E		
Si/1	0	3,32	-3,31578947	10,9944598	3,31578947		
Si/2	5	3,32	1,68421053	2,8365651	0,85547201		
Si/3	5	3,32	1,68421053	2,8365651	0,85547201		
Si/4	0	3,32	-3,31578947	10,9944598	3,31578947		
Si/5	0	3,32	-3,31578947	10,9944598	3,31578947		
Si/6	5	3,32	1,68421053	2,8365651	0,85547201		
Si/7	3	3,32	-0,31578947	0,09972299	0,03007519		
Si/8	5	3,32	1,68421053	2,8365651	0,85547201		
Si/9	5	3,32	1,68421053	2,8365651	0,85547201		
Si/10	0	3,32	-3,31578947	10,9944598	3,31578947		
Si/11	0	3,32	-3,31578947	10,9944598	3,31578947		
Si/12	5	3,32	1,68421053	2,8365651	0,85547201		
Si/13	5	3,32	1,68421053	2,8365651	0,85547201		
Si/14	5	3,32	1,68421053	2,8365651	0,85547201		
Si/15	0	3,32	-3,31578947	10,9944598	3,31578947		
Si/16	5	3,32	1,68421053	2,8365651	0,85547201		
Si/17	5	3,32	1,68421053	2,8365651	0,85547201		
Si/18	5	3,32	1,68421053	2,8365651	0,85547201		
Si/19	5	3,32	1,68421053	2,8365651	0,85547201		
No/1	5	1,68	3,31578947	10,9944598	6,52796053		
No/2	0	1,68	-1,68421053	2,8365651	1,68421053		
No/3	0	1,68	-1,68421053	2,8365651	1,68421053		
No/4	5	1,68	3,31578947	10,9944598	6,52796053		
No/5	5	1,68	3,31578947	10,9944598	6,52796053		
No/6	0	1,68	-1,68421053	2,8365651	1,68421053		
No/7	2	1,68	0,31578947	0,09972299	0,05921053		
No/8	0	1,68	-1,68421053	2,8365651	1,68421053		
No/9	0	1,68	-1,68421053	2,8365651	1,68421053		
No/10	5	1,68	3,31578947	10,9944598	6,52796053		
No/11	5	1,68	3,31578947	10,9944598	6,52796053		
No/12	0	1,68	-1,68421053	2,8365651	1,68421053		
No/13	0	1,68	-1,68421053	2,8365651	1,68421053		
No/14	0	1,68	-1,68421053	2,8365651	1,68421053		
No/15	5	1,68	3,31578947	10,9944598	6,52796053		
No/16	0	1,68	-1,68421053	2,8365651	1,68421053		
No/17	0	1,68	-1,68421053	2,8365651	1,68421053		
No/18	0	1,68	-1,68421053	2,8365651	1,68421053		
No/19	0	1,68	-1,68421053	2,8365651	1,68421053		
	Valor Chi cuadrado 89,6279762						

Validación de la Hipótesis

"p" de (0,001) que es la probabilidad de encontrar un valor mayor o igual que el chicuadrado tabulado, se extrae el valor (42,311) y el valor calculado obtenido (89,63).

Concluyendo así que el valor obtenido es mayor al de la tabla de distribución del chi cuadrado, por lo tanto es aceptada la hipótesis alternativa H1 como válida con grado de confianza del 99,99%

Estableciendo así la valides de la hipótesis planteada al inicio del apartado, por medio del resultado obtenido en las actividades del Action Reseach Arm Test (ARAT), y la prueba de independencia del chi cuadrado, obteniendo un 71,93% de desempeño funcional y destreza en comparación con una mano humana, valor obtenido en el test.

Análisis Económico

No	DETALLE	CANTIDAD	VALOR UNITARIO	VALOR TOTAL
1	Tarjeta Arduino Uno	1	29	29
2	Sensores Mioeléctricos	1	26,3	26,3
3	Elementos creación PCB	1	30	30
4	Baterías	4	10	40
5	Cables de conexión	1	10	10
6	Sensores de Presión	3	8	24
7	Guante de silicona apariencia humana	1	30	30
8	Controlador de material inteligente.	4	11	44
9	Gastos Envío y Salida de Divisas.	1	100	100
10	Conversor DC-DC	1	12	12
11	Horas Ingeniería	50	20	1000
Total				1345,3

Conclusiones y Recomendaciones

- Se diseñó el dispositivo protésico para mejorar la calidad de vida de las personas que han sufrido una amputación transradial de mano derecha, ya que es capaz de realizar diferentes patrones de sujeción frecuentemente ejecutados por una mano humana en la ejecución de tareas cotidianas, conforme al segundo objetivo del Plan Nacional del Buen Vivir.
- Se diseñó y se implementó el sistema de control para una prótesis biónica de mano derecha de 7 grados de libertad utilizando materiales inteligente, la cual es capaz de realizar diferentes patrones de sujeción.
- El estudio de la biomecánica permitió analizar los movimientos naturales de una mano humana, y al mismo tiempo determinar los movimientos básicos y tipos de agarre, y así replicarlo a través de la prótesis, por medio del manejo de los sensores, actuadores y el sistema de control.

- El estudio del estado del arte en relación a los dispositivos protésicos de mano desarrollada en la actualidad, facilitó la determinación de las condiciones iniciales con respecto al diseño del sistema de control, así como los tipos de sensores, actuadores y el tipo de lazo de control a desarrollar.
- A través del análisis de normas internacionales en cuanto al desarrollo de circuitos impresos, se implementó las placas de acondicionamiento para el manejo de las señales de control tanto de sensores como actuadores, mismas que fueron alojadas en el antebrazo.
- El estudio de las metodologías actuales en el manejo de señales de entradas y salidas, permitió el óptimo desarrollo del lazo de control, capaz de manejar las señales de control del dispositivo protésico bajo la plataforma de libre acceso.

- El análisis del consumo de los componentes electrónicos tanto de entrada como de salida, permitió el dimensionamiento de las baterías, asegurando la portabilidad del dispositivo durante 1 hora y 42 minutos, a máxima demanda.
- El desarrollo del lazo de control así como el procesamiento de las señales de entrada tales como, el sensor mioeléctrico y los sensores de fuerza, así como de las señales de salida, servomotores, actuadores de Nitinol y electroimanes, permitió que el dispositivo protésico íntegro, sea amigable con el usuario, logrando que el aprendizaje sea interactivo y rápido.
- El uso de sensores dentro del dispositivo protésico facilitó el correcto funcionamiento del mismo, al permitirle al usuario tener el control total de la prótesis a base de pulsos enviados desde el músculo del bíceps, y la retroalimentación del sistema por medio de los sensores de fuerza permitiendo así el control de la presión de ajuste, logrando la manipulación de objetos de distinta composición.

- La investigación en el manejo de los materiales inteligentes permitió que el dispositivo protésico tenga propiedades únicas como son las yemas compuestas por materiales magnetoreológico el cual es operado cambiando sus propiedades de viscosidad, ante la presencia de un campo magnético mínimo de 0,5 Teslas, por medio de electroimanes, siendo su función distribuir de manera uniforme la fuerza aplicada sobre un objeto, así como del actuador del Nitinol, logrando un movimiento fino en cuanto a la falange distal del dedo pulgar.
- El manejo de la plataforma libre arduino, facilitó la implementación del lazo de control, tomando en cuenta el entorno, las librerías y las instrucciones disponibles para la programación, siendo la herramienta ideal para el desarrollo de aplicaciones robóticas en todos los aspectos, así como en el presente caso.

- El diseño mecánico y la construcción del dispositivo protésico fue realizado previo a la presente investigación, siendo el ideal, en cuanto a dimensiones, estructura y materiales para implementar el sistema electrónico y de control.
- Los grados de libertad propuestos en el diseño, establecieron las condiciones iniciales para el dimensionamiento de los actuadores a utilizar, mismos que contribuyeron para lograr el movimiento natural de la prótesis, así como todos los tipos de agarres que es capaz de reproducir.
- El estudio de las técnicas de manipulación del látex, favoreció al desarrollo del guante exterior de la prótesis, siendo la mejor opción el recubrimiento con una película protectora de plástico, antes que la implementación de un contra molde del dispositivo, ya que las dimensiones, la forma y la disposición de los elementos electrónicos, no permiten el uso de un guante pre fabricado de látex.

- Las pruebas realizadas de los sensores establecieron como primer punto las condiciones iniciales para el manejo de las entradas y salidas dentro de la programación, de la misma manera se recurrieron a las pruebas de movimiento para validar la funcionalidad del sistema de control, deduciendo así en la eficacia de cada una de las pruebas realizadas.
- Mediante el uso del test Action Research Arm Test o ARAT, y sus respectivas actividades, se evalúo la correcta selección, funcionamiento, y control de materiales inteligentes y de sensores electromiográficos implementados en la prótesis, validando al mismo tiempo la hipótesis mediante la prueba de independencia del chi cuadrado, estableciendo la dependencia entre las actividades del ARAT y el funcionamiento del dispositivo protésico desarrollado.

 La puntuación alcanzada del test ARAT de 63 puntos, permitió establecer que la prótesis desarrollada, en comparación con una mano humana, es en un 71,93% semejante en cuanto al desempeño funcional y destrezas en la sujeción y manipulación de objetos, además de la validación de la hipótesis planteada.

Recomendaciones

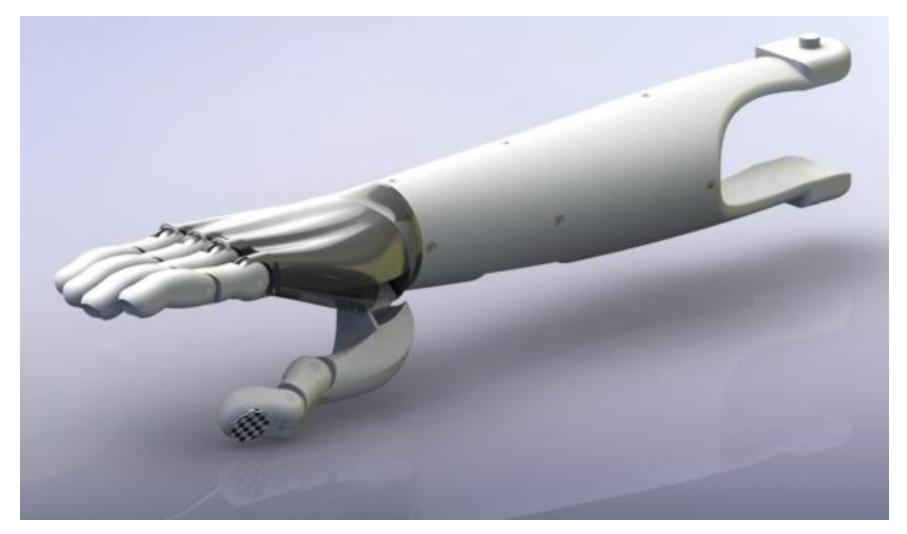
- Asegurar la integridad de cada uno de los componentes electrónicos, tomando en cuenta el lugar en donde son alojados, ya que el contacto entre una y otra tarjeta puede llegar afectar el correcto funcionamiento, y al mismo tiempo disponer de repuestos para cada uno de los dispositivos.
- Considerar que en el uso de las baterías es necesario que cada una de ellas sea tratada con el respectivo cuidado, ya que es preciso cargarlas con un dispositivo especial, y no permitir que el nivel de carga sea menor al 5% de la capacidad máxima.
- Verificar la carga eléctrica máxima a tolerar por las baterías a fin de evitar la sobrecarga de las mismas, de esta manera impedir que exista caída de voltaje en las terminales de cada una de las baterías.

Recomendaciones

- En el proceso de descarga es necesario tener en cuenta que las baterías de Litio Polímero dejan de ser funcionales al alcanzar un tercio del voltaje nominal, procurando no llegar a dicho límite.
- Manipular con el respectivo cuidado cada uno de los dispositivos tanto electrónicos como de la estructura mecánica, asegurando la integridad del mismo y el correcto funcionamiento.
- Se recomienda para futuras aplicaciones repotenciar el dispositivo protésico con la misma tarjeta de control, incluyendo el uso de servomotores de mayor capacidad, y mayor número de sensores EMG, logrando así autonomía y mayor capacidad de carga.

Recomendaciones

- Adicionar un grado de libertad para la muñeca ya que de esta manera se logrará mayor facilidad en el manejo fino de objetos, como por ejemplo al servir agua de un contenedor.
- Utilizar un guante de un material que brinde mejores prestaciones, como son durabilidad, mayor protección al material magnetoreológico y facilidad en las técnicas de fabricación, así como de una capa protectora como por ejemplo de uretano fabricado por Kingsley Manufacturing Co.



Trabajos a Futuro

- Implementar sensores capaces de monitorear no solo la actividad muscular sino más bien la actividad de los nervios del paciente, logrando así un manejo más interactivo con el dispositivo.
- Rediseñar el movimiento de los dedos, conjuntamente con la inclusión de mayor número de sensores EMG, para lograr así un movimiento independiente de los mismos.
- Implementar un actuador que permita la articulación de la muñeca, mejorando así el desempeño funcional de la prótesis.
- Agregar más sensores EMG con la finalidad de generar un mayor número de entradas y así desarrollar un algoritmo de control más avanzado basado en la actividad muscular detectada.

Gracías por su atención

