

"REDISEÑO E IMPLEMENTACIÓN DE UNA IMPRESORA FLEXOGRÁFICA DE DOS COLORES PARA PLÁSTICO, CON ADAPTACIÓN DE DESBOBINADO Y REBOBINADO DE MATERIA PRIMA PARA LA PRODUCCIÓN EN SERIE DE LA EMPRESA INPLASTICO DE LA CIUDAD DE LATACUNGA"

KATHERINE MARCELA MONTENEGRO MENA SANTIAGO XAVIER ILLESCAS BONILLA

Latacunga - 2016

OBJETIVOS

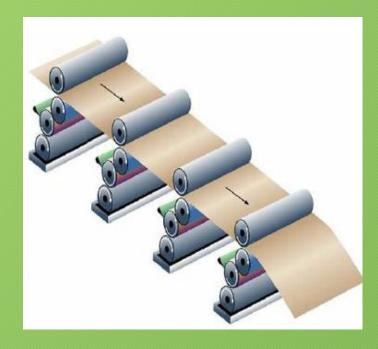
OBJETIVO GENERAL

• Rediseñar e implementar una impresora de plástico de dos colores con adaptación de desbobinado y rebobinado de materia prima para la producción en serie de la empresa INPLÁSTICO de la ciudad de Latacunga.

OBJETIVOS ESPECÍFICOS
Recopilar información acerca de los procesos de impresión flexográfica.
Diseñar el sistema mecánico y eléctrico, y seleccionar los dispositivos a partir de sus características técnicas, aplicabilidad y disponibilidad en el mercado para su adquisición.

Implementar tanto el sistema mecánico como el de control para que cumpla el proceso secuencial de movimientos que se requiere al realizar la impresión. Realizar pruebas, analizar resultados y retroalimentarlos para obtener un producto de calidad.

Redactar conclusiones y recomendaciones finales.

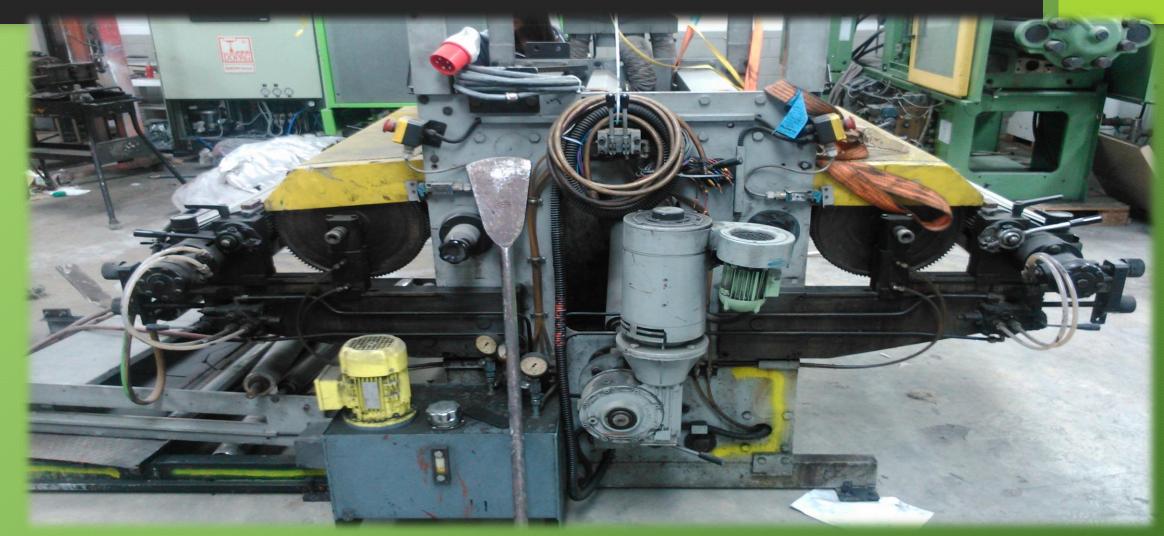

CAPÍTULO I

GENERALIDADES

FLEXOGRAFÍA

Es un método directo de impresión en relieve que utiliza matrices o planchas flexibles elaboradas en materiales resistentes de caucho o fotopolímeros. Generalmente estas máquinas son rotativas y el soporte es una bobina, aunque también existen máquinas para soporte plano

DESCRIPCIÓN DE UNA IMPRESORA FLEXOGRÁFICA



IMPRESORA EN LÍNEA

PARTES

Desbobinado
Tintero
Cuerpos impresores
Dispositivos para secado
Rebobinado

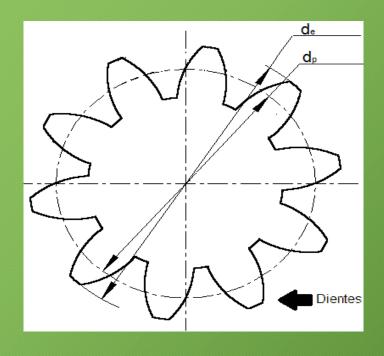
DIAGNÓSTICO DEL ESTADO ACTUAL DE LA MÁQUINA

DIAGNÓSTICO DEL ESTADO ACTUAL DE LA MÁQUINA

CAPÍTULO II

DISEÑO Y SELECCIÓN DE DISPOSITIVOS

RECTIFICACIÓN DE RODILLO AGITADOR DE TINTA

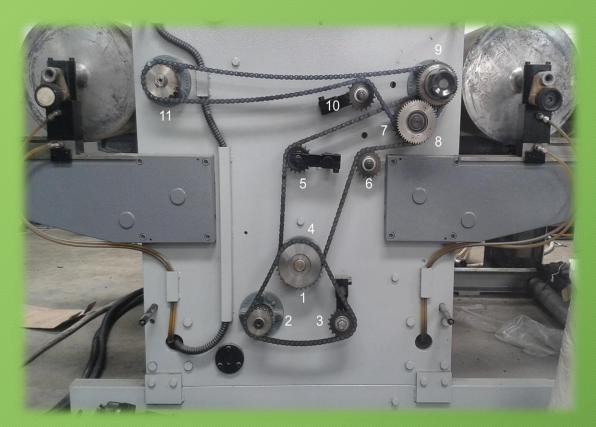

RODILLO

Diámetro del rodillo $d = \overline{111mm}$

ENGRANAJE

Diámetro exterior $de = 117 \ mm$

Dientes z=35

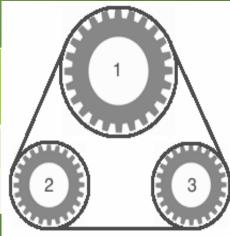

$$m = \frac{d_e}{z+2}$$
$$m = 3$$

$$d_P = m * z$$
$$d_P = 105mm$$

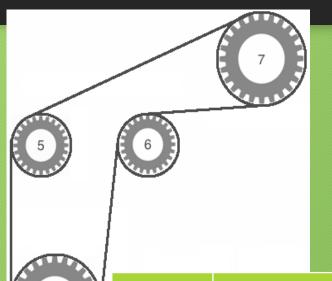
$$d > d_P$$
 OK $111 \ mm > 105 \ mm$

Diseño del sistema mecánico - desbobinado

Sistema de transmisión de engranajes

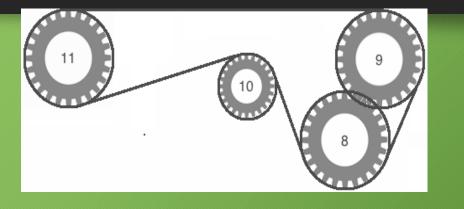


revoluciones por minuto del motor: $n_{motor} = 1735 \ rpm$ relacion de transmision del reductor: r = 1:20


 $\overline{P_{motor}} = 2.984 \, KW$

$$N_1 n_1 = N_2 n_2$$

Engrane Número de dientes		Velocidad de giro [rpm]			
1	31	86,75			
2, 3	19	141.54			

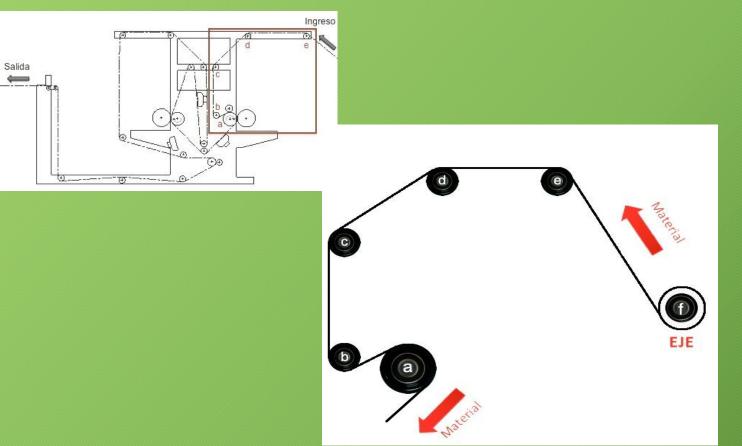


Diseño del sistema mecánico - desbobinado

$$N_4n_4 = N_5n_5$$

$$N_6 n_6 = N_7 n_7$$

$$N_8n_8=N_9n_9$$


$$n_8 = n_9 = n_{11}$$

Engrane	Número de dientes	Velocidad de giro rpm			
4	31	86.75			
5, 6	18	149.40			
7	28	96.04			

Engrane	Número de dientes	Velocidad de giro rpm
8, 9, 11	22	96.04

Diseño del sistema mecánico - desbobinado

Sistema de transmisión de poleas

$$D_{a} = \frac{58 [cm]}{\pi} = 18.46 [cm]$$

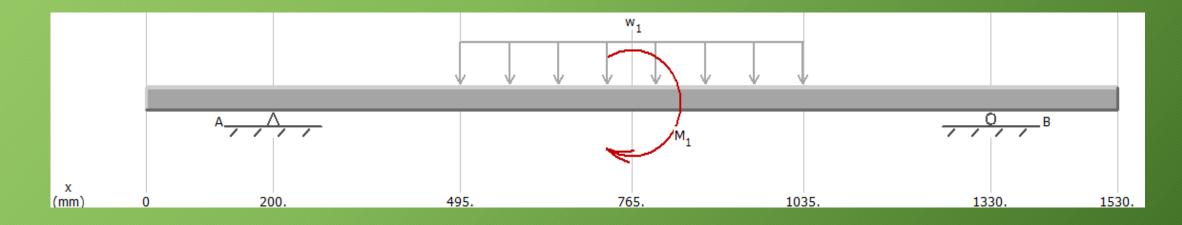
$$D_{b}; D_{c}; D_{d}; D_{e} = \frac{25.2 [cm]}{\pi} = 8.02 [cm]$$

$$D_{a}w_{a} = D_{b}w_{b}$$

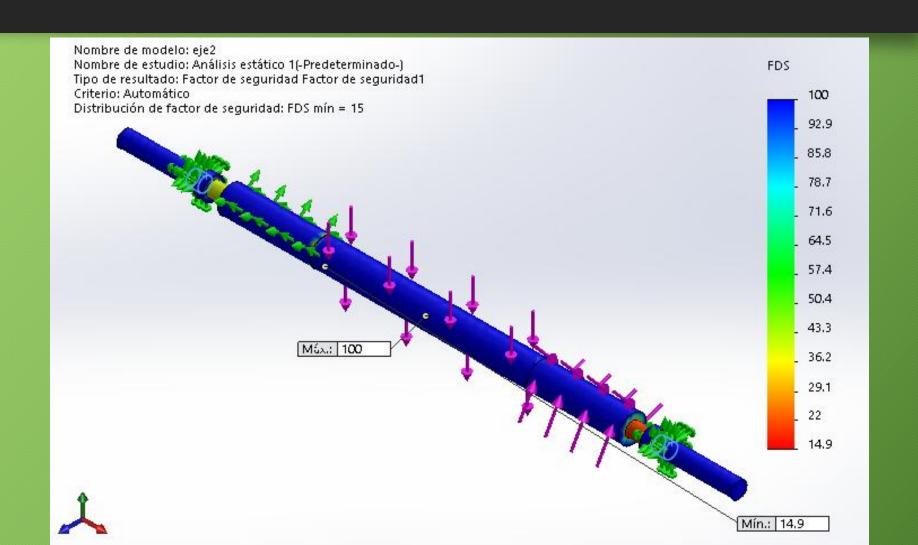
$$w_{b} = 221.06 [rpm]$$

$$w_{b} = w_{c} = w_{d} = w_{e}$$

Podillo	Perímetro	Velocidad de giro		
Rodillo	[cm]	[rpm]		
a	58	96.04		
b, c, d, e	25.2	221.06		


EJE

- Diámetro del eje $D_f = 6.08 [cm]$
- $N_e n_e = N_f n_f$
- $n_f = 291.6 [rpm]$


Par de torsión

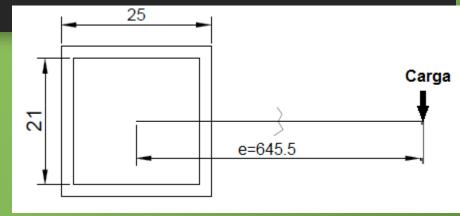
$$T = 9.55 \frac{H}{n}$$

$$T = 97.73 N m$$

EJE

Diseño del desbobinado como columna

Cargas
$$P=387.5~N=87lbf$$
 $m_{eje}=19~kg$ $m_{bobina~pl\acute{a}stico}=60~kg$


Excentricidad e = 645.5mm = 25.41in

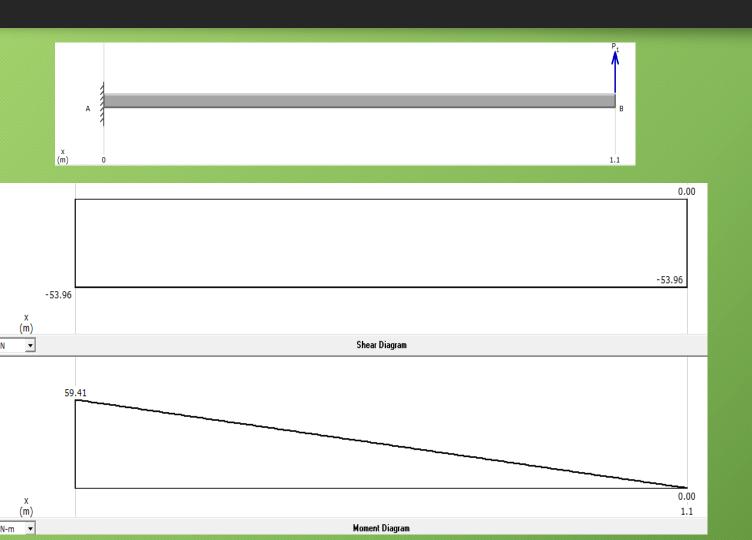
Radio de giro r = 0.371 in

Distancia al centro de gravedad c = 0,492in

Longitud efectiva Le = kL = 86.69 in

Área =
$$0.285 \text{ in}^2$$

Módulo de elasticidad E= $30x10^6 \frac{lbf}{in^2}$


$$\sigma = \frac{P}{A} \left[1 + \frac{e c}{r^2} \sec \left(\frac{Le}{2r} \sqrt{\frac{P}{A E}} \right) \right] \qquad \sigma_d = 11.3 \text{ KPsi}$$

$$\sigma = \frac{Sy}{N} \qquad \sigma = 15.3 \text{ Ksi}$$

$$\sigma > \sigma_d$$

 $15.3 \ KPsi > 11.3 \ KPsi$ **OK**

Diseño del desbobinado como viga

Carga
$$P_1 = 53.96 N$$

Momento máximo flexionante = 59.41 [N m]

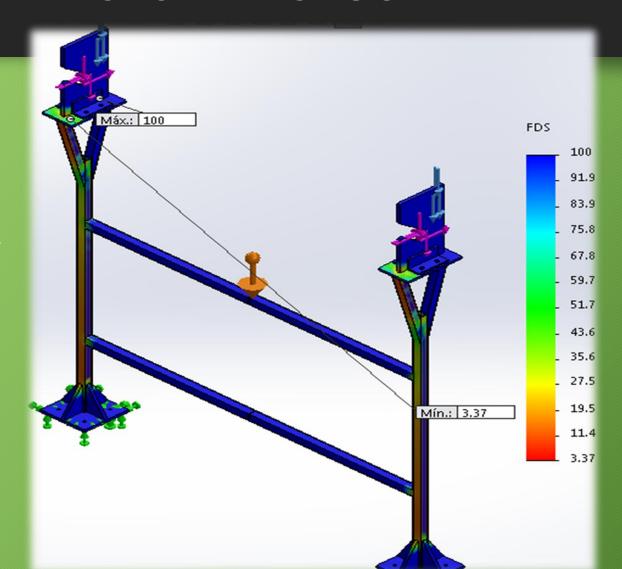
$$\sigma_d = 106.6 MPa$$

$$S = \frac{M}{\sigma_d}$$

$$S = 0.55 [cm^3]$$

$$S = 1.18 \ cm^3$$
 Catálogo

$$\sigma = \frac{M}{S}$$


$$\sigma_d = 50.34 MPa$$

$$N = \frac{S_2}{\sigma_0}$$

$$N = 6.35$$

DESBOBINADO - FACTOR DE SEGURIDAD

Factor se seguridad=3.37

MOTOR AC VS MOTOR DC

- No requiere mantención de las escobillas y colector.
- Menor costo.
- No requiere compensación de reactivos en la red.
- Pueden ser monofásicos o trifásicos
- Junto con un variador de frecuencia son una solución más económica.

MOTOR Y VARIADOR DE FRECUENCIA

Motor DC

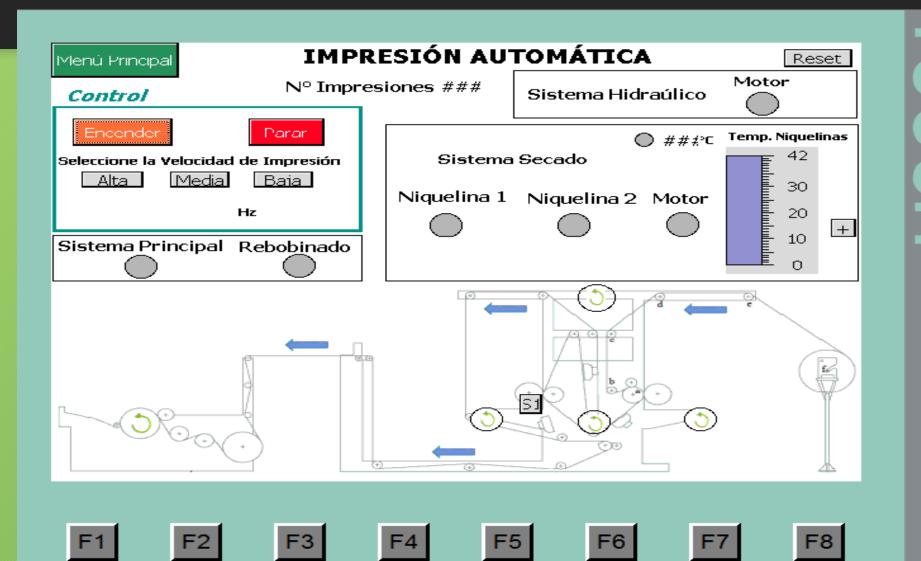
$$Torque(T) = \frac{9550 \ Potencia \ (P)}{Velocidad(n)}$$

Torque(T) = 7.83 N m

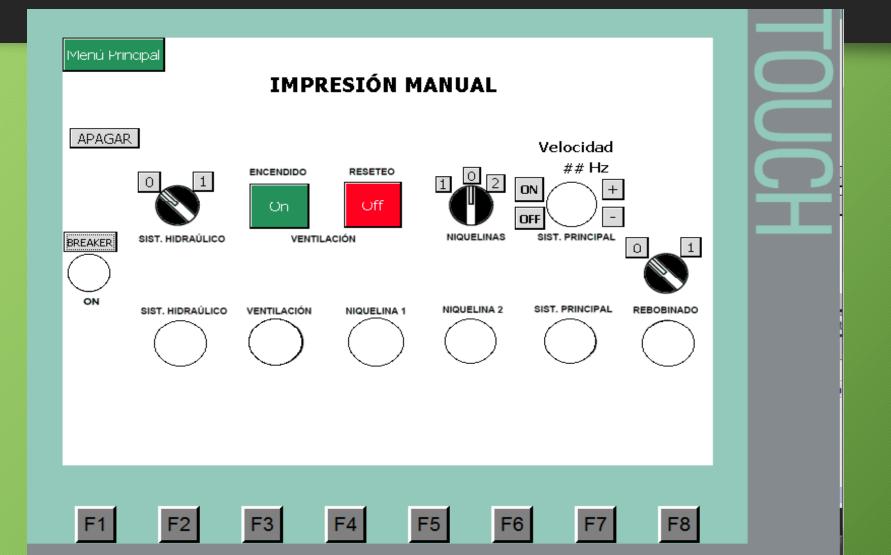
Motor AC

$$Torque(T) = \frac{9550 * 2.98 \, KW}{1735 \, rpm}$$

Torque(T) = 15.96 N m


Motor AC seleccionado

Voltaje	440 V		
Potencia	4 Hp - 2.98 KW		
RPM	1735 1/min		
Frecuencia	60 Hz		


Variador de frecuencia seleccionado

Marca	SIEMENS		
Voltaje de entrada	220 / 440 V		
Frecuencia de entrada	50 / 60 Hz		
Potencia de motor	4 Hp - 2.98 KW		
Frecuencia de salida	0 - 550 Hz		
Corriente de salida	7.3 A		

DISEÑO DEL SISTEMA DE CONTROL

DISEÑO DEL SISTEMA DE CONTROL

PLC

Marca	SIEMENS
Tipo	S7-1200
CPU	CPU 1214C
Entradas digitales	1.4
integradas	14
Salidas digitales	10
integradas	10

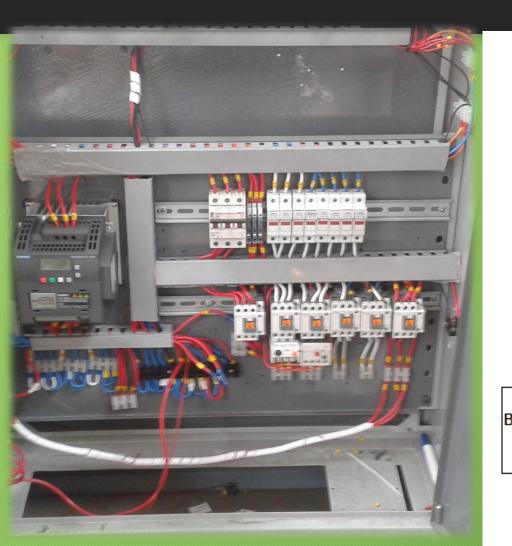
	NOMENCLATURA	DESCRIPCIÓN
ENTRADA	10.1	SENSOR DE
ENTRADA	10.1	TEMPERATURA
	Q0.1	NIQUELINA 1
	Q0.2	NIQUELINA 2
	Q0.3	MOTOR VENTILACIÓN
	Q0.4	MOTOR HIDRÁULICO
	Q0.5	MOTOR PRINCIPAL
SALIDAS	Q0.6	REBOBINADO
	Q0.7	VELOCIDAD ALTA
	Q1.2	VELOCIDAD MEDIA
	Q1.3	VELOCIDAD BAJA
	04.4	ON/OFF VARIADOR DE
	Q1.4	FRECUENCIA

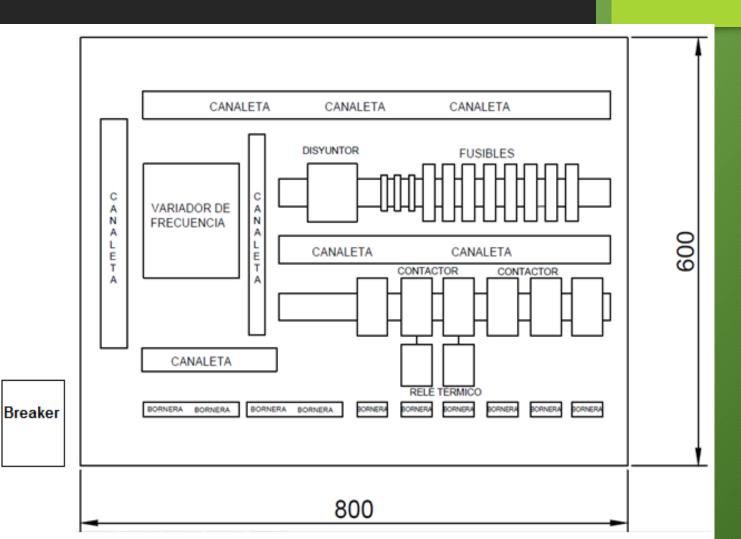
CAPÍTULO III

CONSTRUCCIÓN E IMPLEMENTACIÓN

MANTENIMIENTO




MANTENIMIENTO

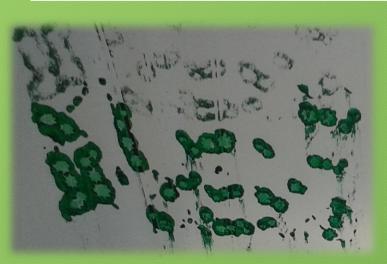


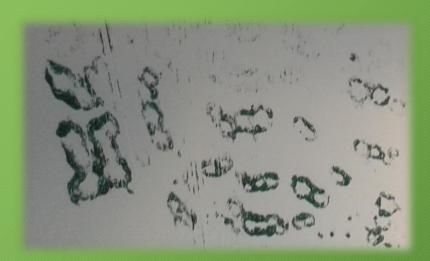
DESBOBINADO

TABLERO DE CONTROL

MANDOS DEL TABLERO DE CONTROL

INTEGRACIÓN DE SISTEMAS


CAPÍTULO IV


PRUEBAS Y RESULTADOS

PRUEBAS

TEMPERATURAS (°C)	FRECUENCIA (HZ)	CALIDAD
36.6	9.5	Mala
42.6	8.8	Mala
42.6	27.7	Mala
42.6	36.4	Buena
42.6	40	Buena
42.6	47	Mala

FRECUENCIAS (Hz)	VELOCIDAD DEL RODILLO (RPM)	NÚMERO DE IMPRESIONES POR MINUTO	CALIDAD	
8.8	6.6	6	Mala	
27.7	20.35	20	Mala	
36.4	27.43	27	Buena	
40	30.14	30	Buena	
47	35.4	35	Mala	

PLANTEAMIENTO DE LA HIPÓTESIS

¿El rediseño de una impresora flexográfica y la adaptación de desbobinado y rebobinado de materia prima permitirá impresiones de buena calidad en la producción en serie en la fábrica INPLASTICO de la ciudad de Latacunga?

PLANTEAMIENTO HIPÓTESIS DE ALTERNATIVA Y NULA

Hipótesis alternativa: Las impresiones de buena calidad se obtendrán al rediseñar una impresora flexográfica.

Hipótesis nula: Las impresiones de buena calidad son independientes del rediseño una impresora flexográfica.

DESIGNACIÓN DE VARIABLES

Variable Dependiente: Impresiones de buena calidad.

Variable Independiente: Rediseño de una impresora flexográfica

FRECUENCIAS OBSERVADAS

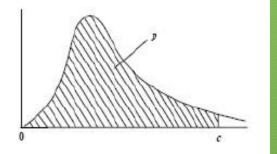
FRECUENCIAS ESPERADAS

	Características de impresión				Características de impresión				
Impresiones	Limpieza	Nitidez	Adherencia de tinta	TOTAL	Impresiones	Limpieza	Nitidez	Adherencia de tinta	TOTAL
Buenas	4	8	9	21	Buenas	7	7	7	21
Malas	6	2	1	9	Malas	3	3	3	9
TOTAL	10	10	10	30	TOTAL	10	10	10	30

CÁLCULO DE CHI CUADRADO

	Caracte				
Impresiones	Limpieza	Nitidez	Adherencia de tinta	TOTAL	
Buenas	1.28	0.14	0.57	1.99	
Malas	3	0.33	1.33	4.66	
TOTAL	4.28	0.47	1.90	6.65	

$$\chi^2_{prueba} = \sum \frac{(fo - fe)^2}{fe}$$


Donde:

fo: Frecuencia observada.

fe: Frecuencia esperada.

TABLA 2: VALORES CRÍTICOS DE LA DISTRIBUCIÓN x2

p	0.005	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99	0.99
v = 1	0.00004	0.0002	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.83
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.75
6	0.676	0.972	1 227	1 625	2.204	10.645	12 502	14 440	16 912	10 549

Grado de libertad

v = (número de filas - 1) * (número de columnas - 1)

v=2

Nivel de confianza 95%

Análisis

 $\chi^2_{prueba} \ge \chi^2_{tabla}$

 $6.65 \ge 5.991$

ANÁLISIS DE COSTOS

IMPLEMENTADO

DETALLE	VALOR TOTAL
Sistema Eléctrico y de Control	1108,88
Sistema Mecánico	44,00
Mantenimiento	562,00
ALTERNATIVO	1714,88

DETALLE	VALOR TOTAL
Sistema Eléctrico y de Control	2735,53
Sistema Mecánico	44,00
Mantenimiento	562,00
ΤΟΤΔΙ	3341.53

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- Se diseñó el sistema mecánico de acuerdo al peso a soportar en la estructura del desbobinado y el sistema de control de acuerdo a la función que debe cumplir cada parte de la impresora, así como también se adaptó el rebobinado, lo que permitió que el operador tenga un mejor manejo del material al inicio y al final del proceso de impresión.
- Una vez diseñado el sistema de control, se seleccionaron los dispositivos a usar como son fusibles, contactores, disyuntores, variador de frecuencia, motor y conductores a partir de sus características técnicas, aplicabilidad y disponibilidad en el mercado para su adquisición.
- A partir de la aplicación de materiales como el acero ASTM A-36 y el acero estructural ASTM A-500 se obtuvo un factor de seguridad de 3.37 en el análisis estático permitiendo que se soporte fácilmente cargas de hasta 60 Kg sin deformación alguna.
- Se implementó tanto el sistema mecánico como el de control para que la impresora flexográfica cumpla el proceso secuencial de movimientos que se requiere al realizar la impresión, tales como son la salida de plástico hacia la impresora, la impregnación de tinta y su paso por el sistema de secado a velocidades óptimas, y su rebobinado como etapa final.

CONCLUSIONES

- La impresora flexográfica rediseñada es capaz de producir alrededor de 30 impresiones de buena calidad en 4 Kg de material por minuto, lo cual es aceptable ya que en comparación con empresas de la ciudad de Quito como INDUPETRA S. A. que disponen de maquinaria similar pero más sofisticada se tiene como dato 50 impresiones por minuto, y en FLEXIPLAS otra empresa de la misma ciudad se tiene como dato 3 Kg de impresión por minuto.
- A una temperatura de 42.6 °C en el sistema de secado y frecuencias de entre 36.4 y 40 Hz del variador de frecuencia en el sistema principal se obtuvo impresiones de buena calidad con adherencia y secado de tinta aceptables.
- Se logró la producción en serie de la impresora flexográfica que se encontraba fuera de funcionamiento.

RECOMENDACIONES

- Para evitar daños en la estructura del desbobinado de material, no exceder el peso del rollo para el que fue diseñado.
- Se recomienda empotrar la estructura del desbobinado en la pared para mayor fijación.
- Colocar una plancha de material no conductivo detrás del circuito de potencia en el tablero de control del rebobinado de material.
- Implementar un sistema mezclador que permita el ingreso y salida de tinta en la bandeja, para agilitar el proceso de impresión y facilitar el trabajo del operador.

RECOMENDACIONES

- Aumentar en la estructura un sistema de frenado de material, que sea más preciso.
- Incorporar un tacómetro para las revoluciones por minuto del rodillo porta cliché para así conocer la constante producción de la máquina.
- Incorporar otra estación de impresión, para de esta manera tener la opción de imprimir en más de dos colores.

Chiches Chacias