

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y

LA CONSTRUCCIÓN

CARRERA DE INGENIERÍA CIVIL

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

TEMA:

"VELOCIDADES DE ONDA VS Y VP Y SU RELACIÓN CON LOS VALORES DE ÁNGULO DE FRICCIÓN INTERNA, COHESIÓN Y NSPT PARA LOS SUELOS DE SANGOLQUÍ"

AUTOR:

PAZMIÑO AGUALEMA, LUIS ENRIQUE

DIRECTOR:

ING. BONIFAZ HUGO

SANGOLQUÍ

2017

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y LA CONSTRUCCIÓN

CARRERA DE INGENIERIA CIVIL

CERTIFICACIÓN

Certifico que el trabajo de titulación, "VELOCIDADES DE ONDA VS Y VP Y SU RELACIÓN CON LOS VALORES DE ÁNGULO DE FRICCIÓN INTERNA, COHESIÓN Y NSPT PARA LOS SUELOS DE SANGOLQUÍ" realizado por el señor Pazmiño Agualema Luis Enrique, ha sido revisado en su totalidad y analizado por el software anti-plagio, el mismo cumple con los requisitos teóricos, científicos, técnicos, metodológicos y legales establecidos por la Universidad de Fuerzas Armadas ESPE, por lo tanto me permito acreditarlo y autorizar al señor Pazmiño Agualema Luis Enrique para que lo sustente públicamente.

Sangolquí, 10 de Marzo de 2017

Ing. Hugo Bonifaz Garcia DIRECTOR

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y LA CONSTRUCCIÓN

CARRERA DE INGENIERIA CIVIL

AUTORÍA DE RESPONSABILIDAD

Yo, *Pazmiño Agualema Luis Enrique*, con cédula de identidad N° 1714028436, declaro que este trabajo de titulación "VELOCIDADES DE ONDA VS Y VP Y SU RELACIÓN CON LOS VALORES DE ÁNGULO DE FRICCIÓN INTERNA, COHESIÓN Y NSPT PARA LOS SUELOS DE SANGOLQUÍ" ha sido desarrollado considerando los métodos de investigación existentes, así como también se ha respetado los derechos intelectuales de terceros considerándose en las citas bibliográficas.

Consecuentemente declaro que este trabajo es de mi autoría, en virtud de ello me declaro responsable del contenido, veracidad y alcance de la investigación mencionada.

Sangolquí, 10 de Marzo de 2017

Pazmiño Agualema Luis Enrique C.C. 1714028436

Ш

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y LA CONSTRUCCIÓN

CARRERA DE INGENIERIA CIVIL

AUTORIZACIÓN

Yo, *Pazmiño Agualema Luis Enrique*, autorizo a la Universidad de las Fuerzas Armadas – ESPE publicar en la biblioteca Virtual de la institución la presente trabajo de titulación "VELOCIDADES DE ONDA VS Y VP Y SU RELACIÓN CON LOS VALORES DE ÁNGULO DE FRICCIÓN INTERNA, COHESIÓN Y NSPT PARA LOS SUELOS DE SANGOLQUÍ" cuyo contenido, ideas y criterios son de mi autoría y responsabilidad.

Sangolquí, 10 de Marzo de 2017

Pazmiño Agualema Luis Enrique C.C. 1714028436 Ш

DEDICATORIA

Este proyecto de investigación está dedicado a Florinda y Miguel, mis padres. A mis hermanos: Verónica, Nayro y Fernanda. A mis sobrinos Jennifer, Anahí, Daniel, Daniela y Samantha que son la luz de mis días. Y a Fátima, por su incondicional apoyo y paciencia.

AGRADECIMIENTOS

Un agradecimiento muy especial a mi director de tesis Ingeniero Hugo Bonifaz, al ingeniero Juan Haro, al ingeniero Ricardo Durán y al ingeniero Francisco Lastra quienes fueron mis tutores, compañeros, y sobre todo amigos y me brindaron su apoyo, confianza y le dieron la dirección correcta a la trayectoria de mi carrera profesional.

CERTIFICACIÓN	i
AUTORÌA DE RESPONSABILIDAD	ii
AUTORIZACIÒN	iii
AGRADECIMIENTOS	v
INDICE	vi
INDICE DE FIGURAS	x
INDICE DE TABLAS	xii
RESUMEN	xv
ABSTRACT	xvi
CAPÍTULO 1	1
INTRODUCCIÓN	1
1.1 ANTECEDENTES	1
1.2. LOCALIZACIÓN GEOGRÁFICA	2
1.2.1. DESCRIPCIÓN GENERAL	2
1.2.2 HIDROGRAFÍA	3
1.2.2. GEOLOGÍA	3
1.2.3. SITIOS DE ESTUDIO	4
1.3. OBJETIVOS	4
1.3.1. OBJETIVO GENERAL	4
1.3.2. OBJETIVOS ESPECÍFICOS	5
1.4. METODOLOGÍA	5
1.4.1. PRIMERA ETAPA: TRABAJO DE CAMPO	5
1.4.2. SEGUNDA ETAPA: TRABAJO DE LABORATORIO	6
1.4.3. TERCERA ETAPA: PROCESAMIENTO DE DATOS Y ANÁLISIS D	E
	6
	/
	/
	/
	8
	9
2.2.1.1. PRUEDA DE PENETRACIÓN ESTANDAR (ENSATO SPT)	9
2.2.1.1.1. PARAMETRU N_{30} DEL ENSAYU SPT	11
2.2.1.2. EXCAVACIONES A CIELO ABIERTO Y CALICATAS	12
	13

INDICE

	2.2.1.3.1. RESISTENCIA AL CORTE	14
	2.2.1.3.2. COHESIÓN (c')	15
	2.2.1.3.3. ÁNGULO DE FRICCIÓN INTERNA (φ)	15
	2.2.1.3.4. ENSAYO CORTE DIRECTO (ASTM D-3080)	16
	2.2.2. MÉTODOS INDIRECTOS	19
	2.2.2.1. ENSAYOS GEOFÍSICOS	19
	2.2.2.2. MÉTODOS SÍSMICOS	19
	2.2.2.3. ONDAS SÍSMICAS	20
	2.2.2.4. ONDAS ELÁSTICAS	21
	2.2.2.4.1. ONDAS PRIMARIAS O DE COMPRESIÓN (ONDAS P)	21
	2.2.2.4.2. ONDAS SECUNDARIAS O DE CORTE (ONDAS S)	22
	2.2.2.4.3. ONDAS SUPERFICIALES	23
	2.2.2.4.4. SERIES DE FOURIER	24
	2.2.2.5. SÍSMICA DE REFRACCIÓN	26
	2.2.2.6. MÉTODO MASW & MAM (MULTICHANNEL ANALYSIS OF SURFACE WAVES & MULTICHANNEL ANALYSIS OF MICROTREMOR)	32
	2.2.3. CORRELACIONES EMPÍRICAS	35
С	CAPÍTULO 3	37
	TRABAJOS DE CAMPO Y LABORATORIO	37
	3.1 DESCRIPCIÓN	37
	3.1.1 SITIO SANTA CLARA	37
	3.1.2 ENSAYOS DE CAMPO	38
	3.1.3 ENSAYOS DE LABORATORIO	42
	3.1.4 RESULTADOS	43
	3.1.4.1 NÚMERO DE GOLPES DEL ENSAYO "SPT"	43
	3.1.4.2 ENSAYO "SÌSMICA DE REFRACCIÓN"	43
	3.1.4.3 MÉTODO "MASW"	45
	3.1.4.4 ENSAYOS DE LABORATORIO	50
	3.1.4.4.1 ENSAYOS DE CLASIFICACIÓN SUCS	50
	3.1.4.4.2 ENSAYO CORTE DIRECTO	51
	3.2 SITIO SAN RAFAEL	52
	3.2.1 ENSAYOS DE CAMPO	52
	3.2.2 ENSAYOS DE LABORATORIO	56
	3.2.3 RESULTADOS	57
	3.2.3.1 NÚMERO DE GOLPES DEL ENSAYO "SPT"	57

	3.2.3.2	2	ENSAYO "SÍSMICA DE REFRACCIÓN"	57
	3.2.3.3	3	MÉTODO "MASW"	60
	3.2.3.4	4	ENSAYOS DE LABORATORIO	64
	3.2.3.4	4.1	ENSAYOS DE CLASIFICACIÓN SUCS	64
	3.2.3.4	4.2	ENSAYO CORTE DIRECTO	65
	3.3	SIT	IO SAN PEDRO	66
	3.3.1	E	NSAYOS DE CAMPO	66
	3.3.2	E	NSAYOS DE LABORATORIO	70
	3.3.3	R	ESULTADOS	71
	3.3.3.7	1	DEL ENSAYO "SPT"	71
	3.3.3.2	2	DEL ENSAYO "SÍSMICA DE REFRACCIÓN"	71
	3.3.3.3	3	DEL MÉTODO "MASW"	73
	3.3.3.4	4	ENSAYOS DE LABORATORIO	78
	3.3.3.4	4.1	DE CLASIFICACIÓN SUCS	78
	3.3.3.4	4.2	ENSAYO CORTE DIRECTO	79
	3.4	SIT	Ю СОТОДСНОА	80
	3.4.1	E	NSAYOS DE CAMPO	80
	3.4.2	E	NSAYOS DE LABORATORIO	84
	3.4.3	R	ESULTADOS	85
	3.4.3.	1	NÚMERO DE GOLPES DEL ENSAYO "SPT"	85
	3.4.3.2	2	ENSAYO "SÍSMICA DE REFRACCIÓN"	85
	3.4.3.3	3	MÉTODO "MASW"	87
	3.4.3.4	4	ENSAYOS DE LABORATORIO	91
	3.4.3.4	4.1	ENSAYOS DE CLASIFICACIÓN SUCS	91
	3.4.3.4	4.2	ENSAYO CORTE DIRECTO	92
С	APÍTU	LO 4	۱	93
	ANÁL	ISIS	DE DATOS Y RESULTADOS	93
	4.1	TAE	BULACIÓN DE LOS DATOS ENCONTRADOS	93
	4.2	ANA	ÁLISIS COHESIÓN (c') EN FUNCIÓN DE V _P Y V _S	96
	4.3 V _S	AN/ 97	ÁLISIS ÁNGULO DE FRICCIÓN INTERNA (φ) EN FUNCIÓN DE V _P Υ	(
	4.4	ANA	ÁLISIS N ₃₀ EN FUNCIÓN DE V _P	99
	4.5	ANA	ÁLISIS V _S EN FUNCIÓN DE N $_{30}$ (SPT) 1	01
	4.6	CO	NCLUSIONES 1	02
	4.7	REC	COMENDACIONES 1	.05

3IBLIOGRAFÍA

INDICE DE FIGURAS

Figura 1 Ubicación geográfica de los sitios de estudio	4
Figura 2 Ensayo SPT - Equipo	10
Figura 3 Cuchara partida- con muestra recuperada del sondeo	10
Figura 4 Excavación de calicata	13
Figura 5 Calicata terminada	13
Figura 6 Diagrama de Mohr – Angulo de fricción interna - Cohesión	16
Figura 7 Esquema del aparato de corte directo (LNV, 1993)	17
Figura 8 Curva esfuerzo - deformación	18
Figura 9 Recta envolvente	19
Figura 10 Movimiento de las ondas P (Madrid, 2013)	22
Figura 11 Ejemplo perfil estratigràfico Velocidades de onda Vp	22
Figura 12 Movimiento de ondas S (Madrid, 2013)	23
Figura 13 Ejemplo de perfil de cizalla, Velocidades de onda Vs, Vs30	23
Figura 14 Series de ondas de Fourier (Martínez, 2009)	25
Figura 15 Transformada de Fourier: amplitud y fase de espectro (Don)	26
Figura 16 Regristro de pulsos de llegada	27
Figura 17 Dromocrona	27
Figura 18 Esquema de sondeo de refracción sísmica (Redpath, 1973)	28
Figura 19 Ley de snell y refracción de un rayo transmitido entre dos medios de	
diferentes velocidades (Redpath, 1973)	28
Figura 20 Sísmica de refracciín – sismógrafo	31
Figura 21 Sísmica de refracción tendido de la línea sísmica	31
Figura 22 Sísmica de refracción – trigger	32
Figura 23 Sísmica de refracción golpe de martillo	32
Figura 24 Curva de dispersión	33
Figura 25 Santa Clara ubicación ensayos SPT	39
Figura 26 Santa Clara ubicación ext muestras y calicatas	40
Figura 27 Santa Clara ubicación sondeos sísmica de refracción	41
Figura 28 Santa Clara ubicación sondeos MASW	42
Figura 29 Santa Clara sísmica de refracción LS1	43
Figura 30 Santa Clara sísmica de refracción LS2	44
Figura 31 Santa Clara sísmica de refracción LS3	44
Figura 32 Santa Clara sísmica de refracción LS4	45
Figura 33 Santa Clara perfil de cizalla LS1 activo	46
Figura 34 Santa Clara perfil de cizalla LS2 activo	47
Figura 35 Santa Clara perfil de cizalla LS3 activo	48
Figura 36 Santa Clara perfil de cizalla LS4 activo	49
Figura 37 San Rafael ubicación ensayos SPT	53
Figura 38 San Rafael ubicación ext muestras y calicatas	54
Figura 39 San Rafael ubicación sondeos sísmica de refracción	55
Figura 40 San Rafael ubicación sondeos MASW	56
Figura 41 San Rafael sísmica de refracción LS1	57

San Rafael sísmica de refracción LS2	. 58
San Rafael sísmica de refracción LS3	. 58
San Rafael sísmica de refracción LS4	. 59
San Rafael perfil de cizalla LS1 activo	. 60
San Rafael perfil de cizalla LS2 activo	. 61
San Rafael perfil de cizalla LS3 pasivo	. 62
San Rafael perfil de cizalla LS4 pasivo	. 63
San Pedro ubicación ensayos	. 67
San pedro ubicación ext muestras y calicatas	. 68
San Pedro ubicación sondeos sísmica de refracción	. 69
San Pedro ubicación sondeos MASW	. 70
San Pedro sísmica de refracción LS1	. 71
San Pedro sísmica de refracción LS2	. 72
San Pedro sísmica de refracción LS3	. 72
San Pedro sísmica de refracción LS4	. 73
San Pedro perfil de cizalla LS1 activo	. 74
San Pedro perfil de cizalla LS2 activo	. 75
San Pedro perfil de cizalla LS3 pasivo	. 76
San Pedro perfil de cizalla LS4 pasivo	. 77
Cotogchoa ubicación ensayos SPT	. 81
Cotogchoa ubicación ext muestras y calicatas	. 82
Cotogchoa ubicación sondeos sísmica de refracción	. 83
Cotogchoa ubicación sondeos MASW	. 84
Cotogchoa sísmica de refracción LS1	. 85
Cotogchoa sísmica de refracción LS2	. 86
Cotogchoa sísmica de refracción LS3	. 86
Cotogchoa sísmica de refracción LS4	. 87
Cotogchoa perfil de cizalla LS1 activo	. 87
Cotogchoa perfil de cizalla LS2 activo	. 88
Cotogchoa perfil de cizalla LS3 pasivo	. 89
Cotogchoa perfil de cizalla LS4 pasivo	. 90
Cohesión c' en función de Vp y Vs	. 96
Ángulo de fricción interna φ en función de Vp y Vs	. 98
N30 SPT en función de Vp	. 99
Vs en función de De N30	101
	San Rafael sísmica de refracción LS2 San Rafael sísmica de refracción LS3 San Rafael perfil de cizalla LS1 activo San Rafael perfil de cizalla LS2 activo San Rafael perfil de cizalla LS2 activo San Rafael perfil de cizalla LS2 pasivo San Rafael perfil de cizalla LS4 pasivo San Pedro ubicación ensayos. San Pedro ubicación ext muestras y calicatas San Pedro ubicación sondeos sísmica de refracción San Pedro ubicación sondeos sísmica de refracción San Pedro ubicación sondeos MASW San Pedro sísmica de refracción LS1 San Pedro sísmica de refracción LS2. San Pedro sísmica de refracción LS2. San Pedro sísmica de refracción LS3. San Pedro sísmica de refracción LS4. San Pedro perfil de cizalla LS1 activo San Pedro perfil de cizalla LS1 activo San Pedro perfil de cizalla LS3 pasivo San Pedro perfil de cizalla LS4 pasivo Cotogchoa ubicación sondeos sísmica de refracción Cotogchoa ubicación ext muestras y calicatas Cotogchoa ubicación sondeos sísmica de refracción Cotogchoa ubicación sondeos MASW Cotogchoa sísmica de refracción LS1 Cotogchoa sísmica de refracción LS2. Cotogchoa sísmica de refracción LS2. Cotogchoa sísmica de refracción LS2. Cotogchoa sísmica de refracción LS2. Cotogchoa sísmica de refracción LS3. Cotogchoa sísmica de refracción LS3. Cotogchoa sísmica de refracción LS3. Cotogchoa sísmica de refracción LS3. Cotogchoa perfil de cizalla LS4 pasivo Cotogchoa perfil de cizalla LS4 pasivo Co

INDICE DE TABLAS

Tabla 1 Ensayos para la exploración del subsuelo	9
Tabla 2 Correlaciones empíricas	36
Tabla 3 Ensayos realizados	37
Tabla 4 Santa Clara ubicación ensayos	38
Tabla 5 Santa Clara ubicación ext muestras y calicatas	39
Tabla 6 Santa Clara ubicación sondeos sísmica de refracción	40
Tabla 7 Santa Clara ubicación sondeos MASW	41
Tabla 8 Santa Clara ensayos de laboratorio	42
Tabla 9 Santa Clara "N30" spt según la profundidad	43
Tabla 10 Santa Clara sísmica de refracción LS1	43
Tabla 11 Santa Clara sísmica de refracción LS2	44
Tabla 12 Santa Clara sísmica de refracción LS3	45
Tabla 13 Santa Clara sísmica de refracción Is4	45
Tabla 14 Santa Clara perfil de cizalla LS1 activo	46
Tabla 15 Santa Clara perfil de cizalla LS2 activo	47
Tabla 16 Santa Clara perfil de cizalla LS3 activo	48
Tabla 17 Santa Clara perfil de cizalla LS4 activo	49
Tabla 18 Santa Clara clasificación muestras SP01	50
Tabla 19 Santa Clara clasificación muestras SP02	50
Tabla 20 Santa Clara clasificación muestras SP03	50
Tabla 21 Santa Clara clasificación muestras SP04	51
Tabla 22 Santa Clara clasificación muestras CALICATAS	51
Tabla 23 Santa Clara corte directo muestras calicatas	51
Tabla 24 San Rafael ubicación ensayos SPT	52
Tabla 25 San Rafael ubicación ext muestras y calicatas	53
Tabla 26 Santa Rafael ubicación sondeos sísmica de refracción	54
Tabla 27 San Rafael ubicación sondeos MASW	55
Tabla 28 San Rafael ensayos de laboratorio	56
Tabla 29 San Rafael "N30" SPT según la profundidad	57
Tabla 30 San Rafael sísmica de refracción LS1	57
Tabla 31 San Rafael sísmica de refracción LS2	58
Tabla 32 San Rafael sísmica de refracción LS3	59
Tabla 33 San Rafael sísmica de refracción LS4	59
Tabla 34 San Rafael perfil de cizalla LS1 activo	60
Tabla 35 San Rafael perfil de cizalla LS2 activo	61
Tabla 36 San Rafael perfil de cizalla LS3 pasivo	62
Tabla 37 San Rafael perfil de cizalla LS4 pasivo	63
Tabla 38 San Rafael clasificación muestras SP01	64
Tabla 39 San Rafael clasificación muestras SP02	64
Tabla 40 San Rafael clasificación muestras SP03	64
Tabla 41 San Rafael clasificación muestras SP04	65
Tabla 42 San Rafael clasificación muestras CALICATAS	65
Tabla 43 San Rafael corte directo muestras calicatas	65
Tabla 44 San Pedro ubicación ensayos SPT	66
Tabla 45 San Pedro ubicación ext muestras y calicatas	67

Tabla 46	San Pedro ubicación sondeos sísmica de refracción	. 68
Tabla 47	San Pedro ubicación sondeos MASW	. 69
Tabla 48	San Pedro ensayos de laboratorio	. 70
Tabla 49	San Pedro "N30" SPT según la profundidad	. 71
Tabla 50	San Pedro sísmica de refracción LS1	. 71
Tabla 51	San Pedro sísmica de refracción LS2	. 72
Tabla 52	San Pedro sísmica de refracción LS3	. 73
Tabla 53	San Pedro sísmica de refracción LS4	. 73
Tabla 54	San Pedro perfil de cizalla LS1 activo	. 74
Tabla 55	San Pedro perfil de cizalla LS2 activo	. 75
Tabla 56	San Pedro perfil de cizalla LS3 pasivo	. 76
Tabla 57	San Pedro perfil de cizalla LS4 pasivo	. 77
Tabla 58	San Pedro clasificación muestras SP01	. 78
Tabla 59	San Pedro clasificación muestras SP02	. 78
Tabla 60	San Pedro clasificación muestras SP03	. 78
Tabla 61	San Pedro clasificación muestras SP04	. 79
Tabla 62	San Pedro clasificación muestras CALICATAS	. 79
Tabla 63	San Pedro corte directo muestras calicatas	. 79
Tabla 64	Cotogchoa ubicación ensayos SPT	. 80
Tabla 65	Cotogchoa ubicación ext muestras y calicatas	. 81
Tabla 66	Cotogchoa ubicación sondeos sísmica de refracción	. 82
Tabla 67	Cotogchoa ubicación sondeos MASW	. 83
Tabla 68	Cotogchoa ensayos de laboratorio	. 84
TABLA 6	9 Cotogchoa "N30" SPT según la profundidad	. 85
Tabla 70	Cotogchoa sísmica de refracción LS1	. 85
Tabla 71	Cotogchoa sísmica de refracción LS2	. 86
Tabla 72	Cotogchoa sísmica de refracción LS3	. 86
Tabla 73	Cotogchoa sísmica de refracción LS4	. 87
Tabla 74	Cotogchoa perfil de cizalla LS1 activo	. 88
Tabla 75	Cotogchoa perfil de cizalla LS2 activo	. 89
Tabla 76	Cotogchoa perfil de cizalla LS3 pasivo	. 90
Tabla 77	Cotogchoa perfil de cizalla LS3 pasivo	. 91
Tabla 78	Cotogchoa clasificación muestras SP01	. 91
Tabla 79	Cotogchoa clasificación muestras SP02	. 91
Tabla 80	Cotogchoa clasificación muestras SP03	. 92
Tabla 81	Cotogchoa clasificación muestras SP04	. 92
Tabla 82	Cotogchoa clasificación muestras CALICATAS	. 92
Tabla 83	Cotogchoa corte directo muestras calicatas	. 92
Tabla 84	Resultados de campo y laboratorio: cohesión, V _p y V _s	. 94
Tabla 85	Resultados de campo y laboratorio: ángulo de fricción interna, Vp y Vs	94
Tabla 86	Resultados de campo y laboratorio: N30 SPT y Vp	. 95
Tabla 87	Resultados de campo y laboratorio: V _s y N30 SPT	. 95
Tabla 88	Comparación resultados c' en función de Vs y Vp	. 97
Tabla 89	Comparación de resultados φ en función de Vs y Vp	. 99
Tabla 90	Comparación de resultados N ₃₀ en función de Vp	100
Tabla 91	Comparación de resultados V _s en función de N ₃₀	102

Tabla 92	Recomendaciones de uso correlaciones encontradas	ł
		•

RESUMEN

La presente investigación realiza el análisis y correlación de los parámetros de resistencia al corte: ángulo de fricción interna "q" y cohesión "c'", el número de golpes del ensavo SPT "N30", y los valores de velocidades de onda de compresión "Vp" y de corte "Vs" para los suelos aluviales de Sangolquí, provincia de Pichicha, Ecuador. Para esto, se realizaron los ensayos de campo: SPT (Standard Penetration Test), sísmica de refracción y medición de ondas superficiales por los métodos MASW y MAM (MULTICHANNEL ANALYSIS OF SURFACE WAVES & MULTICHANNEL ANALYSIS OF MICROTREMOR). Y el ensayo corte directo en laboratorio. Con los datos obtenidos, y tomando como referencia correlaciones empíricas disponibles en la bibliografía, se procedió a relacionar estos parámetros entre sí: ángulo de fricción interna "q" en función de los valores velocidades de onda Vs y Vp, cohesión "c'" en función de los valores velocidades de onda Vs y Vp, el número de golpes del ensayo SPT "N30" en función de la velocidad de onda Vp y la velocidad de onda Vs en función del valor "N30" del SPT. En el primer capítulo se describen los antecedentes, se plantean los objetivos, y se expone la metodología de trabajo. En el segundo capítulo se realiza la descripción teórica de los métodos a utilizarse y los parámetros a obtenerse. En el tercer capítulo se exponen los resultados de todos los ensayos tanto de campo como de laboratorio. En el cuarto capítulo se

parámetros. Se presentan cuatro ecuaciones de correlación matemática.

tabulan los resultados obtenidos y se calculan las correlaciones entre estos

Palabras clave:

VELOCIDAD DE ONDA DE COMPRESIÓN VELOCIDAD DE ONDA DE CORTE SPT MASW MAM COHESIÓN ÁNGULO DE FRICCIÓN INTERNA.

ABSTRACT

The present research makes the analysis and correlation for the shear resistance parameters: angle of internal friction " ϕ " and cohesion "c'", the number of blows of the SPT "N30", and the compression and shear wave velocities "Vp" and "Vs". For Sangolquí alluvial soil, Pichincha Ecuador.

For this purpose, field-testing: SPT (Standard Penetration Test), seismic refraction and measurements of surface waves using MASW y MAM (MULTICHANNEL ANALYSIS OF SURFACE WAVES & MULTICHANNEL ANALYSIS OF MICROTREMOR) methods, and laboratory direct shear test of soil were developed. Empirical correlations were created using the obtained data and with other empirical correlations available in the bibliography as a reference: angle of internal friction " ϕ " as an function of Vs and Vp wave velocities. , cohesión "c" as an function of Vs and Vp wave velocities. "N30" value as a function of Vp wave velocities, and Vs as a function of the "N30" value. On the first chapter, precedents, objectives, and the work methodology are described. On the second chapter the theoretical description of the methods used and the parameters that are going to be obtained. On the third chapter the results are exposed. On the fourth chapter results are tabulated and correlations calculated. Four equations are presented.

Keyword COMPRESSION WAVE VELOCITIE SHEAR WAVE VELOCITIE SPT MASW MAM COHESION ANGLE OF INTERNAL FRICTION

CAPÍTULO 1

INTRODUCCIÓN

1.1 ANTECEDENTES

En nuestro país, las actividades ingenieriles asociadas al estudio de suelos, si bien indispensables desde el punto de vista técnico, no se cumplían a cabalidad, pero, debido a las exigencias requeridas por la Norma Ecuatoriana de la Construcción actual, los estudios geotécnicos y su correcta ejecución previos al diseño de proyectos de Ingeniería Civil han pasado a ser fundamentales.

Los parámetros de resistencia al corte del suelo: ángulo de fricción interna, cohesión o "N₃₀" número de golpes del SPT son los que se buscan con mayor frecuencia al momento de la caracterización de los sitios donde se implantarán las cimentaciones de los proyectos civiles y para esto se desarrollan ensayos "In situ" como el SPT (Standard Penetration Test) o en laboratorio como el ensayo Corte Directo, ambos válidos pero cada uno con sus propias limitaciones. Por ejemplo, el ensayo SPT está orientado a suelos granulares (arenas) y aunque arroja resultados con respecto a la profundidad este se limita solamente a un punto de estudio específico en el área de implantación de la estructura, se ve afectado por la dificultad del traslado de los equipos, al sitio de estudio y la topografía del mismo. Por otra parte, los resultados del ensayo Corte Directo pertenecen a un lugar puntual determinado y solamente a la profundidad de extracción de la muestra inalterada desde el campo, se ve afectado por el método de toma de la muestra, su traslado hasta el laboratorio y la eficacia y conocimiento del técnico que realiza los ensayos en el seguimiento estricto de las normas que rigen estos.

La efectiva realización de un estudio geotécnico en áreas extensas exige la utilización de grandes recursos económicos y tiempos de ejecución largos. Por esta razón, la obtención de los parámetros de resistencia al cortese la realiza utilizando como alternativa métodos geofísicos los mismos que ayudan a caracterizar de forma inmediata grandes extensiones de terreno y determinar su ideoneidad principalmente en el diseño de cimentaciones.

El uso de métodos geofísicos implica la utilización de correlaciones matemáticas empíricas que relacionen los valores medidos, por ejemplo, las velocidades de onda sísmicas, con los parámetros de resistencia al corte, ángulo de fricción interna, cohesión del Suelo, "N" del SPT, etc. Para esto, se cuenta en la literatura con varias de estas correlaciones, pero estas han sido obtenidas para depósitos de suelos con características mecánicas y litológicas diferentes a las que se tienen en nuestro medio por lo que no siempre se adaptarán a nuestras necesidades.

Por ejemplo, Ordoñez Alfaro et al, (2012), proponen la ecuación $V_s = 57,66 \text{ N}^{0,43}$ que relaciona los valores de la Velocidad de Onda de Corte Vs con el valor "N₃₀" del SPT, pero esta correlación corresponde únicamente a las arcillas del valle de Tuxtla Gutierrez, Chiapas México.

Debido a que en el país son pocas las investigaciones orientadas a obtener correlaciones adecuadas a los depósitos de suelos y su gran diversidad el presente estudio tiene como finalidad encontrar correlaciones empíricas matemáticas que faciliten la caracterización de nuestros suelos utilizando los diferentes métodos tanto geofísicos como técnicos "in situ" o laboratorio, específicamente los suelos de depósito aluvial que se encuentran el Cantón Rumiñahui, Provincia de Pichincha.

1.2. LOCALIZACIÓN GEOGRÁFICA

1.2.1. DESCRIPCIÓN GENERAL

El Cantón Rumiñahui, fundado el 31 de mayo de 1983 se localiza en el Valle de los Chillos a 2550 m.s.n.m promedio y es una de los ocho cantones que conforman la Provincia de Pichincha. Su cabecera cantonal es la Parroquia Urbana Sangolquí, actualmente considerada como una de las urbes con un continuo desarrollo en el país, está ubicada aproximadamente una hora de Quito, ciudad con la que mantiene vínculos geográficos, históricos y poblacionales.

1.2.2 HIDROGRAFÍA

Hidrográficamente el cantón está ubicado en la microcuenca del río San Pedro, su cauce principal es el Río Pita, alimentado por deshielos y vertientes de los volcanes Rumiñahui, Cotopaxi y Pasochoa.

Específicamente, la Parroquia Urbana Sangolquí se encuentra bañado por algunos ríos, entre los más importantes tenemos:

- Río San Pedro: Este río se observa torrentoso.

 Río Pita: El río Pita nace en los páramos de las estribaciones del Cotopaxi, Sincholagua y Rumiñahui.

- Río Santa Clara: Es afluente del Río San Pedro al igual que los ríos San Miguel y Cachaco.

1.2.2. GEOLOGÍA

De acuerdo al Plan de Desarrollo y Ordenamiento Territorial del Cantón Rumiñahui 2012 - 2025, Rumiñahui se encuentra localizado dentro del Valle Interandino, específicamente formado al Este por rocas metamórficas paleozoicas del núcleo de la Cordillera Real y al Oeste por productos del arco primario post a creación del arco de islas y rocas cretácicas alóctonas de la Cordillera Occidental. (Secretaría Nacional de Gestión de Riesgos)

Por otro lado, con bases en el estudio realizado por el Municipio del Cantón Rumiñahui en su Plan Estratégico del 2003, se menciona que el cantón se encuentra atravesado por una falla geológica, la cual empieza en el sector sur del cantón en la Parroquia Cotogchoa, sector El Manzano dirigiéndose al norte, hasta finalizar en el cauce del Río Pita en la Parroquia de Sangolquí, sector La Colina.

1.2.3. SITIOS DE ESTUDIO

Se ubicaron CUATRO puntos en diferentes sectores de SANGOLQUÍ, que por su cercanía con los ríos Pita, Santa Clara y San Pedro está formados por depósitos aluviales y sobre yacen depósitos de flujos piroplásticos.

- 1) San Rafael.- rivera del río Pita
- 2) Santa Clara.- rivera del río Santa Clara
- 3) San Pedro.- rivera del río San Pedro
- 4) Cotogchoa.- ondonada afluente al río San Pedro.

Figura 1 Ubicación geográfica de los sitios de estudio

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

Establecer correlaciones matemáticas entre los parámetros geotécnicos de resistencia al corte del suelo obtenidos en laboratorio: ángulo de fricción interna y cohesión e "in situ": N₃₀ del ensayo spt y los parámetros geofísicos Vp y Vs. basadas en las aproximaciones empíricas existentes en la literatura

y los resultados de los ensayos asociados a la obtención de estos parámetros.

1.3.2. OBJETIVOS ESPECÍFICOS

- Determinar el parámetro "N₃₀" a través del ensayo SPT (Standard Penetration Test) en cada sitio de estudio.
- Obtener en laboratorio los parámetros de ángulo de fricción interna y cohesión de las muestras extraídas en cada sitio de estudio.
- Realizar ensayos geofísicos de Sísmica de Refracción y MASW (multichannel analisys of surface waves) para la obtención de los parámetros V_p (Velocidad de Ondas P) y V_s (Velocidad de Ondas de Corte S) respectivamente.

1.4. METODOLOGÍA

Para el desarrollo y realización de las metas propuestas en este proyecto se contemplan básicamente tres etapas, las mismas que se detallan a continuación:

1.4.1. PRIMERA ETAPA: TRABAJO DE CAMPO

Una vez establecidos los puntos de estudio se procede a realizar los ensayos de campo SPT (Standard Penetration Test), Sísmica de Refracción y MASW (multichannel analisys of surface waves) método activo y pasivo, también excavaciones a cielo abierto para la extracción de muestras inalteradas.

El ensayo SPT se realizará siguiendo la NORMA ASTM D 1586 y utilizando el equipo proporcionado por el laboratorio de ensayos de materiales suelos y pavimentos de la Universidad de las Fuerzas Armadas.

Los ensayos SÍSMICA DE REFRACCIÓN y MASW se realizarán siguiendo la NORMA ASTM D 5777 utilizando el equipo proporcionado por el laboratorio de ensayos de materiales suelos y pavimentos de la Universidad de las Fuerzas Armadas.

1.4.2. SEGUNDA ETAPA: TRABAJO DE LABORATORIO

Con las muestras extraídas en campo se realizarán los siguientes ensayos:

- ENSAYO CORTE DIRECTO Y CARGA RESIDUAL, para suelos granulares mediante la NORMA ASTM 3080 para determinar los parámetros de resistencia al corte. Se escogió el ensayo de resistencia al corte debido a la existencia de su mayoría de suelos granulares originados en los depósitos aluviales y flujos piroclásticos en el área de estudio.
- ENSAYOS DE CLASIFICACIÓN SUCS
 - CONTENIDO DE HUMEDAD
 ASTM D-2216
 - ANÁLISIS GRANULOMÉTRICO ASTM D-422
 - LÍMITES LÍQUIDO Y PLÁSTICO ASTM D-4318

1.4.3. TERCERA ETAPA: PROCESAMIENTO DE DATOS Y ANÁLISIS DE RESULTADOS

Se recolectarán todas las relaciones empíricas disponibles en la literatura y estas serán corregidas para los valores de los parámetros obtenidos en los diferentes ensayos realizados.

Se presentarán las nuevas ecuaciones empíricas encontradas para cada correlación.

CAPÍTULO 2

MARCO TEÓRICO

2.1 INTRODUCCIÓN

En este capítulo se detalla el respaldo teórico correspondiente a la metodología que se usa en la investigación para establecer las correlaciones mencionadas en los objetivos. Se da una descripción de los métodos de exploración directos y de los métodos indirectos que se usan en campo. Luego se realiza una descripción de los métodos sísmicos, con énfasis en la sísmica de refracción y los métodos MASW y MAM. Al final se describen los ensayos de laboratorio.

Con el fin de obtener toda la información mencionada puede utilizarse desde la básica inspección visual del suelo, hasta técnicas de campo o laboratorio más o menos sofisticadas y que se agrupan en dos conjuntos:

- Métodos directos: este grupo pertenecen las técnicas que permiten el acceso y observación directa al subsuelo, permitiendo a su vez la obtención de muestras que eventualmente permitirán la realización de ensayos de laboratorio. Aquí se incluyen:

- Sondeos geotécnicos:
 - Ensayo SPT
 - Ensayo de carga con placa, etc.
- Calicatas:

 Descripción de la estratigrafía y obtención de muestras inalteradas.

- Ensayos de laboratorio:
 - Ensayo Corte Directo.
 - Ensayo Triaxial.
 - Ensayo de Compresión Simple

- Métodos indirectos. - son aquellos que se llevan a cabo sin necesidad de acceder directamente al terreno, midiendo desde la superficie algunas propiedades físicas de los materiales. Aquí se incluyen:

- Prospección geofísica:
 - Sísmica de Refracción
 - Resistividad Eléctrica
 - Magnetulometría

2.2. EXPLORACIÓN DEL SUBSUELO

Una cimentación, tanto superficial como profunda. no puede ser diseñada correctamente a no ser que el proyectista tenga al menos una concepción precisa de las propiedades físicas y los parámetros de resistencia al corte del suelo donde estas estructuras serán implantadas. Las investigaciones de campo y laboratorio cuyo objetivo es identificar las capas de depósitos que subyacen a una estructura de cimentación propuesta y en conjunto sus características físicas y mecánicas constituyen la exploración del subsuelo.

La exploración el subsuelo comprende varias etapas, entre ellas la investigación "in situ" y los ensayos de laboratorio. El tipo de ensayo a realizarse tanto en campo como en laboratorio depende de factores tales como el tipo de proyecto a implantarse, geología del sitio, tipo de suelo encontrado, tecnologías disponibles, experiencia del personal técnico encargado de la ejecución, etc.

La tabla 1 muestra los diferentes métodos para la exploración del subsuelo tanto en el campo como en laboratorio para caracterizar el suelo.

Tabla 1 Ensayos para la exploración del subsuelo

MÉTODOS DIRECTOS SONDEOS MECÁNICOS PRUEBA DE PENETRACIÓN DE CONO CPT MÉTODO DIRECTOS MÉTODO DE PARED DELGADA SHELLBY MÉTODO CON TUBO DOBLE GIRATORIO MÉTODO DE PARED DELGADA SHELLBY MÉTODO SIRECTOS MÉTODO SONTUBO DOBLE GIRATORIO ENSAYOS MÉTODO GRA VIMÉTRICO ENSAYOS MÉTODOS MÉTODOS MÉTODO SIRECTOS MÉTODO SINECTOS MÉTODO GRA VIMÉTRICO MÉTODO DUPHOLE MÉTODO DUPHOLE MÉTODO DUPHOLE MÉTODO DUPHOLE MÉTODO DO DUPHOLE MÉTODO DUPHOLE MÉTODO DO DO DUPHOLE MÉTODO DUPHOLE MÉTODO DUPHOLE MÉTODO CROSS-HOLE MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO MASW MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO MASW MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO SASW CARACTERÍSTICAS FÉSICAS PESICES ESPECÍFICO DEL SUELO FÍSICAS PESIDAD DE LSUELO ENSAYO CONTE DIRECTO LABORATORIO ENSAYOS PARA RESISTENCIA ENSAYO CONTE DIRECTO LABORATORION ENSAYO SPARA				PRUEBA DE F	ENETRACIÓN ESTANDAR SPT	
MÉTODOS DIRECTOS SONDEOS MECÁNICOS PRUEBA DE CONO DINÁMICO DCP MÉTODO DE PARED DEL GADA SHELLBY MÉTODO DOBLE GIRA TORIO MÉTODOS DIRECTOS CALICATAS O POZOS A CIELO ABIERTO ENSAYOS CALICATAS O POZOS A CIELO ABIERTO ENSAYOS MÉTODOS BIECTOS ENSAYOS MÉTODOS BIECTOS MÉTODOS MÉTODOS A CIELO ABIERTO MÉTODOS BIECTOS MÉTODO GRAVIMÉTRICO MÉTODOS BIECTOS MÉTODO GRAVIMÉTRICO MÉTODO SALÉCTRICOS MÉTODO DUP.HOLE MÉTODO DUP.HOLE MÉTODO DUP.HOLE MÉTODO DO DUP.HOLE MÉTODO DUP.HOLE MÉTODO DO DUP.HOLE MÉTODO CROSS-HOLE MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DUP.HOLE MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO MASW MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO SASW DETERMINACIÓN DE LABORATORIO FÍSICAS PESO ESPECÍFICO DEL SUELO ENSAYO SPARA PARÁMEROS PERMEABLIDAD ENSAYO CORTE DIRECTO ENSAYO SPARA MECÁNICOS RESISTENCIA ENSAYO CARGA PUNTUAL PARÁMEROS MECÁNICO		MÉTODOS DIRECTOS	SONDEOS MECÁNICOS	PRUEBA DE PENETRACIÓN DE CONO CPT		
MÉTODOS DIRECTOS MÉCANICOS MÉTODO DE PARED DELGADA SHELLBY HUESTREO CON TUBO DOBLE GIRATORIO MUESTREO CON TUBO DOBLE GIRATORIO MUESTREO ROTATORIO PARA ROCA MUESTREO ROTATORIO PARA ROCA CALICATAS O POZOS A CIELO ABIERTO MÉTODO GRAVIMÉTRICO EXPLORATORIOS DE CAMPO MÉTODOS MÉTODO GRAVIMÉTRICO MÉTODOS INDIRECTOS MÉTODO SELÉCTRICOS MÉTODO DOWN-HOLE MÉTODO DOWN-HOLE MÉTODO DO DOROS MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO SASW ENSAYO DE FESO ESPECÍFICO DEL SUELO LABORATORIO FESO ESPECÍFICO DEL SUELO ENSAYO DE FERMEABLIDAD ENSAYO SPARA LABORATORIO PERMEABLIDAD PARÁMETROS MECÁNICOS RESISTENCIA MECANICOS ENSAYO CARGA PUNTUAL ENSAYO SPARA LABORATORIO PERMEABLIDAD ENSAYO DE FERMEABLIDAD ENSAYO SPARA MECÁNICOS PERMEABLIDAD				PRUEBA DE CONO DINÁMICO DCP		
MÚESTREO CON TUBO DOBLE GIRATORIO MUESTREO ROTATORIO PARA ROCA ENSAYOS EXPLORATORIOS DE CAMPO MÉTODO GRAVIMÉTRICO MÉTODO MAGNÉTICO MÉTODO S LÉCTRICOS MÉTODO DOWN-HOLE MÉTODO DOWN-HOLE MÉTODO DOR VIMÉTRICO MÉTODO DOWN-HOLE MÉTODO DOWN-HOLE MÉTODO DOWN-HOLE MÉTODO DOWN-HOLE MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO AGNE MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO SASW MÉTODO SASW PERSAYOS PARA PERSO ESPECÍFICO DEL SUELO VERSO ESPECÍFICO DEL SUELO PENSAYO DE FÍSICAS PERMEABLIDAD PERMEABLIDAD PERMEABLIDAD PERMAVOS PARA RESISTENCIA PENSAYO PARA PERMEABLIDAD PERMEABLIDAD PERMEABLIDAD PENSAYO PARA PERMEABLIDAD PENSAYO CARGA PUNTUAL PENSAYO CARGA PUNTUAL				MÉTODO DE PARED DELGADA SHELLBY		
ENSA YOS CALICATAS O POZOS A CELO ABIERTO CALICATAS O POZOS A CELO ABIERTO CALICATAS O POZOS A CELO ABIERTO ENSA YOS EXPLORATORIOS DE CAMPO MÉTODOS MÉTODOS MÉTODOS ENSA YOS GEOFÍSICOS MÉTODO UP.HOLE MÉTODO DOWN-HOLE MÉTODO DOWN-HOLE MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA				MUESTREO CON TUBO DOBLE GIRATORIO		
ENSAYOS MÉTODO GRAVIMÉTICO ENSAYOS MÉTODO SELÉCTRICOS MÉTODO UP-HOLE MÉTODO DUP-HOLE INDIRECTOS MÉTODO CROSS-HOLE INDIRECTOS MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO SASW ENSAYOS PARA FÍSICAS PERO ESPECÍFICO DEL SUELO FÍSICAS PERMEABILIDAD PERMEABILIDAD ENSAYO DE LENSAYOS PARA RESISTENCIA PISAYO CORTE DIRECTO LIABORATORIO PARÁMETROS RESISTENCIA PISAYO CORTE DIRECTO PARÁMETROS RESISTENCIA ENSAYO CARGA PUNTUAL ENSAYO CARGA PUNTUAL PARÁMETROS DEFERMINACIÓN DE ENSAYO CARGA PUNTUAL ENSAYO CARGA PUNTUAL PARÁMETROS MÉCÁNICOS ENSAYO CARGA PUNTUAL ENSAYO CARGA PUNTUAL <td></td> <td>MUESTREO R</td> <td>OTATORIO PARA ROCA</td>				MUESTREO R	OTATORIO PARA ROCA	
ENSAYOS MÉTODO GRA VIMÉTRICO EXPLORATORIOS MÉTODO MA GNÉTICO DE CAMPO MÉTODOS MÉTODOS MÉTODOS INDIRECTOS ENSAYOS GEOFÍSICOS MÉTODO CROSS-HOLE INDIRECTOS MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFRACCIÓN SÍSMICA MÉTODO DE REFRACCIÓN SÍSMICA MÉTODO DE REFRACCIÓN SÍSMICA MÉTODO DE REFRACCIÓN SÍSMICA MÉTODO DE REFRACCIÓN SÍSMICA MÉTODO DE REFRACCIÓN SÍSMICA MÉTODO SASW ENSAYOS PARA FISICAS PERMEABLIDAD FÍSICAS FISICAS GRANULOMETRÍA FISICAS FERMERACITERISTICAS PERMEABLIDAD ENSAYO COLT ENSAYO DE ENSAYO SPARA PERMEABLIDAD ENSAYO CORE DIRECTO ENSAYO SPARA ENSAYO CORE ALIDAD PARÁMETROS RESISTENCIA ENSAYO CORE ALIDAD PARÁMETROS ENSAYO CARGA PUNTUAL PARÁMETROS ENSAYO CARGA PUNTUAL ENSAYO CARGA PUNTUAL PARÁMETROS ENSAYO CARGA PUNTUAL ENSAYO CARGA PUNTUAL			CALICATAS O POZOS A CIELO ABIERTO			
EXPLORATORIOS DE CAMPO MÉTODO MAGNÉTICO MÉTODOS ELÁCTRICOS MÉTODO UP-HOLE MÉTODO DO DOWN-HOLE MÉTODO CROSS-HOLE INDIRECTOS ENSAYOS GEOFÍSICOS MÉTODO CROSS-HOLE MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO ASAW MÉTODO ASAW MÉTODO ASAW MÉTODO ASAW MÉTODO ASAW PENSAYOS PARA DETERMINACIÓN DE LABORATORIO HUMEDAD FÍSICAS PESO ESPECÍFICO DEL SUELO PERMEABLIDAD PERMEABLIDAD ENSAYO SPARA PÉRMEABLIDAD PESO ESPECÍFICO DEL SUELO PERMEABLIDAD PESO ESPECÍFICO DEL SUELO PERMEABLIDAD PESOAYO CARGA PUNTUAL PARÁMETROS MECÁNICOS RESISTENCIA PARÁMETROS MECÁNICOS ENSAYO CARGA PUNTUAL PARÁMETROS MECÁNICOS DEFORMABLIDAD ENSAYO CARGA PUNTUAL	ENSAYOS			MÉTODO GRA	VIMÉTRICO	
DE CAMPO MÉTODOS ELÉCTRICOS MÉTODOS ENSAYOS INDIRECTOS ENSAYOS GEOFÍSICOS MÉTODO DOWN-HOLE MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO SASW MÉTODO SASW DETERMINACIÓN DE FÍSICAS FÍSICAS PESO ESPECÍFICO DEL SUELO DENSIDAD DEL SUELO DENSIDAD DEL SUELO ENSAYO DE PERMEABILIDAD LABORATORIO RESISTENCIA PARÁMETROS RESISTENCIA MECÁNICOS LÍMITES DE CONSISTENCIA ATTENBERG DEFORMABILIDAD LÍMITES DE CONSISTENCIA ATTENBERG ONSOLIDACIÓN EXPANSBILIDAD	EXPLORATORIOS			MÉTODO MA	GNÉTICO	
MÉTODOS ENSAYOS MÉTODO DUP-HOLE INDIRECTOS ENSAYOS MÉTODO CROSS-HOLE MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO SASW DETERMINACIÓN DE GRANULOMETRÍA DETERMINACIÓN DE FÍSICAS PESO ESPECÍFICO DEL SUELO FOSIDAD DEL SUELO FÍSICAS PERMEABLIDAD ENSAYO DE ENSAYO CORTE DIRECTO ENSAYO SPARA RESISTENCIA PARÁMETROS RESISTENCIA MECÁNICOS ENSAYO CARGA PUNTUAL PARÁMETROS ENSAYO CARGA PUNTUAL PARÁMETROS DEFORMABLIDAD	DE CAMPO			MÉTODOS EL	ÉCTRICOS	
MÉTODOS INDIRECTOS ENSAYOS GEOFÍSICOS MÉTODO DOWN-HOLE MÉTODO CROSS-HOLE MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO MASW MÉTODO MASW MÉTODO SASW DETERMINACIÓN DE GRANULOMETRÍA DETERMINACIÓN DE GRANULOMETRÍA FÍSICA S GRANULOMETRÍA PESO ESPECÍFICO DEL SUELO TOTO DE REFLEXION FÍSICA S GRANULOMETRÍA PESO ESPECÍFICO DEL SUELO FORMABILIDAD PENSAYO DE PERMEABILIDAD ENSAYO CORTE DIRECTO BISAYO CORTE DIRECTO PARÁMETROS RESISTENCIA MECÁNICOS RESISTENCIA DEFORMABILIDAD BISAYO CARGA PUNTUAL PARÁMETROS DEFORMABILIDAD DEFORMABILIDAD ENSAYO CONSISTENCIA ATTENBERG CONSOLIDACIÓN CONSOLIDACIÓN					MÉTODO UP-HOLE	
INDIRECTOS GEOFISICOS MÉTODO CROSS-HOLE MÉTODO DE REFLEXIÓN SÍSMICA MÉTODO ASW MÉTODO SASW NÉTODO SASW MÉTODO SA		MÉTODOS	ENSAYOS		MÉTODO DOWN-HOLE	
Implementation Método de reflexión sísmica Método de reflexión sísmica Método de reflexión sísmica Determinación de reflexión de r		INDIRECTOS	GEOFÍSICOS	MÉTODOS SÍSMICOS	MÉTODO CROSS-HOLE	
MÉTODO DE REFRACCIÓN SÍSMICA MÉTODO MASW MÉTODO SASW MÉTODO SASW MÉTODO SASW DETERMINACIÓN DE CARACTERÍSTICAS PESO ESPECÍFICO DEL SUELO DETERMINACIÓN DE FÍSICAS PERMEABILIDAD PERMEABILIDAD ENSAYO DE LABORATORIO ENSAYOS PARA DETERMINACIÓN DE PARÁMETROS MÉTODO MASW MÉTODO SASW					MÉTODO DE REFLEXIÓN SÍSMICA	
MÉTODO MASW MÉTODO SASW MÉTODO SASW MÉTODO SASW DETERMINACIÓN DE CARACTERÍSTICAS FÍSICAS GRANULOMETRÍA PESO ESPECÍFICO DEL SUELO DENSIDAD DEL SUELO DENSIDAD DEL SUELO PERMEABILIDAD PERMEABILIDAD PERMEABILIDAD PERMEABILIDAD PERMEABILIDAD PERMEABILIDAD PENSAYO CORTE DIRECTO PENSAYO CARGA PUNTUAL PARÁMETROS MECÁNICOS DEFORMABILIDAD DEFORMABILIDAD					MÉTODO DE REFRACCIÓN SÍSMICA	
ENSAYO S PARA DETERMINACIÓN DE CARACTERÍSTICAS HUMEDAD FÍSICAS GRANULOMETRÍA PESO ESPECÍFICO DEL SUELO PESO ESPECÍFICO DEL SUELO DETERMINACIÓN DE LABORATORIO PERMEABILIDAD ENSAYO DE LABORATORIO PERMEABILIDAD ENSAYO S PARA DETERMINACIÓN DE PARÁMETROS MECÁNICOS PERMEABILIDAD ENSAYO CORTE DIRECTO ENSAYO CORTE DIRECTO ENSAYO CARGA PUNTUAL ENSAYO CARGA PUNTUAL DEFORMABILIDAD ENSAYO CONSISTENCIA ATTENBERG DEFORMABILIDAD CONSOLIDACIÓN					MÉTODO MASW	
ENSAYOS PARA DETERMINACIÓN DE CARACTERÍSTICAS HUMEDA D FÍSICA GRANULOMETRÍA PESO ESPECÍFICO DEL SUELO DEL SUELO DETERMINACIÓN DE FÍSICAS PERMEABILIDAD ENSAYO DE LABORATORIO PERMEABILIDAD ENSAYOS PARA DETERMINACIÓN DE PARÁMETROS MECÁNICOS PERMEABILIDAD ENSAYO CORTE DIRECTO ENSAYO CORTE DIRECTO ENSAYO CARGA PUNTUAL PERORABILIDAD ENSAYO CARGA PUNTUAL DEFORMABILIDAD ENSAYO CONSISTENCIA ATTENBERG CONSOLIDACIÓN EXPANSIBILIDAD					MÉTODO SASW	
DETERMINACIÓN DE GRANULOMETRÍA CARACTERÍSTICAS PESO ESPECÍFICO DEL SUELO DENSIDAD DEL SUELO DENSIDAD DEL SUELO DENSAYO DE PERMEABILIDAD LABORATORIO PERMEABILIDAD ENSAYOS PARA DETERMINACIÓN DE PARÁMETROS MECÁNICOS RESISTENCIA DEFORMABILIDAD ENSAYO CORTE DIRECTO DEFORMABILIDAD ENSAYO CARGA PUNTUAL DEFORMABILIDAD ENSAYO CARGA PUNTUAL DEFORMABILIDAD ENSAYO CONSISTENCIA ATTENBERG DEFORMABILIDAD EXPANSIBILIDAD		ENSAYOS PARA DETERMINACIÓN DE	HUMEDA D			
ENSAYO DE FÍSICAS PESO ESPECÍFICO DEL SUELO ENSAYO DE DENSIDAD DEL SUELO LABORATORIO PERMEABILIDAD ENSAYOS PARA RESISTENCIA DETERMINACIÓN DE RESISTENCIA PARÁMETROS MECÁNICOS DEFORMABILIDAD ENSAYO CORTE DIRECTO ENSAYO CARGA PUNTUAL ENSAYO CARGA PUNTUAL DEFORMABILIDAD EXPANSIBILIDAD			GRANULOMETRÍA			
ENSAYO DE LABORATORIO PERMEABILIDAD ENSAYOS PARA DETERMINACIÓN DE PARÁMETROS MECÁNICOS PERMEABILIDAD ENSAYO CORTE DIRECTO ENSAYO CORTE DIRECTO ENSAYO TRIAXIAL ENSAYO CARGA PUNTUAL DEFORMABILIDAD LÍMITES DE CONSISTENCIA ATTENBERG DEFORMABILIDAD EXPANSIBILIDAD		CARACTERÍSTICAS	PESO ESPECÍFICO DEL SUELO			
ENSAYO DE LABORATORIO ENSAYOS PARA DETERMINACIÓN DE PARÁMETROS MECÁNICOS ENSAYO CORTE DIRECTO ENSAYO CORTE DIRECTO ENSAYO TRIAXIAL ENSAYO CARGA PUNTUAL ENSAYO CARGA PUNTUAL		FISICAS	DENSIDAD DEL SUELO			
LABORATORIO LABORATORIO ENSAYOS PARA DETERMINACIÓN DE PARÁMETROS MECÁNICOS MECÁNICOS LÍMITES DE CONSISTENCIA ATTENBERG DEFORMABILIDAD EXPANSIBILIDAD		ENSAYOS PARA DETERMINACIÓN DE PARÁMETROS MECÁNICOS	PERMEABILIDAD			
ENSAYOS PARA DETERMINACIÓN DE PARÁMETROS MECÁNICOS DEFORMABILIDAD ENSAYO TRIAXIAL ENSAYO TRIAXIAL	LABORATORIO		RESISTENCIA	ENSAYO CORTE DIRECTO		
DETENDINACION DE ENSAYO CARGA PUNTUAL PARÁMETROS LÍMITES DE CONSISTENCIA ATTENBERG DEFORMABILIDAD CONSOLIDACIÓN EXPANSIBILIDAD EXPANSIBILIDAD				ENSAYO TRIAXIAL		
MECÁNICOS LÍMITES DE CONSISTENCIA ATTENBERG CONSOLIDACIÓN EXPANSIBILIDAD				ENSAYO CARGA PUNTUAL		
DEFORMABILIDAD CONSOLIDACIÓN EXPANSIBILIDAD			DEFORMABILIDAD	LÍMITES DE C	ONSISTENCIA ATTENBERG	
EXPANSIBILIDAD				CONSOLIDAC	CIÓN	
				EXPANSIBILIE	AD	

2.2.1. MÈTODOS DIRECTOS

2.2.1.1. PRUEBA DE PENETRACIÓN ESTÁNDAR (ENSAYO SPT)

El ensayo S.P.T. (Standard Penetration Test), norma ASTM D1586, El ensayo SPT consiste en la introducción de un tomamuestras (cuchara partida) normalizado unido a un tren de varillas en un pozo de sondeo, mediante golpes en la cabeza de estas varillas con una maza de 63,5 kg, cayendo desde una altura de 76,0 cm. El golpeo se contabiliza en tres

tramos de 15 cm de avance cada uno, denominándose valor N_{30} a la suma de los valores segundo y tercero.

Figura 2 Ensayo SPT - Equipo

Figura 3 Cuchara partida- con muestra recuperada del sondeo

Una vez terminada la penetración hasta una profundidad determinada (normalmente las maniobras de avance son de 0,50 m. a 1,00 m.), se extrae el tomamuestras y la muestra de suelo recuperada dentro del tubo se coloca en un medio que evite la pérdida de humedad y se transporta al laboratorio donde se le realizará pruebas de clasificación SUCS: contenido de humedad, granulometría y límites de Attenberg.

El conjunto de penetración, conteo de golpes y extracción de muestra se denomina "maniobra". Cuando el valor " N_{30} " supera un valor de 50, se considerándose a este punto como rechazo, registrando como valor " N_{30} = 50". Una vez alcanzado el nivel de rechazo, se debe extraer la cuchara partida y la zapata de penetración y cambiarlas por una punta de penetración con el fin de continuar el sondeo y comprobar el rechazo en el estrato.

Este ensayo se realiza en depósitos de suelo arenoso y de arcilla blanda; no es recomendable llevarlo en depósitos de grava, roca o arcilla consolidada, ya que los daños que podría sufrir el equipo de perforación al introducirlo dentro de dichos estratos pueden ser significativos.

2.2.1.1.1. PARÁMETRO "N₃₀" DEL ENSAYO SPT

En el ensayo SPT se contabiliza y se anota el número de golpes necesarios para hincar la cuchara los primeros 15 centímetros $(N_{0-15}, número de golpes de 0 cm a 15 cm))$

Seguidamente se realiza la prueba en sí, introduciendo otros 30 centímetros, anotando el número de golpes requerido para la hinca en cada intervalo de 15 centímetros de penetración $(N_{15-30}, número \ de \ golpes \ de \ 15 \ cm \ a \ 30 \ cm \ y$

 N_{30-45} , número de golpes de 30 cm a 45 cm.).

El resultado del ensayo es el número N₃₀ del SPT o Resistencia a la Penetración Estándar:

$$N_{30} = N_{15-30} + N_{30-45}$$
 Ec. 2-1

Si el número de golpes requerido para profundizar en cualquiera de estos intervalos de 15 centímetros, supera los 50, el resultado del ensayo deja de ser la suma anteriormente indicada, para convertirse en rechazo (R), debiéndose anotar también la longitud hincada en el tramo en el que se han alcanzado los 50 golpes.

Debido a que el ensayo SPT es uno de los más antiguos en geotecnia, y su uso universal y durante décadas, en todo tipo de terrenos, ha permitido establecer numerosas correlaciones del N₃₀ con otros parámetros de resistencia al corte.

2.2.1.2. EXCAVACIONES A CIELO ABIERTO Y CALICATAS

Las calicatas se conocen se utilizan como técnicas de prospección que facilitan el reconocimiento del subsuelo de una cimentación. Se caracterizan por ser excavaciones de profundidad pequeñas. Estas generalmente se realizan a mano o con pala retroexcavadora. Esto facilita la inspección del suelo. Dicho método proporciona información confiable y completa, especialmente en los suelos con grava.

Cuando se va a trabajar con esta técnica se necesita la ubicación y elevación de cada pozo, la profundidad estará determinada por las exigencias de la investigación, aunque generalmente se da por el nivel freático, El proceso involucra el retiro de residuos, o materiales inservibles del área de excavación, Esto con la finalidad de obtener la mejor densidad del terreno. Las calicatas acceden a toma de muestras, una inspección visual del terreno, la profundidad de reconocimiento, realización de algún ensayo de campo.

Otro dato importante es que la calicata debe de ser entibada cuando el terreno ya está maniobrado. Dependiendo del terreno o del suele a estudiar, se aplicada la calicata, por supuesto con las exigencias y recomendaciones de lugar, para poder obtener uno de los mejores resultados. En los casos, terrenos y situaciones en las que se puede dar uso de esta técnica están obras lineales, terrenos heterogéneos, terrenos cohesivos, principalmente en terrenos de nivel freático debajo del plano de investigación, en situaciones en las que se puede nacanzar el substrato rocoso. (Escalante, http://www.arqhys.com, 2017)

Figura 4 Excavación de calicata

Figura 5 Calicata terminada

2.2.1.3. ENSAYOS DE LABORATORIO

La mayoría de propiedades físico-mecánicas de los suelos se determinan en laboratorio con muestras que son extraídas de campo alteradas o no por medio de sondeos mecánicos como el ensayo SPT (muestras alteradas) o calicatas y excavaciones a cielo abierto (muestras inalteradas). Se considera que las muestras tomadas son representativas de una masa mayor de suelo. (López & Mejía, 2008)

El ensayo de Corte Directo (ASTM D-3080) es una prueba realizada luego de la exploración "in situ", con muestras de carácter granular que pueden ser inalteradas como reconstituidas, con el fin de evaluar las características mecánicas de los suelos asociadas a la resistencia al corte (ángulo de fricción interna y cohesión). Estos parámetros están directamente relacionados con las propiedades físicas de los suelos que influyen en la propagación de las ondas elásticas.

Ensayos orientados a la clasificación SUCS, (humedad, granulometría, límites de Attenberg), son realizados en todas las muestras obtenidas en campo con el fin de determinar las propiedades físicas de los suelos en estado natural. Los resultados de estos ensayos: porcentaje de humedad natural, porcentaje de gravas, arenas y finos, índice de plasticidad, etc darán una orientación al ingeniero geotécnico sobre los parámetros mecánicos del suelo buscados en los ensayos mecánicos. Por ejemplo, una muestra con alto contenido de arenas y sin plasticidad no será susceptible de tallado por lo que se utilizará el ensayo corte directo en lugar del ensayo triaxial para la obtención de los parámetros de resistencia al corte. También, la ausencia de partículas finas (d<0,075 mm) y de plasticidad indica que la cohesión del suelo tenderá a cero ya que esta propiedad es intrínseca de las partículas finas, su composición y forma. Por otro lado, el ángulo de fricción interna será mayor.

2.2.1.3.1. RESISTENCIA AL CORTE

La resistencia al corte del suelo en términos del esfuerzo efectivo se define según la siguiente ecuación:

$$r = c' + \sigma' \tan \varphi$$
 Ec. 2-2

donde:

 τ = resistencia al corte.

c' = cohesión o cohesión aparente.

 σ' = esfuerzo normal efectivo en el plano de corte

 φ = ángulo de fricción interna

La ecuación Ec 2-1 se conoce como el "criterio de falla de Mohr-Coulomb". El valor de c' para arenas y arcillas normalmente consolidadas es igual a cero. Para arcillas preconsolidadas, c' > 0.

Para la mayoría de los trabajos de rutina, los parámetros de la resistencia al corte de un suelo ($c' \neq \phi$) se determinan por medio de dos pruebas estándar de laboratorio: la prueba de Corte Directo (en muestras granulares) y el ensayo Triaxial (para suelos cohesivos). (Das, Ingeniería de Cimentaciones, 2006)

2.2.1.3.2. COHESIÓN (c')

La cohesión es la máxima resistencia del suelo a la tensión. Resulta de la compleja interacción de muchos factores como la adherencia coloidal de la superficie de las partículas, la tensión capilar de las películas de agua, la atracción electrostática de las superficies cargadas, las condiciones de drenaje y el historial de esfuerzos. Solo existe una verdadera cohesión en el caso de las arcillas que tienen contacto de canto con cara entre sus partículas. Los suelos no plásticos de grano fino pueden exhibir una cohesión aparente cuando están en condiciones de saturación parcial. (Escalante, http://www.arghys.com, 2017)

La norma INEN 685 "Geotecnia. Mecánica de Suelos. Terminología y Simbología" define a la cohesión (c') como "Parte de la resistencia al esfuerzo cortante del suelo debida a la atracción molecular entre las partículas, determinada en la intersección de la envolvente de falla con el eje vertical, en el diagrama de Mohr". Ver Figura 6

2.2.1.3.3. ÁNGULO DE FRICCIÓN INTERNA (φ)

Es la resistencia al deslizamiento causado por la fricción que hay entre las superficies de contacto de las partículas. Como los suelos granulares tienen superficies de contacto mayores y sus partículas, especialmente si son angulares, presentan una buena trabazón, tendrán fricciones internas altas. En cambio, los suelos finos las tendrán bajas. La fricción interna de un suelo, está definida por el ángulo cuya tangente es la relación entre la fuerza que resiste el deslizamiento, a lo largo de un plano, y la fuerza normal aplicada a dicho plano.

La norma INEN 685 "Geotecnia. Mecánica de Suelos. Terminología y Simbología" define al ángulo de fricción interna (φ) como el "Valor característico de la resistencia al esfuerzo cortante de los suelos, cuya tangente se define como la pendiente de la envolvente de falla, en el diagrama de Mohr". Ver Figura 6

Figura 6 Diagrama de Mohr – Angulo de fricción interna - Cohesión

2.2.1.3.4. ENSAYO CORTE DIRECTO (ASTM D-3080)

El ensayo Corte Directo sigue los lineamentos generales especificados en la norma ASTM D-3080 y consiste en colocar el espécimen en una caja de corte directo (CD), aplicando un esfuerzo normal determinado, humedeciendo o drenando el espécimen de ensayo, o ambas cosas, consolidando el espécimen bajo el esfuerzo normal, soltando los marcos que contienen la muestra y desplazado un marco horizontal con respecto a otro a una velocidad constante de deformación y medir la fuerza de corte y los desplazamientos horizontales a medida que la muestra es llevada a la falla. (Romero, 2006)

El ensayo puede realizarse sobre muestras inalteradas a fin de obtener resultados que se aproximen a las características que tiene el suelo en su estado natural. También pueden ser realizadas sobre muestras alteradas, previamente preparadas a fin de que alcancen características similares de compacidad y contenido de humedad al de su estado natural, aunque se debe aclarar que existe un limitante sobre el tamaño de las partículas (d< 4,75 mm).

Se coloca la muestra en la caja de corte directo y se la inmoviliza con la ayuda de los seguros. La muestra debe ser colocada con piedras porozas en ambos extremos.

Figura 7 Esquema del aparato de corte directo (LNV, 1993)

Se coloca la esfera de acero sobre la placa de reparto y se sitúa sobre ella, el yugo de aplicación de la carga vertical (Pv). Sobre el yugo colocar el extremo móvil de un deflectómetro para medir las deformaciones verticales de la caja.

Se aplica la presión necesaria para cada estado de carga del ensayo. Normalmente un ensayo consta de tres estados de carga: 0,5 Mpa, 1,0 Mpa y 1,50 Mpa. Se coloca el deflectómetro horizontal que se usará para medir las deformaciones horizontales.

Se inicia el ensayo, y se desplaza la parte superior de la caja de corte, la resistencia del suelo a este desplazamiento se mide con una celda S para carga horizontal. Si la muestra es rígida y moldeada el ensayo terminará cuando esta haya fallado, si la muestra es granular se tomarán medidas hasta alcanzar un 10% de la longitud de la muestra a lo largo de plano de falla. (x-x).

Se toman lecturas del deflectómetro horizontal, vertical y de la celda de carga a intervalos de tiempo definidos (15 seg). Estas lecturas serán tabuladas y luego presentadas en una gráfica de deformación tangencial ε , versus esfuerzo de corte T. Se presentan al menos 3 curvas, una para cada estado de carga.

Figura 8 Curva esfuerzo - deformación

Los valores máximos de cada curva se utilizarán luego para construir la "Envolvente" (Esfuerzo vertical vs. Esfuerzo de corte), cuya pendiente corresponde al "ángulo de fricción interna" el valor donde corta con la abscisa se corresponderá a la "cohesión" de la muestra ensayada.

Figura 9 Recta envolvente

2.2.2. MÉTODOS INDIRECTOS

2.2.2.1. ENSAYOS GEOFÍSICOS

La prospección geofísica es definida como una metodología de prospección de las condiciones del subsuelo a través de la observación de fenómenos físicos (naturales o artificiales) relacionados con la estructura geológica del subsuelo.

La interpretación del contraste de velocidades en un medio estratificado, como suele ser el suelo, provee de información sobre las características dinámicas de los estratos y de su conformación geométrica, cuando la rigidez de los estratos superiores es menor que la de los estratos más profundos. (López & Mejía, 2008)

2.2.2.2. MÉTODOS SÍSMICOS

Se basan en la medición de variaciones de velocidad de propagación de ondas de choque, producidas de forma natural (sismos) ò artificial (por un
impacto en el suelo o por una explosión), con los cuales se puede obtener una imagen aproximada de la estratigrafía del terreno.

Los métodos sísmicos más utilizados son: Método Up-Hole, Down-Hole y Cross-hole; Método de Medición de Ondas Superficiales MASW y SASW; Método de Reflexión y Refracción Sísmica; los cuales se fundamentan en la teoría de ondas. Así mismo, se aclara que la ley de Snell, el principio de Fermat y el principio de Huygens son utilizados para el desarrollo de los métodos que se basan en la refracción y reflexión. (López & Mejía, 2008)

2.2.2.3. ONDAS SÍSMICAS

Las ondas sísmicas son la propagación de perturbaciones temporales generadas por pequeños movimientos en un medio. Estas ondas que se originan en el interior de la corteza terrestre, debido a repentinos desplazamientos en fallas o hendiduras en la tierra, se propagan hacia la superficie terrestre originando terremotos o movimientos sísmicos de baja intensidad.

Se producen dos tipos de ondas sísmicas que viajan a través de la tierra, y que son conocidas como ondas de cuerpo u ondas internas, las cuales pueden ser, según el tipo de movimiento, compresionales (ondas P) o de corte (ondas S).

La velocidad de las ondas depende, como ocurre en todas las manifestaciones ondulatorias, de las propiedades del medio; fundamentalmente de la elasticidad y densidad de los materiales por los cuales se propaga. Por lo que el estudio de la velocidad de propagación de las ondas sísmicas es utilizado en el área de la geofísica para conocer de manera indirecta las propiedades mecánicas del suelo donde se propagan.

La energía asociada a las ondas sísmicas depende de la amplitud de las ondas. Cuando la onda avanza, se amortigua y su amplitud disminuye. Así, el movimiento sísmico es menor cuando el hipocentro (centro en el cual se produce la onda sísmica) se encuentra a mayor profundidad. El aparato usado para la detección de ondas sísmicas se llama sismógrafo. Las ondas sísmicas también son utilizadas en la explotación del petróleo y de otros combustibles.

El movimiento ondulatorio puede considerarse como un transporte de energía y cantidad de movimiento, desde un punto del espacio a otro, sin transporte de materia. Las ondas se clasifican en dos categorías: viajeras y estacionarias. En las primeras hay propagación de energía mientras que, en las segundas, la energía asociada a la onda permanece confinada entre dos fronteras. (López & Mejía, 2008)

2.2.2.4. ONDAS ELÁSTICAS

La sacudida del terreno producida de manera natural (sismo) ò artificial (golpe ò explosión), generan 2 tipos de ondas elásticas que se propagan a través del medio:

- Las ondas de cuerpo o de volumen, y
- Las ondas superficiales.

La velocidad de propagación depende de la densidad del medio y de sus propiedades elásticas, el módulo de incompresibilidad y módulo de rigidez. Las ondas elásticas generan fuerzas y deformaciones que obedecen la teoría de la elasticidad, en la cual los cuerpos sólidos tienen la propiedad de resistir cambios de tamaño o de forma, y de regresar a la condición no deformada cuando se eliminan las fuerzas externas. (Verasteguí, 2010)

Las "ondas de cuerpo o volumen" se llaman así porque tienden a viajar a través del planeta (adentrándose a grandes profundidades). Dentro de esta categoría se encuentran las ondas primarias y las ondas secundarias.

2.2.2.4.1. ONDAS PRIMARIAS O DE COMPRESIÓN (ONDAS P)

Son ondas longitudinales que al propagarse hacen vibrar las partículas en el mismo sentido del tren de ondas, esto produce compresión y dilatación del medio de propagación a su paso. Estas ondas son las que se propagan a mayor velocidad por lo que a cualquier distancia respecto de la fuente de ondas, serán las primeras en ser registradas. La velocidad con la que se propagan las ondas P se denomina "Velocidad de Onda V_p". Ver Figura 10

Figura 10 Movimiento de las ondas P (Madrid, 2013)

El ensayo apropiado para la obtención del parámetro V_p se denomina "Sísmica de Refracción" cuyo resultado es el perfil estratigráfico del subsuelo estudiado, y las velocidades V_p de cada estrado encontrado.

2.2.2.4.2. ONDAS SECUNDARIAS O DE CORTE (ONDAS S)

Son ondas transversales que al propagarse hacen vibrar las partículas en sentido perpendicular al tren de ondas Las ondas S se diferencian de las ondas P, debido a que las primeras poseen una mayor amplitud que las segundas; es por ello que las Ondas S transportan la mayor cantidad de energía generada por la fuente de una sacudida. Este tipo de ondas solo puede viajar en materiales que poseen resistencia al corte, lo que indica que no se presentan en líquidos ni gases. Estas ondas se propagan a menor velocidad respecto de las ondas P. La velocidad con la que se propagan las ondas S se denomina "Velocidad de Onda V_s ". Ver Figura 12

Figura 12 Movimiento de ondas S (Madrid, 2013)

El ensayo utilizado en este estudio para la obtención del parámetro V_S se realiza con el "Método MASW (Multichannel Analysis of Surface Waves" cuyo resultado es el perfil de cizalla del subsuelo estudiado, las velocidades V_s a través de la profundidad y el parámetro V_{s30} .

Figura 13 Ejemplo de perfil de cizalla, Velocidades de onda Vs, Vs30

2.2.2.4.3. ONDAS SUPERFICIALES

Las ondas superficiales son análogas a las ondas de agua y viajan sobre la superficie de la Tierra. Se desplazan a menor velocidad que las ondas internas. Debido a su baja frecuencia provocan resonancia en edificios con mayor facilidad que las ondas de cuerpo y son por ende las ondas sísmicas más destructivas.

Dentro de esta categoría se encuentran las ondas Love y las ondas Rayleigh.

- Love (ondas L): Se propagan de forma similar que las ondas S haciendo vibrarlas partículas horizontalmente en sentido perpendicular al de propagación, pero sin movimiento vertical.
- Rayleigh (ondas R): Tienen un movimiento similar al de las ondas S en la superficie del agua, haciendo vibrar las partículas sobre un plano que apunta en dirección de la trayectoria de las ondas, con movimientos elíptico horizontal y vertical simultáneamente.

Las ondas L y R solo se propagan en discontinuidades de impedancia. (López & Mejía, 2008)

2.2.2.4.4. SERIES DE FOURIER

Debido a que en este proyecto empleamos el estudio de ondas muchas veces en geofísica se aplica el análisis de espectros o el cálculo de una ecuación de onda, esto es muy impórtate ya que nos permite describir la propagación de una variedad de ondas como ondas sonoras, ondas acústicas, ondas en el agua y ondas de luz, peor en varias ocasiones estas ecuaciones no son sencillas de calcular.

Es así que una función periódica compleja puede ser descompuesta matemáticamente en funciones simples representadas por senos y cosenos mediante las series de Fourier (Don).

$$h(t) = \frac{a_o}{2} + \sum_{n=1}^{\infty} (a_n \cos nw_o t + b_n \sin nw_o t)$$
 Ec. 2-3

$$h(t) = \sum_{n=1}^{\infty} \left(\alpha_n \ e^{jnw_o t} \right)$$
 Ec. 2-4

donde: $w_o = 2\pi f = \frac{2\pi}{T}$

Los coeficientes de Fourier a_n , b_n , α_n pueden obtenerse de las siguientes fórmulas:

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t) \cos n \, w_o \, t \, dt$$
 Ec. 2-5

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t) \sin nw_o t \, dt$$
 Ec. 2-6

$$\alpha_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t) e^{-jnw_o t} dt$$
 Ec. 2-7

Figura 14 Series de ondas de Fourier (Martínez, 2009)

El estudio de las series de Fourier útil para descomponer una función periódica en un conjunto de funciones simples que pueden ser resueltas fácilmente; además a través de su transformada se logra un espectro de frecuencias para la función.

A partir de la ecuación general para determinar lo coeficientes:

$$\alpha_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t) e^{-jnw_o t} dt$$
 Ec. 2-8

Se establece que el periodo T al aproximarse al infinito, provoca que $\omega 0$ = 2π / T se convierta en infinitesimal y N $\omega 0$ en una variable continua, ω ; a partir de ello se aplica la transformada y se obtiene la amplitud y fase del espectro

$$G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-jwt} dt \xrightarrow{\text{Transformada de}} g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega)e^{jwt} dt$$
Ec. 2-9
$$G(\omega) = R(\omega) + jX(\omega)$$

$$G(\omega) = A(\omega)e^{j\varphi(\omega)}$$

$$G(\omega) = tan^{-1}[X(\omega)/R(\omega)]$$

$$G(\omega) = [R^{2}(\omega) + X^{2}(\omega)]^{1/2}$$
FASE DEL ESPECTRO
$$G(\omega) = [R^{2}(\omega) + X^{2}(\omega)]^{1/2}$$

$$fast DEL ESPECTRO$$

$$fourier Transform
(FFT)
$$fourier Transform
(FFT)
(unwrapped)
(unwrappe$$$$

Figura 15 Transformada de Fourier: amplitud y fase de espectro (Don)

2.2.2.5. SÍSMICA DE REFRACCIÓN

El método de refracción sísmica consiste en medir (a lo largo de puntos conocidos en la superficie del suelo) los tiempos de viaje de las ondas de compresión (ondas P) generadas por una fuente de energía impulsiva. La fuente de energía es usualmente una pequeña carga explosiva o el golpe del martillo sobre una placa metálica. La energía es detectada, amplificada y registrada por un equipo especial diseñado para este propósito. El instante de la explosión o "tiempo cero" es registrado en el "registro de pulsos de llegada" (figura 16). La información sin procesar, por lo tanto, está

compuesta por tiempos de viaje y distancias. Y esta información de tiemposdistancias es entonces manipulada para convertirla en un formato de variaciones de velocidad con la profundidad llamado "dromocrona" (figura 17).

Figura 17 Dromocrona

El proceso se ilustra esquemáticamente en la figura 18 Todas las medidas están hechas en la superficie del suelo y la subestructura es

inferida desde algunos métodos de interpretación basados en las leyes de la propagación de ondas.

Figura 18 Esquema de sondeo de refracción sísmica (Redpath, 1973)

La propagación de las ondas sísmicas a través de las capas del suelo es descrita esencialmente por las mismas leyes que gobiernan la propagación de los rayos de luz a través de un medio transparente. La refracción o desviación angular que sufre un rayo de luz o pulso sísmico cuando pasa de un material a otro depende de la proporción entre las velocidades de transmisión de ambos materiales. La ley fundamental que describe la refracción de los rayos de luz se la Ley de Snell (figura 19), y esta, junto con el fenómeno de la incidencia crítica, es el fundamento físico de los sondeos de refracción sísmica. (Redpath, 1973)

Figura 19 Ley de snell y refracción de un rayo transmitido entre dos medios de diferentes velocidades (Redpath, 1973)

LEY DE SNELL:
$$\frac{\sin \alpha}{\sin \beta} = \frac{V_1}{V_2}$$
 Ec. 2-10

El ángulo de incidencia ocurre cuando $\beta = 90^{\circ}$, entonces $\sin \alpha = \frac{v_1}{v_2}$.

La ley de Snell y la incidencia crítica están ilustrados en la figura 2.12 la cual muestra un medio con una velocidad V_1 , subtendido por un medio con una velocidad mayor V_2 . Cuando el ángulo de incidencia se alcanza, casi toda la energía de compresión es transmitida (refractada) al medio de mayor velocidad. Cuando se sobrepasa este ángulo, casi la totalidad de la energía es reflejada y no se refracta nada a la capa de mayor velocidad.

El equipo de medición de refracción sísmica se compone básicamente por una fuente generadora de ondas sísmicas, sensores que detectan las ondas (geófonos) y el equipo de adquisición y almacenamiento (sismógrafo).

- Fuente sísmica. Es generadora de ondas sísmicas con control de la localización y el tiempo. La perturbación artificial conocida como impulso sísmico, produce ondas a través de un evento de duración corta o instantánea.
- Existen tres tipos de fuente:
 - Fuente de impacto. Generalmente son martillos (combos); la energía transmitida al suelo por este método no es muy grande, por lo cual se deben aplicar varias veces los impactos al suelo con el fin de mejorar la señal de llegada y suprimir el ruido. Existen otras fuentes de impactos mecánicos, por ejemplo, caída de un gran peso de una altura de 2-3 metros.
 - Carga explosiva. Representa un tipo de fuente que genera mayor energía. La explosión puede ocurrir en un tiempo corto, de micro a milisegundos, dependiendo de la naturaleza, cantidad del explosivo y del material de terreno.
 - Disparos. Se utilizan balas o cartuchos. La energía generada es mayor que la producida por la fuente de impacto y por lo general menor al producido por las cargas explosivas.
- Sensores de grabación. Por lo general en sísmica de refracción se usan geófonos de un componente (en su mayoría vertical) o de varios componentes para detectar ambas ondas, los cuales se ubican a lo largo de un tendido sísmico en diferentes puntos alineados entre sí. Los tendidos se caracterizan por tener un

espaciado de geófonos controlado; este espaciado puede ser equidistante o no dependiendo del caso. Actualmente se usan tendidos para 12, 24 o 48 geófonos, dependiendo de la resolución lateral y de la profundidad de investigación que se desee alcanzar.

- Equipo de adquisición y almacenamiento El equipo de adquisición y almacenamiento está constituido básicamente por la unidad de apilamiento y digitalización, cables sísmicos y un gatillo o "trigger".
 - Unidad de apilamiento y digitalización: esta unidad es conocida generalmente como "sismógrafo"; con ella se adquieren, digitalizan y procesan los datos. Esta posee puertos de entrada a través de las cuales se reciben las señales enviadas por los geófonos; a cada geófono le corresponde un canal y sus señales pueden ser filtradas y digitalizadas de acuerdo con las indicaciones del usuario.
 - Cables sísmicos: estos cables poseen un cableado interno por el cual se transmite la señal de cada geófono a la unidad de adquisición. Por lo general se usan dos cables para conectar en cada uno la mitad de los geófonos.
 - Gatillo "Trigger": representa el accionador para que el sismógrafo comience a grabar; es un cable conectado, cercano a la fuente sísmica, de manera tal que en el instante en que se genere el impacto, el sismógrafo comience a grabar las señales provenientes de los geófonos. (Héctor Naranjo Aguay, 2012)

La presente investigación se utilizó el equipo ES-3000 de la marca GEOMETRICS. El software de adquisición de datos utilizado es el SEISMODULE CONTROLLER módulo ES-3000.

Para el análisis de los registros de campo se utiliza un sistema informático basado en métodos finitos proporcionado por la empresa proveedora del equipo sísmico llamado SEISIMAGER, módulos PICK WIN para la obtención de las primeras llegadas y PLOTREFA para la inversión de datos y generación de los perfiles sísmicos y velocidades V_p.

Figura 20 Sísmica de refracciín – sismógrafo

Figura 21 Sísmica de refracción tendido de la línea sísmica

Figura 22 Sísmica de refracción – trigger

Figura 23 Sísmica de refracción golpe de martillo

2.2.2.6. MÉTODO MASW & MAM (MULTICHANNEL ANALYSIS OF SURFACE WAVES & MULTICHANNEL ANALYSIS OF MICROTREMOR)

MASW, es un método sísmico no destructivo, se usa para evaluar y extraer información de la velocidad de onda de corte (Vs) a partir de ondas superficiales, vinculado al mismo módulo de corte (G) (Georys Ingenieros S.A.C., 2016). Además, permite obtener un modelo unidimensional de la propagación de ondas de corte a 20-30 m de profundidad.

La técnica de Análisis Multicanal de Superficie (MASW) es una exploración indirecta, que implica un mazo que impacta en el suelo. Las vibraciones generadas debido al impacto del mazo son recolectadas por Geófonos electromagnéticos (receptores) instalados en la vertical dirección y en una matriz lineal con un espaciamiento constante en la superficie del suelo para obtener la curva de dispersión experimental de la velocidad de fase de onda de Rayleigh Figura 2. Normalmente, se realizan varias tomas del mazo en ambos extremos del conjunto para asegurar que se obtienen curvas de dispersión confiables y claras (Park, Miller, & Xia, 1999)., este procedimiento permite a su vez conocer el tipo de suelo sísmico, rigidez del terreno, hundimiento y movimientos de las infraestructuras en la zona de estudio.

Figura 24 Curva de dispersión

Los datos que se obtiene con esta técnica son óptimos para el análisis multicanal, por lo tanto, las fuentes barridas son preferidas si pueden ser frecuencia y amplitud optimizada para el objetivo. Los datos de fuente impulsiva, por otro lado, necesitan ser descompuestos en un formato de frecuencia de barrido para exponer la relación de velocidad y frecuencia de fase del rollo de tierra dispersivo. La configuración básica de campo y la adquisición la rutina para MASW es generalmente la misma que la utilizada en el convencional de punto medio común (CMP) cuerpo de onda de reflexión Algunas reglas empíricas MASW encuestas. para son inconsistentes con optimización de la reflexión. Esta concordancia permite el desarrollo de las variaciones del campo de velocidad cerca de la superficie utilizando MASW que se puede utilizar para correcciones estáticas precisas en los perfiles de reflexión (Park, Miller, & Xia, 1999).

MASW puede ser eficaz con tan sólo doce canales de grabación Conectados a geófonos simples de baja frecuencia (<10 Hz) (Park, Miller, & Xia, 1999).

La inversión de las ondas estima las propiedades elásticas (deformación módulo de corte, volumétrica, etc.) por lo que para encontrar la solución dentro de los posibles candidatos requiere de la optimización de la información.

Este método de MASW brinda mejores resultados tanto en medios dispersivos como en medios no dispersivos, resulta una técnica más confiable y económica para el cálculo de los modelos de velocidad de onda de corte, debido a que las técnicas para estimar las velocidades de cizalladura superficiales para la evaluación de la respuesta del sitio terremoto son costosas para su uso en gran parte de las obras. Se requiere grandes fuentes para ser eficaces en entornos urbanos ruidosos, o grabadores independientes especializados dispuestos en una amplia gama (Louie, 2001), pero esta técnica de altísimo potencial se utiliza en aplicaciones urbanas e industriales y en áreas donde no se puede usar explosivo o donde inversiones de velocidades limitan la aplicación de métodos tradicionales como refracción y reflexión (NEXT Xploration Technology, 2012).

Sin embargo, en la práctica actual, es necesario disponer de una medición sencilla y rápida de propiedades físicas como la velocidad de onda P y S y la densidad. Entre estas propiedades, es la velocidad de onda de

corte, VS, y se puede trabajar en perfiles de una, dos o tres dimensiones, la cual se estima del proceso de inversión de los datos adquiridos de ondas superficiales (Machuca, 2015).

MASW, el análisis descrito aquí puede separar las ondas de Rayleigh de las ondas del cuerpo, las ondas de aire y otros ruidos coherentes. Transformando los resultados de velocidad en el dominio del tiempo en el dominio de la frecuencia permiten la combinación de muchas llegadas a lo largo de un período de tiempo largo, y produce un fácil reconocimiento de ondas superficiales dispersivas.

Para el análisis de los registros de campo se utiliza un sistema informático basado en métodos finitos proporcionado por la empresa proveedora del equipo sísmico llamado SEISIMAGER, módulo SURFACE WAVE ANÁLYSIS para la inversión de los registros sísmicos y, generación de los perfiles de cizalla y velocidads Vs.

2.2.3. CORRELACIONES EMPÍRICAS

En la literatura se dispone de varias correlaciones empíricas entre los parámetros obtenidos tanto por medios geofísicos, V_p y V_s ; sondeos in situ, N_{30} del SPT y ensayos de laboratorio, ángulo de fricción interna φ y cohesión *c*', todas estos adaptados a la realidad de cada tipo de suelo estudiado, su ubicación geográfica, etc.

Se presentan así varias correlaciones empíricas para estos parámetros, mismas que luego servirán de referencia y comparación para los parámetros mecánicos encontrados en los suelos estudiados en esta investigación:

Tabla 2 Correlaciones empíricas

AUTOR: I.G. MINDEL	$c' = 0.908 - 0.168 \frac{V_p}{V_s}$	Cohesión para los suelos saprolíticos de los Urales	Ec. 2-11
AUTOR: I.G. MINDEL	$\varphi = 46.4 - 9.65 \frac{V_p}{V_s}$	Ángulo de fricción interna para los suelos saprolíticos de los Urales	Ec. 2-12
AUTOR: I.G. MINDEL	$N_{30} = 0.0284 V_P - 7.6$	N SPT para los loess de Ucrania	Ec. 2-13
AUTOR: T. IMAI Y YOSHIMURA	$V_S = 76.0 N^{0.33}$	V_{S} para todos los suelos	Ec. 2-14
AUTOR: OHTA Y GOTO	$V_S = 85.34 N^{0.348}$	V_{S} para todos los suelos	Ec. 2-15
AUTOR: JAPAN ROAD ASSOCIATION	$V_S = 80.0 N^{1/3}$	V _s para arenas	Ec. 2-16

CAPÍTULO 3

TRABAJOS DE CAMPO Y LABORATORIO

3.1 DESCRIPCIÓN

Con el fin de obtener los diferentes parámetros mecánicos de resistencia al corte, ángulo de fricción interna y cohesión; el valor N₃₀ del SPT; y los parámetros geofísicos V_p y V_s se procedió a realizar ensayos tanto de campo como de laboratorio para cuatro diferentes puntos de la ciudad de Sangolquí, mismos que están conformados por depósitos aluviales.

Un resumen de los ensayos realizados se presenta en la tabla 3.1.

Elisayos	5 realizados						
	ENSAYOS	SPT (SONDEOS)	SISMICA DE REFRACCIÓN	MASW ACTIVO- PASIVO	CALICATAS	ENSAYO CORTE DIRECTO	ENSAYOS DE CLASIFICACIÓN SUCS
	PARÁMETRO BUSCADO	N30	Vp	Vs		φ y c'	
UBICACIÓN	SANTA CLARA	4	4	4	4	4	TODAS LAS MUESTRAS
	SAN RAFAEL	4	4	4	4	4	EXTAÍDAS EN CAMPO
	SAN PEDRO	4	4	4	4	4	
	COTOGCHOA	4	4	4	4	4	

Tabla 3 Ensayos realizados

A continuación, se presenta un detalle de los ensayos realizados para cada sitio de estudio y los resultados obtenidos.

3.1.1 SITIO SANTA CLARA

Ubicado dentro de la parroquia de Sangolquí, Cantón Rumiñahui. El sitio Santa Clara se encuentra en la rivera del rio Santa Clara.

Corresponde a un depósito de origen volcánico denominado lahar. Estos son mezclas de materiales volcánicos detríticos depositados en los flancos de las estructuras volcánicas, suelos, material orgánico mezclados con agua producto de la fusión parcial del casquete glaciar de diversas fuentes.

El depósito está conformado por contenidos granulométricos variables. Estos depósitos en varios sectores se encuentran cubiertos por materiales piroclásticos procedentes del Pasochoa, y cangahuas de distintas fuentes y en otras muestran intercalaciones piroclásticos.

Constan de una matriz limo arcillosa, con arena, en ciertos sitios son depósitos consistentes, mientras que en otros se presentan sueltos. Los clastos son heterogéneos de composición andesítica, riolítica y con contenido <5% de escoria. Lo que indica que es un lahar proveniente del Volcán Cotopaxi. (Parra, 2016)

3.1.2 ENSAYOS DE CAMPO

Para efectos de este estudio se realizó CUATRO (4) perforaciones a percusión mediante la utilización de equipo mecánico, y ensayos de penetración estándar SPT a cada metro de profundidad, según se muestra en la siguiente tabla:

Tabla 4

Santa Clara ubicación ensayos

	UBIC	CACIÓN		
PERFORACIÓN	ESTE	SUR	PROFUNDIDAD (m)	NORMAS
SP01	783965	9964485	4,50	ASTM D1586-67
SP02	783948	9964416	4,50	
SP03	783937	9964382	4,50	
SP04	783960	9964453	4,50	

39

Figura 25 Santa Clara ubicación ensayos SPT

Se extrajo cuatro (4) muestras inalteradas (excavaciones a cielo abierto – calicatas) para el posterior ensaye en laboratorio:

Tabla 5 Santa Clara ubicación ext muestras y calicatas				
	UBIC	ACIÓN		
MUESTRA	ESTE	SUR	PROFUNDIDAD (m)	
CAL01	783941	9964581	2,00	
CAL02	783929	9964428	LAT 2,50	
CAL03	783912	9964390	LAT 2,50	
CAL04	783928	9964341	LAT 2.50	

Figura 26 Santa Clara ubicación ext muestras y calicatas

Se realizó los siguientes sondeos de exploración geofísica por medio de Sísmica de Refracción según lo recomendado en la norma ASTM D5777-00:

SITIO:	SANTA C	LARA	COORE	DENADAS
LÍNEA SÍSMICA	GEÓFONO (DISPARO)	UBICACIÓN (m)	ESTE	SUR
LS1	G1	0	783956	9964485
	G12	110	783975	9964593
LS2	G1	0	783941	9964581
	G12	55	783995	9964571
LS3	G1	0	783943	9964352
	G12	110	783962	9964459
LS4	G1	0	783938	9964351
	G12	110	783931	9964461

Tabla 6 Santa Clara ubicación sondeos sísmica de refracción

Figura 27 Santa Clara ubicación sondeos sísmica de refracción

Se realizó los siguientes sondeos de exploración geofísica por medio de Método MASW activo y pasivo:

Tabla 7

Santa Clara ubicación sondeos MASW

			UBICACIÓN		
		AN	IÁLISIS Vs	COORD	ENADAS
LÍNEA SÍSMICA	CONFIGURACIÓN	GEÓFONO	UBICACION (m)	ESTE	SUR
LS1	LINEAL DOCE CANALES	G1	0	783943	9964352
	(ACTIVO)	G12	110	783962	9964459
LS2	LINEAL DOCE CANALES	G1	0	783938	9964351
	(ACTIVO)	G12	110	783931	9964461
LS3	L - DOCE CANALES (PASIVO)	G1	0	783934	9964427
		G4	15	783953	9964426
		G12	55	783950	9964391
LS4	L - DOCE CANALES (PASIVO)	G1	0	783940	9964408
		G9	40	783937	9964447
		G12	55	783957	9964450

Figura 28 Santa Clara ubicación sondeos MASW

3.1.3 ENSAYOS DE LABORATORIO

Para complementar la información obtenida en campo y con el objetivo de determinar las propiedades físicas y mecánicas de los suelos encontrados, se realizaron los siguientes ensayos de laboratorio:

Tabla 8 Santa Clara ensayos de laboratorio

MUESTRA	ENSAYO	NORMA
CAL01	CORTE DIRECTO	ASTM D
CAL02		3000
CAL03		
CAL04		
TODAS LAS MUESTRAS	CONTENIDO DE HUMEDAD	ASTM D 2216
EXTRAÍDAS EN CAMPO: CALICATAS Y SPT	GRANULOMETRÍA	ASTM D 422
	LÍMITES DE ATTENBERG	ASTM D 4318
	CLASIFICACIÓN SUCS	

3.1.4 RESULTADOS

3.1.4.1 NÚMERO DE GOLPES DEL ENSAYO "SPT"

El ensayo SPT arrojó los siguientes resultados:

Tabla 9	
Santa Clara	"N30" spt según la profundidad

MANIOBRA	PROF.m	SP01	SP02	SP03	SP04
1	0.00-1.00	-	-	-	-
2	1.00-2.00	32	32	29	41
3	2.00-3.00	50	50	50	50
4	3.00-4.00	50	50	50	50
5	4.00-5.00	50	50	50	50

3.1.4.2 ENSAYO "SÌSMICA DE REFRACCIÓN"

El ensayo Sísmica de Refracción arrojó los siguientes resultados:

Tabla 10 Santa Clara sísmica de refracción LS1

LÍNEA SÍSMICA LS1				
POTENCIA DEL	PROFUNDIDAD (m)	Vp (m/seg)		
ESTRATO EN	0,0 - 1,0	242		
EL CENTRO	1,0 - 3,0	412		
	3,0 - 9,0	1176		
SISINICA	9,0 - 33,0	1700		

Tabla	11			
Santa	Clara	sísmica de	refracción	LS2

.

LÍNEA SÍSMICA LS2				
POTENCIA	PROFUNDIDAD (m)	Vp		
DEL		(m/seg)		
ESTRATO EN	0,0 - 1,0	188		
EL CENTRO	1,0 - 3,0	310		
	3,0 - 7,0	862		
SISIVIICA	7,0 - 20,0	1200		

Figura 31 Santa Clara sísmica de refracción LS3

Tabla 12 Santa Clara sísmica de refracción LS3

.

.

LÍNEA SÍSMICA LS3						
POTENCIA	PROFUNDIDAD (m)	Vp				
DEL		(m/seg)				
ESTRATO EN	0,0 - 1,0	835				
EL CENTRO	1,0 - 8,0	1076				
	8,0 - 33,0	1200				
SISIVIICA						

Figura 32 Santa Clara sísmica de refracción LS4

Tabla 13 Santa Clara sísmica de refracción Is4

LÍNEA SÍSMICA LS4						
POTENCIA DEL	PROFUNDIDAD (m)	Vp (m/seg)				
ESTRATO EN	0,0 - 0,5	862				
EL CENTRO DE LA LÍNEA	0,5 - 33,0	962				
SÍSMICA						

3.1.4.3 MÉTODO "MASW"

El método MASW activo y pasivo arrojó los siguientes resultados:

Tabla 14 Santa Clara perfil de cizalla LS1 activo

LÍNE	A SÍSMICA LS1 ACTIVO	
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)
ESTRATO EN	0,0 - 1,6	651
EL CENTRO	1,6 - 3,5	650
DE LA LINEA	3,5 - 5,6	645
SISMICA	5,6 - 7,9	644
	7,9 - 10,5	640
	10,5 - 13,4	656
	13,4 - 16,4	685
	16,4 - 19,8	750
	19,8 - 23,4	788
	23,4 - 27,2	811
	27,2 - 31,3	831
	31,3- 35,6	844
	> 35,6	851

Tabla 15 Santa Clara perfil de cizalla LS2 activo

LÍNEA SÍSMICA LS2 ACTIVO						
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)				
ESTRATO EN	0,0 - 1,6	640				
EL CENTRO	1,6 - 3,5	640				
	3,5 - 5,6	585				
SISMICA	5,6 - 7,9	576				
	7,9 - 10,5	547				
	10,5 - 13,4	561				
	13,4 - 16,4	622				
	16,4 - 19,8	628				
	19,8 - 23,4	648				
	23,4 - 27,2	702				
	27,2 - 31,3	750				
	31,3- 35,6	799				
	> 35,6	830				

Tabla 16 Santa Clara perfil de cizalla LS3 activo

LÍNEA SÍSMICA LS3 PASIVO						
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)				
ESTRATO EN	0,0 - 1,6	535				
EL CENTRO	1,6 - 3,5	533				
	3,5 - 5,6	530				
SISMICA	5,6 - 7,9	532				
	7,9 - 10,5	549				
	10,5 - 13,4	581				
	13,4 - 16,4	651				
	16,4 - 19,8	732				
	19,8 - 23,4	766				
	23,4 - 27,2	726				
	27,2 - 31,3	706				
	31,3- 35,6	709				
	> 35,6	717				

Tabla 17 Santa Clara perfil de cizalla LS4 activo

LÍNEA SÍSMICA LS4 PASIVO						
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)				
ESTRATO EN	0,0 - 1,6	461				
EL CENTRO	1,6 - 3,5	461				
	3,5 - 5,6	462				
SISMICA	5,6 - 7,9	464				
	7,9 - 10,5	466				
	10,5 - 13,4	479				
	13,4 - 16,4	486				
	16,4 - 19,8	468				
	19,8 - 23,4	471				
	23,4 - 27,2	481				
	27,2 - 31,3	483				
	31,3- 35,6	493				
	> 35,6	511				

3.1.4.4 ENSAYOS DE LABORATORIO

Los ensayos realizados en laboratorio arrojaron los siguientes resultados:

3.1.4.4.1 ENSAYOS DE CLASIFICACIÓN SUCS

Tabla 18 Santa Clara clasificación muestras SP01

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	;
2	1.00-2.00	ML	18	51	34	31	3
3	2.00-3.00	SM	14	15	NP	NP	NP
4	3.00-4.00		SIN M	UESTRA / PE	ENETRACIÓN	I A PUNTA	
5	4.00-5.00						
				FIN DE	L SONDEO		

Tabla 19 Santa Clara clasificación muestras SP02

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	;
2	1.00-2.00	SM	12	44	33	31	3
3	2.00-3.00	SM	9	28	NP	NP	NP
4	3.00-4.00		SIN M	UESTRA / PE	NETRACIÓN	I A PUNTA	
5	4.00-5.00						

FIN DEL SONDEO

Tabla 20 Santa Clara clasificación muestras SP03

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	;
2	1.00-2.00	SM	14	44	32	29	3
3	2.00-3.00	SM	16	29	NP	NP	NP
4	3.00-4.00		SIN M	UESTRA / PE	NETRACIÓN	A PUNTA	
5	4.00-5.00						

FIN DEL SONDEO

Tabla 21 Santa Clara clasificación muestras SP04

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	6
2	1.00-2.00	SM	17	58	34	31	3
3	2.00-3.00	SM	13	25	NP	NP	NP
4	3.00-4.00		SIN M	UESTRA / PE	NETRACIÓN	I A PUNTA	
5	4.00-5.00						

FIN DEL SONDEO

Tabla 22

Santa Clara clasificación muestras CALICATAS

MUESTRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
CAL01	2,00	SM	10	20	NP	NP	NP
CAL02	LAT 2,50	SM	12	26	NP	NP	NP
CAL03	LAT 2,50	SM	11	22	NP	NP	NP
CAL04	LAT 2,50	SM	8	23	NP	NP	NP
				FIN DE	L SONDEO		

3.1.4.4.2 ENSAYO CORTE DIRECTO

Tabla 23

Santa Clara corte directo muestras calicatas

MUESTRA	γ	ÁNGULO DE FRICCIÓN	COHESIÓN (kg/cm2)	
	(g/cm3)	INTERNA (*)		
CAL01	1,718	26,4	0,06	
CAL02	1,712	14,3	0,10	
CAL03	1,659	32,1	0,04	
CAL04	1,687	25,5	0,01	

3.2 SITIO SAN RAFAEL

Ubicado dentro de la parroquia el Tingo, Cantón Quito. El sitio San Rafael se encuentra en la rivera del rio Pita, y es parte la influencia de Sangolquí.

Conforma una extensa terraza, en su base se puede delimitar a un depósito laharítico, en tanto que la terraza es de potente Cangahua coloración marrón tamaño limo arenoso, corresponde también a un depósito de toba y ceniza, en donde existe clastos centiméricos de pómez. (Parra, 2016)

3.2.1 ENSAYOS DE CAMPO

Para efectos de este estudio se realizó CUATRO (4) perforaciones a percusión mediante la utilización de equipo mecánico, con ensayos de penetración estándar SPT a cada metro de profundidad, según se muestra en la siguiente tabla:

Tabla 24 San Rafael ubicación ensayos SPT

	UBIC			
PERFORACIÓN	ESTE	SUR	PROFUNDIDAD (m)	NORMAS
SP01	783222	9966812	5,50	ASTM D1586-67
SP02	783206	9966877	5,50	
SP03	783184	9966858	5,50	_
SP04	783264	9966853	5,50	

Figura 37 San Rafael ubicación ensayos SPT

Se extrajo cuatro (4) muestras inalteradas (excavaciones a cielo abierto – calicatas) para el posterior ensaye en laboratorio:

San	Da	faal	ubicación	ovt	mulactrac		colicotos
Sall	пα	aei	unicación	ext	muestias	У	cancalas

UDICACIÓN						
MUESTRA	ESTE	SUR	PROFUNDIDAD (m)			
CAL01	783219	9966808	2,00			
CAL02	783209	9966877	1,50			
CAL03	783182	9966852	2,50			
CAL04	783255	9966858	1,50			

Figura 38 San Rafael ubicación ext muestras y calicatas

Se realizó los siguientes sondeos de exploración geofísica por medio de Sísmica de Refracción según lo recomendado en la norma ASTM D5777-00:

SITIO:	SAN RA	FAEL	COORDENADAS		
LÍNEA SÍSMICA	GEÓFONO (DISPARO)	UBICACIÓN (m)	ESTE	SUR	
LS1	G1	0	783288	9966876	
	G12	110	783184	9966859	
LS2	G1	0	783242	9966928	
	G12	110	783217	9966824	
LS3	G1	0	783274	9966821	
	G12	110	783183	9966877	
LS4	G1	0	783192	9966853	
	G12	55	783223	9966807	

Tabla 26

Figura 39 San Rafael ubicación sondeos sísmica de refracción

Se realizó los siguientes sondeos de exploración geofísica por medio de Método MASW activo y pasivo:

Tabla 27 San Rafael ubicación sondeos MASW

		UBICACIÓN				
		ANÁLISIS Vs		COORDENADAS		
LÍNEA SÍSMICA	CONFIGURACIÓN	GEÓFONO	UBICACION (m)	ESTE	SUR	
LS1	LINEAL DOCE CANALES (ACTIVO)	G1	0	783288	9966876	
		G12	110	783184	9966859	
LS2	LINEAL DOCE CANALES (ACTIVO)	G1	0	783242	9966928	
		G12	110	783217	9966824	
LS3	I - DOCE CANALES (PASIVO)	G1	0	783274	9966821	
		G12	110	783183	9966877	
LS4	L - DOCE CANALES G1 (PASIVO) G9 G12	G1	0	783221	9966901	
		G9	60	783252	9966854	
		G12	110	783208	9966828	

Figura 40 San Rafael ubicación sondeos MASW

3.2.2 ENSAYOS DE LABORATORIO

Para complementar la información obtenida en campo y con el objetivo de determinar las propiedades físicas y mecánicas de los suelos encontrados, se realizaron los siguientes ensayos de laboratorio:

Tabla 28 San Rafael ensayos de laboratorio

MUESTRA	ENSAYO	NORMA	
CAL01	CORTE DIRECTO	ASTM D 3080	
CAL02		0000	
CAL03			
CAL04			
TODAS LAS	CONTENIDO DE	ASTM D	
MUESTRAS	HUMEDAD	2216	
EXTRAÍDAS EN	GRANULOMETRÍA	ASTM D 422	
V SPT	LÍMITES DE	ASTM D	
	ATTENBERG	4318	
	CLASIFICACIÓN SUCS		

3.2.3 RESULTADOS

3.2.3.1 NÚMERO DE GOLPES DEL ENSAYO "SPT"

El ensayo SPT arrojó los siguientes resultados:

Tabla 29 San Rafael "N30" SPT según la profundidad

MANIOBRA	PROF.m	SP01	SP02	SP03	SP04
1	0.00-1.00	-	-	-	-
2	1.00-2.00	22	19	16	33
3	2.00-3.00	26	26	23	41
4	3.00-4.00	50	50	50	50
5	4.00-5.00	50	50	50	50
6	5.00-6.00	50	50	50	50

3.2.3.2 ENSAYO "SÍSMICA DE REFRACCIÓN"

El ensayo Sísmica de Refracción arrojó los siguientes resultados:

Tabla 30 San Rafael sísmica de refracción LS1

,

LINEA SISMICA LS1					
POTENCIA DEL ESTRATO EN EL CENTRO DE LA LÍNEA SÍSMICA	PROFUNDIDAD (m)	Vp (m/seg)			
	0,0 - 0,5	214			
	0,5 - 1,5	386			
	1,5 - 5,5	1245			
	5,5 - 33,0	1700			

,

Tabla 31 San Rafael sísmica de refracción LS2

LÍNEA SÍSMICA LS2					
POTENCIA DEL ESTRATO EN EL CENTRO DE LA LÍNEA SÍSMICA	PROFUNDIDAD (m)	Vp (m/seg)			
	0,0 - 0,5	200			
	0,5 - 2,0	388			
	2,0 - 6,0	1331			
	6,0 - 33,0	1750			

Figura 43 San Rafael sísmica de refracción LS3

Tabla 32 San Rafael sísmica de refracción LS3

	LÍNEA SÍSMICA LS3	
POTENCIA DEL ESTRATO EN EL CENTRO DE LA LÍNEA SÍSMICA	PROFUNDIDAD (m)	Vp (m/seg)
	0,0 - 0,5	231
	0,5 - 1,5	413
	1,5 - 3,5	1326
	3,5 - 33,0	1780

Tabla 33 San Rafael sísmica de refracción LS4

LÍNEA SÍSMICA LS4					
POTENCIA DEL ESTRATO EN EL CENTRO DE LA LÍNEA SÍSMICA	PROFUNDIDAD (m)	Vp (m/seg)			
	0,0 - 0,5	162			
	0,5 - 3,5	352			
	3,5 - 7,5	1302			
	7,5 - 33,0	1850			

3.2.3.3 MÉTODO "MASW"

El método MASW activo y pasivo arrojó los siguientes resultados:

Tabla 34 San Rafael perfil de cizalla LS1 activo

LÍNEA SÍSMICA LS1 ACTIVO						
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)				
ESTRATO EN	0,0 - 1,6	293				
LA LÍNEA	1,6 - 3,5	291				
SÍSMICA	3,5 - 5,6	276				
	5,6 - 7.9	259				
	7,9 - 10,5	266				
	10,5 - 13,4	306				
	13,4 - 16,4	396				
	16,4 - 19,8	476				
	19,8 - 23, 4	528				
	23,4 - 27,2	572				
	27,2 - 31,3	622				
	31,3 - 35,6	626				
	> 35,6	702				

Tabla 35 San Rafael perfil de cizalla LS2 activo

LINEA SISMICA LS2 ACTIVO						
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)				
ESTRATO EN	0,0 - 1,6	588				
LA LÍNEA	1,6 - 3,5	587				
SÍSMICA	3,5 - 5,6	586				
	5,6 - 7.9	583				
	7,9 - 10,5	578				
	10,5 - 13,4	572				
	13,4 - 16,4	574				
	16,4 - 19,8	613				
	19,8 - 23, 4	601				
	23,4 - 27,2	625				
	27,2 - 31,3	623				
	31,3 - 35,6	633				
	> 35,6	862				

LÍNEA SÍSMICA I S2 ACTIV

Tabla 36 San Rafael perfil de cizalla LS3 pasivo

LÍNEA SÍSMICA LS3 PASIVO						
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)				
ESTRATO EN	0,0 - 1,6	305				
LA LÍNEA	1,6 - 3,5	304				
SÍSMICA	3,5 - 5,6	295				
	5,6 - 7.9	278				
	7,9 - 10,5	286				
	10,5 - 13,4	323				
	13,4 - 16,4	410				
	16,4 - 19,8	486				
	19,8 - 23, 4	546				
	23,4 - 27,2	584				
	27,2 - 31,3	613				
	31,3 - 35,6	620				
	> 35,6	629				

Tabla 37 San Rafael perfil de cizalla LS4 pasivo

LÍNEA SÍSMICA LS4 PASIVO					
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)			
ESTRATO EN	0,0 - 1,6	255			
LA LÍNEA	1,6 - 3,5	255			
SÍSMICA	3,5 - 5,6	258			
	5,6 - 7.9	280			
	7,9 - 10,5	348			
	10,5 - 13,4	406			
	13,4 - 16,4	445			
	16,4 - 19,8	468			
	19,8 - 23, 4	518			
	23,4 - 27,2	597			
	27,2 - 31,3	619			
	31,3 - 35,6	645			
	> 35,6	669			

3.2.3.4 ENSAYOS DE LABORATORIO

Los ensayos realizados en laboratorio arrojaron los siguientes resultados:

3.2.3.4.1 ENSAYOS DE CLASIFICACIÓN SUCS

Tabla 38 San Rafael clasificación muestras SP01

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	6
2	1.00-2.00	SM	5	10	NP	NP	NP
3	2.00-3.00	SM	15	26	NP	NP	NP
4	3.00-4.00		SIN M	UESTRA / PE	ENETRACIÓN	A PUNTA	
5	4.00-5.00						
6	5.00-6.00						
				FIN DE	L SONDEO		

Tabla 39 San Rafael clasificación muestras SP02

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	6
2	1.00-2.00	SM	5	25	NP	NP	NP
3	2.00-3.00	SM	11	24	NP	NP	NP
4	3.00-4.00		SIN M	UESTRA / PE	ENETRACIÓN	A PUNTA	
5	4.00-5.00						
6	5.00-6.00						
				FIN DE	L SONDEO		

Tabla 40 San Rafael clasificación muestras SP03

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	6
2	1.00-2.00	SM	23	13	NP	NP	NP
3	2.00-3.00	SM	18	12	NP	NP	NP
4	3.00-4.00		SIN M	UESTRA / PE	NETRACIÓN	I A PUNTA	
5	4.00-5.00						
6	5.00-6.00						
				FIN DE	L SONDEO		

*T*abla 41 San Rafael clasificación muestras SP04

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	6
2	1.00-2.00	SM	11	24	NP	NP	NP
3	2.00-3.00	SM	9	28	NP	NP	NP
4	3.00-4.00		SIN M	UESTRA / PE	NETRACIÓN	I A PUNTA	
5	4.00-5.00						
6	5.00-6.00						
				FIN DE	L SONDEO		

Tabla 42

San Rafael clasificación muestras CALICATAS

MUESTRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
CAL01	2,00	SM	14	12	NP	NP	NP
CAL02	1,50	SM	15	18	NP	NP	NP
CAL03	2,50	SM	11	19	NP	NP	NP
CAL04	1,50	SM	14	15	NP	NP	NP
				FIN DE	L SONDEO		

3.2.3.4.2 ENSAYO CORTE DIRECTO

Tabla 43

San Rafael corte directo muestras calicatas

MUESTRA	γ	ÁNGULO DE FRICCIÓN	COHESIÓN (kg/cm2)	
	(g/cm3)	INTERNA (*)		
CAL01	1,708	29,6	0,00	
CAL02	1,714	33,4	0,00	
CAL03	1,725	32,6	0,05	
CAL04	1,716	38,4	0,07	

3.3 SITIO SAN PEDRO

Ubicado dentro de la parroquia Sangolquí, Cantón Rumiñahui. El sitio San Pedro se encuentra en la rivera del rio San Pedro, y es parte la influencia de Sangolquí.

Corresponde a una facie distal del Volcán Cotopaxi delimitada por un depósito laharítico en una matriz limo arenosa de coloración parduzca, conformados por contenidos granulométricos variables. Estos depósitos en varios sectores se encuentran cubiertos por materiales piroclásticos procedentes del Pasochoa, y cangahuas de distintas fuentes y en otras muestran intercalaciones piroclásticos.

Los clastos son heterolíticos de composición andesítica, vidrio volcánico, cantidad escasa de pómez y de escoria <5%. (Parra, 2016)

3.3.1 ENSAYOS DE CAMPO

Para efectos de este estudio se realizó CUATRO (4) perforaciones a percusión mediante la utilización de equipo mecánico, con ensayos de penetración estándar SPT a cada metro de profundidad, según se muestra en la siguiente tabla:

Tabla 44 San Pedro ubicación ensayos SPT

	UBIC	CACION		
PERFORACIÓN	ESTE	SUR	PROFUNDIDAD (m)	NORMAS
SP01	782590	9962885	5,50	ASTM D1586-67
SP02	782603	9962930	5,50	
SP03	782566	9962845	5,50	
SP04	782594	9962866	5,50	

Figura 49 San Pedro ubicación ensayos

Se extrajo cuatro (4) muestras inalteradas (excavaciones a cielo abierto – calicatas) para el posterior ensaye en laboratorio:

Tabla 45	
San Pedro	ubicación ext muestras y calicatas

UBICACIÓN					
MUESTRA	ESTE	SUR	PROFUNDIDAD (m)		
CAL01	782604	9962940	1,50		
CAL02	782568	9962875	1,50		
CAL03	782593	9962884	1,50		
CAL04	782554	9962829	1,50		

Figura 50 San pedro ubicación ext muestras y calicatas

Se realizó los siguientes sondeos de exploración geofísica por medio de Sísmica de Refracción según lo recomendado en la norma ASTM D5777-00:

Tabla

San Pedro ubicación sondeos sísmica de refracción

SITIO:	SAN PE	DRO	COORI	COORDENADAS		
LÍNEA SÍSMICA	GEÓFONO (DISPARO)	UBICACIÓN (m)	ESTE	SUR		
LS1	G1	0	782606	9962942		
	G12	110	782569	9962838		
LS2	G1	0	782616	9962859		
	G12	55	782571	9962861		
LS3	G1	0	782592	9962939		
	G12	110	782577	9962829		
LS4	G1	0	782612	9962939		
	G12	110	782560	9962844		

46

Figura 51 San Pedro ubicación sondeos sísmica de refracción

Se realizó los siguientes sondeos de exploración geofísica por medio de Método MASW activo y pasivo:

Tabla 47 San Pedro ubicación sondeos MASW

		UBICACIÓN			
		AN	IÁLISIS Vs	COORD	ENADAS
LÍNEA SÍSMICA	CONFIGURACIÓN	GEÓFONO	UBICACION (m)	ESTE	SUR
LS1	LINEAL DOCE CANALES	G1	0	782592	9962939
	(ACTIVO)	G12	110	782577	9962829
LS2	LINEAL DOCE CANALES	G1	0	782612	9962939
	(ACTIVO)	G12	110	782560	9962844
LS3	L - DOCE CANALES (PASIVO)	G1	0	782591	9962907
		G6	25	782602	9962879
		G12	55	782567	9962871
LS4	L - DOCE CANALES (PASIVO)	G1	0	782567	9962867
		G6	25	782594	9962862
		G12	55	782577	9962829

Figura 52 San Pedro ubicación sondeos MASW

3.3.2 ENSAYOS DE LABORATORIO

Para complementar la información obtenida en campo y con el objetivo de determinar las propiedades físicas y mecánicas de los suelos encontrados, se realizaron los siguientes ensayos de laboratorio:

Tabla 48 San Pedro ensayos de laboratorio

MUESTRA	ENSAYO	NORMA
CAL01	CORTE DIRECTO	ASTM D
CAL02		3000
CAL03		
CAL04		
TODAS LAS MUESTRAS	CONTENIDO DE HUMEDAD	ASTM D 2216
EXTRAÍDAS EN	GRANULOMETRÍA	ASTM D 422
Y SPT	LÍMITES DE ATTENBERG	ASTM D 4318
	CLASIFICACIÓN SUCS	

3.3.3 RESULTADOS

3.3.3.1 DEL ENSAYO "SPT"

El ensayo SPT arrojó los siguientes resultados:

Tabla 49

San Pedro "N30" SPT según la profundidad

MANIOBRA	PROF.m	SP01	SP02	SP03	SP04
1	0.00-1.00	-	-	-	-
2	1.00-2.00	9	9	10	9
3	2.00-3.00	14	15	13	16
4	3.00-4.00	17	7	15	5
5	4.00-5.00	19	15	14	17
6	5.00-6.00	16	21	16	19

3.3.3.2 DEL ENSAYO "SÍSMICA DE REFRACCIÓN"

El ensayo Sísmica de Refracción arrojó los siguientes resultados:

Tabla 50 San Pedro sísmica de refracción LS1

LÍNEA SÍSMICA LS1					
POTENCIA DEL	PROFUNDIDAD (m)	Vp (m/seg)			
ESTRATO EN EL CENTRO DE LA LÍNEA SÍSMICA	0,0 - 1,0	180			
	1,0 - 9,0	635			
	9,0 - 14,0	1545			
	14,0 - 33,0	1773			

Tabla 51 San Pedro sísmica de refracción LS2

LÍNEA SÍSMICA LS2					
POTENCIA DEL ESTRATO EN EL CENTRO DE LA LÍNEA	PROFUNDIDAD (m)	Vp (m/seg)			
	0,0 - 1,0	310			
	1,0 - 5,0	408			
SÍSMICA	5,0 - 23,0	993			

Figura 55 San Pedro sísmica de refracción LS3

Tabla 52			
San Pedro	sísmica de	refracción	LS3

LÍNEA SÍSMICA LS3					
POTENCIA DEL	PROFUNDIDAD (m)	Vp (m/seg)			
ESTRATO EN	0,0 - 5,0	511			
EL CENTRO	5,0 - 8,0	888			
	8,0 - 33,0	1100			
SISINICA					

Tabla 53 San Pedro sísmica de refracción LS4

LÍNEA SÍSMICA LS4					
POTENCIA DEL ESTRATO EN EL CENTRO DE LA LÍNEA SÍSMICA	PROFUNDIDAD (m)	Vp (m/seg)			
	0,0 - 0,5	319			
	0,5 - 5,5	446			
	5,5 - 7,0	955			
	7,0 - 33,0	1400			

3.3.3.3 DEL MÉTODO "MASW"

El método MASW activo y pasivo arrojó los siguientes resultados:

Tabla 54 San Pedro perfil de cizalla LS1 activo

LÍNEA SÍSMICA LS1 ACTIVO					
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)			
ESTRATO EN	0,0 - 1,6	510			
LA LÍNEA SÍSMICA	1,6 - 3,5	534			
	3,5 - 5,6	585			
	5,6 - 7.9	644			
	7,9 - 10,5	730			
	10,5 - 13,4	881			
	13,4 - 16,4	1032			
	16,4 - 19,8	1041			
	19,8 - 23, 4	973			
	23,4 - 27,2	809			
	27,2 - 31,3	550			
	31,3 - 35,6	457			
	> 35,6	475			

Tabla 55 San Pedro perfil de cizalla LS2 activo

LÍNEA SÍSMICA LS2 ACTIVO					
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)			
ESTRATO EN	0,0 - 1,6	362			
LA LÍNEA	1,6 - 3,5	359			
SÍSMICA	3,5 - 5,6	321			
	5,6 - 7.9	318			
	7,9 - 10,5	328			
	10,5 - 13,4	325			
	13,4 - 16,4	363			
	16,4 - 19,8	392			
	19,8 - 23, 4	425			
	23,4 - 27,2	454			
	27,2 - 31,3	467			
	31,3 - 35,6	481			
	> 35,6	494			

Figura 59 San Pedro perfil de cizalla LS3 pasivo

Tabla 56 San Pedro perfil de cizalla LS3 pasivo

LÍNEA SÍSMICA LS3 PASIVO						
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)				
ESTRATO EN	0,0 - 1,6	274				
LA LÍNEA	1,6 - 3,5	272				
SÍSMICA	3,5 - 5,6	234				
	5,6 - 7.9	181				
	7,9 - 10,5	170				
	10,5 - 13,4	190				
	13,4 - 16,4	230				
	16,4 - 19,8	269				
	19,8 - 23, 4	291				
	23,4 - 27,2	308				
	27,2 - 31,3	319				
	31,3 - 35,6	326				
	> 35,6	330				

Tabla 57 San Pedro perfil de cizalla LS4 pasivo

LÍNEA SÍSMICA LS4 PASIVO						
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)				
ESTRATO EN	0,0 - 1,6	332				
LA LÍNEA	1,6 - 3,5	333				
SÍSMICA	3,5 - 5,6	337				
	5,6 - 7.9	341				
	7,9 - 10,5	355				
	10,5 - 13,4	391				
	13,4 - 16,4	401				
	16,4 - 19,8	411				
	19,8 - 23, 4	417				
	23,4 - 27,2	419				
	27,2 - 31,3	419				
	31,3 - 35,6	386				
	> 35,6	304				

3.3.3.4 ENSAYOS DE LABORATORIO

Los ensayos realizados en laboratorio arrojaron los siguientes resultados:

3.3.3.4.1 DE CLASIFICACIÓN SUCS

Tabla 58

San Pedro clasificación muestras SP01

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	3
2	1.00-2.00	SM	11	33	NP	NP	NP
3	2.00-3.00	SM	8	33	NP	NP	NP
4	3.00-4.00	SM	10	46	50	42	9
5	4.00-5.00	SM	11	48	53	42	11
6	5.00-6.00	SM	9	46	52	43	9
				FIN DE	L SONDEO		

Tabla 59

San Pedro clasificación muestras SP02

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	3
2	1.00-2.00	SM	9	47	55	43	12
3	2.00-3.00	SM	11	46	53	43	10
4	3.00-4.00	SM	12	45	52	43	9
5	4.00-5.00	SM	8	50	52	42	10
6	5.00-6.00	SM	10	45	53	43	10
				FIN DE	L SONDEO		

Tabla 60

San Pedro clasificación muestras SP03

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	6
2	1.00-2.00	SM	21	48	56	43	12
3	2.00-3.00	SM	15	49	52	41	12
4	3.00-4.00	SM	13	47	52	43	9
5	4.00-5.00	SM	11	48	55	42	13
6	5.00-6.00	SM	14	46	51	44	7
				FIN DE	L SONDEO		

Tabla 61	
San Pedro clasificación mue	estras SP04

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	6
2	1.00-2.00	SM	18	26	NP	NP	NP
3	2.00-3.00	SM	16	49	54	45	9
4	3.00-4.00	SM	16	45	53	43	10
5	4.00-5.00	SM	14	47	54	44	10
6	5.00-6.00	SM	14	47	55	43	11
				FIN DE	L SONDEO		

Tabla 62 San Pedro clasificación muestras CALICATAS

MUESTRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE Plasticidad
CAL01	1,50	SM	15	49	55	43	12
CAL02	1,50	SM	17	46	53	41	12
CAL03	1,50	SM	16	44	52	42	10
CAL04	1,50	SM	14	48	52	42	10
				FIN DE	L SONDEO		

3.3.3.4.2 ENSAYO CORTE DIRECTO

Tabla 63San Pedro corte directo muestras calicatas

MUESTRA	γ	ÁNGULO DE FRICCIÓN	DE COHESIÓN N (kg/cm2) (°)	
	(g/cm3)	INTERNA (*)		
CAL01	1,548	19,9	0,15	
CAL02	1,549	16,9	0,12	
CAL03	1,565	21,2	0,24	
CAL04	1,556	24,1	0,21	

3.4 SITIO COTOGCHOA

Ubicado dentro de la parroquia de Cotogchoa, Cantón Rumiñahui. El sitio Cotogchoa se encuentra en una ondonada afluente del rio San Pedro, y es parte de la influencia de Sangolquí.

Se observa Cangahua de tamaño limo arenoso. Se presume está depositada suprayaciendo a un depósito laharítico antiguo, probablemente al evento Enormous del Volcán Cotopaxi el cual se produjo hace 4000 años a.p.

La Cangahua conforma un depósito de toba y ceniza que recubre gran parte del cantón. Esta litología procede de varias fuentes, disponiéndose periclinalmente al terreno. En forma de potentes capas de coloraciones parduscas, presentas consistencias medias a altas y comprende un limo arcilloso que en ocasionen envuelve a clastos volcánicos de diversa composición. (Parra, 2016)

3.4.1 ENSAYOS DE CAMPO

Para efectos de este estudio se realizó CUATRO (4) perforaciones a percusión mediante la utilización de equipo mecánico, y ensayos de penetración estándar SPT a cada metro de profundidad, según se muestra en la siguiente tabla:

Tabla 64

Cotogchoa ubicación ensayos SPT

	UBICACIÓN			
PERFORACIÓN	ESTE	SUR	PROFUNDIDAD (m)	NORMAS
SP01	782591	9961391	4,50	ASTM D1586-67
SP02	782548	9961349	4,50	
SP03	782597	9961334	4,50	
SP04	782544	9961393	4,50	

Figura 61 Cotogchoa ubicación ensayos SPT

Se extrajo cuatro (4) muestras inalteradas (excavaciones a cielo abierto – calicatas) para el posterior ensaye en laboratorio:

Tabla 65 Cotogchoa ubicación ext muestras y calicatas

UBICACIÓN						
MUESTRA	ESTE	SUR	PROFUNDIDAD (m)			
CAL01	782592	9961390	1,50			
CAL02	782550	9961347	1,50			
CAL03	782594	9961334	1,50			
CAL04	782549	9961393	1,50			

Figura 62 Cotogchoa ubicación ext muestras y calicatas

Se realizó los siguientes sondeos de exploración geofísica por medio de Sísmica de Refracción según lo recomendado en la norma ASTM D5777-00:

Tabla 66 Cotogchoa ubicación sondeos sísmica de refracción					
SITIO:	COTOG	СНОА	cc		
LÍNEA	GEÓFONO	UBICACIÓN	ESTE		

SITIO:	COTOGC	НОА	COORE	DENADAS
LÍNEA SÍSMICA	GEÓFONO (DISPARO)	UBICACIÓN (m)	ESTE	SUR
LS1	G1	0	782586	9961394
	G12	110	782496	9961338
LS2	G1	0	782593	9961302
	G12	110	782536	9961392
LS3	G1	0	782624	9961360
	G12	110	782515	9961355
LS4	G1	0	782530	9961370
	G12	110	782619	9961309

Figura 63 Cotogchoa ubicación sondeos sísmica de refracción

Se realizó los siguientes sondeos de exploración geofísica por medio de Método MASW activo y pasivo:

Tabla 67

Cotogchoa ubicación sondeos MASW

			UBICACIÓN		
		AN	IÁLISIS Vs	COORD	ENADAS
LÍNEA SÍSMICA	CONFIGURACIÓN	GEÓFONO	UBICACION (m)	ESTE	SUR
LS1	LINEAL DOCE CANALES	G1	0	782593	9961302
	(ACTIVO)	G12	110	782536	9961392
LS2	LINEAL DOCE CANALES	G1	0	782624	9961360
	(ACTIVO)	G12	110	782515	9961355
LS3	L - DOCE CANALES (PASIVO)	G1	0	782592	9961347
		G8	70	782561	9961386
		G12	110	782515	9961355
LS4	L - DOCE CANALES (PASIVO)	G1	0	782587	9961396
		G7	60	782582	9961342
		G12	110	782515	9961355

Figura 64 Cotogchoa ubicación sondeos MASW

3.4.2 ENSAYOS DE LABORATORIO

Para complementar la información obtenida en campo y con el objetivo de determinar las propiedades físicas y mecánicas de los suelos encontrados, se realizaron los siguientes ensayos de laboratorio:

Tabla 68

Cotogchoa ensayos	de laboratorio
MUESTRA	ENSAVO

MUESTRA	ENSAYO	NORMA
CAL01	CORTE DIRECTO	ASTM D
CAL02		0000
CAL03		
CAL04		
TODAS LAS MUESTRAS	CONTENIDO DE HUMEDAD	ASTM D 2216
EXTRAÍDAS EN	GRANULOMETRÍA	ASTM D 422
Y SPT	LÍMITES DE ATTENBERG	ASTM D 4318
	CLASIFICACIÓN SUCS	

3.4.3 RESULTADOS

3.4.3.1 NÚMERO DE GOLPES DEL ENSAYO "SPT"

El ensayo SPT arrojó los siguientes resultados:

Tabla 69

Cotogchoa "N30" SPT según la profundidad

MANIOBRA	PROF.m	SP01	SP02	SP03	SP04
1	0.00-1.00	-	-	-	-
2	1.00-2.00	35	38	34	35
3	2.00-3.00	50	50	50	50
4	3.00-4.00	50	50	50	50
5	4.00-5.00	50	50	50	50

3.4.3.2 ENSAYO "SÍSMICA DE REFRACCIÓN"

El ensayo Sísmica de Refracción arrojó los siguientes resultados:

Tabla 70				
Cotogchoa	sísmica	de	refracción	LS1

LINEA SISMICA LS1					
POTENCIA DEL ESTRATO EN EL CENTRO DE LA LÍNEA SÍSMICA	PROFUNDIDAD (m)	Vp (m/seg)			
	0,0 - 0,5	280			
	0,5 - 1,0	435			
	1,0 - 1,5	1213			
	1,5 - 33,0	1600			

Tabla 71 Cotogchoa sísmica de refracción LS2

LÍNEA SÍSMICA LS2					
POTENCIA DEL ESTRATO EN EL CENTRO DE LA LÍNEA SÍSMICA	PROFUNDIDAD (m)	Vp (m/seg)			
	0,0 - 0,5	368			
	0,5 - 1,5	1108			
	1,5 - 33,0	1500			

Tabla 72 Cotogchoa sísmica de refracción LS3

LÍNEA SÍSMICA LS3					
POTENCIA DEL ESTRATO EN EL CENTRO DE LA LÍNEA SÍSMICA	PROFUNDIDAD (m)	Vp (m/seg)			
	0,0 - 0,5	559			
	0,5 - 4,5	1354			
	4,5 - 33,0	1700			

Tabla 73 Cotogchoa sísmica de refracción LS4

LÍNEA SÍSMICA LS4					
POTENCIA DEL ESTRATO EN EL CENTRO DE LA LÍNEA SÍSMICA	PROFUNDIDAD (m)	Vp (m/seg)			
	0,0 - 0,5	467			
	0,5 - 1,5	1379			
	1,5 - 33,0	1800			

3.4.3.3 MÉTODO "MASW"

El método MASW activo y pasivo arrojó los siguientes resultados:

Figura 69 Cotogchoa perfil de cizalla LS1 activo

Tabla 74 Cotogchoa perfil de cizalla LS1 activo

LÍNEA SÍSMICA LS1 ACTIVO							
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)					
ESTRATO EN	0,0 - 1,6	316					
LA LÍNEA	1,6 - 3,5	341					
SÍSMICA	3,5 - 5,6	412					
	5,6 - 7.9	525					
	7,9 - 10,5	599					
	10,5 - 13,4	688					
	13,4 - 16,4	784					
	16,4 - 19,8	871					
	19,8 - 23, 4	972					
	23,4 - 27,2	1055					
	27,2 - 31,3	1113					
	31,3 - 35,6	1188					
	> 35,6	1307					

Figura 70 Cotogchoa perfil de cizalla LS2 activo

Tabla 75 Cotogchoa perfil de cizalla LS2 activo

LÍNEA SÍSMICA LS2 ACTIVO						
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)				
ESTRATO EN	0,0 - 1,6	552				
LA LÍNEA	1,6 - 3,5	541				
SÍSMICA	3,5 - 5,6	512				
	5,6 - 7.9	516				
	7,9 - 10,5	603				
	10,5 - 13,4	722				
	13,4 - 16,4	847				
	16,4 - 19,8	939				
	19,8 - 23, 4	993				
	23,4 - 27,2	1036				
	27,2 - 31,3	1098				
	31,3 - 35,6	1197				
	> 35,6	1433				

Figura 71 Cotogchoa perfil de cizalla LS3 pasivo

Tabla 76 Cotogchoa perfil de cizalla LS3 pasivo

LÍNEA SÍSMICA LS3 PASIVO							
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)					
ESTRATO EN	0,0 - 1,6	950					
LA LÍNEA	1,6 - 3,5	951					
SÍSMICA	3,5 - 5,6	955					
	5,6 - 7.9	957					
	7,9 - 10,5	951					
	10,5 - 13,4	931					
	13,4 - 16,4	896					
	16,4 - 19,8	847					
	19,8 - 23, 4	770					
	23,4 - 27,2	703					
	27,2 - 31,3	703					
	31,3 - 35,6	748					
	> 35,6	822					

Figura 72 Cotogchoa perfil de cizalla LS4 pasivo

Tabla 77 Cotogchoa perfil de cizalla LS3 pasivo

LÍNEA SÍSMICA LS4 PASIVO						
POTENCIA DEL	PROFUNDIDAD (m)	Vs (m/seg)				
ESTRATO EN	0,0 - 1,6	467				
LA LÍNEA	1,6 - 3,5	470				
SÍSMICA	3,5 - 5,6	464				
	5,6 - 7.9	444				
	7,9 - 10,5	420				
	10,5 - 13,4	412				
	13,4 - 16,4	449				
	16,4 - 19,8	536				
	19,8 - 23, 4	609				
	23,4 - 27,2	652				
	27,2 - 31,3	672				
	31,3 - 35,6	664				
	> 35,6	668				

3.4.3.4 ENSAYOS DE LABORATORIO

Los ensayos realizados en laboratorio arrojaron los siguientes resultados:

3.4.3.4.1 ENSAYOS DE CLASIFICACIÓN SUCS

Tabla 78

Cotogchoa clasificación muestras SP01

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	5
2	1.00-2.00	SM	40	23	NP	NP	NP
3	2.00-3.00	SM	38	15	NP	NP	NP
4	3.00-4.00	SIN MUESTRA / PENETRACIÓN A PUNTA					
5	4.00-5.00						
				FIN DF	I SONDEO		

Tabla 79

Cotogchoa clasificación muestras SP02

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE Plasticidad
1	0.00-1.00		SIN MUES	TRA / EXCA\	ACION CON	ABRE HOYOS	6
2	1.00-2.00	SM	43	17	NP	NP	NP
3	2.00-3.00	SM	42	13	NP	NP	NP
4	3.00-4.00	SIN MUESTRA / PENETRACIÓN A PUNTA					
5	4.00-5.00						

FIN DEL SONDEO
Tabla 80

Cotogchoa clasificación muestras SP03

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD	
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	6	
2	1.00-2.00	SM	45	22	NP	NP	NP	
3	2.00-3.00	SM	42	13	NP	NP	NP	
4	3.00-4.00	SIN MUESTRA / PENETRACIÓN A PUNTA						
5	4.00-5.00							

FIN DEL SONDEO

Tabla 81

Cotogchoa clasificación muestras SP04

MANIOBRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
1	0.00-1.00		SIN MUES	TRA / EXCAV	ACION CON	ABRE HOYOS	3
2	1.00-2.00	SM	43	12	NP	NP	NP
3	2.00-3.00	SM	45	18	NP	NP	NP
4	3.00-4.00	SIN MUESTRA / PENETRACIÓN A PUNTA					
5	4.00-5.00						

FIN DEL SONDEO

Tabla 82

Cotogchoa clasificación muestras CALICATAS

MUESTRA	PROF.m	SUCS	HUMEDAD %	FINOS%	LÍMITE LIQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
CAL01	1,50	SM	37	13	NP	NP	NP
CAL02	1,50	SM	37	16	NP	NP	NP
CAL03	1,50	SM	36	13	NP	NP	NP
CAL04	1,50	SM	38	15	NP	NP	NP
				FIN DE	L SONDEO		

3.4.3.4.2 ENSAYO CORTE DIRECTO

Tabla 83 Cotogchoa corte directo muestras calicatas

MUESTRA	MUESTRA γ ÁNGULO DE FRICCIÓN		COHESIÓN (kg/cm2)
	(g/cm3)	INTERNA (*)	
CAL01	1,788	32,0	0,00
CAL02	1,698	37,0	0,00
CAL03	1,767	37,4	0,00
CAL04	1,751	37,4	0,00

CAPÍTULO 4

ANÁLISIS DE DATOS Y RESULTADOS

4.1 TABULACIÓN DE LOS DATOS ENCONTRADOS

En este capítulo e presentan los resultados de los ensayos expuestos en el capítulo anterior para cada sitio de estudio relacionados entre sí de tal manera que entre ellos se mantenga criterios de proximidad (por ejemplo: los valores N₃₀ del SPT serán relacionados con los resultados del ensayo CORTE DIRECTO aplicado en la calita más cercana y a la misma profundidad) y criterios de relación mecánica (por ejemplo: en arenas, los valores de N₃₀ del SPT solo serán relacionados con el valor ángulo de fricción interna, esto es debido a que en este tipo de suelo el factor predominante para la resistencia al corte es el ángulo de fricción interna). También se tomará como referencia las ecuaciones de MINDEL y a la JAPAN ROAD ASSOCIATION mostradas en la Tabla 2.2 ya que a partir de estas relaciones se propondrán las nuevas ecuaciones para las condiciones propias del sitio de estudio objetivo de la presente investigación.

Con los resultados de campo y laboratorio se proceden a elaborar las siguientes tablas (4.1, 4.2, 4.3 y 4.4) y estas será utilizadas para las deducir las ecuaciones de cohesión en función de las velocidades de onda $V_p y V_s$, el ángulo de fricción interna en función de las velocidades de onda $V_p y V_s$, el número de golpes $N_{30 del}$ ensayo SPT en función de las velocidades de onda V_p , y V_s , el ensayo SPT.

Tabla 84 Resultados de campo y laboratorio: cohesión, V_{p} y $\,V_{S}$

	PROF. CALICATA	SUCS	COHESIÓN (c' en kg/cm2)	Vp (m/s)	Vs (m/s)
SANTA CLARA	2,0	SM	0,06	1176	645
	2,5	SM	0,10	862	462
	2,5	SM	0,04	962	530
	2,5	SM	0,01	862	462
SAN RAFAEL	2,0	SM	0,00	1331	470
	1,5	SM	0,00	413	305
	2,5	SM	0,05	352	293
	1,5	SM	0,07	1245	587
SAN PEDRO	1,5	SM	0,15	635	510
	1,5	SM	0,12	446	272
	1,5	SM	0,24	635	272
	1,5	SM	0,21	446	332
COTOGCHOA	1,5	SM	0,00	1213	467
	1,5	SM	0,00	1108	412
	1,5	SM	0,00	1379	950
	1,5	SM	0,00	1500	467

Tabla 85

Resultados de campo y laboratorio: ángulo de fricción interna, V_p y V_s

	PROF. CALICATA	SUCS	ANGULO FRIC (φ en grados)	Vp (m/s)	Vs (m/s)
SANTA CLARA	2,0	SM	26,40	1176	645
	2,5	SM	14,30	862	462
	2,5	SM	32,10	962	530
	2,5	SM	25,50	862	462
SAN RAFAEL	2,0	SM	29,60	1331	470
	1,5	SM	33,40	413	305
	2,5	SM	32,60	352	293
	1,5	SM	38,40	1245	587
SAN PEDRO	1,5	SM	19,90	635	510
	1,5	SM	16,90	446	272
	1,5	SM	21,20	635	272
	1,5	SM	24,10	446	332
COTOGCHOA	1,5	SM	32,00	1213	467
	1,5	SM	37,00	1108	412
	1,5	SM	37,40	1379	950
	1,5	SM	37,40	1500	467

Tabla 86

Resultados de campo y laboratorio: N30 SPT y $\,V_{\rm p}$

	SONDEO	Ν	Vp (m/s)
SANTA CLARA	2,0	50,00	1176
	2,5	50,00	862
	2,5	50,00	962
	2,5	50,00	862
SAN RAFAEL	2,0	22,00	1331
	1,5	19,00	413
	2,5	23,00	352
	1,5	33,00	1245
SAN PEDRO	1,5	9,00	635
	1,5	9,00	446
	1,5	9,00	635
	1,5	10,00	446
COTOGCHOA	1,5	35,00	1213
	1,5	38,00	1108
	1,5	34,00	1379
	1,5	35,00	1500

Tabla 87

Resultados de campo y laboratorio: $\,V_{S}\,y\,$ N30 SPT

	SONDEO	Ν	Vs (m/s)
SANTA CLARA	2,0	50,00	645
	2,5	50,00	462
	2,5	50,00	530
	2,5	50,00	462
SAN RAFAEL	2,0	22,00	258
	1,5	19,00	305
	2,5	23,00	293
	1,5	33,00	587
SAN PEDRO	1,5	9,00	510
	1,5	9,00	272
	1,5	9,00	272
	1,5	10,00	332
COTOGCHOA	1,5	35,00	467
	1,5	38,00	412
	1,5	34,00	950
	1,5	35,00	950

4.2 ANÁLISIS COHESIÓN (c') EN FUNCIÓN DE V_P Y V_S

Con los datos tabulados en la Tabla 4.1 y tomando como referencia a la ecuación $c' = 0.908 - 0.168 \frac{v_p}{v_s}$ propuesta por I.G. MINDEL se procede a correlacionar el valor de cohesión (c' kg/cm²) en función de las velocidades de onda V_p (m/seg) y V_s (m/seg).

Figura 73 Cohesión c' en función de Vp y Vs

Se presenta la siguiente ecuación como resultado de la correlación de la cohesión de los suelos en función de las velocidades de onda V_p y V_s :

$$c'\binom{kg}{cm^2} = 0,0508 - 0,0167 \frac{V_P}{V_S}$$
 Ec. 4-1

Para establecer esta relación se partió del criterio de que los suelos granulares no tienen cohesión o la misma tiende a cero. Por ello, se eliminaron de la curva los valores de cohesión altos (mayores a 0,07 kg/cm2) que coinciden con los suelos del sitio San Pedro, lugar donde se encontraron porcentajes de finos de alrededor del 40% y por ende cohesiones altas. También, la ecuación predice que el valor máximo de cohesión calculada

sería de 0,05 kg/cm2, por lo que la presente ecuación verifica la condición granular del suelo.

Con esta ecuación encontrada se realizó el cálculo de los pares de valores obtenidos en los diferentes ensayos y luego se comparó con los valores que se obtendrían utilizando las ecuaciones de referencia:

Tabla 88

	VALORES CALCULADOS					
VALOR ENSAYO LABORATORIO	ECUACIÓN O	BTENIDA Ec 4.1	ECUAC	CIÓN REFERENCIA Ec 2,11		
C' (kg/cm2)	C' (kg/cm2	% DIFERENCIA	C'	% DIFERENCIA		
0,060	0,02	194,8	0,60	-90,0		
0,100	0,02	409,1	0,59	-83,2		
0,040	0,02	95,2	0,60	-93,4		
0,010	0,02	-49,1	0,59	-98,3		
0,000	0,00	-100,0	0,43	-100,0		
0,000	0,03	-100,0	0,68	-100,0		
0,050	0,03	62,7	0,71	-92,9		
0,070	0,02	355,1	0,55	-87,3		
0,000	0,01	-99,9	0,47	-100,0		
0,000	0,01	-99,8	0,46	-100,0		
0,000	0,03	-100,0	0,66	-100,0		
0,000	0,00	-100,4	0,37	-100,0		
	DIF PROMEDIO	39,0		-90,44		

Comparación resultados c' en función de Vs y Vp

4.3 ANÁLISIS ÁNGULO DE FRICCIÓN INTERNA (ϕ) EN FUNCIÓN DE V_P Y V_S

Con los datos tabulados en la Tabla 4.2 y tomando como referencia a la ecuación $\varphi = 46.4 - 9.65 \frac{V_p}{V_s}$ propuesta por I.G. MINDEL se procede a correlacionar el valor de cohesión (φ grados) en función de las velocidades de onda V_p (m/seg) y V_s (m/seg).

Figura 74 Ángulo de fricción interna φ en función de Vp y Vs

Se presenta la siguiente ecuación como resultado de la correlación del ángulo de fricción interna de los suelos en función de las velocidades de onda V_p y V_s :

$$\varphi (grados) = 0,7792 \frac{V_P}{V_S} + 26,529$$
 Ec. 4-2

La ecuación predice que el valor máximo de ángulo de fricción interna calculada sería de 46,5°; por lo que la presente ecuación verifica la condición granular del suelo.

Con esta ecuación encontrada se realizó el cálculo de los pares de valores obtenidos en los diferentes ensayos y luego se comparó con los valores que se obtendrían utilizando las ecuaciones de referencia:

Tabla 89	
Comparación de resultados $oldsymbol{arphi}$ en función de Vs y Vp	

	VALORES CALCULADOS					
VALOR ENSAYO LABORATORIO	ECUACIÓN OE	BTENIDA Ec 4.2	ECUACIÓN REFERENCIA EC 2.12			
ф (grados)	φ (grados)	% DIFERENCIA	φ (grados)	% DIFERENCIA		
26,4	27,9	5,9	28,8	9,1		
14,3	28,0	95,7	46,4	224,5		
32,1	27,9	-12,9	28,9	-10,0		
25,5	28,0	9,7	28,4	11,4		
29,6	28,7	-2,9	46,4	56,8		
33,4	27,6	-17,4	33,3	-0,2		
32,6	27,5	-15,8	34,8	6,8		
38,4	28,2	-26,6	46,4	20,8		
19,9	27,5	38,2	34,4	72,8		
16,9	27,8	64,5	46,4	174,6		
21,2	28,3	33,7	46,4	118,9		
24,1	27,6	14,4	33,4	38,6		
32,0	28,6	-10,77	46,4	45,00		
37,0	28,6	-22,64	46,4	25,41		
37,4	27,7	-26,04	46,4	24,06		
37,4	29,0	-22,37	46,4	66,54		
	DIF PROMEDIO	6,5		55,32		

4.4 ANÁLISIS N₃₀ EN FUNCIÓN DE V_P

Con los datos tabulados en la tabla 4.3 y tomando como referencia a la ecuación $N_{30} = 0.0284V_P - 7.6$ propuesta por I.G. MINDEL se procede a correlacionar el valor de N₃₀ del ensayo SPT en función de las velocidades de onda V_p (m/seg).

Figura 75 N30 SPT en función de Vp

Se presenta la siguiente ecuación como resultado de la correlación del número de golpes N_{30} del SPT las velocidades de onda V_p :

$$N_{30} = 0,037 V_P + 0,1191$$
 Ec. 4-3

Para establecer esta relación se partió del criterio de que los suelos tienen velocidad de onda V_p menor a 2000 m/seg, por lo que valores mayores a este rango fueron eliminados de la curva. Los valores mayores a este se consideran como roca y la ecuación encontrada deja de tener validez. De la misma manera, los valores de N₃₀ > 50 también fueron descartados ya que teóricamente este valor es considerado como rechazo y también se estima como una condición de los suelos de alta compacidad o rocas de rigidez media

Con esta ecuación encontrada se realizó el cálculo de los pares de valores obtenidos en los diferentes ensayos y luego se comparó con los valores que se obtendrían utilizando las ecuaciones de referencia

	VALORES CALCULADOS				
VALOR ENSAYO LABORATORIO	ECUACIÓN OE	BTENIDA Ec 4.3	ECU	ACIÓN REFERENCIA Ec 2.13	
N30	N30	% DIFERENCIA	N30	% DIFERENCIA	
50	44	-12,7	26	-48,4	
50	32	-36,0	17	-66,2	
50	36	-28,6	20	-60,6	
50	32	-36,0	17	-66,2	
22	49	124,4	-8	-134,5	
19	15	-18,9	4	-78,3	
23	13	-42,9	2	-89,6	
33	46	40,0	28	-15,9	
9	24	162,4	10	15,9	
9	17	84,7	5	-43,7	
9	24	162,4	10	15,9	
10	17	66,2	5	-49,3	
35	45	28,57	27	-23,29	
38	41	8,20	24	-37,19	
34	51	50,42	-8	-122,35	
35	56	58,91	-8	-121,71	
	DIF PROMEDIO	38,2		-57,84	

Tabla 90 Comparación de resultados N_{30} en función de Vp

4.5 ANÁLISIS V_s EN FUNCIÓN DE N₃₀ (SPT)

Con los datos tabulados en la tabla 4.4 y tomando como referencia a la ecuación $V_s = 80 N^{1/3}$ propuesta por la JAPAN ROAD ASSOCIATION se procede a correlacionar el valor de V_s (m/seg) en función del valor N₃₀ del SPT.

Figura 76 Vs en función de De N30

Se presenta la siguiente ecuación como resultado de la correlación de las velocidades de onda V_s en función del número de golpes N_{30} del SPT:

$$V_S = 202,79 N_{30}^{0.1956}$$
 Ec. 4-4

Para establecer esta relación se partió del criterio de que los suelos tienen velocidad de onda Vs menor a 760 m/seg (Norma Ecuatoriana de la Construcción NEC-SE-DS, 2014), por lo que valores mayores a este rango fueron eliminados de la curva. Los valores mayores a este se consideran como roca y la ecuación encontrada deja de tener validez. De la misma manera, los valores de N₃₀ > 50 también fueron descartados ya que

teóricamente este valor es considerado como rechazo y también se estima como una condición de las rocas de rocas de rigidez media.

Con esta ecuación encontrada se realizó el cálculo de los pares de valores obtenidos en los diferentes ensayos y luego se comparó con los valores que se obtendrían utilizando las ecuaciones de referencia

		VALORES CALCULADOS			
VALOR ENSAYO LABORATORIO	ECUACIÓN OE	ECUACIÓN OBTENIDA Ec 4.4		ECUACIÓN REFERENCIA Ec 2.16	
Vs	Vs	% DIFERENCIA	Vs	% DIFERENCIA	
645	502	-22,2	566	-12,3	
462	502	8,7	566	22,4	
530	502	-5,3	566	6,7	
462	502	8,7	566	22,4	
470	371	-21,0	375	-20,2	
305	361	18,3	349	14,3	
293	374	27,8	213	-27,3	
587	402	-31,5	460	-21,7	
510	312	-38,9	240	-52,9	
272	312	14,6	240	-11,8	
272	312	14,6	240	-11,8	
332	318	-4,2	253	-23,8	
467	407	-13,0	473	1,3	
412	413	0,3	493	19,7	
950	404	-57,5	466	-50,9	
467	407	-13,0	492	5,4	
	DIF PROMEDIO	-7,1		-8,77	

Tabla 91 Comparación de resultados V_s en función de N₃₀

4.6 CONCLUSIONES

Se tiene que en todos los casos la diferencia al calcularse los parámetros de resitencia al corte en función de correlaciones empíricas es menor al usarse las ecuaciones encontradas. Se puede verificar que el ajuste de las ecuaciones presentadas es más consistente con los datos encontrados en campo y laboratorio que el de las ecuaciones tomadas como referencia.

La dispersión encontrada al momento de realizar la correlación se debe al número de pares obtenidos para cada curva. Esto es porque el número de ensayos fue limitado (16 para cada ensayos).

La geología del sector también ha sido un factor determinante por esto se tienen variaciones no lineales incluso en el mismo sitio de estudio. Es decir las variaciones de los valores en datos como cohesión del suelo no son proporcionales a las variaciones encontradas para los valores de Vs y Vp por ejemplo incluso en la misma área de análisis.

Debido a que los valores utilizados han sido tomados en un rango de profundidades no mayor a los 2,50 m. de profundidad (profundidad máxima de la extracción de muestras para ensaye en laboratorio), las correlaciones encontradas servirán para estratos superficiales. Por lo que es recomendable el uso de las ecuaciones presentadas al momento del cálculo de cimentaciones superficiales.

A continuación se presenta los campos de la ingeniería civil donde se recomienda utilizar las correlaciones encontradas:

Tabla 92

Recomendaciones de uso correlaciones encontradas

4.7 RECOMENDACIONES

Se recomienda realizar un estudio de la variación de los parámetros de resistencia al corte ($c' \neq \phi$) según el porcentaje de finos (pasante del tamiz No. 200).

Se recomienda realizar una microzonificación en cada sitio de estudio presentado en la presente investigación que abarque una mayor cantidad de ensayos de manera que se pueda ajustar las curvas presentadas.

Se recomienda realizar las mismas correlaciones presentadas para suelos cohesivos.

BIBLIOGRAFÍA

- Bowles, J. E. (1997). Foundation Analysis and Design. PEORIA, ILLINOIS: MC. GRAW HILL.
- Das, B. M. (2006). Ingeniería de Cimentaciones. MEXICO DF: THOMSON.
- Das, B. M. (2012). *Fundamentos de Ingeniería de Cimentaciones*. MEXICO DF: Cengage Learning Editores, S.A. de C.V.
- Don, Z. (s.f.). Signal Processing Fundamentals. En Z. Don.
- Escalante, A. T. (Febrero de 2017). *http://www.arqhys.com*. Obtenido de http://www.arqhys.com/construccion/calicatas.html
- Escalante, A. T. (02 de 2017). http://www.arqhys.com. Obtenido de http://www.arqhys.com/construccion/cohesion-suelo.html
- Georys Ingenieros S.A.C. (Marzo de 2016). Análisis Multicanal de Ondas Superficiales MASW. Obtenido de http://www.georys.com/wpcontent/uploads/2016/04/Presentacion-masw.pdf
- Héctor Naranjo Aguay, T. D. (2012). Cálculo de capacidad portante basado en geofísica y método convencional. El caso del puente sobre el río Maicito. QUITO: ABYA YALA.
- LNV. (1993). Geotecnia.
- López, J., & Mejía, J. V. (MARZO de 2008). APLICACIÓN DEL MÉTODO DE REFRACCIÓN SÍSMICA PARA LA DETERMINACIÓN DE VELOCIDAD DE ONDAS P. EL SALVADOR.
- Louie, J. N. (2001). Faster, Better: Shear-Wave Velocity to 100 Meters Depth.
- Machuca, N. C. (7 de Enero de 2015). Obtención del perfil de velocidad de onda de corte mediante método MASW y comparación con ensayo tipo downhole en estaciones sismológicas de zona central. Obtenido de https://www.google.com.ec/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rj a&uact=8&ved=0ahUKEwjoiYui8bPSAhUBTyYKHVQ0B00QFggjMAE&url=http%3A% 2F%2Frepositorio.uchile.cl%2Fbitstream%2Fhandle%2F2250%2F133426%2FObtenc ion-de-perfil-de-velocidad-de-onda-de-corte-
- Madrid, I. d. (12 de MARZO de 2013). http://www.igeo.ucm-csic.es. Obtenido de http://www.igeo.ucm-csic.es/cultura-cientifica/divulgacion/228-igeoquiz-12marzo-el-núcleo-líquido-de-la-tierra
- Martínez, A. (11 de Agosto de 2009). *Mecánica Cuántica*. Obtenido de http://la-mecanicacuantica.blogspot.com/2009/08/el-analisis-de-fourier.html
- NEXT Xploration Technology. (Agosto de 2012). Servicio de Geofísica y aplicación de métodos no destructivos y no invasivos para estudios de geotecnia, Ingeniería Civil y Auditoría de Obras. Obtenido de http://www.trxconsulting.com/downloads/TRX_Geofisica%20para%20Ingenieria%2 0-%20Geotecnia.pdf

Norma Ecuatoriana de la Construcción NEC-SE-DS. (2014). MIDUVI.

- Park, C. B., Miller, R. D., & Xia, J. (Mayo de 1999). Multichannel analysis of surface waves. Obtenido de http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.506.1965&rep=rep1&ty pe=pdf
- Parra, A. (2016). ZONIFICACIÓN DE PELIGROS DE FLUJOS DE LODO (LAHARES) ASOCIADOS AL VOLCÁN COTOPAXI CANTÓN RUMIÑAHUI ZONA 7 2016. Sangolquí.
- Redpath, B. B. (1973). SEISMIC REFRACTION EXPLORATION FOR ENGINEERING SITE INVESTIGATIONS. SPRINGFIELD, USA: NATIONAL TECHNICAL INFORMATION SERVICE.
- Romero, C. A. (08 de 05 de 2006). Análisis de la influencia de la presión de confinamiento en la determinación del ángulo de fricción en la prueba de Corte Directo. Puebla, Mexico.
- Secretaría Nacional de Gestión de Riesgos. (s.f.). *Análisis de Vulnerabilidad Cantón Rumiñahui.* Sangolquí.
- Verasteguí, L. F. (2010). *PROCEDIMIENTOS FÍSICOS EN LA PROSPECCIÓN DE HIDROCARBUROS*. LIMA.