

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA

CARRERA DE INGENIERÍA AUTOMOTRIZ

TEMA: INVESTIGACIÓN DE LA VARIACIÓN DE LOS PARÁMETROS TÉRMICOS Y MECÁNICOS DEL MOTOR DE COMBUSTIÓN INTERNA DAEWOO DEL VEHÍCULO CHEVROLET AVEO 1.6 L, AL GENERAR AVERÍAS EN EL SUBSISTEMA DE CONTROL ELECTRÓNICO.

AUTORES: PABLO JAVIER GUAGALANGO GÓMEZ LUIS GONZALO LOACHAMÍN OYANA

DIRECTOR: ING. GERMÁN ERAZO

CONTENIDO

- ANTECEDENTES
- OBJETIVOS
- OBJETIVOS ESPECÍFICOS
- EQUIPOS
- PROTOCOLO DE PRUEBAS
- RECOPILACIÓN Y VIZUALIZACIÓN DE DATOS
- GENERACIÓN DE CÓDIGOS DE FALLA EN SENSORES
- COMPROBACIÓN DE CÓDIGOS DE FALLA Y PID´s
- ANÁLISIS DE RESULTADOS
- CONCLUSIONES
- RECOMENDACIONES

ANTECEDENTES

- A través de los años la tecnología ha ido avanzando de forma progresiva y el sector automotriz no se ha quedado excluido de este cambio, por esta razón los sistemas automotrices han ido incorporando nuevos elementos para adaptarse a las necesidades de los clientes.
- Nuevos sistemas o a su vez mejoras de anteriores se han ido adicionando a los automotores con la finalidad de mejorar el rendimiento y confort de los mismos, para de esta forma satisfacer las necesidades de los clientes que cada vez son más exigentes. Otra razón para mejorar los modelos son las severas normas ambientales que cada país tiene y los vehículos deben cumplir para su comercialización y posterior rodaje en vías.
- La inyección electrónica que equipa a los automóviles proporcionan alta eficiencia, menor consumo de combustible y disminución de emisiones contaminantes, debido a que utiliza sensores y actuadores controlados por varios módulos.
- El motor de combustión interna es controlado mediante la unidad de control electrónico (ECU), que como todo componente es propenso a fallar en ciertas condiciones, de la misma forma los elementos que controla pueden sufrir desperfectos, estas anomalías se conocen como códigos de diagnóstico de falla (DTC)

OBJETIVOS

Objetivo General

Analizar la variación de los parámetros térmicos y mecánicos del motor de combustión interna Daewoo del vehículo Chevrolet Aveo 1.6L, al generar DTCs en el subsistema de control electrónico

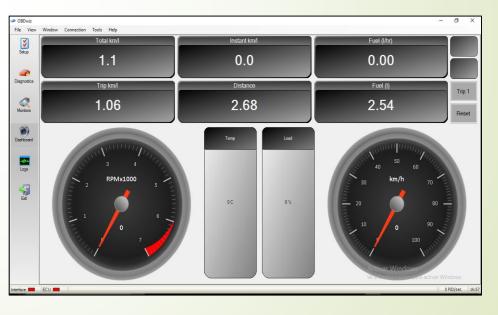
Objetivos específicos

- Desarrollar mediciones en sensores y actuadores a condiciones normales del motor DAEWOO E-TECH II.
- Optimizar el funcionamiento del dinamómetro de rodillos marca MOTOROLL (MD200HP), ubicado en el laboratorio de motores.
- Desarrollar mediciones de torque, potencia, consumo de combustible y emisiones en condiciones normales del motor DAEWOO E-TECH II.
- Generar DTC's altos y bajos en el grupo de sensores y actuadores.

- Realizar mediciones de torque, potencia, consumo de combustible y emisiones del motor DAEWOO E-TECH II cuando se generan DTC's en sensores y actuadores.
- Procesar los datos obtenidos en cada medición para establecer la influencia e incidencia de cada sensor, actuador a través de tabulaciones gráficas para compararlos numérica y matemáticamente fundamentados, para determinar su relación con el rendimiento del motor.

EQUIPOS

DINAMÓMETRO DE RODILLOS MOTORROLL MD200HP



INTERFAZ OBDLINK SX

ANALIZADOR DE GASES QRO TECH QGA 6000

MULTÍMETRO

CABLES PUENTE

VEHÍCULO CHEVROLET AVEO

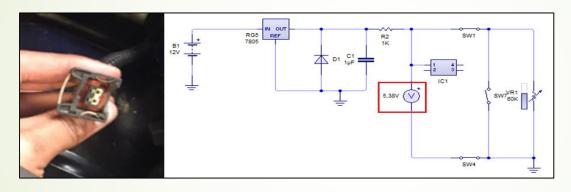
MOTOR DAEWOO E-TECH II 1.6L

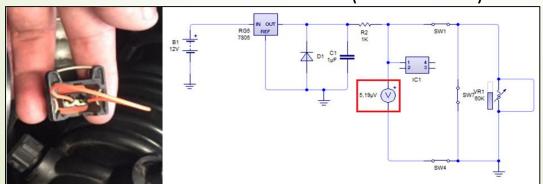
PROTOCOLO DE PRUEBAS

	ة 5 5	DTC	Potencia Torque	an an	e e	Emisiones				Temperaturas		
	Elemento Electrónico			Consumo	8	Ä	CO2	Š O Z	Admisi Ón	Escap		
	Condicione	es Estándar										
						Sensores						
	IAT	High										
	IAI	Low										
	ECT	High										
	201	Low										
	TPS	High										
	•	Low										
	MAP	High										
		Low										
	СМР	Off										
	O2	Off										
	ACTUADORES											
	Inyector											
	Bob	pina										
						COMBINACIONES						
		IAT(H)										
	MAP(L)	ETC(H)										
		Bobina										
		MAP(H)										
	Inyector	MAP(L)										
		IAT(H)										
		ETC(H)										

RECOPILACIÓN Y VIZUALIZACIÓN DE DATOS

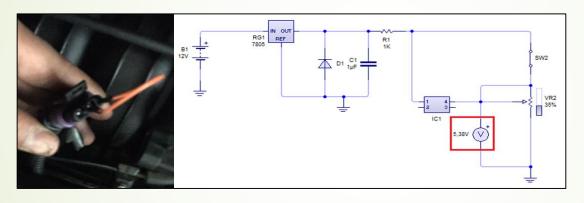
TORQUE Y POTENCIA

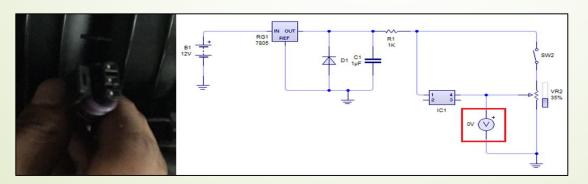

CONSUMO DE COMBUSTIBLE


GENERACIÓN DE CÓDIGOS DE FALLA EN SENSORES

SENSORES DE DOS CABLES

CÓDIGO DE FALLA EN ALTO (DTC ALTO)


CÓDIGO DE FALLA EN BAJO (DTC BAJO)


GENERACIÓN DE CÓDIGOS DE FALLA EN SENSORES

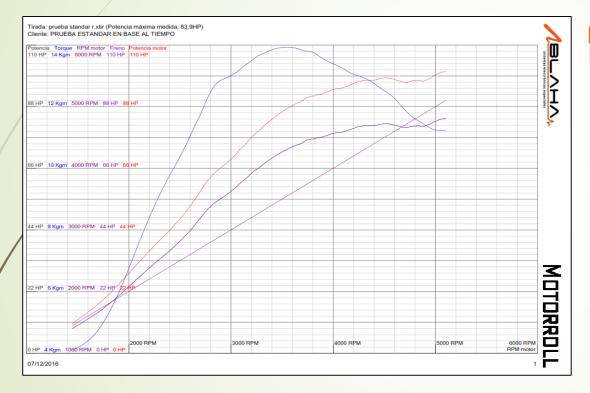
SENSORES DE TRES CABLES

CÓDIGO DE FALLA EN ALTO (DTC ALTO)

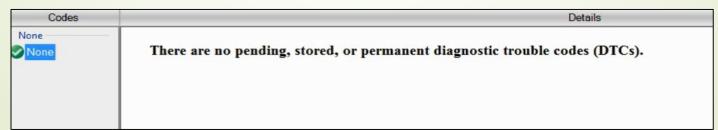
CÓDIGO DE FALLA EN BAJO (DTC BAJO)

COMPROBACIÓN DE CÓDIGOS DE FALLA Y PID's

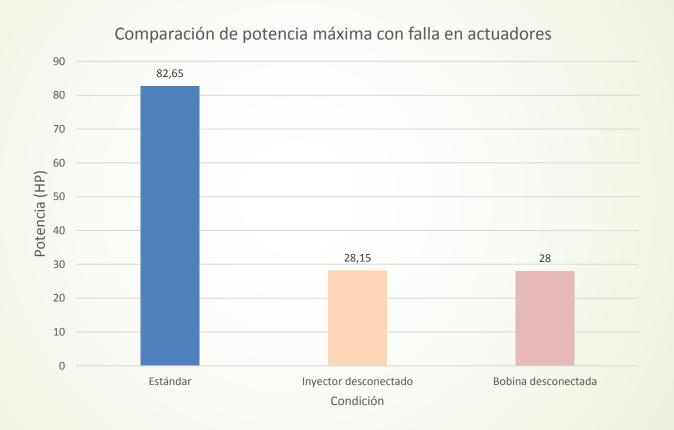
P0118	
Туре	PowerTrain
Status	Stored
ECU	11
Description	Engine Coolant Temperature Circuit High


	Save 0	pen Configure					
	PID	Description	Value	Units	Min	Mean	Max
gnostics	SAE 0x0B	Intake manifold absolute pressure	28	kPa	28	28	
10-243	SAE 0x0C	Engine RPM	825.25	RPM	798.5	816.06	
	SAE 0x0D	Vehicle speed	0	km/h	0	0	
onitors	SAE 0x0F	Intake air temperature	20	С	20	23	
	SAE 0x04	Calculated load value	3.14	%	3.14	3.14	
	SAE 0x05	Engine coolant temperature	85	С	85	86.5	
hboard	SAE 0x06	Short term fuel % trim - Bank 1	0.78	%	-1.56	-0.16	
	SAE 0x07	Long term fuel % trim - Bank 1	-1.56	%	-1.56	-1.56	
all a	SAE 0x0E	Ignition timing advance for #1 cylinder	1.5		1.5	2.2	
.ogs	SAE 0x11	Absolute throttle position	0	%	0	0	
	SAE 0x14	O2 voltage (Bank 1, Sensor 1)	0.61	V	0.32	0.48	
Soft .	SAE 0x14	Short term fuel trim (Bank 1, Sensor 1)	0.78	%	-1.56	0	
Exit	SAE 0x15	O2 voltage (Bank 1, Sensor 2)	0.44	V	0.44	0.44	
	SAE 0x15	Short term fuel trim (Bank 1, Sensor 2)	99.22	%	99.22	99.22	9
	SAE 0x21	Distance traveled while MIL is activated	0	km			
	SAE 0x22	Fuel rail pressure relative to manifold vacuum	0	kPa	0	0	

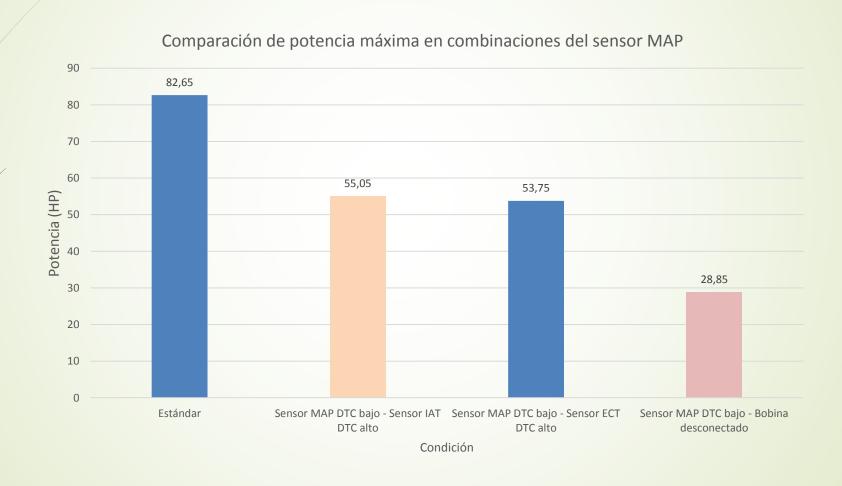
RESULTADOS OBTENIDOS

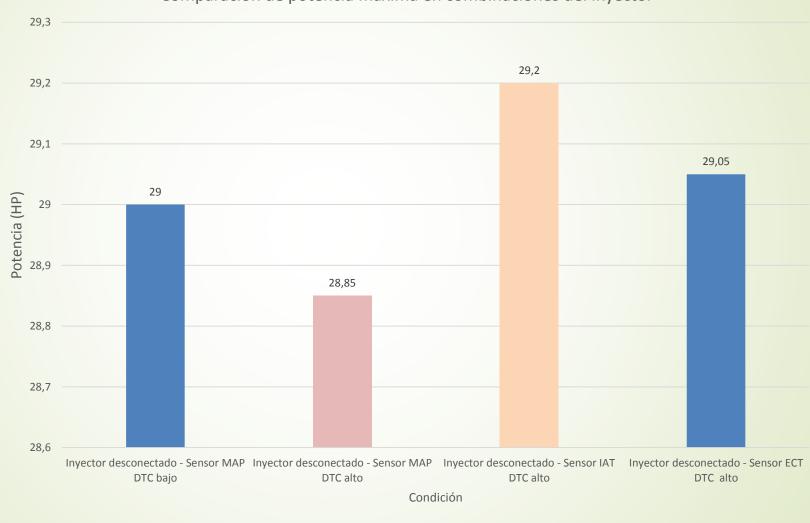

TORQUE Y POTENCIA

CONDICIÓN ESTÁNDAR



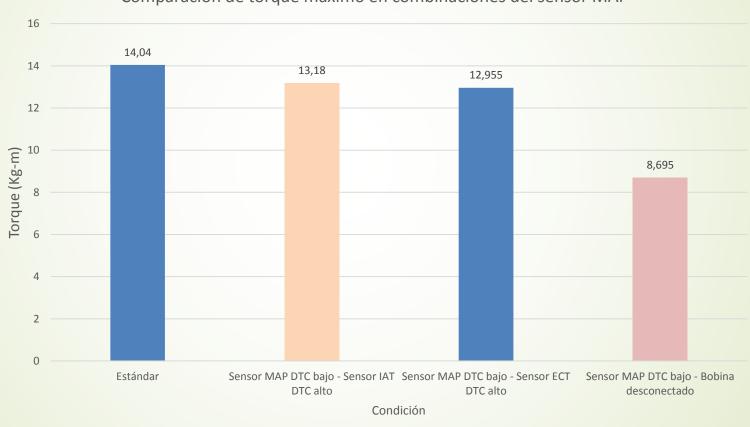
Condición	Potencia (HP)	Torque (Kgm)
Estándar	82,65	14,04

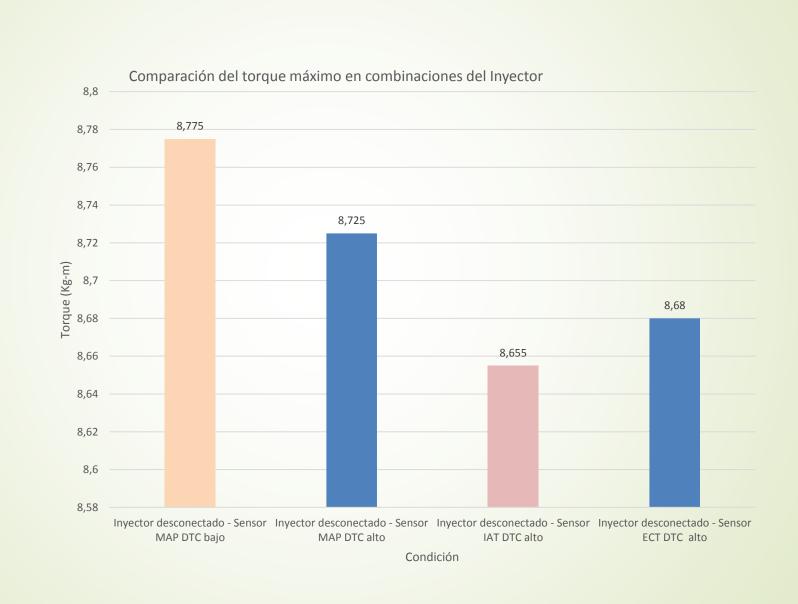

En la condición estándar, es decir sin fallas en el sistema de control electrónico la potencia máxima fue de 82,65 HP y el torque máximo de 14.04 Kg-m, ambos valores registrados en un tiempo de 22,44 seg, dato referecial para el resto de pruebas.

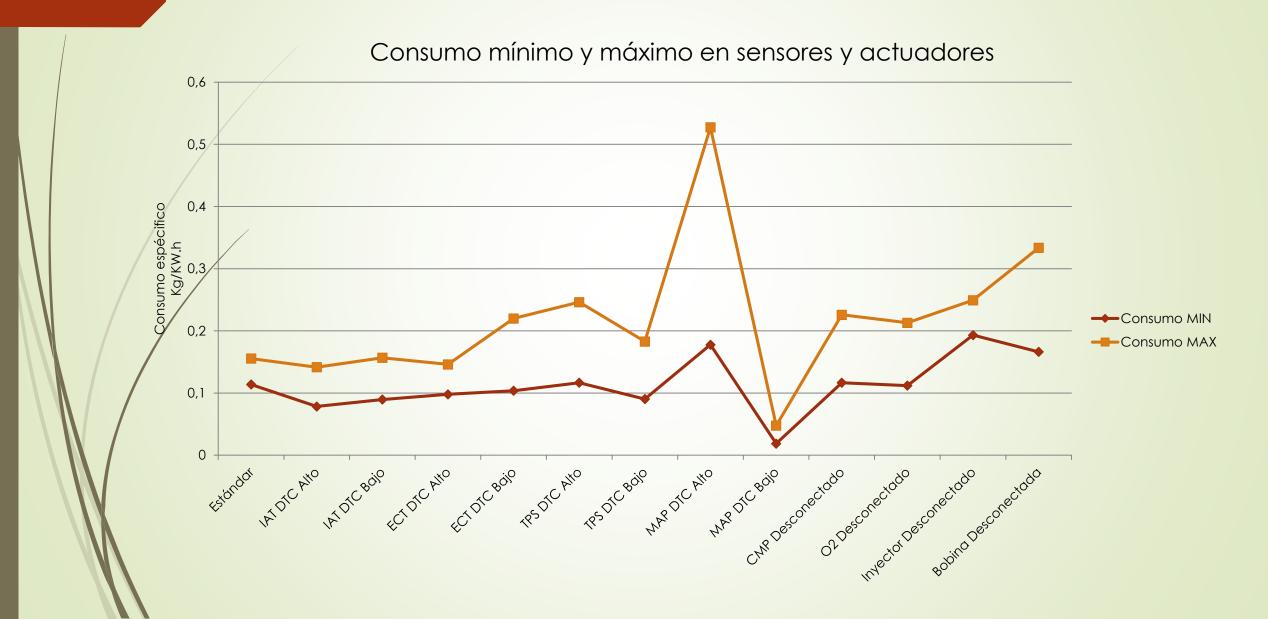

ACTUADORES DESCONECTADOS

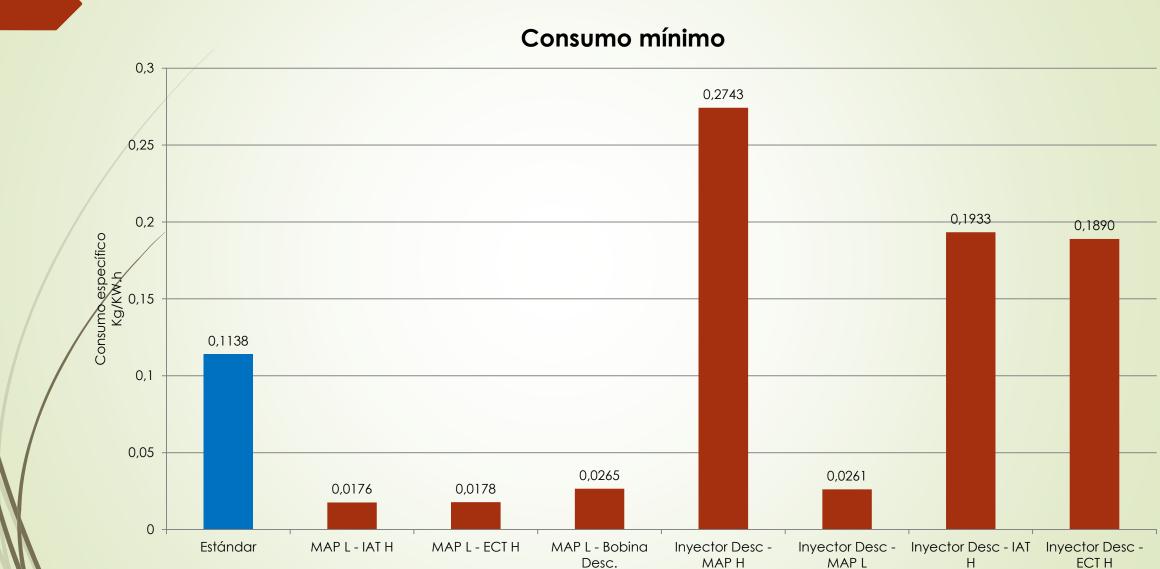
COMBINACIONES DE FALLAS

Comparación de potencia máxima en combinaciones del Inyector




ACTUADORES DESCONECTADOS


COMBINACIONES DE FALLAS



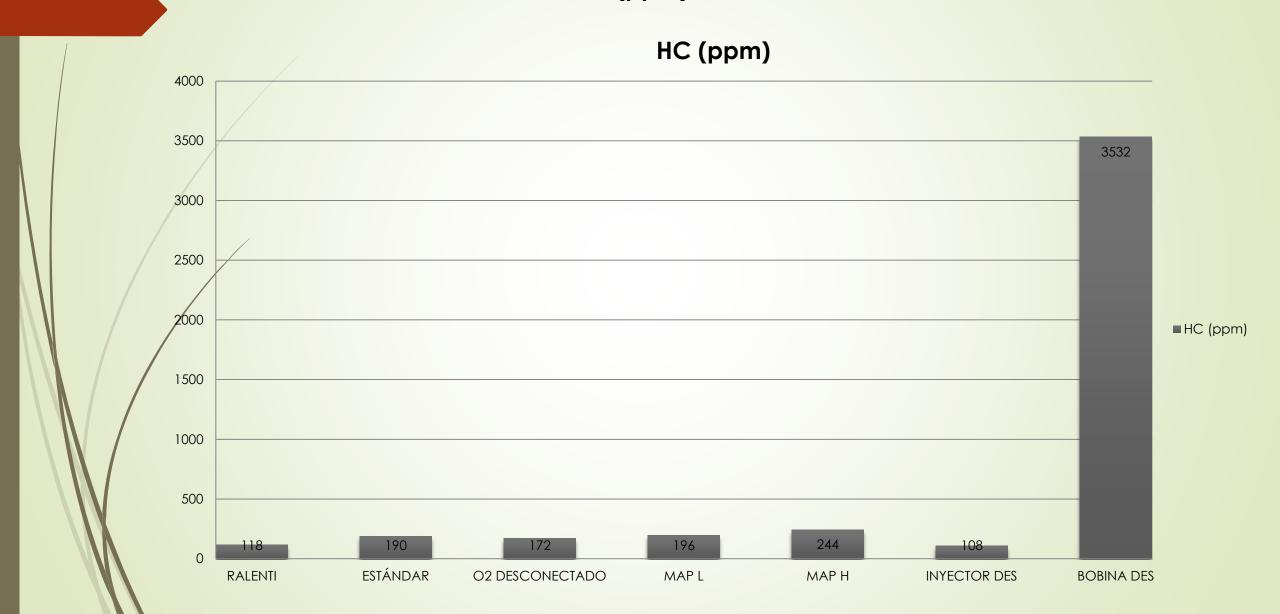
COMPARACIÓN DE VALORES CON DTC'S EN SENSORES Y ACTUADORES

COMPARACIÓN DE VALORES CON DTC'S EN COMBINACIONES

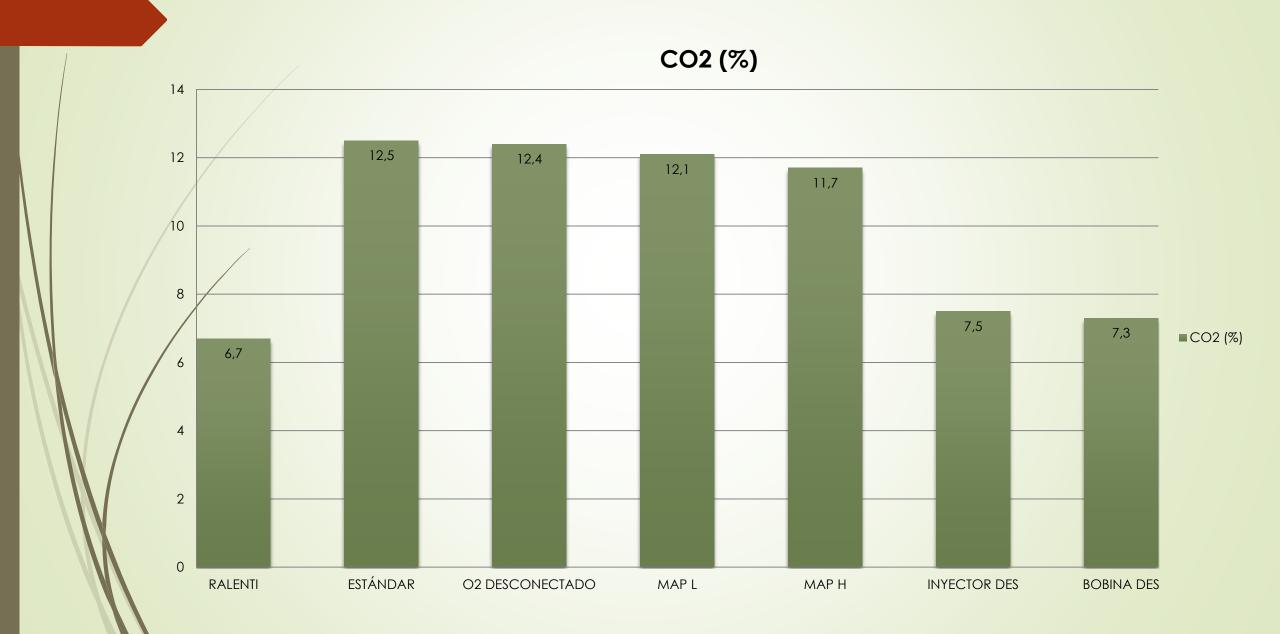
COMPARACIÓN DE VALORES CON DTC'S EN COMBINACIONES

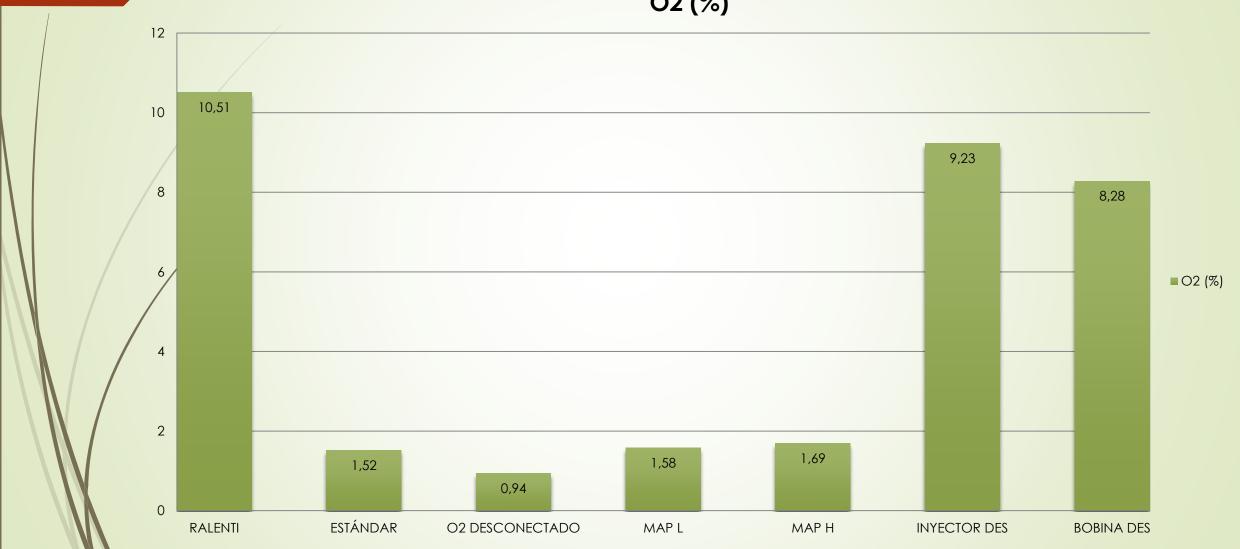
COMPARACIÓN DE VALORES CON DTC'S EN COMBINACIONES

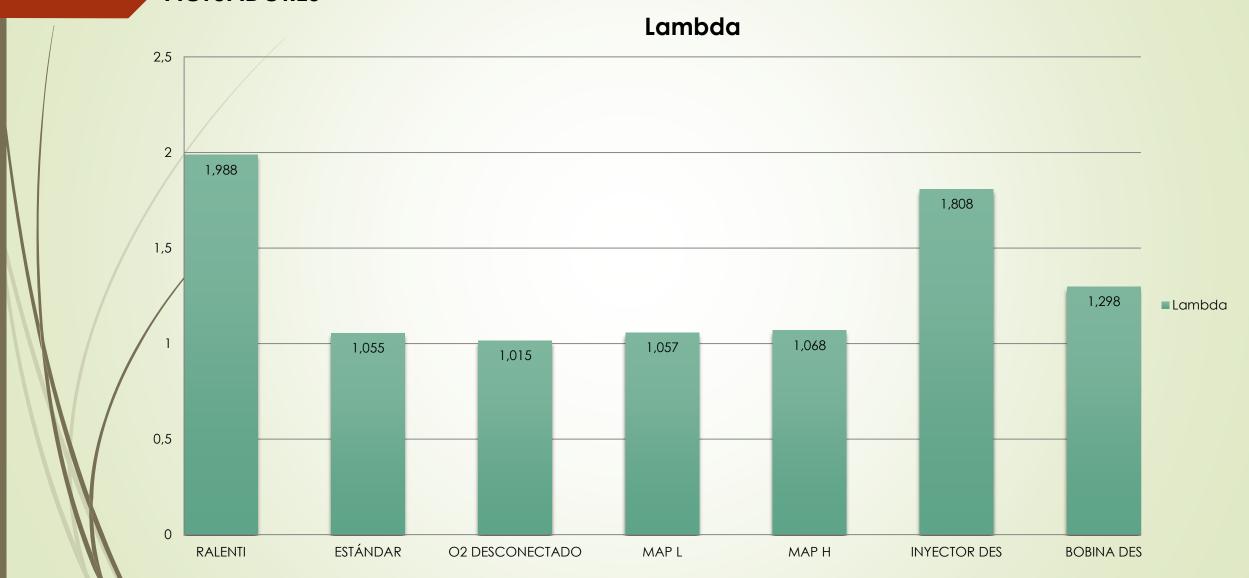
GASES DE ESCAPE

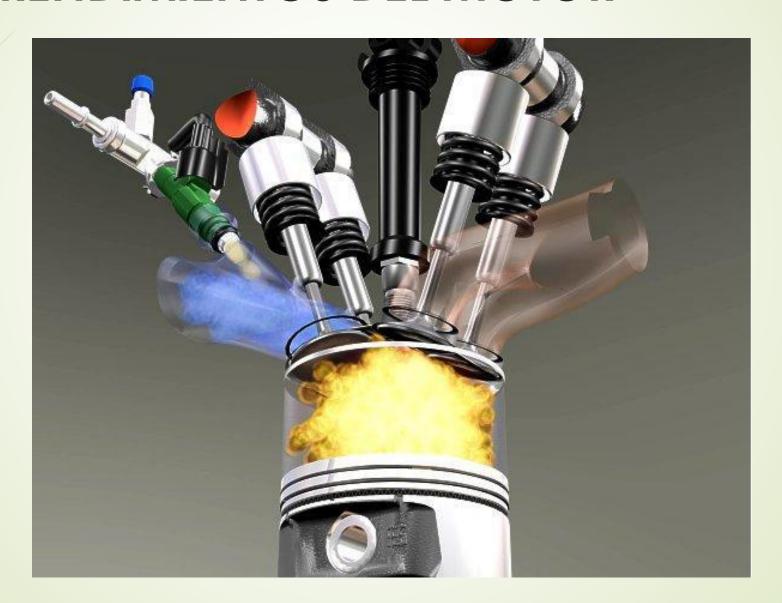

VALORES MÁXIMOS DE GASES DE ESCAPE

	PRUEBAS	CO (%)	HC (ppm)	CO2 (%)	O2 (%)	Lambda
	RALENTI	0,31	118	6,7	10,51	1,988
	ESTÁNDAR	0,48	190	12,5	1,52	1,055
\mathbb{Z}	O2 DESCONECTADO	0,66	172	12,4	0,94	1,015
	MAP L	2,27	196	12,1	1,58	1,057
	MAP H	0,5	244	11,7	1,69	1,068
	INYECTOR DESCONECTADO	0,1	108	7,5	9,23	1,808
	BOBINA DESCONECTADA	1,04	3532	7,3	8,28	1,298

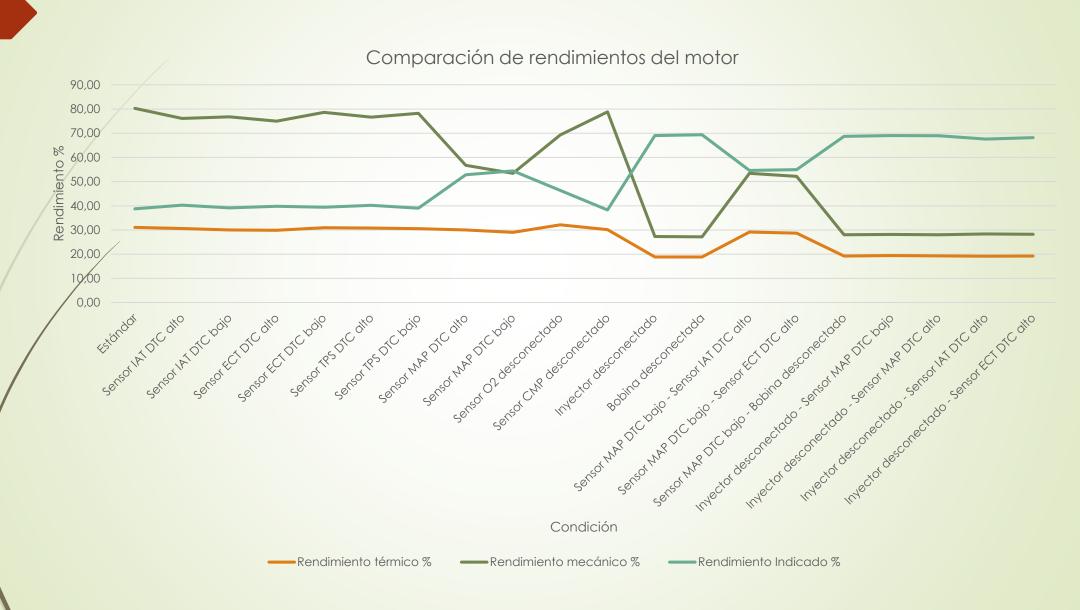

COMPARACIÓN DE VALORES DE CO (%) CON FALLAS EN SENSORES Y ACTUADORES


COMPARACIÓN DE VALORES DE HC(ppm) CON FALLAS EN SENSORES Y ACTUADORES


COMPARACIÓN DE VALORES DE CO2 (%) CON FALLAS EN SENSORES Y ACTUADORES


COMPARACIÓN DE VALORES DE O2 (%) CON FALLAS EN SENSORES Y ACTUADORES O2 (%)

COMPARACIÓN DE VALORES DEL FACTOR LAMBDA CON FALLAS EN SENSORES Y ACTUADORES


RENDIMIENTOS DEL MOTOR

VALORES MÁXIMOS DE RENDIMIENTOS DEL MOTOR

Condición	Rendimiento térmico %	Rendimiento mecánico %	Rendimiento Indicado %
Estándar	31,08	80,24	38,74
Sensor IAT DTC alto	30,63	76,12	40,24
Sensor IAT DTC bajo	30,04	76,75	39,15
Sensor ECT DTC alto	29,87	75,00	39,82
Sensor ECT DTC bajo	30,96	78,59	39,40
Sensor TPS DTC alto	30,82	76,60	40,23
Sensor TPS DTC bajo	30,52	78,25	39,00
Sensor MAP DTC alto	29,99	56,75	52,85
Sensor MAP DTC bajo	29,05	53,40	54,40
Sensor O2 desconectado	32,14	69,32	46,36
Sensor CMP desconectado	30,17	78,79	38,29
Inyector desconectado	18,87	27,33	69,06
Bobina desconectada	18,86	27,18	69,39
Sensor MAP DTC bajo - Sensor IAT DTC alto	29,18	53,45	54,60
Sensor MAP DTC bajo - Sensor ECT DTC alto	28,68	52,18	54,96
Sensor MAP DTC bajo - Bobina desconectado	19,25	28,01	68,73
Inyector desconectado - Sensor MAP DTC bajo	19,43	28,16	69,00
Inyector desconectado - Sensor MAP DTC alto	19,32	28,01	68,97
Inyector desconectado - Sensor IAT DTC alto	19,16	28,35	67,59
Inyector desconectado - Sensor ECT DTC alto	19,22	28,20	68,14

COMPORTAMIENTO DE LOS RENDIMIENTOS DEL MOTOR

CONCLUSIONES

- Se analizó la variación de los parámetros térmicos y mecánicos del motor de combustión interna Daewoo del vehículo Chevrolet Aveo 1.6L, al generar DTCs en el subsistema de control electrónico.
- Se desarrolló mediciones en sensores y actuadores a condiciones normales del motor DAEWOO E-TECH II.
- Se optimizó el funcionamiento del dinamómetro de rodillos marca MOTORROLL (MD200HP), ubicado en el laboratorio de motores.
- Se desarrollaron mediciones de torque, potencia, consumo de combustible y emisiones en condiciones normales del motor DAEWOO E-TECH II.
- Se generaron DTC's altos y bajos en el grupo de sensores y actuadores.

- Se realizaron mediciones de torque, potencia, consumo de combustible y emisiones del motor DAEWOO E-TECH II cuando se generaron DTC's en sensores y actuadores.
- Se procesaron los datos obtenidos en cada medición y se estableció la influencia e incidencia de cada sensor, actuador a través de tabulaciones gráficas para compararlos numérica y matemáticamente fundamentados, determinando así su relación con el rendimiento del motor.

RECOMENDACIONES

- Se recomienda realizar esta investigación en condiciones de nivel del mar.
- Realizar un mantenimiento periódico de todos los componentes del dinamómetro con el fin de que no sufran desgaste anticipado, debido a las cargas y velocidades elevadas a las cuales se realizan las pruebas.
- Se recomienda la utilización de otro tipo de combustible para realizar la misma investigación y comparar los valores obtenidos.
- Esta investigación se realizó en un solo vehículo, por lo que se recomienda que para futuros proyectos se considere el estudio con una muestra amplia de vehículos de diferente marca

- Es importante conseguir los diagramas eléctricos y electrónicos del vehículo para identificar los componentes tanto sensores como actuadores, además para comprobar su ubicación en el motor.
- Realizar un protocolo de seguridad para trabajar con los sensores y actuadores, tomado en cuenta voltajes de alimentación, señal y masas de cada elemento electrónico para prevenir daños en la ECU

"Nunca consideres el estudio como una obligación, sino como una oportunidad para penetrar en el bello y maravilloso mundo del saber."

Albert Einstein

