

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE – EXTENSIÓN LATACUNGA

Departamento de Eléctrica y Electrónica

Carrera: Ingeniería Electromecánica

TEMA:

"DISEÑO DE UN SISTEMA DE TRANSPORTE DE BIOGÁS PARA USO DOMÉSTICO EN LA HACIENDA SAN FRANCISCO"

OBJETIVO GENERAL

 Diseñar un sistema de transporte de biogás para uso doméstico en la Hacienda San Francisco.

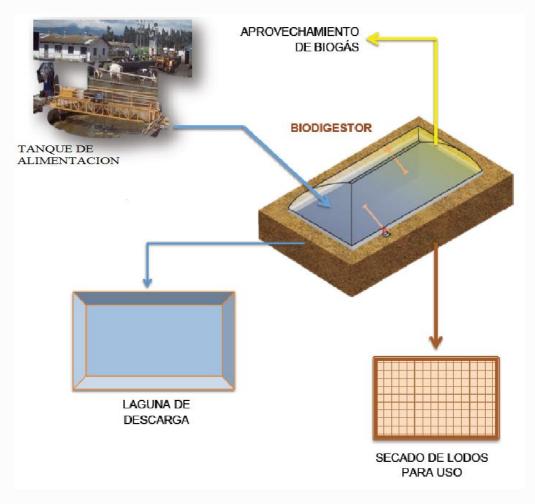
OBJETIVOS ESPECÍFICOS

- Recopilar el sustento teórico necesario para el desarrollo del proyecto.
- Diseñar el sistema de manejo de biogás.
- Realizar el levantamiento topográfico para la línea de conducción.
- Diseñar la red de tubería para el transporte del biogás.
- Diseñar el filtro de H_2S .

JUSTIFICACIÓN E IMPORTANCIA

Debido a la producción de biogás que se obtiene del biodigestor de la hacienda San Francisco se puede implementar un sistema para el transporte del biogás, el cual permitirá aprovechar el biogás y poderlo sustituir por el GLP.

Los beneficios son varios, tanto económicos como de ayuda a la conservación del medio ambiente, además de poner en la mira a la UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE como pionera en la investigación de este tipo de tecnologías.


UBICACIÓN DEL TRABAJO DE TITULACIÓN

La Hacienda San Francisco se encuentra ubicada al norte de la Provincia de Cotopaxi a 400 metros de la piedra Colorada, en sus instalaciones cuenta con un biodigestor que tiene una capacidad de producir 1200 m^3 / dia de biogás.

ESQUEMA BIODIGESTOR HACIENDA SAN FRANCISCO.

BIODIGESTOR.

• Los biodigestores son depósitos o tanques cerrados herméticamente. Se puede definir como recipientes o tanques que permiten la carga de sustratos (biomasa) y descarga de bioabono-biol y posee un sistema de recolección y almacenamiento de biogás para su aprovechamiento calorífico o energético

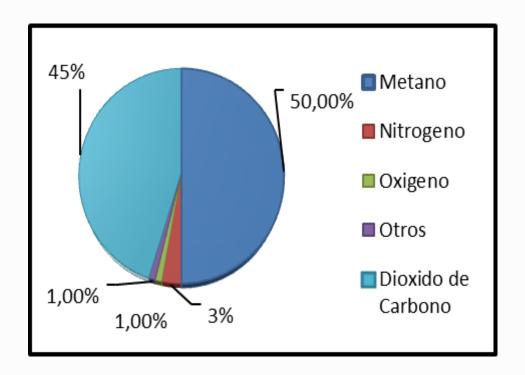
Biomasa

• En general cualquier substrato puede ser utilizado como biomasa en cuanto contengan carbohidratos, proteínas, grasas, celulosa y hemicelulosa como componentes principales

Biogás

Es un gas que consiste principalmente en el gas metano (55%-65%) producido por la digestión anaeróbica (en la ausencia del oxígeno molecular) de materia orgánica.

Su temperatura de auto-ignición es similar a la del metano puro y varía de 650-750 °C.



Las propiedades y características del Biogás dependen de la presión y la temperatura.

El biogás no se quema o explosiona con facilidad. No se puede quemar solo sino que necesita una mezcla de aire-biogás para que encienda

Composición típica del biogás de vertedero

Elementos que contiene el biogás.

Componente	Concentración por Volumen	Características
Metano (CH ₄)	55%	Explosivo
Bióxido de Carbono (CO ₂)	35%	Acidez
Hidrogeno (H ₂)	<5%	Explosivo
Oxigeno (0_2)	<5%	Inocuo
Mercaptanos (CHS)	1.1%	Mal Olor
Ácido Sulfhídrico (H ₂ S)	<2%	Mal Olor, Corrosivo

Características del biogás y comparación con otros gases.

Tipos de gas	Unidad	Biogás	Gas Natural	Propano	Metano	Hidrogeno
Poder calorífico	KWh/m³	6	10	26	10	3
Peso especifico	Kg/m^3	1.25	0.7	2.01	0.72	0.09
Relación a la densidad del aire		0.9	0.54	1.51	0.55	0.07
Temperatura de encendido	°C	700	650	470	600	585
Contenido de						
oxígeno para explosión	Vol. %	6 - 12	4.4- 15	1.7 – 10.9	4.4 – 16.5	4 – 7

Rendimiento de los artefactos por medio de biogás

Artefacto	Consumo	Rendimiento %
Quemador de cocina	300 – 600 l/h	50 – 60
Lámpara a mantilla (60 W)	120 – 170 l/h	30 – 50
Heladería de 100 L	-30 – 75 l/h	20 – 30
Quemador de 10 Kw	2 - 3 l/h	80 – 90
Infrarrojo de 200 W	30 l/h	95 – 99

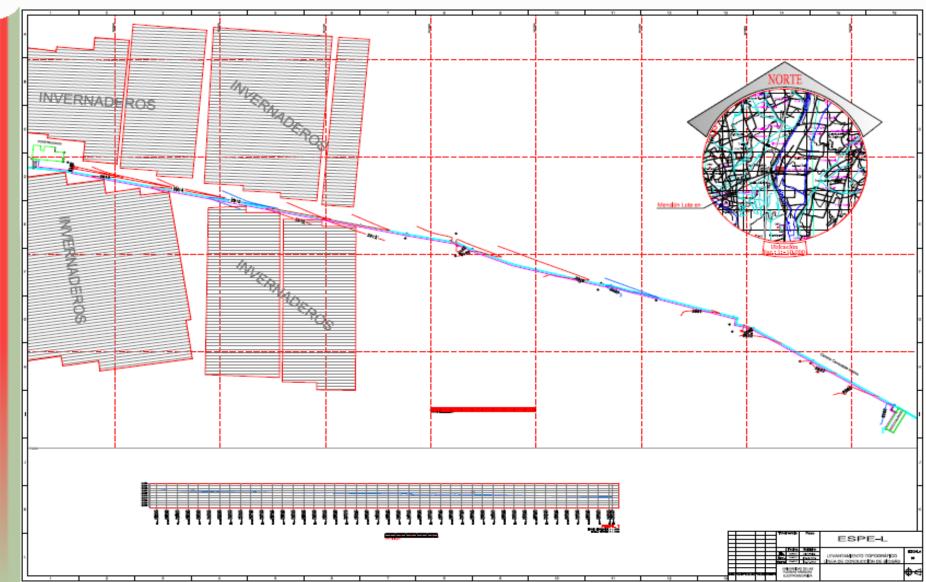
Tren de calibración de biogás

Antes del aprovechamiento del biogás para generar energía calorífica hay que instalar un tren de calibración del biogás para el control de presiones, caudales y la calidad del biogás.

Línea de conducción de biogás.

Material	Ventajas	Desventajas
Plástico (PVC,CPVC)	Fácil de trabajar Relativamente barato	Fácil de quebrarse o fracturarse. Válvulas más caras que las de galvanizado. Está sujeta a la degradación causada por los rayos solares ultravioleta
Acero Galvanizado	Rígido, menos posibilidades de fracturarse	Se oxida, tubería más cara que la de PVC o plástico.
Manguera Plástica	Fácil de conectar a los equipos	Cara, se puede dañar fácilmente
Plástico (ABS)	Ninguna	No recomendado

DISEÑO DEL SISTEMA DE TRANSPORTE DE BIOGAS MEDIANTE TUBERIA PVC


La empresa consume 10 cilindros de 15 Kg de GLP semanales para la elaboración de alimentos y actualmente tiene un costo 24 USD c/u, es decir mensualmente tienen un egreso de 1040 dólares, estos gastos podrían ser evitados mediante la implementación de un sistema de transporte de biogás.

Levantamiento Topográfico en la Hacienda San Francisco.

Distancia entre Biodigestor y Cocina	900 m
Pendiente entre Biodigestor y Cocina	12.51 m
Porcentaje de inclinación	2%

Producción de biogás del digestor de la Hacienda San Francisco

Medidor de gas (Valor Registrado)	Observació n (días)	Producción (m³)	Producción diaria (m³/día)	Producción hora (m³/h)
361251,70	1	582,99	582,99	24,29
361834,69	3	1523,73	507,91	21,16
363358,42	3	1475,33	491,78	20,49
364833,75	3	1674,09	558,03	23,25
366507,84	8	4515,26	564,41	23,52

Cromatografía de biogás en producción.

La cromatografía fue realizada a una atmosfera y a temperatura de 20 °C

	Biogás		
Componente	% Peso	% Moles	
Nitrógeno	9.22	8382	
Metano	32.10	53.72	
<i>CO</i> ₂	56.71	34.51	
Agua	1.98	2.94	
Poder Calorífico inferior a 25 $^{\circ}C\left[Btu/pie^{3} ight]$		544.08	

CÁLCULO DEL FLUJO DE BIOGÁS REQUERIDO.

consumo en poder calorífico = (consumo del GLP)X(poder calorífico GLP)

consumo GLP poder calorífico
$$100\% = 1.68 \frac{m^3}{6h} \times 75495.16 \frac{BTU}{m^3}$$

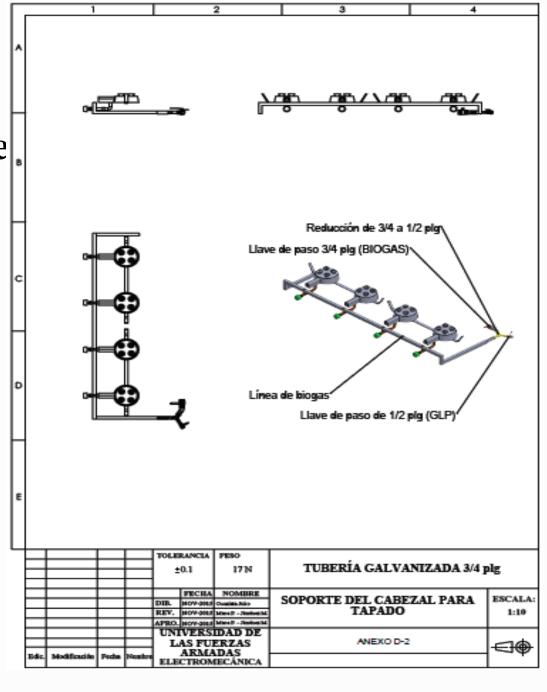
126831.86
$$\frac{BTU}{6h}$$

Calculo del flujo del biogás en $m^3/6h$ al 100% de consumo en la cocina industrial.

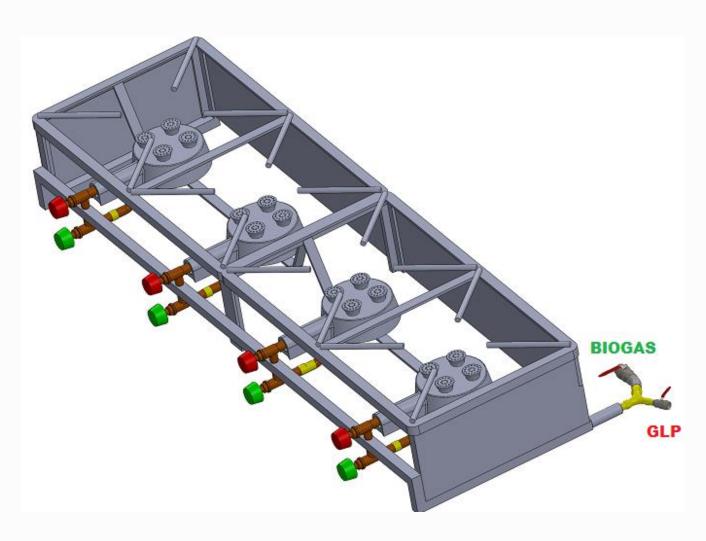
$$flujo \ del \ biog\'as = \frac{\frac{BTU}{6h} \ \ GLP \ Poder \ Calor\'afico}{poder \ calor\'afico \ biog\'as.}$$

$$flujo \ de \ biog\'as = \frac{126831.86 \frac{BTU}{6h}}{544,08 \frac{BTU}{ft^3}}$$

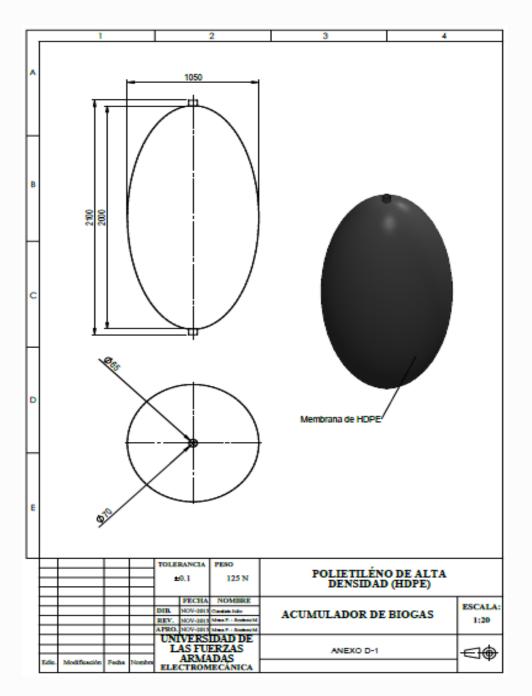
flujo de biogás = 233.11
$$\frac{ft^3}{6h}$$
 x $\frac{1m^3}{35,3147ft^3}$ flujo de biogás = 6.6 $\frac{m^3}{6h}$

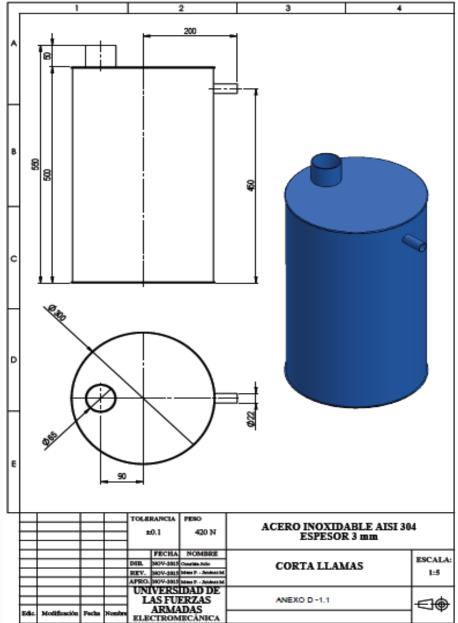


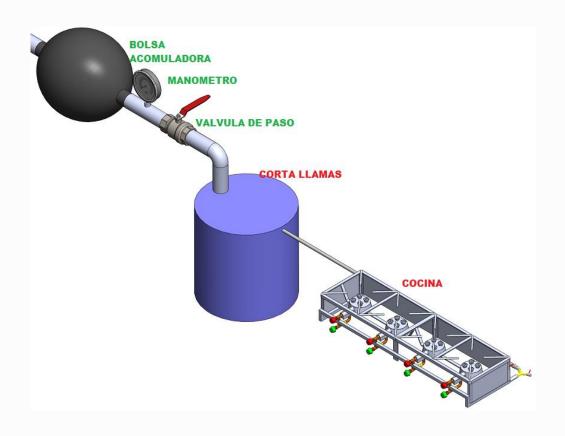
Determinación de la demanda para el área a gasificar.


Cocina	Tiempo de funcionamiento diario h/día	Consumo de GLP $2138.06BTU/ft^3$ en $m^3/6h$	Consumo de biogás $544.08BTU/ft^3$ en $m^3/6h$
4 quemador	6	1.68	6.6

Acondicionamiento de la cocina industrial para su funcionamiento con biogás – GLP.






Entrada del biogás hacia la cocina

SELECCIÓN DEL SOPLADOR.

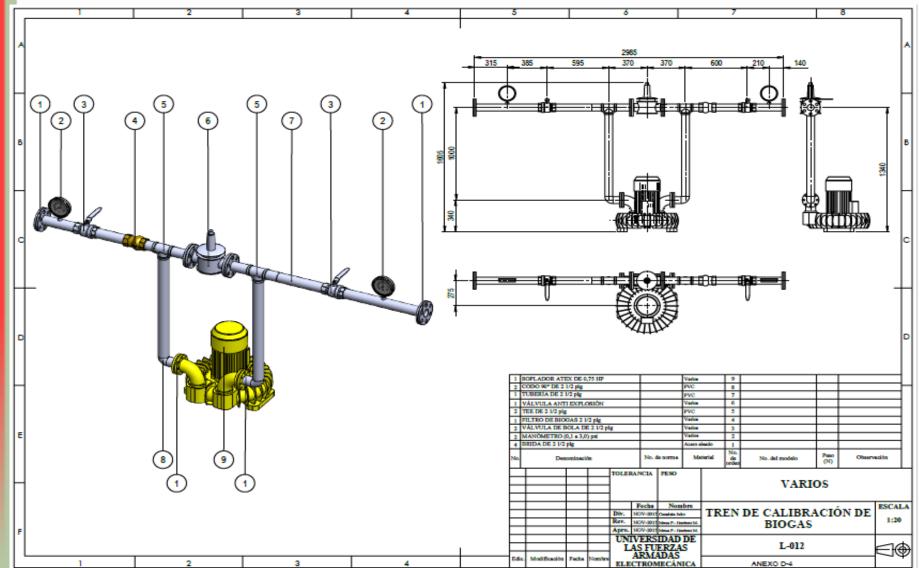
400-0-00	PONDERA		ALTERNATIVA	S
ASPECTOS	CION	А	В	С
Disponibili	10	10	10	10
dad		10	10	10
Capacidad	10	9	9	10
Requerida	10			10
Naturaleza	10	10	10	10
del gas	10	10	10	10
Carga total				
del	10	9	9	9
soplador	r			
Precio	10	9	8	10
Disponibili				
dad en el	5	5	5	10
pais				
PUNTUACION TOTAL		47	46	<mark>59</mark>

Soplador marca MAPRO. modelo "CL 30 HS"

SELECCIÓN DE LA TUBERÍA PARA LA SUCCIÓN Y DESCARGA DEL BIOGÁS.

• El siguiente cálculo del diámetro de la tubería está basado en la ecuación de Weymouth.

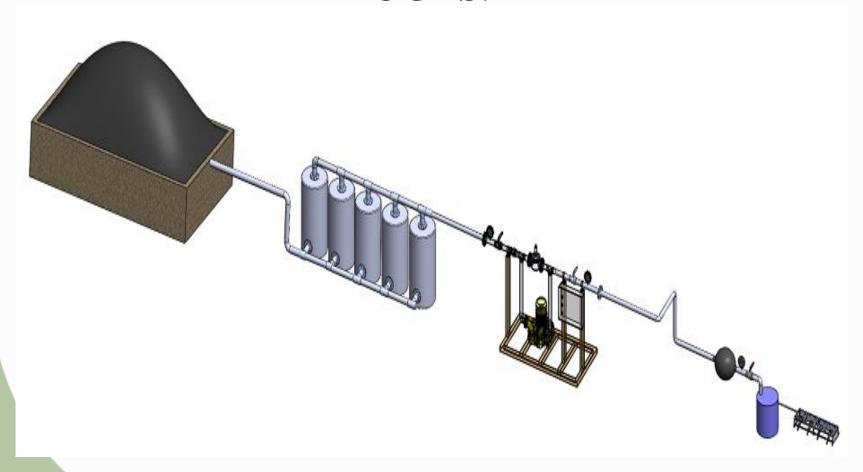
VARIABLE	VALOR	UNIDADES
Q	1	m^3/h
d	?	Mm
P ₁	0.122	Kg/cm ²)
P ₂	0.070	Kg/cm ²)
S	1.04	adimensional
L	0.9	Km
T	293.15	°K


$$Q = 2.61 \times 10^{-3} \times d^{2.667} \sqrt{\left[\frac{P_1^2 - P_2^2}{SL}\right]} \frac{288}{T}$$

$$d = \left(\frac{Q\sqrt{SLT}}{2.61 \times 100^{-3} \sqrt{288(P_1^2 - P_2^2)}}\right)^{1/2.667}$$

$$d = 2.11plg \approx 2^{1/2} plg$$

DISEÑO DEL TREN DE CALIBRACIÓN



DISEÑO DEL FILTRO H₂S

DISEÑO DE LA LÍNEA DE CONDUCCIÓN DE BIOGAS.

ANÁLISIS ECONÓMICO

Cálculo del VAN, TIR y Tiempo de recuperación				
Tasa de descuento (anual)	9,53 %			
Ahorro mensual:	1030,4			
Ahorro anual:	12364,8			
Inversión inicial:	22291,28			
Periodo años	Flujo de fondos anuales			
0	-22291,28			
1	9.814,48			
2	9.546,05			
3	9.277,62			
4	9.009,20			
5	8.740,77			
Valor actual neto (VAN):	13491,42			
Tasa interna de retorno (TIR):	31,52%anual			
Tiempo de recuperación (TR):	24 Meses			

CONCLUSIONES

- La empresa AQUALIMPIA es la más óptima en la información en datos reales y confiables para el estudio de este proyecto.
- Para mantener el flujo continuo en la cocina industrial se seleccionó un soplador (Blower).
- El filtro nos entrega los 4 ppm que es la cantidad máxima de contenido de H_2S permitida para el óptimo funcionamiento en la cocina industrial.
- La tubería será de PVC de $2^{1/2}$ plg por su costo bajo, su durabilidad es larga y es aceptable en el medio de este proyecto.
- Por la pendiente de 2% la cual nos permite despreciar las perdidas en la red de tubería.
- El bypass es necesario en la cocina industrial para mantener el continuo flujo ya sea de GLP o biogás.
- Con el diseño realizado para el sistema de conducción de biogás para uso doméstico se estima lograr una recuperación de la inversión en 2 años con una tasa de retorno anual del 31.52%

RECOMENDACIONES

- El proyecto es viable y debería ser tomado como ejemplo para futuras implementaciones.
- Promover la utilización de este tipo de tecnología para el aprovechamiento de biogás en las cocinas mediante charlas en congresos referentes a temas de protección del medio ambiente, con el apoyo de instituciones gubernamentales como el Ministerio del Ambiente.
- Drenar las trampas de condensados periódicamente.
- Realizar un mantenimiento periódico en el tren de calibración y en la línea de conducción de biogás.

GRACIAS

UNIVERSIDAD DE LAS FUERZAS ARMADAS