

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA

CARRERA DE INGENIERÍA MECÁNICA

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

TEMA: ESTUDIO DEL COMPORTAMIENTO DEL CONO DE INYECCIÓN DE DIFERENTES MEZCLAS Y EMULSIONES DE ACEITES DE GLYCINE MAX, JATROPHA CURCAS Y ELAEIS GUINEENSIS EN ESTADO VIRGEN Y USADO.

AUTOR: SANGUANO VILCA, EDISON OMAR

DIRECTOR: DR. GOYOS PÉREZ, LEONARDO

SANGOLQUÍ 2017

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

CERTIFICACIÓN

Certifico que el trabajo de titulación, "ESTUDIO DEL COMPORTAMIENTO DEL CONO DE INYECCIÓN DE DIFERENTES MEZCLAS Y EMULSIONES DE ACEITES DE GLYCINE MAX, JATROPHA CURCAS Y ELAEIS GUINEENSIS EN ESTADO VIRGEN Y USADO." realizado por el señor EDISON SANGUANO, ha sido revisado en su totalidad y analizado por el software anti-plagio, el mismo cumple con los requisitos teóricos, científicos, técnicos, metodológicos y legales establecidos por la Universidad de las Fuerzas Armadas ESPE, por lo tanto me permito acreditarlo y autorizar al señor EDISON SANGUANO para que lo sustente públicamente.

Sangolquí, 30 de Agosto del 2017

Dr. Leonardo Goyos

DIRECTOR

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

AUTORÍA DE RESPONSABILIDAD

Yo, EDISON SANGUANO, con cedula de identidad N° 1722297296, declaro que este trabajo de titulación "ESTUDIO DEL COMPORTAMIENTO DEL CONO DE INYECCIÓN DE DIFERENTES MEZCLAS Y EMULSIONES DE ACEITES DE GLYCINE MAX, JATROPHA CURCAS Y ELAEIS GUINEENSIS EN ESTADO VIRGEN Y USADO." ha sido desarrollado considerando los métodos de investigación existentes, así como también se ha respetado los derechos intelectuales de terceros considerándose en las citas bibliográficas.

Consecuentemente declaro que este trabajo es de mi autoría, en virtud de ello me declaro responsable del contenido, veracidad y alcance de la investigación mencionada

Sangolquí, 30 de Agosto del 2017

EDISON OMAR SANGUANO VILCA

1722297296

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

AUTORIZACIÓN

Yo, EDISON SANGUANO, autorizo a la Universidad de las Fuerzas Armadas ESPE publicar en la biblioteca Virtual de la institución el presente trabajo de titulación "ESTUDIO DEL COMPORTAMIENTO DEL CONO DE INYECCIÓN DE DIFERENTES MEZCLAS Y EMULSIONES DE ACEITES DE GLYCINE MAX, JATROPHA CURCAS Y ELAEIS GUINEENSIS EN ESTADO VIRGEN Y USADO." cuyo contenido, ideas y criterios son de autoría y responsabilidad.

Sangolquí, 30 de Agosto del 2017

EDISON OMAR SANGUANO VILCA

1722297296

DEDICATORIA

Dedico este esfuerzo a mi amada familia,

A mi padre Milton y mi madre Bertha, que han sido mi principal motivación y quienes han hecho de mí la persona que soy ahora, este proyecto es el fruto de su esfuerzo, son mi razón de seguir adelante.

A mis dos mujeres, Carolina, y mi pequeñita Nicole, quienes estuvieron brindándome su apoyo incondicional, su amor y su paciencia a lo largo de mi carrera como estudiante.

A todos quienes contribuyeron en esta etapa llena de gratas experiencia.

Edison Omar Sanguano Vilca

AGRADECIMIENTO

Son muchas las personas especiales a las que me gustaría agradecer por su apoyo, ánimo y amistad en las diferentes etapas de mi vida. Algunas están aquí conmigo y otras en mis recuerdos y en mi corazón.

Agradezco a Dios, por su amor incondicional y su sabiduría, que me han acompañado durante toda la carrera y mi vida, gracias por tantas bendiciones.

Agradecer a mi familia a mis padres, Milton y Bertha, mis hermanas por estar pendientes de mí a cada momento, por confiar en mí, por dedicarme tiempo y esfuerzo y darme excelentes consejos en mi diario caminar. Su ejemplo, dedicación, apoyo, confianza y cariño me han instruido para seguir adelante. Gracias por haberme dado toda la oportunidad de tener una excelente educación en el transcurso de mi vida.

Gracias a mis maestros no solo de la carrera sino de toda la vida, mil gracias porque de alguna manera forman parte de lo que ahora soy. Especialmente quiero agradecer al Dr. Leonardo Goyos, Director de Tesis, por su esfuerzo y dedicación, sus conocimientos, sus orientaciones, su manera de trabajar, su persistencia, su paciencia y su motivación han sido fundamentales en mi formación. Han inculcado en mí un sentido de seriedad, responsabilidad y rigor académico.

A todos mis amigos sin excluir a ninguno, mil gracias por todos los momentos que hemos pasado juntos, han sido una energía positiva en todo momento.

Edison Omar Sanguano Vilca

ÍNDICE DE CONTENIDOS

CERTI	IFICACIÓN	ii		
AUTOI	RÍA DE RESPONSABILIDAD	iii		
AUTORIZACIÓN		iv		
DEDICATORIAvi AGRADECIMIENTOvi INDICE DE CONTENIDOSvii				
		INDIC	CE DE FIGURAS	XV
		RESUN	MEN	xviii
		ABSTR	RACT	xix
	ΓULO 1 RALIDADES	1		
GENE	RALIDADES	1		
1.1	ANTECEDENTES	1		
1.2	DEFINICION DEL PROBLEMA	2		
1.3	JUSTIFICACIÓN E IMPORTANCIA	3		
1.4	ALCANCE	4		
1.5	OBJETIVOS	5		
1.5.1	OBJETIVO GENERAL	5		
1.5.2	OBJETIVOS ESPECÍFICOS	5		

2.6.4	TIPOS DE INYECCION.	ix 29
2.6.4.1	INYECCION DIRECTA.	
2.6.4.2	INYECCION INDIRECTA.	
2.6.5	PARAMETROS DE LA INYECCION	
2.6.5.1	LONGITUD DE PULVERIZACION	
2.6.5.2	ANGULO DE PULVERIZACION	
2.6.5.3 DIESEL	MODELOS PARA LA FORMACION DE PULVERIZACION DEL	
2.6.5.3.1	MODELO PARA LA LONGITUD DE PULVERIZACION	
2.6.5.3.2	MODELO PARA ANGULO DE INYECCION	37
2.6.5.3.3	MODELO PARA LA LONGITUD DE RUPTURA	38
2.6.5.3.5	LISTA DE SIMBOLOS	39
2.6.5.4	BOQUILLA DE INYECCION	40
CAPITUI METODO	LO 3 OLOGIA Y EQUIPAMIENTO	43
3.1	EQUIPAMIENTO PARA ENSAYO DEL CONO DE INYECCION	43
3.1.1	NOZZLE TEST MASTER – PROBADOR DE INYECTORES	43
3.1.2	ADAPTACIONES AL BANCO DE PRUEBAS	44
3.1.3	INYECTOR BKB40 SD5224 DES N: 5352102	47
3.1.3.1	COMPONENTES	47
3.1.3.2	FUNCIONAMIENTO	51
3.1.4	PARAMETROS DE INFLUENCIA	52
3.1.4.1	TIPO DEL INYECTOR.	52
3.1.4.2	DIAMETRO Y LONGITUD DEL ORIFICIO DE LA AGUJA	54
3.1.4.3	ANGULO DE LA AGUJA	55

3.4.3.4	ENSAYOS REOLOGICOS DEL ACEITE DE JATROPHA A 110° NA VELOCIDAD DE 0-49000 1/s	X1
CON UN	NA VELOCIDAD DE 0-49000 1/s	90
CAPITU	JLO 4	
	SIS DE LOS RESULTADOS	.93
4.1	FORMACION DEL ANGULO DE INYECCION.	.93
4.1.1	GRAFICA DE COMPORTAMIENTO ACEITE DE PALMA VIRGEN.	.95
4.1.2	GRAFICA DEL COMPORTAMIENTO DE ACEITE DE SOJA	96
4.1.3	GRAFICA DEL COMPORTAMIENTO DE ACEITE DE JATROPHA.	96
4.1.4	GRAFICA DEL COMPORTAMIENTO DEL DIESEL	97
4.1.5	GRAFICA DEL COMPORTAMIENTO DEL ACEITE DE PALMA	
USADA		.97
4.1.6	GRAFICA DEL COMPORTAMIENTO DE LA MEZCLA DE ACEITE	
DE PAL	MA VIRGEN-DIESEL	98
4.1.7	GRAFICA DEL COMPORTAMIENTO DE LA MEZCLA ACEITE DE	
PALMA	USADA-DIESEL	98
4.1.8	GRAFICA DEL COMPORTAMIENTO DE LA EMULSION	99
4.1.9	ANALISIS GENERAL DE LAS GRAFICAS DEL ANGULO DE	
INYECC	CION	99
4.2	ESTUDIO REOLOGICO	100
4.2.1	CURVA BARRIDO DE TEMPERATURA (10°C -200 °C), 9000 $1/s$. 1	101
4.2.2	CURVA DE VARIACION DE LA TASA DE CIZALLA (0-49000 1/s)	
A 20 °C	PARA EL ACEITE DE PALMA VIRGEN 1	104
4.2.3	CURVA DE VARIACION DE LA TASA DE CIZALLA (0-49000 1/s)	
A 110 °C	C PARA EL ACEITE DE PALMA VIRGEN 1	104
4.2.4	CURVA DE VARIACION DE LA TASA DE CIZALLA (0-49000 1/s)	
A 20 °C	PARA EL ACEITE DE JATROPHA.	105

125	CURVA DE VARIACION DE LA TASA DE CIZALLA (0-49000 1/s)	ii
	C PARA EL ACEITE DE JATROPHA10:	5
4.2.6	ANALISIS DE LOS ENSAYOS REOLOGICOS	5
4.3	CORRELACION ENTRE VISCOSIDAD, ANGULO Y PRESION DE	
INYEC	CION	6
4.4	APLICACIÓN DEL MODELO DE LA EXPRESION EMPIRICA DE	
HIROY	ASU	9
4.5	APLICACIÓN DEL MODELO DE LA EXPRESION EMPIRICA DE	
ARRÉC	LE	3
4.6	GRAFICAS DE ERROR	4
CAPIT	ULO 5	
CONCI	LUSIONES Y RECOMENDACIONES110	б
5.1	CONCLUSIONES110	6
5.2	RECOMENDACIONES119	9
BIBLIC	OGRAFIA 120	0

ÍNDICE DE TABLAS

Tabla 1. Composición del aceite de Palma	7
Tabla 2. Lista de símbolos de los modelos de inyección.,	39
Tabla 3. Componentes del inyector utilizado	49
Tabla 4. Datos de aceite de palma virgen.	63
Tabla 5. Datos de aceite de palma virgen a menor compresión.	64
Tabla 6. Datos de aceite de palma virgen a mayor compresión	64
Tabla 7. Datos de aceite de palma virgen a compresión regulada	65
Tabla 8. Datos de aceite de Soja.	66
Tabla 9. Datos de aceite de soja a menor compresión.	66
Tabla 10. Datos de aceite de soja a mayor compresión	67
Tabla 11. Datos de aceite de soja a compresión regulada	68
Tabla 12. Datos de aceite de Jatropha.	68
Tabla 13. Datos de aceite de Jatropha a menor compresión.	69
Tabla 14. Datos de aceite de Jatropha a mayor compresión.	70
Tabla 15. Datos de aceite de Jatropha a compresión regulada	70
Tabla 16. Datos del diésel	71
Tabla 17. Datos del diésel a menor compresión.	72
Tabla 18. Datos del diésel a mayor compresión.	72
Tabla 19. Datos de aceite de palma usado.	73
Tabla 20. Datos de aceite de palma usado mayor compresión.	74
Tabla 21. Datos de aceite de palma usado a compresión regulada	74
Tabla 22. Datos de mezcla de aceite palma usado-diésel.	75
Tabla 23. Datos de mezcla de aceite palma usado-diésel a mayor compresión	76
Tabla 24. Datos de mezcla de aceite palma usado- diésel a compresión regulada.	76
Tabla 25. Datos de mezcla de aceite palma virgen-diésel.	77
Tabla 26. Datos de mezcla de aceite palma virgen-diésel a mayor compresión	78
Tabla 27. Datos de mezcla de aceite palma virgen-diésel a compresión regulada.	78
Tabla 28. Datos de la Emulsión.	79
Tabla 29. Datos de la Emulsión a mayor compresión.	80
Tabla 30. Parámetros geométricos para ensayos de barrido de temperatura	80

ÍNDICE DE FIGURAS

Figura 1. Ubicación geográfica de cultivos de palma	8
Figura 2. Planta Jatropha Curcas 6 meses	10
Figura 3.Deformación por flujo de corte o de extensión	13
Figura 4. Fluidos newtonianos y no newtonianos	15
Figura 5. Diagramas que describe la Tixotropía	16
Figura 6. Comportamiento de un fluido Reopéctico	18
Figura 7. Comportamiento viscoelástico	19
Figura 8. Geometrías principales	19
Figura 9. Geometría cono y plato	20
Figura 10. Geometría platos paralelos	21
Figura 11. Geometría cilindros coaxiales, flujo entre los mismos	22
Figura 12. Diseño tradicional de un sistema de sensor cilíndrico coaxial	24
Figura 13. Sistema de sensor platos paralelos	27
Figura 14. Partes del inyector	28
Figura 15. Inyección directa	30
Figura 16. Sistema common-rail	31
Figura 17. Inyección indirecta en una cámara de turbulencia	33
Figura 18. Cámara de pre-combustión	34
Figura 19. Estructura de inyección	35
Figura 20. Tipo de boquillas.	40
Figura 21. Cuerpo y válvula de la boquilla	41
Figura 22. Boquillas de inyección	42
Figura 23. Nozzle test master	44
Figura 24. Cámara de pulverización adaptada	44
Figura 25. Iluminación interior cámara de pulverización	45
Figura 26. Ingreso del fluido de la bomba	46
Figura 27. Neplo de ingreso de fluido	46
Figura 28. Despiece del inyector utilizado	48
Figura 29. Funcionamiento del inyector	51
Figura 30. Boquilla de un solo orificio del invector	52

xvi
Figura 31. Medición del diámetro del orificio
Figura 32. Esquema de medición
Figura 33. Medición longitud orificio inyector
Figura 34. Medidas de la válvula de aguja
Figura 35. Perfil de la aguja
Figura 36 . Cámara Casio Exilim EX_FH20
Figura 37. Trípode utilizado para la cámara de alta velocidad
Figura 38 . Reómetro TA Instruments HR-2
Figura 39 . Geometría utilizada para los ensayos reológicos
Figura 40. Calibración de la geometría
Figura 41. Localización Extractora La Joya
Figura 42. Aceite de Jatropha Curcas
Figura 43. Ubicación Danec S.A
Figura 44. Captura fotográfica del ángulo de inyección
Figura 45. Ajustes de la Cámara 61
Figura 46 . Posición original del tornillo de reglaje
Figura 47. Esquema disminución compresión para el muelle del inyector
Figura 48. Esquema aumento compresión para el muelle del inyector
Figura 49 . Comportamiento del aceite de palma virgen
Figura 50 . Comportamiento del aceite de Soja
Figura 51. Comportamiento del aceite de Jatropha
Figura 52. Comportamiento del diésel
Figura 53. Comportamiento del aceite de palma usada
Figura 54. Comportamiento de la mezcla de aceite de palma virgen-diésel98
Figura 55. Comportamiento Mezcla aceite de palma usada-diésel
Figura 56 . Comportamiento de la emulsión
Figura 57 . Curva barrido de temperatura (10°C-200°C) A 49000 1/s 101
Figura 58. Ampliación curva barrido de temperatura (40°C-150°C) A 49000 1/s . 102
Figura 59. Ampliación de la curva de temperatura (80°C-200°C) A 49000 1/s 103
Figura 60 . Curva rampa tasa de cizalla (0-49000 1/s) a 20 °C aceite de palma 104
Figura 61 . Curva rampa tasa de cizalla (0-49000 1/s) a 110°C aceite de palma 104
Figura 62 . Curva rampa tasa de cizalla (0-49000 1/s) a 20 °C aceite de Jatropha 105
Figura 63 . Curva rampa tasa de cizalla (0-49000 1/s) a 110 °C aceite de Jatropha 105

	xvii
Figura 64. Correlación entre viscosidad, ángulo y presión de inyección	108
Figura 65. Correlación según el modelo de Hiroyasu	110
Figura 66. Correlación densidad, presión y ángulo de inyección.	112
Figura 67. Correlación según el modelo de Arrégle.	114
Figura 68. Barras de error de la viscosidad	114
Figura 69. Barras de error de la densidad.	115

RESUMEN

El proyecto está enfocado en las propiedades de aceites de Glycine Max, Jatropha Curcas y Elaeis Guineensis en estado virgen y usado para el estudio del comportamiento del cono de inyección, los datos obtenidos para este estudio serán de ayuda para el ámbito de uso de energías renovables que se ha vuelto una actividad necesaria en el país. El primero capítulo consta de los objetivos, la justificación, el área de influencia y el alcance. En el segundo capítulo presenta un estudio de reología de dichos aceites cual consta de: principios, aspectos importantes, propiedades reológicas, equipo a utilizar y además conceptos sobre el comportamiento del cono de inyección en un MCI. En el tercer capítulo se desarrolla la caracterización de los aceites mencionados mediante ensayos realizados en el Reómetro, ensayos en el probador de inyectores en el cual se determinara la influencia sobre la forma y penetración del cono de inyección el parámetro como el ángulo inyección que será capturado por una cámara de alta velocidad para su posterior análisis. En el cuarto capítulo se realiza el análisis de los resultados obtenidos de dichos ensayos. En el quinto capítulo se muestra los costos directos, indirectos y generales del proyecto. Finalmente el capítulo seis corresponde a las conclusiones y recomendaciones del proyecto.

PALABRAS CLAVES:

- REÓMETRO
- PROBADOR DE INYECTORES
- ANGULO DE INYECCIÓN
- PULVERIZACIÓN
- VISCOSIDAD

ABSTRACT

The project is focused on the properties of oils Glycine Max, Jatropha Curcas and Elaeis Guineensis in virgin and used to study the behavior of injection cone, the data collected for this study will be helpful to the field of use renewable energy has become a necessary activity in the country. The first chapter consists of the objectives, justification, area of influence and scope. The second chapter presents a study of rheology of these oils which comprises: principles, important aspects, rheological properties, equipment to use and also concepts on the behavior of injection cone in MCI. The third chapter characterizing said oils is developed by tests in the Rheometer, tests tester injectors in which the influence on the form and cone penetration injection parameter as the angle injection is determined to be captured by a high speed camera for further analysis. The fourth chapter analysis of the results of these tests are performed direct, indirect and overall project costs shown in the fifth. Finally chapter six corresponds to the conclusions and recommendations of the project.

KEYWORDS:

- RHEOMETER
- INJECTION TESTER
- INJECTION ANGLE
- SPRAY
- VISCOSITY

CAPITULO 1

GENERALIDADES

1.1 ANTECEDENTES

El aceite vegetal ha sido considerado como un combustible fiable para las maquinarias desde 1912, cuando Rudolf Diésel, inventor del motor diésel lo mencionó en una solicitud de patente.

El Biocombustible es una sustancia procedente de materias orgánicas renovables generalmente vegetales que pueden ser empleadas como combustible. Existen biocombustibles sólidos, como la biomasa; gaseosos, como el biogás o el gas de gasificación; y líquidos, como los biocarburantes que son líquido con especificaciones técnicas definidas equivalentes a las del carburante al que sustituyen en los motores de automoción.

Existen dos tipos de fluidos principales, los estáticos y en movimiento. Una de las principales características de los fluidos en movimiento es la viscosidad, es decir, la facilidad con la que viaja dentro de un determinado conducto. Se divide en fluidos newtonianos cuyo esfuerzo de corte es directamente proporcional a la relación de deformación y los no newtonianos cuyo esfuerzo de corte no es directamente proporcional de la deformación.

La Reología es la ciencia del flujo que estudia la deformación de un cuerpo sometido a esfuerzos externos, resumidamente, se puede decir que la reología se encarga de estudiar la viscosidad, la plasticidad y la elasticidad de los fluidos. Estas propiedades de los fluidos tienen una enorme importancia en una multitud de fenómenos, como la fabricación de pinturas, productos alimenticios, fármacos, estabilidad de emulsiones y suspensiones, caracterización de aceites lubricantes, combustibles y otro tipo de hidrocarburos.

El uso de aceites vegetales en aplicaciones no alimentarias despierta un considerable interés, debido a su carácter renovable, biodegradabilidad y la aptitud para facilitar una modificación química (Hintze-Bruning, 1993).

De hecho, los aceites vegetales poseen más propiedades de lubricidad deseables, tales como una buena lubricación de contacto y un alto índice de viscosidad (es decir, los cambios mínimos en la viscosidad con la temperatura).¹

La experiencia de diferentes pruebas, prueba que todos los motores diésel pueden carburar con aceite vegetal. Todos los aceites (el gasoil es un aceite mineral), a una temperatura y una presión suficientes, explosionan dentro del cilindro: aceite de girasol, de colza, de oliva, de cacahuete, de palma, de lino, etc.

Debido que los biocarburantes son una fuente de energía renovable los beneficios que conlleva el uso de los mismos son de ámbito energético, medioambiental y socioeconómico.

1.2 DEFINICION DEL PROBLEMA

Ante la disminución de las reservas de minerales y específicamente, la disminución de las reservas de petróleo conlleva al aumento progresivo del precio en el mercado de los productos petroquímicos y del combustible. Dentro de las alternativas energéticas, el biodiesel que es producido a partir de diferentes aceites vegetales parece ser una alternativa viable, debido a diversas razones puesto que puede substituir al diésel fósil en motores de combustión interna y calderas sin grandes ajustes.

Por esta situación al ser los aceites vegetales una alternativa viable para uso como biocombustible y encontrando como principal inconveniente sus propiedades químicas tales como la viscosidad y densidad que involucran en el comportamiento al momento de la pulverización dentro de la cámara de combustión de un motor.

Es decir es esencial evitar problemas durante el proceso de inyección ya que si no logra ser pulverizado de una forma correcta se formará depósitos en los inyectores lo

-

¹ International Journal of Food Engineering, Vol. 8 [2012], Iss. 2, Art. 11

cual provocara diversos problemas como una pobre atomización y una combustión incompleta.

Las propiedades mecánicas de un fluido pueden ser medidas mediante ensayos realizados en Reómetros, que son aparatos que permiten someter al material a diferentes tipos de deformaciones controladas y medir sus esfuerzos respectivos o viceversa.

Algunas de las propiedades reológicas más importantes son:

- Viscosidad aparente (relación entre esfuerzo de corte y velocidad de corte).
- Coeficientes de esfuerzos normales.
- Viscosidad compleja (respuesta ante esfuerzos de corte oscilatorio).
- Módulo de almacenamiento y módulo de perdidas (comportamiento viscoelástico lineal).
- Elasticidad (almacenan energía).

Por tanto el problema al que nos enfrentamos radica en que se desconoce cómo influye el comportamiento reológico de los aceites sobre el comportamiento del cono de inyección.

1.3 JUSTIFICACIÓN E IMPORTANCIA

El uso de elementos orgánicos renovables en este caso el aceite vegetal cobra gran importancia en nuestros días por varias razones fundamentales como ser un instrumento de lucha contra el deterioro del medio ambiente, provenir de una fuente renovable y que además ser un factor de desarrollo para la agricultura e industrias relacionadas, les convierte en una sustitución de los combustibles denominados fósiles o tradicionales derivados del petróleo.

El análisis de la reología existente en diferentes mezclas y emulsiones de aceites vegetales, serán parámetros que intervengan para realizar el estudio del comportamiento sobre la forma y penetración del cono de inyección en un MCI.

El proyecto a realizar fundamentará estudios que tengan relación con la apreciación del aceite vegetal como un biocombustible en un MCI, es decir, las propiedades de los mismos en cuanto a la fluida circulación a través de los conductos del sistema de inyección, y la combustión en un MCI.

Adicional a ello, será de ayuda para el campo de uso de energías renovables que se ha vuelto una actividad necesaria para el país.

La Constitución de la República del Ecuador señala en el apartado 5.1.2 Tecnología, innovación y conocimiento del Plan Nacional del Buen Vivir "La posibilidad de alcanzar una estructura productiva basada en el conocimiento tecnológico depende, en gran parte de la inversión en investigación desarrollo e innovación (I+D+i)". Este proceso contribuye al incremento de la productividad general de la industria y se orienta hacia la satisfacción de las necesidades y el fomento de las capacidades de la población.

1.4 ALCANCE

Este proyecto tiene como finalidad realizar el estudio del comportamiento del cono de inyección de diferentes mezclas y emulsiones de aceites vegetales en estado virgen y usado, la investigación permitirá comparar el comportamiento reológico de los diferentes aceites ensayados y relacionar estas variables con la formación del cono de inyección.

Para dicho estudio se realizarán ensayos en el reómetro el cual permitirá determinar propiedades específicas de dichos aceites que serán de suma importancia para observar las reacciones pertinentes de la formación del cono de inyección que muestren en los ensayos realizados en el probador de inyectores, dicho cono será retratado mediante una cámara de alta velocidad para su posterior análisis.

Igualmente se estudiará la influencia sobre el proceso de los parámetros regulables del sistema de inyección.

Como resultado tendremos la caracterización de dichos aceites, así como el criterio de selección y procedimiento para en un futuro ser reemplazado por combustible en un motor diésel.

1.5 OBJETIVOS

1.5.1 OBJETIVO GENERAL

Determinar la influencia del comportamiento reológico de los aceites de Glycine Max, Jatropha Curcas y Elaeis Guineensis en estado virgen y usado sobre la forma y penetración del cono de inyección en los MCI.

1.5.2 OBJETIVOS ESPECÍFICOS

- Evaluar el comportamiento del cono de inyección de diferentes mezclas y emulsiones de aceites vegetales en estado virgen y usado.
- Establecer las modificaciones o adiciones necesarias y el protocolo de ensayos para probadores de inyectores en el Laboratorio de Tecnología Automotriz ESPE
- Establecer el protocolo de ensayos para el reómetro en el Laboratorio de Mecánica de Fluidos ESPE,
- Evaluar la influencia sobre la forma y penetración del cono de inyección.
- Determinar la influencia del flujo de atomización, ángulo, forma que se presenta durante el proceso.
- Determinar la influencia de diferentes mezclas y emulsiones de aceites vegetales en estado virgen y usado.

CAPITULO 2

MARCO TEORICO

2.1 ACEITES VEGETALES

El aceite vegetal no es más que un compuesto orgánico que se obtiene a través de frutos o semillas que en su tejido se acumula como una fuente de energía. La obtención se lo realiza mediante técnicas mecánicas, químicas o generalmente mediante la combinación de los dos métodos.

El proceso de prensado es el método mecánico al cual son sometidos las semillas y frutos oleaginosos para obtención de aceite vegetal y luego someterlos a un proceso de refinamiento.

Para el método químico se utilizan disolventes químicos que generalmente es el Hexano, esta técnica da un mejor rendimiento y resulta más rápido y barato.

El aceite vegetal es una energía renovable que tiene entre sus ventajas:

- Su utilización como carburante debido a que es mucho menos contaminante que el diésel, no contribuye al efecto invernadero y además su producción es óptima desde el punto de vista energético.
- Es un recurso local, transformado localmente y donde los residuos, por ser un producto rico en proteínas constituye un excelente alimento para los animales.
- Es sencillo y poco costoso de producir, esto ampliara el ámbito agricultor y su utilización es posible en prácticamente todos los motores diésel.

La escasez periódica de petróleo estimuló la investigación sobre el aceite vegetal como sustituto del gasoil durante los años 1930 y 1940, y de nuevo en la década de 1970 y principios de 1980 fue cuando el aceite vegetal puro disfrutó de su más alto nivel de interés científico y en la década de 1970 también se vio la formación de la primera empresa comercial que permitió que los consumidores usaran aceite vegetal puro en sus automóviles, denominada Elsbett que fue desarrollada en Alemania.

2.1.1 ACEITE DE PALMA.

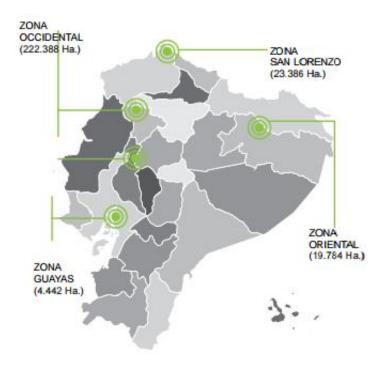
El aceite de palma o como su nombre técnico Elaeis Guineensis ha sido uno de los productos de mayor crecimiento en la industria agrícola. El aceite de palma se extrae del mesocarpio del fruto de la semilla de la palma africana a través de procedimientos mecánicos. Con $\rho = 901 \ kg/m^3$ a temperatura ambiente, un alto número de cetano y una alta estabilidad a la oxidación, hace que el producto permanezca estable por más de seis meses.

Después del aceite de soya, el aceite de palma es el segundo de mayor uso a nivel mundial. Principalmente está compuesto por mono, di y triglicéridos, además de ácidos grasos libres, humedad e impurezas.

Determinada por la formula empírica de la palma RBD $C_{17,18}H_{32,27}O_2$

Tabla 1.

Composición del aceite de Palma


ACIDO GRASO	COMPOSICION %
Palmítico (C16:0)	44,0
Oléico (C18:1)	39,2
Linoléico (C18:2)	10,1
Esteárico (18:0)	4,5
Mirístico (C14:0)	1,1
Laúrico (C12:0)	0,2
Otros	0,9

Fuente: (Palm Oil Refinery.htm)

2.1.1.1 ACEITE DE PALMA EN EL ECUADOR

Ecuador es el segundo productor de aceite de palma a nivel regional con un 15.1% de producción, el hermano país Colombia ocupa el primer lugar con el 31.6% de la producción y Honduras el tercer lugar con el 11.2%. El 57,9% restante de la producción es dividido entre los otros países.

En Santo Domingo, Quinindé y Buena Fé se dan las condiciones más óptimas para el cultivo de esta planta. Así mismo se ampliaron los cultivos a la zona sur del país en la provincia de los Ríos y para lograr mejores estándares productivos las empresas se han expandido a la zona Oriental, en las provincias de Sucumbíos y Orellana, y en las últimas zonas que se han desarrollado a gran escala es en el área fronteriza con Colombia particularmente San Lorenzo y sus alrededores.

Figura 1. Ubicación geográfica de cultivos de palma **Fuente:** Estimación al año 2013, en base al Censo de Plantaciones de Palma Africana, ANCUPA-FEDEPAL/MAGAP, 2005.

En el Ecuador el rubro de la palma aceitera es de gran importancia para el ámbito agropecuario su peso específico en el PIB es de 4,53%, de igual manera existen 7,000 Unidades de Producción Agropecuaria (UPAs), 87% de las cuales tienen superficies inferiores a 50 hectáreas representando un gran cultivo social que de la misma manera genera empleos directos, indirectos y permanentes en los eslabones agrícolas e industrial.

En tema de requerir importaciones, están han prácticamente han sido nulas debido a que la producción de aceite abastece totalmente las necesidades del mercado ecuatoriano y en la actualidad esta producción va en aumento en niveles incluso que permiten otro tipo de aplicaciones diferente al comestible como son el uso en Biocombustibles.

2.1.2 ACEITE DE SOJA

La soja o Glycine max es una planta de la familia de las leguminosas cultivada por sus semillas utilizadas en alimentación y para la producción de aceite vegetal, con una $\rho = 920 \ kg/m^3$ a una temperatura de 20°C.

El cultivo de Soja es una alternativa de cultivo de verano para los agricultores sin infraestructura de riego debido a que se aprovecha el remanente de la humedad del ciclo invernal, cabe recalcar que también dichas condiciones también han sido un problema para el decremento que ha sufrido el cultivo de la misma.

La tasa de conversión del grano de soja está en un 70% del gano que se transforma en pasta y un 18% en aceite, mientras el porcentaje restante es usado para la elaboración de carne, leche o harinas.

2.1.2.1 ACEITE DE SOJA EN EL ECUADOR.

En el Ecuador el cultivo de la soja se ha distribuido en un 99% en la Costa Ecuatoriana, se estima que los Valles de los ríos Esmeraldas y Verde tienen un gran potencial agrícola para procesar la producción de soja con el propósito de obtener aceite crudo.

Dichos Valles reúnen una superficie agrícola de 37500 hectáreas que en su mayor parte están constituidas por plataformas aluviales. Pero que dicha producción no es suficiente para la demanda interna.

2.1.3 ACEITE DE JATROPHA

Jatropha Curcas o en Ecuador conocida también como Piñón es una planta perteneciente a las familias de las euforbiáceas, cuyo origen se adscribe a México y

América Central. Son arbustos que generalmente alcanzan un tamaño de 1-5 metros de alto y soportan altas temperaturas.

Estas características la convierten en una planta ideal capaz de aguantar prolongados periodos de sequía y para ser cultivada en terrenos semidesérticos que obviamente sus cultivos no son aptos para alimentación humana o animal.

En la actualidad el aceite con una $\rho = 917 \ kg/m^3$ a temperatura ambiente, es extraído de sus semillas y tras un proceso de prensado y transesterificación es usado como producción de biocombustible y es usado en motores a Diésel.

Figura 2. Planta Jatropha Curcas 6 meses **Fuente:** http://www.iniap.gob.ec/web/pinon/

2.1.3.1 ACEITE DE JATROPHA EN EL ECUADOR

En el Ecuador el encargado del cultivo, desarrollo y estudio de generación de tecnologías para obtención de energía renovable con aceite de Piñón es el Instituto Nacional de Investigaciones Agropecuarias- INIAP con su estación experimental en la Provincia de Portoviejo.

El INIAP en búsqueda de soluciones tecnológicas e innovadoras en el campo de la Agro-energía inicio la domesticación de la planta de Piñón y desarrollo del cultivo, para que la explotación de esta especie permita un mayor nivel en el ámbito ocupacional de los productores y además de producir biocombustible que es un recurso

menos contaminante que el diésel fósil que contribuirá a la conservación del medio ambiente.

2.2 PROPIEDADES DEL ACEITE VEGETAL.

Básicamente el problema técnico de la combustión del aceite vegetal en un motor diésel se centra en dos propiedades específicas del aceite con respecto al gasoil:

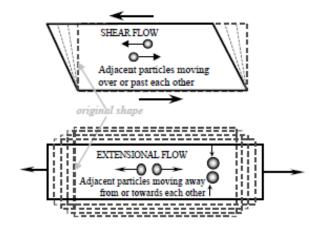
- Una mayor viscosidad del aceite vegetal que de un comienzo va a dificultar la circulación del carburante, por lo cual una de las medidas para corregir el problema es elevar al aceite a una temperatura entorno de 70 80 °C, que va adquirir una viscosidad similar que el gasoil.
- El punto de inflamación es decir el índice de cetano, que es inferior al del gasoil (para el aceite se sitúa alrededor de los 316 °C y para el gasoil entorno a los 250 °C), que exige modificar los parámetros de la inyección. Cuando es medido de forma convencional, el índice de cetano es peor, sin embargo, la práctica muestra que el retardo en la ignición se reduce en comparación al gasoil.

Detergente: debido a su capacidad para oxidarse el aceite vegetal tiene una acción detergente o decapante, limpiando depósito, manguitos y motor.

Impurezas: se distinguen dos compuestos indeseables que provienen de la corteza de las semillas y cuya concentración varía dependiendo de las técnicas de prensado y filtrado:

- a. Las ceras: son solubles con el calor, por lo que no suponen ningún problema para la combustión, aunque pueden ser problemáticas en tiempo frío para manguitos, bomba de inyección y filtro de carburante, por ello para no tener problemas basta con filtrar el aceite a temperatura ambiente, si no permanece líquido (mucho frío) es preciso mezclarlo con algún aditivo.
- b. Las gomas o fosfolípidos: son compuestos de fósforo unidos a las gomas, los fosfolípidos son grandes moléculas que son origen de carbonillas: ensuciamiento de culata y de inyectores, la cantidad de fosfolípidos en un aceite

es proporcional a la temperatura de extracción, lo que justifica la presión en frío.


En el momento que se calientan los granos, antes de prensarlos, se aumenta la cantidad de aceite extraído, pero también la cantidad de fosfolípidos. Las cantidades de fosfolípidos en aceites almacenados durante un periodo superior a 3 semanas disminuyen prácticamente a la mitad por decantación. En una de las etapas de refinado del aceite se extraen los fosfolípidos, por lo que tanto el aceite refinado como el aceite usado de fritura no contienen estas moléculas.

Otras propiedades o ventajas importantes del aceite vegetal son:

- Forma líquida y por ello fácil de usar.
- Cuando se quema tiene una eficiencia energética más grande.
- No es tóxico ni dañino para humanos, animales, suelos o agua
- Amigable con el medio ambiente, no es inflamable ni explosivo y no emite gases tóxicos como monóxido de carbono, plomo.
 - En su manejo no se requiere tomar precauciones especiales.
 - Es producido de forma directa por la naturaleza.
 - Es una forma reciclable de energía.
 - No tiene efectos ecológicos adversos cuando es utilizado.
 - Debido que no contiene sulfuro, no genera lluvia ácida cuando es usado.
- La reducción de los óxidos de nitrógeno (NO_2), grandes responsables del efecto invernadero.

2.3 REOLOGÍA.

La reología es la ciencia que estudia la deformación y características del flujo de la materia es decir el vínculo existente entre la fuerza que se ejerce sobre un material y la deformación que este experimenta al fluir. Existen dos clases básicas de flujo, se denominan flujos de corte y flujos de extensión. En el flujo de corte las partículas adyacentes se mueven o pasan entre si mientras que en flujo de extensión las partículas adyacentes se alejan o se aproximan como se muestra en la siguiente figura:

Figura 3.Deformación por flujo de corte o de extensión **Fuente:** Barnes, 2000

La medición de propiedades reológicas es aplicable a todos los materiales como soluciones diluidas de polímeros, semisólidos como pastas y cremas, polímeros solidos así como el asfalto, hasta formulas concentradas de proteínas, es así como el alcance de la Reología se ha hecho mucho mayor brindado grandes aportes en industrias afines con la química y biotecnología.

Las propiedades reológicas son analizados mediante un reómetro que es un instrumento que posibilita la realización de deformaciones bajo control, midiendo los esfuerzos.

2.3.1 DEFINICION DE FLUIDO.

Se determinan fluidos a todo cuerpo que tienen la propiedad de fluir, carece de rigidez y elasticidad, sustancias donde la fuerza de atracción entre sus moléculas es mínima por consecuente sede inmediatamente a cualquier fuerza tendente a alterar su forma.

Los fluidos están conformados por los líquidos y gases, siendo los líquidos considerados comúnmente incomprensibles a no ser que intervengan fenómenos de

convección o acústicos y por otro lado los gases son fácilmente comprensibles aunque en aplicaciones prácticas se los puede tratar como medios incomprensibles, consideraciones que son válidas cuando la velocidad característica del flujo es menor que 1/3 de la velocidad del sonido del aire.

2.3.2 FLUIDOS NEWTONIANOS.

Un fluido Newtoniano también llamado fluido verdadero es aquel cuya viscosidad permanece constante en el tiempo y solo depende de la temperatura. Es decir la curva característica que relaciona el esfuerzo o cizalla contra su velocidad de deformación es lineal.

Los fluidos más comunes como el agua, aceite, alcohol, keroseno, glicerina, etc. se les clasifica como newtonianos, cumplen con la ley de viscosidad de Newton: es decir el esfuerzo cortante es simplemente proporcional a la tasa de cizalla o gradiente de velocidad y se enuncia en forma matemática:

$$\tau = \mu_0 \left(\frac{\Delta v}{\Delta y} \right) \Rightarrow u_0 = cte.$$

Donde: μ_0 = constante de proporcionalidad, denominada viscosidad dinámica del fluido

 $\frac{\Delta v}{\Delta y}$ = gradiente de velocidad

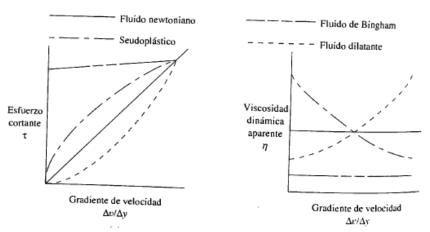
 τ = tensión tangencial.

2.3.3 FLUIDOS NO NEWTONIANOS

Son fluidos cuya viscosidad varía con la temperatura y el gradiente de velocidad, la viscosidad va a depender de la magnitud del gradiente y de la condición del fluido, generalmente conocida como viscosidad aparente $u_0 \neq cte$.

$$\tau = \mu_0 \left(\frac{\Delta v}{\Delta v} \right) = u_0 \frac{\partial \gamma}{\partial t} = u_0 \dot{\gamma}$$

2.3.3.1 FLUIDOS NO NEWTONIANOS INDEPENDIENTES DEL TIEMPO


Fluidos Pseudoplasticos: u_0 disminuye al aumentar la velocidad de cizalla.

$$u_0 \ll \Rightarrow \frac{\Delta v}{\Delta y} \gg$$

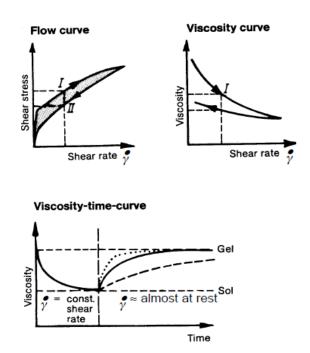
Fluidos Dilatantes: u_0 aumenta al aumentar la velocidad de cizalla.

$$u_0 \gg \Rightarrow \frac{\Delta v}{\Delta y} \gg$$

Fluidos de Bingham, conocido como fluidos de inserción que requiere aplicación de un esfuerzo significativo de esfuerzo cortante y una vez que el flujo inicia la curva es lineal, por ejemplo fluidos como chocolate, mayonesa, pasta de dientes, pintura, mostaza, ceniza o fango de drenaje.

Figura 4. Fluidos newtonianos y no newtonianos **Fuente:** Mott, Robert L. (2006). Mecánica de Fluidos.

2.3.3.2 FLUIDOS NO NEWTONIANOS DEPENDIENTES DEL TIEMPO


Son fluidos complejos de analizar debido que la viscosidad aparente varia con el tiempo durante el cual actúa la tensión tangencial τ , la velocidad de deformación $\dot{\gamma}$ y la temperatura, como por ejemplo tenemos ciertos petróleos crudos a bajas temperaturas, ciertas gelatinas, nylon, tinta para impresoras. Se clasifican en dos grupos principales:

 Fluidos Tixotrópicos: su viscosidad aparente se reduce gradualmente en función tanto de la tensión tangencial como de la velocidad de deformación.

$$u_0 = f(\tau, \dot{\gamma})$$

Durante el tiempo que actúa una tensión tangencial a este fluido, sufre un proceso de fraccionamiento a escala molecular seguido de una reconstitución estructural y en ciertas circunstancias se logra un estado de equilibrio donde el fraccionamiento molecular iguala a la reconstitución, es decir si la tensión tangencial cesa el fluido se recupera lentamente y adquiere su consistencia original.

La tixotropía en forma gráfica se describe:

Figura 5. Diagramas que describe la Tixotropía **Fuente:** Scharmm. (2000). A practical Approach to Rheology and Reometry.

En la curva de flujo, la histéresis encontrada entre estas dos curvas rodea un área "A" que define la magnitud de esta propiedad llamada tixotropía. Esta área tiene la dimensión de "energía" relacionada con el volumen del ensayo cortante que indica que se requiere energía para descomponer la estructura tixotrópica.

En la curva de viscosidad se observa como la viscosidad disminuye con el aumento de la velocidad de cizalladura dando como resultado la descomposición combinada de la estructura tixotrópica y la orientación molecular.

La curva viscosidad-tiempo marca las dos fases de transformación del fluido: la primera como del estado pastoso se convierte rápidamente en estado soluble cuando se somete a una velocidad de cizallamiento constante. En la segunda fase, el estado pastoso se convierte en estado soluble.

La velocidad de esta transformación puede variar mucho dependiendo principalmente de la naturaleza del líquido tixotrópico y de su temperatura. Puede tomar segundos o minutos para romper una estructura tixotrópica.

Aunque una transformación pastosa-soluble completa de este tipo requiere mucho tiempo, la velocidad de recuperación parcial dentro de los primeros segundos o minutos después de reposar puede ser bastante notable, se puede recuperar del 30 al 50% de la viscosidad en este corto período y a menudo esta tasa de recuperación es de gran importancia técnica.

 Fluidos reopécticos: conocido también como fluido anti-tixotrópico debido a que involucra un incremento gradual de la viscosidad aparente con la velocidad de deformación hasta alcanzar un valor límite donde τ comienza a disminuir con γ΄. Un ejemplo seria el poliéster, la pasta de gypsum.

$$\tau = f(\dot{\gamma})$$

Cuando estos fluidos se dejan en reposo, recuperan su valor original de viscosidad. Así se tiene que los fluidos reopécticos y tixotrópicos tienen propiedades de flujo opuestos y se puede ver en el sentido de la histéresis de la curva de flujo, es decir, donde la curva ascendente está posicionada en relación con la curva descendente.

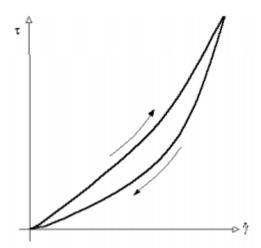


Figura 6. Comportamiento de un fluido Reopéctico

Fuente: Ibarrola, E.L. (2009). Introducción a los fluidos no newtonianos.

2.4 FLUIDOS VISCOELASTICOS.

Son fluidos con propiedades viscosas y elásticas simultáneamente, con comportamiento newtoniano para el punto de vista viscoso y referente la ley de Hooke para su elasticidad.

$$\dot{\gamma} = \frac{\tau}{u_o} + \frac{\dot{\tau}}{\lambda}$$

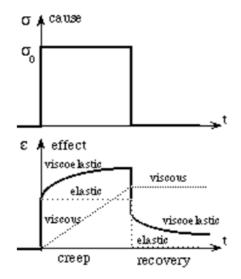
Dónde: λ : módulo de rigidez

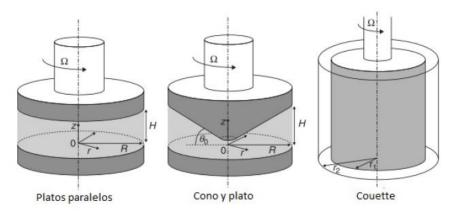
 $\dot{\tau}=0$ Para un flujo estacionario y el fluido se comporta como fluido newtoniano.

Sin embargo al variar la tensión tangencial se presentan las características elásticas, por lo que Maxwell propuso la siguiente ecuación:

$$\tau + \left(\frac{u_o}{\lambda}\right) = u_o \dot{\gamma}$$

Cuando a estos fluidos viscoelásticos son sometidos a un esfuerzo y luego se remueve la carga, la deformación solo regresa a la posición original en la porción elástica del fluido, mientras que en la parte viscosa del fluido seguirá parcialmente deformada, por lo que la recuperación del fluido non es completa.




Figura 7. Comportamiento viscoelástico

Fuente: Criado, M., & Bianchi, G. (2003). Desarrollo de fluidos viscoelásticos para la estimulación de pozos.

2.5 REOMETRO

Es un instrumento de precisión en el cual se pueden medir las propiedades de flujo de materiales al igual que predecir el comportamiento de los mismos. Se emplean para fluidos complejos y mediante sus parámetros de interés, una configuración geométrica, y que controla el medio ambiente que lo rodea, le permite medir amplios rangos de esfuerzo, deformación y velocidad de deformación.

Los platos paralelos, el cono y el plato y el cilindro couette son las geometrías principales que alcanzan flujo de cortante simple en el reómetro.

Figura 8. Geometrías principales **Fuente:** Roussel, 2011

2.5.1 GEOMETRIA CONO Y PLATO.

Está constituido por un disco y un cono de ángulo en el vértice muy próximo a los 180°. El fluido a analizar es colocado entre el plato y el cono y formando un ángulo ∝ inferior a los 4° ya que para un ángulo mayor los cálculos presentarían complicaciones, debido a que el ángulo entre el cono y el plato es pequeño se puede suponer que la tensión cortante a través del flujo es uniforme.

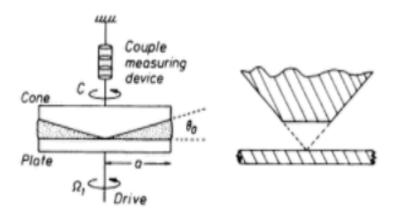


Figura 9. Geometría cono y plato

Fuente: Barnes. (1989). An Introduction to Rheology

Al momento que cualquier fluido se coloca entre el cono y el plato y con una velocidad Ω se hace girar uno de ellos con respecto del otro, se pone de manifiesto la existencia de un par de arrastre M.

La punta del cono se supone debe tocar el plato base con la finalidad de evitar el incremento de error en las fórmulas de cálculo. Por ejemplo par un cono de inclinación 1° y radio 50 mm cada 10 um de error en la separación axial produce un 1% adicional de error en la medida de la tasa de cizalla [Barnes. 1989].

En este tipo de geometrías la velocidad de cizalla a lo largo del espaciado del cono es constante, y en el caso de fluidos no newtonianos no es necesario realizar correcciones y se es posible aplicar las ecuaciones para fluidos newtonianos por lo que probablemente hoy en día es la geometría más popular en el estudio de los efectos no newtonianos.

Las utilidades o ventajas de esta geometría son:

- Geometría más común para mediciones de esfuerzos normales.
- Estudio de viscoelasticidad no lineal.
- Ecuaciones de operaciones sencillas, deformación uniforme.
- Muy útil para fluidos de alta y baja viscosidad.
- Permiten extraer el cono para un cambio de la muestra lo que facilita la limpieza del mismo.
- El uso de pequeñas cantidades de muestras necesarias para los ensayos.

2.5.2 GEOMETRIA PLATOS PARALELOS.

El fluido se encuentra separados por una distancia (GAP), entre dos platos paralelos que poseen el mismo eje de simetría y el mismo radio (a=R), siendo la parte superior la que gira con una velocidad rotacional Ω , mientras la parte inferior permanece inmóvil, dando como resultado un torque.

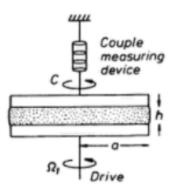


Figura 10. Geometría platos paralelos

Fuente: Barnes. (1989). An Introduction to Rheology.

Con este tipo de geometría se puede calcular la velocidad de cizalla máxima y la viscosidad mediante:

$$\dot{\gamma}_{max} = \frac{d\gamma}{dt} = \frac{\Omega}{l}R$$

Para la viscosidad se tiene (modelos power law):

$$\eta = \frac{3MH}{2\pi R^4\Omega}(1+\frac{n}{3})$$

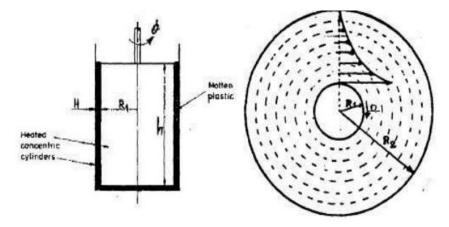
Siendo:

M = Par de fuerza aplicado.

 Ω = velocidad angular [rad/s].

H= distancia entre placas GAP.

 $n = \text{velocidad del rotor } [min^{-1}].$


R = radio del plato.

 $\dot{\gamma}_{max}$ = velocidad cortante.

Entre las ventajas de este tipo de geometría tenemos:

- Fáciles de limpiar
- Requieren pequeñas cantidades de muestra para los ensayos.
- La capacidad de fijar el espesor de muestra (GAP) de acuerdo a las características de la misma.
- Se pueden utilizar para suspensiones cuyas partículas sean de un tamaño máximo de 200 um.

2.5.3 GEOMETRIA COVETTE.

Figura 11. Geometría cilindros coaxiales, flujo entre los mismos **Fuente:** Quesada, J. C. (2008). Tema 5. Técnicas reométricas. Reología.

Consta de 2 cilindros coaxiales, dependiendo del diseño el cilindro exterior se mantiene fijo mientras que el cilindro interior de altura H rota alrededor de un eje de simetría a una velocidad Ω dando como resultado un torque T.

El fluido cuya viscosidad se requiere determinar se ha de llenar en el espacio anular existente entre los dos cilindros.

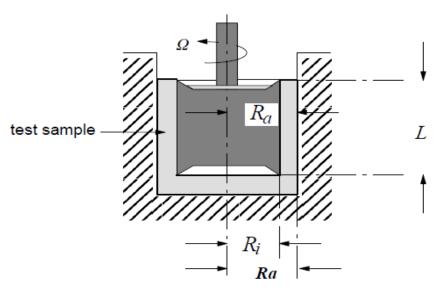
Si se considera que el cilindro externo es fijo y el cilindro interno está girando con una velocidad angular Ω , se tiene que la corriente producida es una corriente de cizalla simple en la que las trayectorias descritas son círculos concéntricos y por lo tanto la velocidad está dirigida tangencialmente a cada circulo y su magnitud depende exclusivamente de la distancia r al eje de rotación

2.5.4 REOMETRO ROTACIONAL.

Instrumento para la medición de la reología de cizallamiento compleja de cualquier tipo de materiales, ya que es lo suficientemente sensible como para medir la viscosidad de fluidos, soluciones de polímeros diluidas y también lo suficientemente robusta para medir la viscoelasticidad de polímeros de modulo alto, así como también para la detección de cambios estructurales y de composición de materiales que pueden ser factores críticos de control para las propiedades de flujo y de deformación.

El principio de reómetros rotacionales con el sistema de sensor cilindro coaxial, cono-plato y platos paralelos es la principal característica para un diseño de reómetros absolutos, excelentes y versátiles. Existe una gran gama de este tipo de reómetros en el mercado mundial que varían en calidad, precio y los criterios reológicos a utilizar.

2.5.4.1 ECUACIONES.


Para reómetros o viscosímetros rotaciones, la velocidad y tensión de cizallamiento, matemáticamente están definidas como:

A. Sistema de sensor cilindro coaxial.

Velocidad de corte en el cilindro interior (rotor).

$$\dot{\gamma_i} = 2\Omega \frac{{R_a}^2}{{R_a}^2 - {R_i}^2}$$

$$\Omega = \frac{2\pi \cdot n}{60}$$

Figura 12. Diseño tradicional de un sistema de sensor cilíndrico **Fuente:** Scharmm. (2000). A practical Approach to Rheology and Reometry.

La velocidad de cizallamiento en la superficie del rotor es igual a la velocidad angular Ω multiplicada por una constante "M" que depende de los radios de la copa y el rotor de un sistema de sensor particular.

La relación de los radios es: $\delta = \frac{R_a}{R_i}$, relacionando

$$\dot{\gamma_l} = \frac{2.\delta^2}{\delta^2 - 1}.\Omega = M.\Omega = \frac{\pi}{30}.\left(\frac{2.\delta^2}{\delta^2 - 1}\right).n$$

$$\dot{\gamma_r} = \frac{{R_i}^2}{r^2} \cdot \left(\frac{2 \cdot \delta^2}{\delta^2 - 1}\right) \cdot \Omega = \frac{{R_i}^2}{r^2} \cdot M \cdot \Omega$$

Dónde:

 $\dot{\gamma}_i$ = velocidad de corte en el radio rotor $R_i[s^{-1}]$

 $\dot{\gamma_r}$ = velocidad de corte en la coordenada radial $r[s^{-1}]$ dentro del Gap $R_a - R_i$.

 δ = relación de radios.

 Ω = velocidad angular [rad/s].

 R_a = radio de la copa [m].

 R_i = radio del rotor [m].

 $n = \text{velocidad del rotor } [min^{-1}].$

M= factor de la velocidad de corte o factor de la geometría $\left[\frac{s^{-1}}{rad.s^{-1}}=\frac{1}{rad}\right]$, depende de los radios de la copa y del rotor.

• Esfuerzo cortante τ .

$$\tau_{i} = \frac{M_{d}}{2\pi . L. R_{I}^{2}. Cl} = \left(\frac{1}{2\pi . L. R_{I}^{2}. Cl}\right). M_{d}$$

$$\tau_{i} = A. M_{d}$$

$$\tau_{a} = \frac{M_{d}}{2\pi . L. R_{a}^{2}. Cl}$$

$$\tau_{r} = \frac{M_{d}}{2\pi . L. r_{c}^{2}. CL}$$

Dónde:

 τ_i = esfuerzo cortante en el radio R_I [Pa].

 τ_a = esfuerzo cortante en el radio R_a [Pa].

 τ_r = esfuerzo cortante en la coordenada radial r [Pa].

 M_d = Par de torsión a medir [N.m].

L = altura del rotor [m].

A = factor de forma $[m^3]$. Es una constante particular para el sistema de sensor que define la geometría del rotor.

Cl = factor de corrección de par que incorpora efectos de cara extrema del rotor.

Deformación Gamma γ

La deformación gamma esta linealmente unida a la deflexión angular φ y las dimensiones del rotor:

$$\gamma = M. \varphi con \varphi = deflexion angular[rad]$$

• Viscosidad η .

$$\eta = \frac{M_d}{\Omega} \cdot \frac{A}{M} = \frac{M_d}{\Omega} \cdot G [Pa.s]$$

Con
$$G = \frac{A}{M}$$

B. Sistema de sensor platos paralelos.

Básicamente está determinada por el radio R de la placa y la distancia h que puede variar entre las placas. La distancia no puede ser inferior a 0,3mm y no superior a 3mm con el fin de evitar importantes errores de medición en la muestra.

Este sistema es factible para muestras que contienen partículas de carga más grandes. La distancia GAP elegida debe ser al menos 3 veces mayor que el tamaño de la partícula ms grande.

Velocidad cortante

La velocidad de cizallamiento en este sistema sensor depende del radio r especifico de los platos: 0 < r < R. Para los fluidos newtonianos es de gran importancia este tipo de sistema sensor debido a que proporciona una gran velocidad de cizallamiento y para los fluidos no newtonianos la tensión de corte debe ser corregida.

$$\dot{\gamma}_{max} = M.\Omega [1/s]$$

M = factor de geometría = R/h con R = radio de la placa exterior [m]

h = GAP entre placas [m]

$$\Omega = \frac{2\pi \cdot n}{60} \qquad n = velocidad \ del \ rotor \ [m^{-1}]$$

Deformación γ:

Es una relación de la geometría del sistema sensor con la deflexión angular.

$$\gamma = M. \varphi$$
 con $\varphi = deflexion angular [rad]$

• Esfuerzo cortante τ

Este esfuerzo cortante es proporcional al torque M_d y el factor de geometría A.

$$\tau = M_d.A [Pa]$$

$$A = \frac{2}{\pi \cdot R^3}$$
 con $R = radio\ exterior\ del\ plato$

Para fluidos que muestran un comportamiento no newtoniano(n<1) y el esfuerzo de corte debe ser corregido según Weissenberg:

$$\tau = M_d. A. \left(\frac{3+n}{4}\right)$$

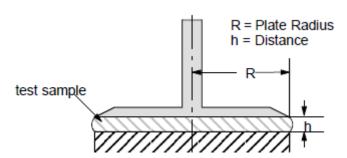


Figura 13. Sistema de sensor platos paralelos

Fuente: Scharmm. (2000). A practical Approach to Rheology and Reometry.

2.6 INYECTOR.

El inyector es un componente del sistema de inyección de combustible, cuya función principal es suministrar la cantidad necesaria de carburante en la cámara de combustión en forma pulverizada, y al ponerse en contacto con el aire en elevadas temperaturas se enciende provocando la combustión.

Los inyectores son electroválvulas que se pueden abrir y cerrar millones de veces con una reacción de precisión al pulso eléctrico que los acciona sin fugas ni escapes de combustible, para que se distribuya de la forma más homogénea según el régimen del funcionamiento del motor.

2.6.1 TIPOS DE INYECTOR.

- Inyectores mecánicos: este tipo de inyectores eran propios de los motores diésel hasta la aparición de los sistemas de inyección de conducto único o common-rail. Su principal funcionamiento es a través de un sistema de alimentación que es el encargado de controlar la cantidad y el momento de inyección del combustible de una forma mecánica.
- Inyectores electrónicos: Son los inyectores de mayor uso en los motores a gasolina, cuentan con múltiples sensores que envían la información a la unidad de control del motor para que este mande la señal del momento y la cantidad de combustible que debe aportarse en cada momento, el inyector es activado por la señal electica recibida de la unidad de mando y se cierran por recuperación de un resorte o muelle interno.

2.6.2 ELEMENTOS DEL INYECTOR.

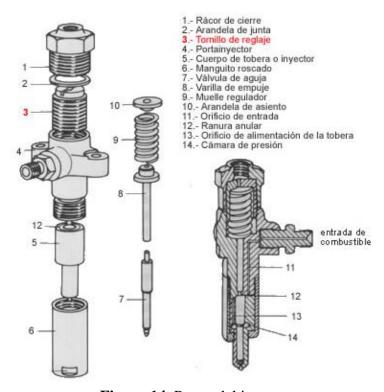


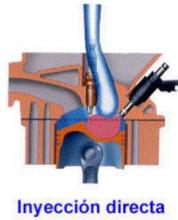
Figura 14. Partes del inyector

Fuente: http://www.aficionadosalamecanica.net/hazlo-inyectores.htm

En el sistema de inyección el inyector y la bomba de inyección son sus componentes principales, ambos están unidos por una línea de alta presión, la bomba de inyección es la encargada de dar al combustible la presión adecuada y en la mayoría de los sistemas la boquilla del inyector deja pasar el combustible cuando se alcanza una determinada presión de apertura y cierra cuando la presión de la misma cae.

2.6.3 CICLOS DE INYECCION.

- Preinyección: ciclo en el cual se procede a inyectar una cantidad pequeña de combustible con baja presión, con la combustión de esta pequeña cantidad aumenta la presión y la temperatura en la cámara de combustión.
- Inyección principal: en este ciclo es decisivo contar con una buena formación de la mezcla aire-combustible para lograr una combustión lo más completa posible, es así como con una lata presión de la inyección se consigue una muy refinada pulverización del combustible y una mezcla adecuada lo cual implica altos niveles de entrega de rendimiento del motor.
- **Fin de la inyección:** al final de este ciclo es importante la rápida caída de presión y que la aguja del inyector cierre de forma instantánea, evitando así que pase combustible hacia la cámara de combustión


2.6.4 TIPOS DE INYECCION.

Básicamente la función de inyección se trata de la tomar aire del medio ambiente e introducirlo al motor y luego de acuerdo al funcionamiento del mismo, inyectar la cantidad de combustible necesario para realizar una combustión lo más completa posible. Este tipo de inyección puede ser directa e indirecta.

2.6.4.1 INYECCION DIRECTA.

En este tipo de inyección, el combustible se introduce directamente en la cámara de combustión. Define los intervalos exactos de alimentación del carburante en cada

ciclo de trabajo de los pistones y proporciona un preciso control de tiempo que se necesita para preparar la mezcla aire-combustible.

Figura 15. Inyección directa **Fuente:** Lecuaona A. (2004). La inyección directa de gasolina

Existen dos métodos para realizar la invección directa:

• Common-rail: También denominado sistema de conducto común, este tipo de sistema electrónico de inyección es el más utilizado para motores diésel, en el que el combustible es aspirado directamente del depósito del gasoil a una bomba de alta presión y que este a su vez lo envía a un conducto común que va a ser el encargado de llevar el gasoil a los cilindros por medio de los inyectores.

Bosch fue quien lanzo el primer sistema Common – rail en 1997. La palabra common-rail se puede traducir como rampa de inyección. Además este sistema ofrece una elevada flexibilidad en lo relativo a la adaptaciones la inyección al motor, esto se logra mediante una elevada presión de inyección aproximada de 1.600 bares y la posibilidad de efectuar varias inyecciones previas y posteriores estas son características que contribuyen a incrementar la potencia específica.

El sistema common rail comprende con una parte de baja presión, donde se ubican los componentes de alimentación de combustible, una parte de alta presión, que cuenta con la bomba de alta presión, los inyectores, el conducto común y las tuberías de combustible a alta presión y el grupo de sistema de regulación electrónica diésel donde se ubican los sensores, elementos de regulación del sistema y la unidad de control.

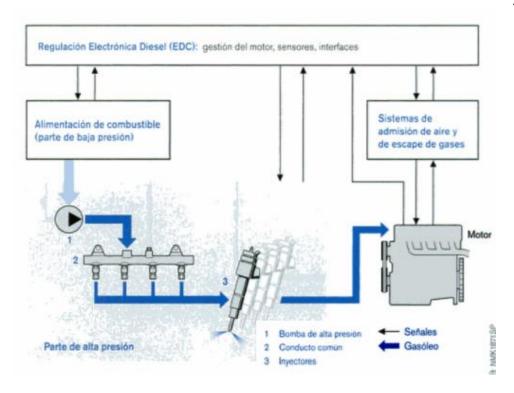


Figura 16. Sistema common-rail

Fuente: Bosch. (2005). Sistemas de inyección diésel por acumulador common rail.

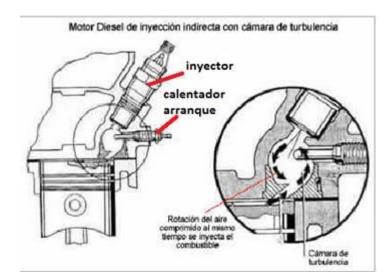
Los componentes principales en este sistema son los inyectores que van equipados con una válvula electromagnética o regulador piezoeléctrico también conocida como válvula de conmutación, mediante la cual se abre y se cierra el inyector, la generación de presión se realiza en la bomba de alta presión, la bomba comprime el combustible y lo envía hasta el orificio del rail mediante el conducto de alta presión que actúa como un acumulador para todos los inyectores, y de ahí el combustible es distribuido a cada inyector que a su vez lo inyecta en la cámara de combustión del cilindro.

Ventajas del sistema Common-rail:

- Inyección de combustible limpia y muy eficiente debido a las muy cortas distancias de pulverización.
- Existe menores perdidas de calor cedido a las paredes de los cilindros, esto se debe a que en la mezcla estratificada la combustión únicamente tiene lugar en la zona próxima a la bujía es por eso que provoca menores perdidas de calor cedido.

- Aumenta el rendimiento térmico del motor debido a que existe una mayor relación de compresión
- Debido a que la inyección del combustible no se deposita en las paredes de la cámara de combustión facilita el arranque en frio y es posible reducir el régimen de ralentí, por lo que el motor funciona de un modo muy estable.
- El combustible inyectado en la cámara puede ser transformado de inmediato en energía utilizable.

Algunas desventajas que presenta:


- Es el tratamiento de los gases de escape para cumplir las normativas de contaminación, debido a que los óxidos nítricos que se producen con motivo de la combustión ya sea en el modo homogéneo-pobre o estratificado no pueden ser transformados suficientemente en nitrógeno por medio de un catalizador convencional.
- El ruido que se produce debido al rápido aumento de presión después del encendido

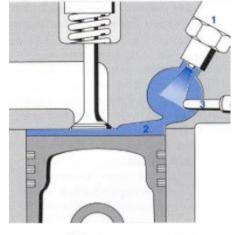
2.6.4.2 INYECCION INDIRECTA.

Conocidos también como motores de cámara divida, debido a la geometría de la cámara de combustión, formada por una pre-cámara ubicada en la culata, en la cual el inyector introduce el combustible, este proceso transcurre a alta velocidad en la cámara de turbulencia y en su salida a la cámara de combustión principal.

Para este tipo de inyección se destacan 2 tipos de cámaras:

 Cámaras de turbulencia: es una cámara generalmente de forma esférica, ubicada dentro del cabezote del cilindro la cual va unida a la cámara principal de combustión por una garganta estrecha que desemboca tangencialmente a la cámara de turbulencia, lo que provoca una gran turbulencia en el aire que ingresa al volumen esférico durante la carrera de compresión.

Figura 17. Inyección indirecta en una cámara de turbulencia. **Fuente:** https://revistamotor.eu/index.php/de-calle/mecanica/507-sistemas-de-inyeccion


La cámara de turbulencia está diseñada para contener un aproximado de 80% del aire comprimido en la cámara de combustión al igual que sus paredes están diseñadas para mantener una alta temperatura y para retener el calor con el fin de asegurar una rápida combustión.

Como emplean una bomba rotativa la presión de inyección sube al aumentar las rpm, esta presión de inyección esta alrededor de 160-240 bares y generalmente los motores que utilizan este tipo de cámara emplean relaciones de compresión más bajas.

 Cámara de pre-combustión: son de mayo uso en motores industriales, transporte pesado y tractores. Aunque se asemeja a la cámara de turbulencia, la diferencia radica en que contiene solamente un pequeño porcentaje del total del aire comprimido.

El combustible es inyectado dentro de la cámara de pre-combustión a presiones entre 120 -130 bares, solo una pequeña porción arde debido a la limitada cantidad de oxigeno presente en la cámara, y para completar la combustión durante el proceso de inyección el combustible adicional inyectado en la cámara de pre-combustión es envuelto por las llamas, gasificándose y expandiéndose a la cámara principal.

Los motores con esta cámara de pre-combustión son más factibles de operar con una amplia variedad de combustibles pero presentan dificultad de arranque en frio, por lo que existen bujías de encendido que trabajan antes del arranque.

INYECCION INDIRECTA (IDI)

- 1. Tobera
- 2. cámara de precombustión
- 3. pin esférico con placa de desviación

Figura 18. Cámara de pre-combustión

Fuente: http://www.fullmecanica.com/definiciones/i/645-inyeccion-indirecta

La ventaja principal de la inyección indirecta en un motor diésel está en que proporciona una buena mezcla de aire-combustible debido a que en la pre-cámara se producen mayores turbulencias, de este modo se tiene una combustión más progresiva, disminuyendo ruidos y vibraciones.

El aumento de consumo de diésel es un inconveniente presente al usar inyección indirecta en un motor diésel.

2.6.5 PARAMETROS DE LA INYECCION.

Un buen proceso de atomización conduce una mejor mezcla aire-combustible y por ende una combustión más completa y más eficiente dando como resultado un mayor rendimiento al motor y menos emisiones contaminantes.

La pulverización que se forma en la inyección tiene un rápido desarrollo desde el inicio, pasando por un periodo inestable y finalmente una condición estable para una formación completa de pulverizar.

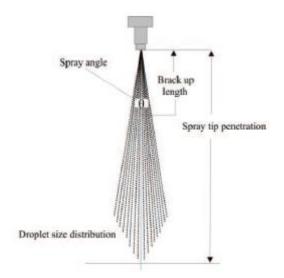


Figura 19. Estructura de inyección

Fuente: Defruyt S. Van de Maele C. (2012). A study of the atomization of biofuels in medium-speed diesel engines.

Durante el periodo de inyección, la pulverización formada tiene la siguiente estructura: el ángulo del cono de pulverización θ , la longitud de pulverización o la penetración de la punta de pulverización S, la longitud de ruptura L_b y la distribución del tamaño de gota en la pulverización SMD, el comportamiento de cada una de estas características depende de las propiedades del fluido a pulverizar, así como la temperatura, presión de inyección y tipo de boquilla del inyector.

2.6.5.1 LONGITUD DE PULVERIZACION.

Es una medida de la distancia de penetración del combustible en la cámara de combustión, para una buena mezcla aire-combustible se requiere una longitud de pulverización suficiente, pero no debe ser demasiado largo para evitar choques de combustible en el pistón o en las paredes del cilindro.

Los problemas presentes en los casos de no alcanzar o exceder la longitud de pulverización son una mala mezcla y una combustión incompleta dando como resultado mayores emisiones de hollín e hidrocarburos no quemados.

2.6.5.2 ANGULO DE PULVERIZACION.

Está relacionado con el arrastre del gas, es decir la característica que se produce cuando el combustible sale de la boquilla del inyector y se comienza a romper en gotas.

El ángulo de pulverización θ se define como el ángulo cónico de la pulverización. En otras palabras, el ángulo de pulverización es una medida de la velocidad de crecimiento de la pulverización causada por el arrastre del gas ambiente (Siebers, 1999).

Un incremento de θ , resulta una mejor mezcla aire-combustible y por lo tanto una combustión ms completa, generalmente una pulverización real de un combustible nunca está perfectamente en forma de cono por lo que distorsiona una definición directa de ángulo de pulverización.

2.6.5.3 MODELOS PARA LA FORMACION DE PULVERIZACION DEL DIESEL.

Modelos semi-empiricos fueron desarrollados para la formación de pulverización tomando en cuenta la presión, la densidad y la temperatura así como variables de la geometría de la boquilla fueron características para el desarrollo de dichos modelos.

2.6.5.3.1 MODELO PARA LA LONGITUD DE PULVERIZACION.

Esta distancia alcanzada por el proceso de pulverización es un parámetro importante, así si la pulverización es corta determina una mezcla insuficiente de airecombustible y si la pulverización es demasiado largo provoca el choque del combustible en las paredes de la cámara, esta longitud alcanzada será considerada en función del tiempo, en las primeras etapas de la inyección, en el instante $(t < t_b)$, la inyección no está totalmente formada y después del momento de ruptura la punta del rociador alcanza su punto extremo.

Hiroyasu y Aray desarrollaron el modelo para longitud de pulverización, hacen distinción entre las condiciones antes y después de la ruptura, llamando t_b el momento en que la atomización se rompe, significativamente la condición $t < t_b$, muestra la diferencia de presión a través del inyector y la densidad del combustible como factores influyentes.

Para la condición $t > t_b$, que es donde prevalece la mayor parte de la inyección también muestran influencia el diámetro de la boquilla y la densidad del aire en los medios de la cámara

$$\begin{split} t_b &= 28,65 \frac{\rho_1 D}{(\rho_a \Delta P)^{0.5}} \\ S &= 0,39 \left(\frac{2\Delta P}{\rho_1}\right)^{0.5} & \text{Cuando } 0 < t < t_b \\ S &= 2,95 \left(\frac{\Delta P}{\rho_a}\right)^{0.25} (Dt)^{0.5} & \text{Cuando } t > t_b \end{split}$$

Este modelo fue desarrollado mediante experimentos utilizando una cámara fría presurizada, esto implicó una condición de limitación en su aplicación respecto a las condiciones comunes de temperatura caliente que se da en los motores. Dicha limitación fue superada por Dent, quien uso un medio de gas a diferentes temperaturas en la cámara, es así como determino un término que se incluye para evaluar el efecto de la temperatura:

$$S = 2.95 \left(\frac{\Delta P}{\rho_a}\right)^{0.25} (Dt)^{0.5} \left(\frac{295}{Ta}\right)^{0.25}$$

Payri probo diferentes condiciones de sistemas de inyección y densidades de medio de gas en la cámara de alta presión, es así como el modelo propuesto es coherente los con propuestos por Hiroyasu y Dent. De la misma manera Arregle corroboro estas conclusiones trabajando con diferentes geometrías del inyector y diferentes sistemas de inyección.

2.6.5.3.2 MODELO PARA ANGULO DE INYECCION.

La medición del ángulo del cono de pulverización se mide en condiciones estables, por medio óptico siguiendo el ángulo que comprende la pulverización a una distancia de la boquilla de 60 veces el valor del diámetro del orificio.

Hiroyasu desarrollo una expresión empírica que correlaciona el ángulo con las características geométricas de los inyectores y las densidades del combustible y el aire que llena la cámara.

$$\theta = 83.5 \left(\frac{L}{D}\right)^{-0.22} \left(\frac{D}{D_0}\right)^{0.15} \left(\frac{\rho_a}{\rho_1}\right)^{0.26}$$

Arregle encontró una relación similar:

$$\tan\left(\frac{\theta}{2}\right) = D^{0,508} P_i^{0,00943} P_a^{0,335}$$

Sin embargo existe una observación a esta expresión, la relación establecida con el diámetro del orificio D, es de echo una relación geométrica L/D que está presente en las expresiones de Reitz, Hiroyasu y otros, así como el exponente 0,26 aparece también en documento de Naber y Siebers.

Se puede observar que en las expresiones para la longitud y ángulo de pulverización son similares en sus similares aspectos, independientemente de las condiciones experimentales sean a veces diferentes. Payri expuso una relación entre el ángulo y la longitud de pulverización y con Desantes encontraron diferentes valores para los exponentes y constantes trabajando con diferentes densidades de los gases de la cámara.

$$S(t) = 0.573 \,\rho_a^{-0.336} \Delta P^{0.287} D^{0.367} t^{0.49} \tan\left(\frac{\theta}{2}\right)^{-0.5}$$

2.6.5.3.3 MODELO PARA LA LONGITUD DE RUPTURA.

El combustible es forzado a través del orificio de la boquilla, esto debido a la diferencia de presiones en ambos extremos, entra a la cámara de combustión como una vena liquida hasta alcanzar el punto de ruptura y se forma la pulverización. Naber y

Siebers consideraron el momento de ruptura como la transición del líquido inyectado a la dominancia del aire arrastrado.

Reitz y Bracco encontraron una dependencia entre la relación de densidades y el diámetro de la boquilla con la longitud de ruptura.

$$L_b = 7,15(\frac{\rho_1}{\rho_a})^{0,5}$$

Hiroyasu complementa la expresión anterior al introducir parámetros geométricos de la boquilla y el factor de cavitación, siendo este último factor para evaluar la turbulencia en la boquilla.

$$L_b = 7.0D \left(1 + 0.4 \frac{r}{D}\right) \left(\frac{\rho_a}{\rho_1 v_1^2}\right)^{0.05} \left(\frac{L}{D}\right)^{0.13} \left(\frac{\rho_1}{\rho_a}\right)^{0.5}$$

Desafortunadamente, la correlación entre el modelo y los puntos experimentales en la región de las presiones normalmente encontradas en las cámaras de motor no son tan buenas como en toda la región experimental utilizada.

2.6.5.3.5 LISTA DE SIMBOLOS

Tabla 2. Lista de símbolos de los modelos de inyección

Nomenclatura		
θ	ángulo de inyección	
D	diámetro del orificio de la boquilla	
L_b	longitud de ruptura	
L	longitud del orificio de la boquilla	
D_0	diámetro de la cámara del inyector	
$ ho_a$	densidad del aire	
$ ho_1$	densidad del liquido	

ν	viscosidad cinemática del combustible	
ΔΡ	Diferencia de presión A través del orificio de la boquilla	
V_i	velocidad del combustible inyectado	
σ	Tensión superficial del combustible	

Fuente: (Adjustments of CIE injection system when using biodiesel)

2.6.5.4 BOQUILLA DE INYECCION.

Las boquillas de inyección se clasifican en las de tipo orificio y las de tipo pasador.

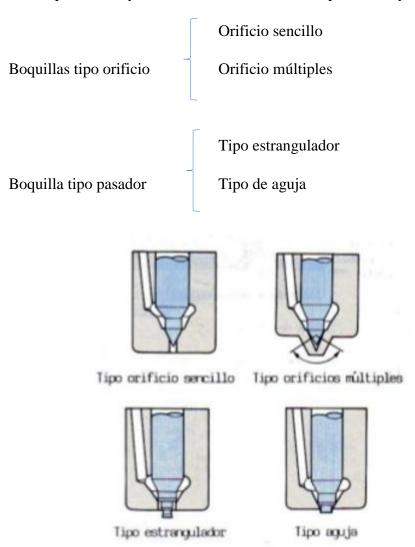


Figura 20. Tipo de boquillas.

Fuente: Calvay B. (2103). Inyectores

El tipo de boquilla con orificio múltiple se utiliza para motores de inyección directa y el de tipo pasador se utiliza para motores de inyección indirecta y la mayor parte son de tipo estrangulador, su funcionamiento radica en la inyección de una paquea cantidad de combustible en la cámara de pre-combustión al principio de la inyección, siendo la mayor cantidad de combustible suministrada casi al final del ciclo de inyección.

La presión de inicio de la boquilla de inyección varía dependiendo del tipo de motor y si la presión no es correcta tendrá un efecto perjudicial en la distribución de la inyección del combustible y en el volumen de inyección.

Una boquilla completa consta de dos partes: la válvula de boquilla y el cuerpo de boquilla. La válvula de boquilla adopta la forma de un émbolo, recubierto con precisión en el cuerpo de la boquilla hasta el ajuste más próximo posible, dentro del cual trabajará libremente.

El extremo interior de la válvula de boquilla tiene un diámetro reducido para producir un vástago sobre el que se forma una cara de válvula, mientras que el extremo exterior está provisto de un vástago

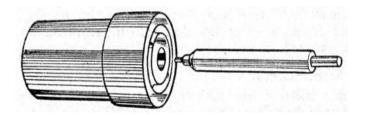


Figura 21. Cuerpo y válvula de la boquilla

Fuente: C.A.V. (2006). Fuel injection nozzles and nozzle holders.

Boquilla de un solo agujero: la boquilla de un solo agujero tiene un agujero perforado centralmente a través de su cuerpo y es cerrado por la válvula de la boquilla. El agujero puede ser de cualquier diámetro, desde 0.2mm (0.009 pulgadas) en adelante. Una variación de este tipo se conoce como la boquilla terminal cónica. En este caso el orificio único se perfora formando un ángulo con la línea central vertical de la válvula según se requiera.

Boquilla de múltiples agujeros: pueden tener un número variado de agujeros perforados en el extremo bulboso bajo la distribución de la válvula, su número, tamaño y disposición dependerá de las necesidades del motor en cuestión.

Boquilla de vástago largo: este tipo tiene el cuerpo extendido y en la punta se proporciona el asiento de válvula usual y la cúpula para los orificios de inyección, son utilizados para motor de inyección directa, debido al espacio limitado entre las válvulas de la culata que no es posible proporcionar un enfriamiento adecuado, para la boquilla de vástago de corto estándar se ha desarrollado una forma alternativa de boquilla con una extensión de pequeño diámetro.

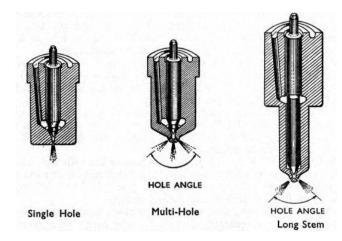
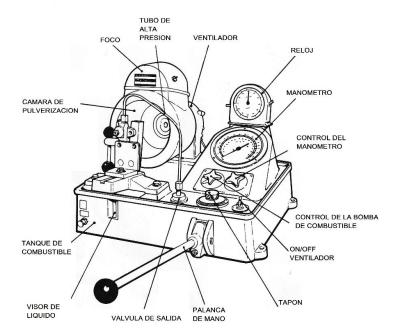


Figura 22. Boquillas de inyección

Fuente: C.A.V. (2006). Fuel injection nozzles and nozzle holders.

CAPITULO 3

METODOLOGIA Y EQUIPAMIENTO


Para el desarrollo del proyecto se va a usar investigación experimental, centrándose en el objetivo que es relacionar el comportamiento del cono de inyección con las características físicas del inyector y el combustible. Para ello se empleará el razonamiento hipotético-deductivo. Se utiliza también, mediante el uso de muestras representativas, el diseño experimental como estrategia de control y metodología cuantitativa para analizar los datos.

3.1 EQUIPAMIENTO PARA EL ENSAYO DEL CONO DE INYECCION

3.1.1 NOZZLE TEST MASTER – PROBADOR DE INYECTORES

El banco de pruebas de inyectores es un instrumento común en laboratorios de motores. El mismo permite evaluar la formación del cono de inyección, fundamentalmente con fines de comprobación del inyector mismo. El banco de pruebas se conforma por una bomba que permite montar en el mismo, el inyector a probar y aplicarle presión con lo que se expulsa el diésel por la tobera de sección transversal muy pequeña del inyector a gran velocidad. Esta conformación del inyector y la alta presión provoca la pulverización provocado así la pulverización del gasoil.

Básicamente con el equipo solo se puede determinar muy aproximadamente el ángulo con el que sale el fluido y la presión de descarga. Con estos datos la comparación del comportamiento de diferentes combustibles no es posible. Para poder proceder a la investigación plantead se diseñó y construyó un aditamento para poder capturar el ángulo formado mediante una cámara de alta velocidad a fin de evaluar la forma del mismo.

Figura 23. Nozzle test master **Fuente:** Hartridge test equipment. Operating manual.

3.1.2 ADAPTACIONES AL BANCO DE PRUEBAS

Para registrar la formación del cono y su posterior medición se realizaron los siguientes aditamentos:

Cámara de pulverización: Se reemplazó la cámara de pulverización por una cámara en forma rectangular hecha de una plancha de tol negro de 2mm de espesor y de $380x200x400 \, mm$, con una abertura en el lado izquierdo para la captura del ángulo formado por el fluido y aberturas circulares en la parte posterior para que encaje en el ventilador del probador de inyectores.

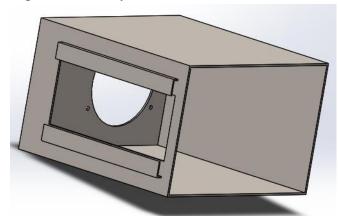


Figura 24. Cámara de pulverización adaptada

Para una mejor claridad y captura de la formación del cono de inyección, se procedió a pintar interiormente de color blanco y dorado para las paredes laterales. Estos colores y tonos se alcanzaron por sucesivas pruebas, mediante tanteo y error. Con esta coloración de pintura se logró obtener un mayor contraste y un mejor enfoque para la cámara de alta velocidad, exteriormente se pintó de color azul para dar la misma tonalidad del equipo.

También se utilizaron lámparas led de forma cuadrada y rectangular de 6500K, 6Watts y 6500K, 10Watts en distintas posiciones para obtener una correcta iluminación y captura del cono. Finalmente, la primera lámpara fue colocada en la parte superior del inyector mientras que la segunda fue colocada en la parte lateral izquierda interna.

Figura 25. Iluminación interior cámara de pulverización

Adaptación de suministro de fluido: Debido a que el depósito de combustible era muy grande para la disponibilidad de muestras existentes, se procedió a sustituirlo mediante una conexión de un neplo y una pipeta plástica. El neplo fue realizado en un cilindro de acero A36.

El neplo construido fue reemplazado por el tornillo de la bomba perteneciente al equipo y se conectó en el ingreso del fluido de la bomba, se utilizó una pipeta plástica por cada muestra de aceite vegetal a ensayar, esta adaptación se realizó con el fin de minimizar cantidades de aceite vegetal.

Figura 26. Ingreso del fluido de la bomba

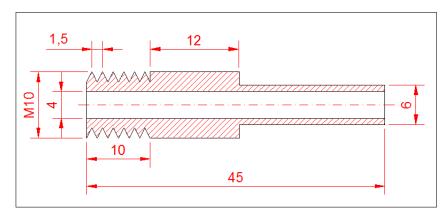


Figura 27. Neplo de ingreso de fluido

Figura 28. Adaptación suministro de fluido a la bomba

3.1.3 INYECTOR BKB40 SD5224 DES N: 5352102

Es un inyector de tipo mecánico de un solo resorte, utilizado para motor con combustible diésel, se activa cuando la presión del combustible en el conducto de entrada aumenta lo suficiente para que el vástago active el resorte de la aguja del inyector. En este momento la aguja se abre y permite la pulverización del combustible.

Figura 29. Inyector BKB40 SD5224 DES N: 5352102

3.1.3.1 COMPONENTES

El despiece del inyector se realizó para conocer sus partes y parámetros que influyen en el momento de la pulverización.

En el despiece del inyector se pudo observar la posición original del tornillo de reglaje, dicha posición nos permitirá realizar ajustes tanto en una mayor compresión como una menor compresión.

Dichos compresiones provocara una mayor o menor compresión de inyección debido al aumento o disminución de compresión en el muelle del inyector.

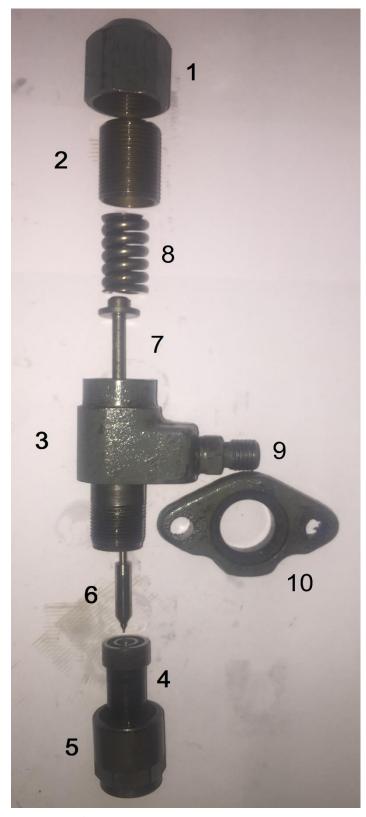
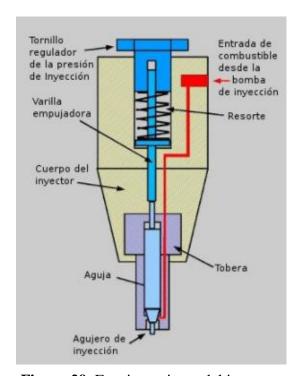


Figura 28. Despiece del inyector utilizado

Tabla 3.


Componentes del inyector utilizado

N:	Figura	Descripción
1		Racor de cierre
2		Tornillo de reglaje
3		Portainyector
4		Cuerpo de la tobera o inyector
5		Manguito roscado

6	Válvula de aguja
7	Varilla de empuje
8	Muelle regulador
9	Ingreso de combustible
10	Sujetador del inyector

3.1.3.2 FUNCIONAMIENTO

El funcionamiento de este tipo de inyector se muestra en la siguiente figura, el combustible procedente de la bomba de inyección se alimenta a la entrada del inyector. Este combustible es conducido por el interior a través de conductos perforados en el cuerpo del inyector hasta una aguja en la parte inferior que obstruye el orificio de salida en la tobera, el muelle del inyector es el encargado de presionar la aguja a través de una varilla y así mantener cerrado el agujero de inyección, para de esta manera bloquear el paso de combustible a la cámara de combustión.

Figura 29. Funcionamiento del inyector

Fuente: http://www.sabelotodo.org/automovil/inyectores.html

En el momento que la presión en el conducto de entrada aumenta lo suficiente por el empuje de la bomba de inyección, la presión vence la fuerza del resorte y levanta la aguja para de esta manera abrir el pequeño conducto de acceso a la cámara y el combustible sale muy pulverizado por el extremo inferior.

El tornillo de reglaje sobre el resorte permite comprimirlo en mayor o menor grado y con ellos establecer con exactitud la presión de apertura del inyector.

3.1.4 PARAMETROS DE INFLUENCIA.

Los parámetros del inyector son de gran influencia al momento del desarrollo de la pulverización del combustible. Las características del inyector y otros parámetros de inyección como presión y temperatura del combustible son necesarios para comprender el comportamiento de la pulverización y poder comparar los resultados obtenidos.

Cuando el combustible sale de la boquilla del inyector se forma una pulverización que al final se rompe en gotitas y estas gotitas se evaporan. Cabe mencionar que las propiedades físicas de los fluidos a experimentar son parámetros que afectan fuertemente en el desarrollo de la pulverización.

3.1.4.1 TIPO DEL INYECTOR.

El inyector BKB40 SD5224 DES N: 5352102, es un inyector de tipo mecánico, con boquilla de un solo orificio, es decir tiene un agujero taladrado centralmente a través de su cuerpo cerrado por la válvula de aguja del inyector

Figura 30. Boquilla de un solo orificio del inyector

El diámetro del orificio de la boquilla fue medido en el Laboratorio de Metrología, en el Microscopio de Herramientas.

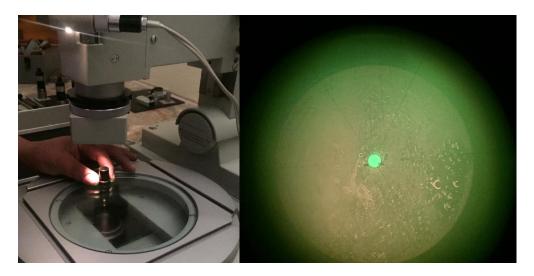


Figura 31. Medición del diámetro del orificio

Medida transversal: 1.8414 – 1.7415

Medida longitudinal: 1.5179-1.4169

$$\therefore \ \emptyset_{orificio} = 0.999 + 1.010$$

$$\emptyset_{orificio} = 2.009/2$$

$$\emptyset_{orificio} = 1.0045 \ mm$$

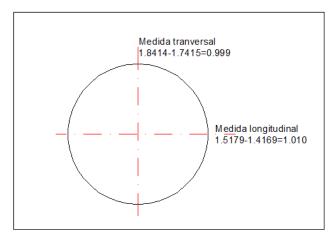


Figura 32. Esquema de medición

3.1.4.2 DIAMETRO Y LONGITUD DEL ORIFICIO DE LA AGUJA

Los valores del diámetro y longitud del orificio del inyector fueron determinados en el laboratorio de Metrología de la ESPE, utilizando el equipo denominado Microscopios de Herramientas.

Figura 33. Medición longitud orificio

Longitud del orifico $L = 0.930 \, mm$

Diámetro de la cámara del inyector $D_0 = 1,506 \ mm$

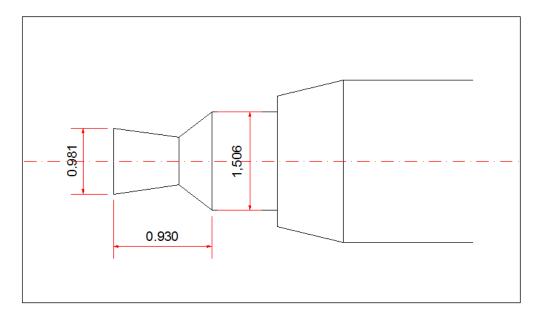


Figura 34. Medidas de la válvula de aguja

3.1.4.3 ANGULO DE LA AGUJA

Para mayor visualización y medida del ángulo de la válvula de aguja se procedió a hacerlo en el laboratorio de metrología con la ayuda del equipo de proyector de perfiles.

El ángulo entre la aguja y el eje del agujero de la boquilla es un parámetro que indica que cuanto mayor es este ángulo, más cambia la dirección del flujo principal a la entrada del agujero de la boquilla.

Figura 35. Perfil de la aguja

También influye en la fuerza de la asimetría causada por el ángulo agujero-aguja, la estructura interna justo antes de la salida de la boquilla, esto debido a la probabilidad de que una película de cavitación en la parte superior del agujero induzca más asimetría en la pulverización que un flujo de dos fases más uniformes en toda la sección transversal.

3.1.4.4 RUGOSIDAD DE LA SUPERFICIE

Este parámetro trata del aumento de la rugosidad de la superficie existente dentro de los orificios de la boquilla, esto hace que la cavitación sea más fácil, la rugosidad de la pared da lugar a mayores esfuerzos de cizallamiento en el líquido cerca de la

pared y produce una perturbación adicional a la velocidad, llevando a presiones más bajas.

Arcoumanis et al. (1999) indica que la rugosidad de la superficie causa una diferencia en el inicio de la cavitación entre las boquillas de gran escala y de tamaño real. Además, cuando se produce una perturbación hidráulica, el pulverizador muestra más turbulencia y un aspecto más rizado en boquillas de tamaño real que el chorro laminar para boquillas ampliadas, esto debido a la rugosidad de la superficie. Este último se denomina "flip hidráulico imperfecto" según Soteriou et al. (1995).

3.1.5 CAMARA CASIO EXILIM EX_FH20

Es una cámara de alta velocidad, al ser capaz de fotografiar 40 imágenes por segundo y grabar videos de hasta 1.000fps, pese a que su lente no es desmontable ofrece un zoom óptico de 20x con estabilizador mecánico y una pantalla de 3 pulgadas. La resolución estándar es de 9 Megapíxeles, por lo que se puede lograr copias de tamaño poster y video con calidad HD (1280x720 pixel, 30 fps).

Figura 36. Cámara Casio Exilim EX_FH20

3.1.5.1 TRIPODE

Es un accesorio confeccionado en aluminio de alta resistencia, con 3 secciones de patas, con niveles de altura y ángulos totalmente ajustables y con nivel de burbuja

incorporado, para un soporte firme e ideal de la cámara. Con una altura máxima de 144cm y una carga máxima de 4kg.

Figura 37. Trípode utilizado para la cámara de alta velocidad

3.2 ASPECTOS REOLOGICOS

3.2.1 REOMETRO

Para la obtención de los datos reológicos correspondientes a los aceites vegetales usados se utilizó un reómetro TA HR-2 con control de deformación, tasa de cizalla y de esfuerzo. Este equipo cuenta con un sistema Peltier con control de temperatura. Cada experimento fue conducido sobre una muestra fresca a una temperatura de $25 \pm 0.01^{\circ}$ C

Figura 38. Reómetro TA Instruments

3.2.2 GEOMETRIA UTILIZADA PARA LOS ENSAYOS REOLOGICOS.

Debido a que los fluidos a ensayar no mostraban características de gran fluidez, la geometría platos paralelos fue la ideal para realizar los ensayos reológicos con los distintos aceites vegetales y mezclas de los mismos.

Figura 39. Geometría utilizada para los ensayos reológicos

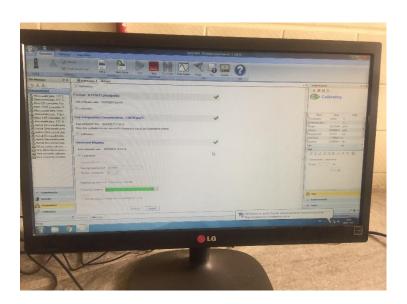
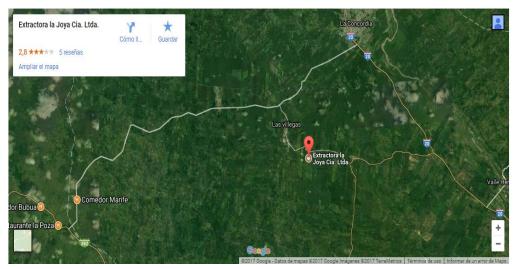



Figura 40. Calibración de la geometría

3.3 MATERIA PRIMA

Aceite de palma: este aceite vegetal se obtuvo en la extractora "La Joya" localizada en Santo Domingo en el sector las Villegas Km 2½ vía Plan Piloto, que es una empresa agroindustrial en el negocio de la palma africana.

Figura 41. Localización Extractora La Joya. **Fuente:** http://www.lajoya.com.ec/contactenos/

Aceite de Jatropha: o aceite de piñón se obtuvo en la provincia de Manabí, en la estación experimental de Portoviejo en el Instituto Nacional de Investigaciones Agropecuarias-INIAP, km 12 vía Santa Ana, la cual desarrollo uno de los más grandes proyectos fue el denominado "Proyecto Piñón Galápagos", la cual consistió en la sustitución de Combustibles Fósiles por Biocombustibles en la Generación Eléctrica en las Islas Galápagos.

Figura 42. Aceite de Jatropha Curcas

Aceite Glycine Max: conocido también como aceite de soja se lo obtuvo en la empresa DANEC.SA localizado en la provincia de Pichincha, cantón Rumiñahui Km 1 ½ vía Sangolqui-Tambillo.

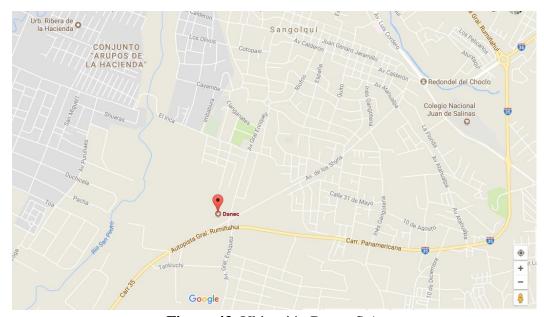


Figura 43. Ubicación Danec S.A Fuente: http://www.danec.com/es/ubicacion.html

3.4 ENSAYOS REALIZADOS

Los equipos utilizados para los ensayos fueron el probador de inyectores y el Reómetro, para ver el comportamiento del ángulo de inyección de los distintos aceites y la variación de la viscosidad respecto a la temperatura de los mismos respectivamente.

3.4.1 PUNTO DE PULVERIZACION

Este punto fue realizado en el probador de inyectores equipo que fue sometido a una limpieza intensa, especialmente las tuberías de circulación del fluido con el fin de evitar suciedades que puedan intervenir en los ensayos a realizar, este paso se lo realizó en cada ensayo con los diferentes tipos de aceites, y se hizo los respectivos ajustes

tanto en la llave para el control de la bomba del fluido como para el control de presión en el manómetro.

El comportamiento de inyección fue capturado mediante la cámara CASIO EXILIM EX_FH20, se logró capturar fotográficamente la formación de pulverización de los distintos aceites para posteriormente determinar de forma manual el ángulo de inyección formado.

Figura 44. Captura fotográfica del ángulo de inyección

Para una mejor visualización de la formación del ángulo de inyección, la cámara se ajustó a un zoom óptico de 49x y 57x, se realizaron capturas de 40 imágenes por segundo al igual que se filmó videos en calidad HD. De todas las imágenes capturadas se seleccionó 20 muestras para su posterior análisis, así también apuntes de la presión (lb/in^2) medida por el manómetro del probador de inyectores.

Figura 45. Ajustes de la Cámara

Se realizaron ajustes en el muelle del inyector con una mayor y menor compresión del mismo, para observar los efectos producidos en la formación del ángulo de inyección producto de dichos ajustes, así como también se regulo al muelle del inyector para lograr una similitud en cuanto al ángulo de inyección formado por el combustible diésel.

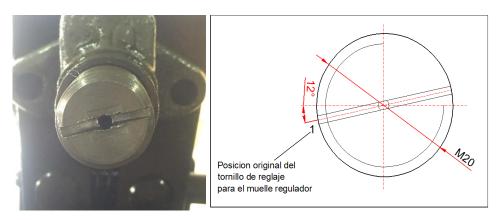


Figura 46. Posición original del tornillo de reglaje

La disminución de compresión del muelle se lo realizo en el tornillo de reglaje girando en forma anti horaria un aproximado de 100 grados a partir de la posición inicial del mismo.

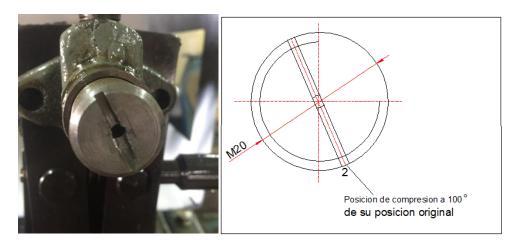


Figura 47. Esquema disminución compresión para el muelle del inyector

De igual manera para el aumento de compresión se lo hizo girando en forma horaria un aproximado de 100 grados de la posición original.

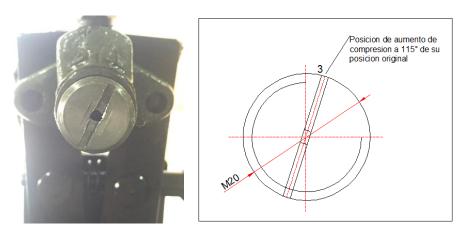


Figura 48. Esquema aumento compresión para el muelle del inyector

Y con el fin de lograr una formación de inyección similar al formado por el diésel el muelle del inyector fue regulado a 9 grados a partir de su posición original.

3.4.1.1 INYECCION ACEITE DE PALMA VIRGEN

Tabla 4.

Datos de aceite de palma virgen.

N. 6. 11. 11. 11. 11. 11. 11. 11. 11. 11.	Compresión original			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	190	380	58	
2	190	380	60	
3	200	385	58	
4	200	380	59	
5	200	395	62	
6	190	390	60	
7	195	385	59	
8	205	390	61	
9	200	385	61	
10	195	380	55	
11	195	390	58	
12	200	395	64	
13	200	385	56	
14	190	390	60	
15	190	390	62	
16	210	400	61	

17	200	385	59
18	200	395	58
19	190	395	61
20	190	400	62
Promedio	196,5	388,75	59,7

Tabla 5.

Datos de aceite de palma virgen a menor compresión

N # 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1	Menor compresión en el muelle			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	155	330	12	
2	155	330	12	
3	150	340	11	
4	160	340	14	
5	160	340	11	
6	155	335	11	
7	155	335	12	
8	150	330	15	
9	155	330	12	
10	155	340	12	
11	155	335	14	
12	160	340	11	
13	155	340	12	
14	155	340	13	
15	155	340	14	
16	155	335	14	
17	160	330	14	
18	160	330	12	
19	155	330	13	
20	155	335	12	
Promedio	155,75	335,25	12,55	

Tabla 6.

Datos de aceite de palma virgen a mayor compresión

Mediciones	Mayor compresión en el muelle			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	290	545	60	
2	285	545	60	
3	290	550	61	
4	290	550	60	
5	295	555	62	

Promedio	291,75	551,5	62,85
20	300	555	68
19	290	555	65
18	295	550	62
17	290	545	64
16	295	560	61
15	290	550	66
14	290	560	60
13	285	550	62
12	295	555	70
11	290	550	60
10	290	545	61
9	290	550	64
8	295	555	65
7	300	550	61
6	290	555	65

Tabla 7.

Datos de aceite de palma virgen a compresión regulada

Mediciones	Compresión regulada en el muelle del inyo			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	175	410	54	
2	170	420	56	
3	175	420	51	
4	180	420	54	
5	180	415	53	
6	175	415	56	
7	185	410	58	
8	180	410	58	
9	175	420	56	
10	175	415	56	
11	175	415	55	
12	180	400	54	
13	180	405	60	
14	175	420	58	
15	175	420	58	
16	180	410	58	
17	175	410	56	
18	180	410	56	
19	180	420	56	
20	185	415	58	
Promedio	177,75	414	56,05	

3.4.1.2 INYECCION ACEITE DE SOJA

Tabla 8.

Datos	de	aceite	de	Soi	เล
Daws	uc	active	uc	DU.	a

N. 6. 11 . 1	C	<mark>ompresión orig</mark> i	inal
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)
1	210	380	65
2	210	380	65
3	220	385	66
4	210	375	62
5	215	380	64
6	215	375	61
7	205	385	68
8	210	390	70
9	220	385	62
10	215	385	66
11	220	390	69
12	220	390	68
13	215	385	65
14	215	385	66
15	215	385	66
16	205	385	69
17	215	390	69
18	210	385	65
19	210	380	64
20	215	385	64
Promedio	213,5	384	65,7

Tabla 9. Datos de aceite de soja a menor compresión

Mediciones	Menor compresión			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	145	295	12	
2	145	295	12	
3	150	295	14	
4	145	300	14	
5	150	300	12	
6	150	290	12	
7	150	295	11	
8	145	295	13	
9	150	300	13	
10	150	290	14	

11	150	295	11
12	150	300	12
13	150	295	12
14	145	295	12
15	145	290	12
16	155	295	12
17	155	295	13
18	155	295	12
19	150	290	13
20	150	300	12
Promedio	149,25	295,25	12,4

Tabla 10.

Datos de aceite de soja a mayor compresión

N. 1	Mayor Compresión			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	260	520	70	
2	260	525	70	
3	270	525	72	
4	260	530	70	
5	265	525	70	
6	265	520	72	
7	260	525	74	
8	260	530	76	
9	270	525	70	
10	265	525	73	
11	270	535	75	
12	270	535	76	
13	265	525	74	
14	265	525	72	
15	265	530	72	
16	250	535	75	
17	265	530	75	
18	260	525	70	
19	260	520	70	
20	265	525	70	
Promedio	263,5	526,75	72,3	

Tabla 11.

Datos de aceite de soja a compresión regulada

N. T	Compresión regulada en el muelle del inyecto			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	190	390	56	
2	190	390	57	
3	200	400	60	
4	200	400	60	
5	200	410	62	
6	200	405	56	
7	195	400	54	
8	205	400	58	
9	200	405	60	
10	205	410	56	
11	205	390	55	
12	205	400	58	
13	200	390	62	
14	210	405	56	
15	210	400	58	
16	210	400	62	
17	200	400	56	
18	200	390	55	
19	200	405	50	
20	200	405	50	
Promedio	201,25	399,75	57,05	

3.4.1.3 INYECCION ACEITE JATROPHA CURCAS Tabla 12.

Datos de aceite de Jatropha

N/1-1:	Compresión original		
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)
1	215	390	66
2	210	385	65
3	210	385	66
4	220	400	69
5	215	395	66
6	215	390	68
7	220	395	68
8	220	400	72
9	215	400	70
10	210	380	65

11	220	390	65
12	220	395	68
13	215	390	65
14	215	395	68
15	210	390	66
16	220	400	70
17	220	395	66
18	220	395	68
19	215	390	69
20	220	405	72
Promedio	216,25	393,25	67,6

Tabla 13.

Datos de aceite de Jatropha a menor compresión

N. T. 1	Menor compresión			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	150	360	18	
2	150	360	18	
3	150	360	16	
4	150	365	20	
5	155	365	18	
6	155	360	18	
7	160	360	18	
8	155	365	15	
9	155	370	20	
10	155	360	20	
11	160	360	18	
12	155	360	16	
13	155	370	16	
14	155	370	15	
15	150	365	15	
16	155	365	15	
17	155	360	20	
18	155	360	19	
19	150	360	19	
20	150	370	19	
Promedio	153,75	363,25	17,65	

Tabla 14.

Datos de aceite de Jatropha a mayor compresión

3.6 11 1	Mayor compresión			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	285	550	74	
2	285	545	72	
3	285	545	72	
4	285	555	74	
5	290	550	68	
6	295	550	74	
7	300	550	74	
8	300	555	75	
9	295	555	74	
10	285	545	68	
11	300	550	72	
12	300	550	74	
13	295	550	70	
14	295	555	74	
15	290	550	72	
16	300	555	74	
17	300	545	72	
18	300	550	72	
19	295	545	74	
20	300	555	70	
Promedio	294	550,25	72,45	

Tabla 15.

Datos de aceite de Jatropha a compresión regulada

Mediciones	Compresión regulada en el muelle del inyector			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	190	400	58	
2	190	400	56	
3	200	390	60	
4	200	390	54	
5	200	390	62	
6	190	400	58	
7	195	400	60	
8	205	405	58	
9	200	400	55	
10	195	405	56	

11	195	405	58
12	200	400	60
13	200	410	60
14	190	400	55
15	190	400	58
16	210	390	58
17	200	390	58
18	200	390	56
19	190	405	62
20	190	405	60
Promedio	196,5	398,75	58,1

3.4.1.4 INYECCION DIESEL

Tabla 16.

Datos del diésel

26.11.1	Compresión original			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	150	345	58	
2	150	340	56	
3	160	350	59	
4	150	345	58	
5	155	350	58	
6	155	350	60	
7	160	350	56	
8	155	345	56	
9	155	340	56	
10	160	340	54	
11	160	345	55	
12	155	350	59	
13	160	345	53	
14	150	345	58	
15	160	340	54	
16	155	340	52	
17	160	345	54	
18	155	350	59	
19	160	345	58	
20	160	350	60	
Promedio	156,25	345,5	56,65	

Tabla 17.

Datos del diésel a menor compresión

	Menor compresión en el muelle			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	150	340	35	
2	150	340	37	
3	155	335	35	
4	155	335	35	
5	155	340	34	
6	150	330	32	
7	150	330	32	
8	150	335	30	
9	155	330	40	
10	155	330	37	
11	155	335	35	
12	160	335	35	
13	155	330	32	
14	155	330	34	
15	155	340	32	
16	150	330	36	
17	150	340	35	
18	160	330	36	
19	155	335	36	
20	155	335	40	
Promedio	153,75	334,25	34,9	

Tabla 18.

Datos del diésel a mayor compresión

Mediciones	Mayor compresión			
	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	160	495	64	
2	160	490	63	
3	165	495	65	
4	160	490	62	
5	165	505	62	
6	160	500	63	
7	165	505	64	
8	165	490	60	
9	160	490	60	
10	165	495	60	
11	165	490	62	

12	160	490	64
13	165	490	60
14	155	495	63
15	155	490	58
16	160	500	60
17	165	500	60
18	160	500	60
19	160	495	63
20	160	495	60
Promedio	161,5	495	61,65

3.4.1.5 INYECCION ACEITE DE PALMA USADA.

Tabla 19.

Datos de aceite de palma usado

	Compresión original		
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)
1	210	390	65
2	210	380	67
3	215	390	63
4	210	380	65
5	215	395	62
6	215	390	59
7	215	385	62
8	210	390	61
9	210	390	70
10	210	400	66
11	215	390	62
12	215	395	64
13	215	385	66
14	215	390	60
15	215	390	62
16	210	400	66
17	210	400	62
18	210	395	60
19	215	400	62
20	210	400	62
Promedio	212,5	391,75	63,3

Tabla 20.

Datos de aceite de palma usado mayor compresión

	Mayor compresión en el muelle del inyector		
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)
1	330	550	78
2	320	550	75
3	330	550	75
4	330	560	75
5	330	550	80
6	330	560	75
7	330	550	74
8	320	550	78
9	330	550	76
10	325	550	80
11	325	550	74
12	325	560	75
13	325	560	78
14	330	560	76
15	330	560	75
16	320	560	75
17	330	560	75
18	320	560	74
19	330	550	79
20	320	560	78
Promedio	326,5	555	76,25

Tabla 21.

Datos de aceite de palma usado a compresión regulada

Mediciones	Compresión regulada en el muelle del inyector		
	$P_o(lb/in^2)$	$P_f(lb/in^2)$ 420	Ángulo(grados)
1	190	420	60
2	180	420	56
3	190	420	56
4	180	420	56
5	180	415	55
6	185	415	56
7	185	410	58
8	180	410	56
9	190	420	56
10	185	415	56
11	190	420	60

12	180	410	60
13	180	410	60
14	190	420	58
15	175	420	58
16	180	410	58
17	190	410	58
18	180	410	58
19	180	420	56
20	200	420	56
Promedio	184,5	415,75	57,35

3.4.1.6 INYECCION MEZCLA ACEITE DE PALMA USADA-DIESEL

La mezcla se realizó con un 50% de Aceite de palma usado y 50% diésel.

Tabla 22.

Datos de mezcla de aceite de palma usado-diésel

3.6 31 1	Compresión Original			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	200	385	72	
2	200	380	72	
3	200	380	72	
4	205	380	74	
5	210	390	76	
6	210	390	76	
7	210	390	77	
8	210	390	75	
9	210	390	75	
10	210	380	70	
11	200	390	74	
12	200	380	75	
13	200	385	77	
14	200	390	77	
15	205	390	75	
16	205	380	75	
17	210	380	70	
18	210	395	70	
19	205	390	70	
20	210	390	74	
Promedio	205,5	386,25	73,8	

Tabla 23.

Datos de mezcla de aceite de palma usado-diésel a mayor compresión

N. T	Mayor compresión en el muelle de inyector			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	300	520	76	
2	300	520	80	
3	300	530	80	
4	305	530	82	
5	310	530	80	
6	310	530	76	
7	310	530	77	
8	300	525	80	
9	300	525	80	
10	310	530	78	
11	300	520	78	
12	300	520	80	
13	300	520	79	
14	310	520	78	
15	305	520	80	
16	305	525	78	
17	305	525	81	
18	300	530	78	
19	300	520	80	
20	305	520	81	
Promedio	303,75	524,5	79,1	

Tabla 24.

Datos de mezcla de aceite de palma usado- diésel a compresión regulada

N. 1	Compresión regulada en el muelle del inyector			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	190	400	62	
2	190	410	54	
3	190	410	60	
4	180	410	56	
5	180	420	56	
6	190	420	60	
7	190	415	56	
8	180	415	60	
9	190	420	60	
10	190	420	58	
11	190	420	58	
12	190	415	60	

13	180	410	60
14	190	420	58
15	190	420	62
16	180	410	56
17	195	410	60
18	180	420	58
19	190	420	60
20	195	420	60
Promedio	187,5	415,25	58,7

3.4.1.7 INYECCION MEZCLA DE ACEITE DE PALMA VIRGEN-DIESEL

Mezcla realizada con 50% de aceite de palma virgen y 50% diésel.

Tabla 25.

Datos de mezcla de aceite de palma virgen-diésel

26.11.1	Compresión Original			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	210	400	62	
2	210	400	67	
3	210	400	65	
4	215	400	64	
5	210	410	67	
6	215	410	65	
7	220	410	68	
8	220	420	68	
9	220	420	62	
10	210	410	65	
11	210	410	67	
12	210	410	65	
13	215	410	65	
14	215	415	68	
15	215	415	64	
16	215	415	62	
17	220	420	66	
18	220	410	68	
19	220	410	65	
20	210	420	64	
Promedio	214,5	410,75	65,35	

Tabla 26.

Datos de mezcla de aceite de palma virgen-diésel a mayor compresión

3.6 11 1	Mayor compresión en el muelle del inyector			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	320	535	72	
2	320	535	70	
3	320	530	69	
4	330	525	70	
5	330	525	74	
6	330	525	75	
7	325	525	72	
8	330	525	72	
9	330	530	74	
10	330	535	71	
11	320	535	74	
12	330	530	70	
13	330	530	70	
14	320	525	70	
15	320	530	72	
16	320	525	72	
17	320	525	72	
18	320	525	74	
19	330	535	75	
20	325	535	75	
Promedio	325	529,25	72,15	

Tabla 27.

Datos de mezcla de aceite de palma virgen-diésel a compresión regulada

Mediciones	Compresión regulada en el muelle del inyector		
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)
1	180	390	60
2	180	390	58
3	185	400	58
4	180	400	54
5	180	400	62
6	180	410	55
7	190	410	58
8	190	400	60
9	180	400	54
10	180	395	58

18	180 180	390 390	58 60
17	190	390	62
15 16	190 190	400 390	60 60
14	180	400	56
13	185	400	55
12	185	390	60
11	180	395	60

3.4.1.8 INYECCION EMULSION

La emulsión se realizó con una mezcla de 70% de aceite de palma virgen, 20% de etanol, 5% de agua y 5% de tween 80

Tabla 28.

Datos de la Emulsión

24.11.1	Compresión original		
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)
1	210	400	56
2	210	410	58
3	220	410	60
4	220	410	58
5	220	410	58
6	220	420	56
7	210	420	56
8	220	420	58
9	215	415	60
10	215	415	57
11	220	415	56
12	220	415	56
13	220	400	57
14	220	415	58
15	220	415	56
16	220	400	55
17	215	410	54
18	215	410	57
19	215	410	55
20	220	410	56
Promedio	217,25	411,5	56,85

Tabla 29.

Datos de la Emulsión a mayor compresión

N . 1	Mayor compresión en el muelle del inyector			
Mediciones	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)	
1	315	520	70	
2	315	520	68	
3	320	530	70	
4	320	530	70	
5	315	530	70	
6	320	520	71	
7	310	520	69	
8	310	520	68	
9	320	530	67	
10	320	530	70	
11	310	530	68	
12	310	525	71	
13	315	525	68	
14	315	530	72	
15	310	520	66	
16	320	525	70	
17	320	525	70	
18	320	530	68	
19	315	525	70	
20	315	530	69	
Promedio	315,75	525,75	69,25	

3.4.2 ENSAYOS REOLOGICOS BARRIDOS DE TEMPERATURA

3.4.2.1 PARAMETROS PARA LOS ENSAYOS

• Características de la geometría utilizada y parámetros de trabajo.

Tabla 30.

Parámetros geométricos para ensayos reológicos de barrido de temperatura

PARAMETROS GEOMETRICOS					
Parámetros Cantidad Unidades					
Diámetro de la geometría 25 mm					
Gap 75 μm					

Loading Gap	26500	μm
Trim gap offset	25	μm
Material	Steel	
Environmental system	ETC	
Serial de la geometría	100104	
Tamaño muestra requerida	0.0368155	ml

• Parámetros delimitantes para los ensayos de barrido de temperatura.

Tabla 31.

Condiciones de operación para los ensayos reológicos de barrido de temperatura

CONDICIONES DE OPERACIONES PARA LOS ENSAYOS				
Parámetros	Cantidad	Unidades		
Temperatura de	10	°C		
operación inicial				
Temperatura de	200	°C		
operación final				
Velocidad de cizalla fijada	49000	1/ <i>s</i>		
Velocidad de rampa	5	°C/min		

3.4.2.2 DATOS DE BARRIDO DE TEMPERATURA A 20°C.

A continuación se muestran valores seleccionados a un aproximado de 20°C del ensayo de Barrido de temperatura, debido a que son datos que nos servirán para su posterior análisis.

Tabla 32.

Datos a 20°C del barrido de temperatura de los aceites ensayados

Muestra	Shear rate	Viscosity	Step time	Temp	Normal stress
	1/s	Pa.s	S	°C	Pa
A.Palma	49047,9	0,0839373	120,048	19,945	-2225,58
Jatropha	49343,8	0,0382195	240,016	19,941	-1765,3
Soja	49007,3	0,0560135	120,032	19,931	-2132,6

Diésel	49007,5	0,0045063	120,044	19,91	-1883,17
Palmusa	49032,3	0,072482	120,048	19,925	-2147,59
Palmvirg- diesel	49010,2	0,0174984	120,024	19,907	-1938,87
PalUsa- Diesel	49041,8	0,0214847	120,02	19,944	-1985,1
Emulsión	49044,4	0,057464	120,032	19,942	-1740,55

3.4.3 ENSAYOS REOLOGICOS VARIACION DE LA TAZA DE CIZALLA

Se realizaron también ensayos con variaciones de taza de cizalla de 0-49000 [1/s] a temperaturas constantes de 20°C y 110°C para los aceites de palma virgen y Jatropha curcas.

• Características de la geometría utilizada y parámetros de trabajo.

Tabla 33.

Parámetros geométricos para ensayos reológicos de variación tasa de cizalla

PARAMETROS GEOMETRICOS			
Parámetros	Cantidad	Unidades	
Diámetro de la geometría	25	mm	
Gap	75	μт	
Loading Gap	26500	μm	
Trim gap offset	25	μm	
Material	Steel		
Environmental system	ETC		
Serial de la geometría	100104		
Tamaño de muestra requerida	0.0368155	ml	

• Parámetros delimitantes para los ensayos de barrido de temperatura.

Tabla 34.

Condiciones de operación para ensayos reológicos de variación de tasa de cizalla

CONDICIONES DE OPERACIONES PARA LOS ENSAYOS						
Parámetros Cantidad Unidades						
Temperatura de operación	20	°C				
fijada						
Velocidad de cizalla inicial	0	1/ <i>s</i>				
Velocidad de cizalla final	49000	1/s				

3.4.3.1 ENSAYOS REOLOGICO DEL ACEITE DE PALMA A 20°C CON UNA VELOCIDAD DE 0-49000 1/s.

Tabla 35.

Datos de aceite de palma virgen a 20°, 0-49000 1/s

Stress	Shear rate	Viscosity	Step time	Temp	Normal stress
Pa	1/s	Pa.s	S	°C	Pa
5,13413	0,0184517	278,247	174,486	20	-111,935
5,18465	0,0215946	240,09	209,306	19,999	-110,262
5,16405	0,0249349	207,101	245,232	20,001	-93,2758
6,42117	0,0292453	219,563	280,27	19,999	-129,889
6,5848	0,0342722	192,132	315,323	19,999	-163,599
5,75574	0,0398028	144,606	350,392	20,001	-163,124
8,11982	0,0463738	175,095	385,43	20	-146,141
7,62633	0,0540271	141,157	420,499	20,001	-116,403
8,14525	0,0631926	128,895	455,568	20	-168,302
6,89787	0,0734629	93,896	490,605	19,999	-170,816
7,77581	0,0857232	90,7084	525,659	20	-170,551
8,10851	0,100027	81,0629	560,712	20	-221,504
8,11862	0,116582	69,6388	595,796	20,001	-204,004
8,41014	0,135999	61,8396	630,834	20	-178,608
9,57981	0,158498	60,4411	665,903	20	-178,355
9,28763	0,184419	50,3614	700,972	20	-191,466
9,59732	0,215507	44,5336	736,025	20	-211,824
10,8717	0,251456	43,235	771,063	19,999	-191,435
11,6347	0,292594	39,764	806,131	20	-222,016
22,0856	0,341405	64,6905	841,216	19,999	-184,057
14,3448	0,398213	36,023	876,238	20	-213,266
15,9663	0,464479	34,3747	911,291	20	-247,742
17,1627	0,541427	31,699	946,36	20	-290,194

20.0421	0.620046	45.0500	001.000	20	204.276
28,9431	0,630846	45,8798	981,398	20	-204,276
37,7821	0,73567	51,3574	1016,45	20	-250,983
40,5422	0,857739	47,2664	1051,5	20	-292,096
43,5077	0,999941	43,5103	1086,56	20,001	-264,293
47,8689	1,16607	41,0514	1121,61	20	-215,468
52,8788	1,3594	38,8985	1156,71	20,001	-175,967
57,0242	1,58505	35,9762	1191,78	19,999	-264,15
58,7048	1,84796	31,7674	1226,83	20	-382,71
61,3502	2,15456	28,4746	1261,9	20	-350,89
66,6957	2,51222	26,5485	1296,94	20	-282,812
67,8183	2,92902	23,154	1332,06	20	-404,423
70,5312	3,41471	20,6551	1367,09	20	-320,908
75,2389	3,98162	18,8965	1402,15	20	-266,182
77,8726	4,64166	16,7769	1437,2	20	-236,371
84,5539	5,41245	15,6221	1472,27	20	-312,231
93,6289	6,31022	14,8377	1507,34	19,999	-312,65
98,5061	7,35708	13,3893	1542,36	19,999	-312,646
101,486	8,57794	11,831	1577,44	19,999	-268,576
108,576	10,0003	10,8572	1612,45	20	-209,675
115,561	11,6608	9,91027	1647,5	20	-279,948
113,665	13,5943	8,36122	1682,57	20	-263,846
116,797	15,8503	7,36878	1717,64	20	-201,491
119,943	18,4797	6,4905	1752,7	20,001	-201,538
118,723	21,5468	5,51003	1787,76	20	-251,758
124,484	25,1198	4,95562	1822,8	20	-156,625
120,887	29,2871	4,12767	1857,84	20	-170,18
125,68	34,1471	3,68054	1892,89	20	-169,097
124,896	39,8138	3,137	1927,97	19,999	-166,786
125,576	46,4192	2,70525	1963,06	-	-166,271
127,269	54,1207	2,35157	1998,16	20	-157,852
126,618	63,0993	2,00664	2033,18	20	-120,902
127,415	73,5686	1,73192	2068,28	20	-101,219
128,563	85,7777	1,49879	2103,35	20	-92,317
127,727	100,008	1,27716	2138,42	20	-53,2337
130,373	116,602	1,11811	2173,47	20,001	-22,7913
134,009	135,944	0,98577	2208,54	20	-10,1826
138,35	158,498	0,872882	2243,61	20	-9,77724
143,462	184,798	0,776319	2278,65	20	-2,00936
149,521	215,462	0,693959	2313,7	20	-1,92085
156,685	251,22	0,623698	2348,77	20	-1,66625
164,983	292,884	0,563302	2383,84	20	-1,5772
174,345	341,487	0,503302	2418,91	20	-2,34614
185,055	398,134	0,310348	2453,93	20	-5,02713
	·				· · · · · · · · · · · · · · · · · · ·
197,3	464,184	0,425047	2488,97	20	-5,58901

211,048	541,212	0,389953	2523,97	20,001	-6,36245
226,798	631,018	0,359416	2559,04	19,999	-9,63183
244,665	735,688	0,332566	2594,1	20	-0,820278
264,753	857,805	0,30864	2629,13	20	-4,61879
287,604	1000,1	0,287574	2664,16	20,001	-2,97426
313,333	1165,92	0,268744	2699,19	20	-3,68573
375,591	1585,07	0,236956	2769,27	20,001	28,4601
412,733	1848,14	0,223324	2804,32	20	23,1259
454,683	2154,47	0,211041	2839,36	20	19,1761
501,528	2512,29	0,19963	2874,41	19,999	21,7924
554,661	2929,09	0,189363	2909,48	20	19,4095
613,948	3414,97	0,179782	2944,54	20,001	12,9549
680,794	3981,49	0,17099	2979,6	19,999	-1,72343
755,818	4642,12	0,162818	3014,67	20	-5,51621
840,056	5412,19	0,155216	3049,76	20	-9,48197
934,669	6310,11	0,148123	3084,78	20	-6,38259
1040,58	7357,47	0,141432	3119,83	20,001	-16,3786
1159,58	8578,06	0,13518	3154,89	20,001	-32,7614
1292,83	10001	0,12927	3189,95	20,001	-42,6394
1442,14	11660,3	0,12368	3225,01	20,001	-63,0494
1609,47	13594,7	0,118389	3260,05	20	-93,1579
1798,21	15850,6	0,113448	3295,18	20,002	-136,06
2010,09	18480,1	0,108771	3330,23	20,001	-194,168
2248,26	21548,1	0,104337	3365,27	20,001	-276,19
2511,14	25122,7	0,099955	3400,34	20,001	-394,118
2806,42	29292,5	0,0958067	3435,39	20,001	-551,025
3125,36	34150,5	0,0915171	3470,44	20,004	-766,889
3471,07	39818,2	0,087173	3505,48	20,003	-1060,82
3836,06	46420,3	0,0826377	3540,55	20,006	-1465,59
3927,95	49010,8	0,0801446	3575,6	20,003	-1644,04

3.4.3.2 ENSAYOS REOLOGICO DEL ACEITE DE JATROPHA A 20°C CON UNA VELOCIDAD DE 0-49000 1/s.

Tabla 36.

Datos de aceite de Jatropha a 20°C, 0-49000 1/s

Stress	Shear rate	Viscosity	Step time	Temp	Normal stress
Pa	1/s	Pa.s	S	°C	Pa
0,0313753	0,0100005	3,13737	34,9909	20	6,38918
0,0305676	0,0116605	2,62147	70,0441	20	5,21842
0,0300562	0,0135949	2,21085	105,129	20	5,20563
0,0297031	0,0158473	1,87433	140,166	20	4,74525

0,0184804	1,5904	175,204	20	5,8161
0,0215497	1,31104	210,257	20	4,37049
0,0251216	1,06737	245,295	20	3,21518
0,0292818	0,866487	280,348	19,999	3,01541
0,0341496	0,696441	315,37	20	3,285
0,0398173	0,542623	350,486	20,001	3,64994
0,046407	0,437038	385,523	20	3,49697
0,0541093	0,527322	420,561	20	1,46433
0,063089	0,555538	455,63	19,999	2,87285
0,0735786	0,468644	490,699	20	3,21139
0,0857492	0,314032	525,752	20	2,91247
0,0999923	0,0966778	560,759	20	2,25816
0,116603	0,0429424	595,859	20	0,739567
0,135939	0,067045	630,927	20	-0,506377
0,158471	0,0861307	665,981	20	0,939224
0,184784	0,20323	701,05	20	1,10127
0,215415	0,234652	736,087	20	0,174916
0,251202	0,206355	771,156	20	-0,909457
0,292856	0,156481	806,209	20,001	1,28094
0,341438	0,173824	841,278	20	3,40705
0,39814	0,0988041		20	1,78173
0,46411	0,0723625	•	20	-0,784654
,	0,116029		20	-0,0527838
0,630962	0,108851	981,523	20,001	-0,358148
0,735634	0,0627947	1016,56	20	-2,45709
0,857641	0,0573919	1051,63	20	-3,81493
1,00001	0,0572348	1086,68	20	-2,59435
1,16592	0,0713098	1121,75	20	-2,29995
				-1,71127
			20	-0,905769
			20	0,367361
2,15438	0,0665424	1262,07	20	-4,63106
2,51183	0,0657937	1297,14	20	-4,28649
2,92862	0,0768216	1332,16	20	-1,83538
3,41448	0,0700181	-	19,999	-1,92187
3,98098		1402,29	20	-3,08952
				-2,93027
	0,069469	-	20	-4,61112
				-4,44278
7,3563	0,0688945	1542,52	20	-5,49271
				-3,81372
· ·				-3,9484
· ·	-		20	-4,6901
,	,		20	-,
	0,0215497 0,0251216 0,0398173 0,0341496 0,0398173 0,046407 0,0541093 0,063089 0,0735786 0,0857492 0,0999923 0,116603 0,135939 0,158471 0,184784 0,215415 0,251202 0,292856 0,341438 0,39814 0,46411 0,541168 0,630962 0,735634 0,857641 1,00001 1,16592 1,35928 1,58483 1,84781 2,15438 2,92862 3,41448 3,98098 4,64153 5,41163 6,30947	0,0215497 1,31104 0,0251216 1,06737 0,0292818 0,866487 0,0341496 0,696441 0,0398173 0,542623 0,046407 0,437038 0,0541093 0,527322 0,063089 0,555538 0,0735786 0,468644 0,0857492 0,314032 0,0999923 0,0966778 0,116603 0,0429424 0,135939 0,067045 0,158471 0,0861307 0,184784 0,20323 0,215415 0,234652 0,251202 0,206355 0,292856 0,156481 0,341438 0,173824 0,39814 0,0988041 0,46411 0,0723625 0,541168 0,116029 0,630962 0,108851 0,735634 0,0627947 0,857641 0,0573919 1,00001 0,0572348 1,16592 0,0713098 1,35928 0,0687937 2,92862 <td< td=""><td>0,0215497 1,31104 210,257 0,0251216 1,06737 245,295 0,0292818 0,866487 280,348 0,0341496 0,696441 315,37 0,0398173 0,542623 350,486 0,046407 0,437038 385,523 0,0541093 0,527322 420,561 0,063089 0,555538 455,63 0,0735786 0,468644 490,699 0,0857492 0,314032 525,752 0,0999923 0,0966778 560,759 0,116603 0,0429424 595,859 0,135939 0,067045 630,927 0,158471 0,0861307 665,981 0,184784 0,20323 701,05 0,251202 0,206355 771,156 0,292856 0,156481 806,209 0,341438 0,173824 841,278 0,39814 0,0988041 876,347 0,46411 0,0723625 911,4 0,541168 0,116029 946,454 0,6</td><td>0,0215497 1,31104 210,257 20 0,0251216 1,06737 245,295 20 0,0292818 0,866487 280,348 19,999 0,0341496 0,696441 315,37 20 0,0398173 0,542623 350,486 20,001 0,046407 0,437038 385,523 20 0,0541093 0,527322 420,561 20 0,063089 0,555538 455,63 19,999 0,0735786 0,468644 490,699 20 0,0857492 0,314032 525,752 20 0,0999923 0,0966778 560,759 20 0,116603 0,0429424 595,859 20 0,135939 0,067045 630,927 20 0,158471 0,0861307 665,981 20 0,215415 0,234652 736,087 20 0,251202 0,206355 771,156 20 0,292856 0,156481 806,209 20,001 0,341438 0</td></td<>	0,0215497 1,31104 210,257 0,0251216 1,06737 245,295 0,0292818 0,866487 280,348 0,0341496 0,696441 315,37 0,0398173 0,542623 350,486 0,046407 0,437038 385,523 0,0541093 0,527322 420,561 0,063089 0,555538 455,63 0,0735786 0,468644 490,699 0,0857492 0,314032 525,752 0,0999923 0,0966778 560,759 0,116603 0,0429424 595,859 0,135939 0,067045 630,927 0,158471 0,0861307 665,981 0,184784 0,20323 701,05 0,251202 0,206355 771,156 0,292856 0,156481 806,209 0,341438 0,173824 841,278 0,39814 0,0988041 876,347 0,46411 0,0723625 911,4 0,541168 0,116029 946,454 0,6	0,0215497 1,31104 210,257 20 0,0251216 1,06737 245,295 20 0,0292818 0,866487 280,348 19,999 0,0341496 0,696441 315,37 20 0,0398173 0,542623 350,486 20,001 0,046407 0,437038 385,523 20 0,0541093 0,527322 420,561 20 0,063089 0,555538 455,63 19,999 0,0735786 0,468644 490,699 20 0,0857492 0,314032 525,752 20 0,0999923 0,0966778 560,759 20 0,116603 0,0429424 595,859 20 0,135939 0,067045 630,927 20 0,158471 0,0861307 665,981 20 0,215415 0,234652 736,087 20 0,251202 0,206355 771,156 20 0,292856 0,156481 806,209 20,001 0,341438 0

1,06923	15,8486	0,0674649	1717,88	20	-4,9803
1,24161	18,4782	0,0671931	1752,93	19,999	-4,89339
1,44227	21,5442	0,0669448	1788	20	-7,65432
1,67807	25,1184	0,0668061	1823,05	20	-6,35849
1,95387	29,2859	0,0667173	1858,12	20	-7,37809
2,27698	34,1451	0,0666855	1893,16	20	-7,56564
2,65229	39,8105	0,0666228	1928,24	20,001	-6,85881
3,09155	46,4143	0,0666076	1963,33	20	-0,720537
3,60161	54,1156	0,0665539	1998,38	20	2,97122
4,19937	63,0933	0,0665581	2033,45	19,999	3,9976
4,89726	73,5615	0,0665737	2068,5	20	1,86749
5,71304	85,7663	0,0666117	2103,59	20	2,63961
6,66087	99,9951	0,066612	2138,61	19,999	2,51245
7,76757	116,587	0,0666246	2173,68	20	3,52592
9,06038	135,931	0,0666542	2208,73	20	2,57488
10,5645	158,484	0,0666601	2243,78	20,001	0,142882
12,3221	184,777	0,0666865	2278,84	20	-0,444288
14,3744	215,437	0,0667221	2313,91	19,999	1,32474
16,7606	251,179	0,0667277	2348,97	20	0,978521
19,5437	292,856	0,0667348	2384,03	20,001	1,53179
22,7855	341,446	0,0667323	2419,11	20	-0,337587
30,9716	464,141	0,0667289	2489,23	20	-1,92541
36,1061	541,153	0,0667206	2524,3	20	-3,39083
42,0801	630,947	0,0666935	2559,37	20,001	-5,37351
49,0498	735,624	0,0666778	2594,47	20	-7,34997
57,1526	857,692	0,0666353	2629,52	20	-6,49138
66,5918	1000	0,0665916	2664,59	20	-11,9556
77,574	1165,94	0,0665336	2699,65	20,001	-17,1499
90,3489	1359,36	0,0664642	2734,72	20	-20,0577
105,241	1584,88	0,066403	2769,78	20	-27,5611
122,525	1847,79	0,0663091	2804,84	20	-36,6239
142,592	2154,4	0,0661867	2839,92	20	-49,6915
165,894	2511,82	0,0660455	2874,99	20,001	-63,8675
192,943	2928,58	0,0658826	2910,06	19,999	-90,4088
224,224	3414,45	0,0656693	2945,11	20	-119,768
260,345	3981,09	0,0653954	2980,15	20,001	-160,165
302,051	4641,52	0,0650759	3015,22	20	-212,466
349,854	5411,57	0,0646494	3050,27	20,002	-286,462
404,405	6309,38	0,0640959	3085,36	20	-386,253
466,205	7356,31	0,0633749	3120,43	20,001	-518,152
535,994	8576,77	0,0624937	3155,48	20	-695,009
614,297	9999,82	0,0614308	3190,53	20,001	-930,892

3.4.3.3 ENSAYOS REOLOGICO DEL ACEITE DE PALMA A 110°C CON UNA VELOCIDAD DE 0-49000 1/s.

Tabla 37. Condiciones de operación para ensayos reológicos de variación taza de cizalla a $110^{\circ}\mathrm{C}$

CONDICIONES DE OPERACIONES PARA LOS ENSAYOS					
Parámetros	Cantidad	Unidades			
Temperatura de operación	110	°C			
fijada					
Velocidad de cizalla inicial	0	1/ <i>s</i>			
Velocidad de cizalla final	49000	1/ <i>s</i>			

Tabla 38.

Datos de aceite de palma virgen a 110°, 0-49000 1/s

Stress	Shear rate	Viscosity	Step time	Temp	Normal stress
Pa	1/s	Pa.s	S	°C	Pa
0,0263561	0,018477	1,42643	175,11	109,999	-11,1011
0,0262978	0,0215413	1,2208	209,852	110,001	-9,50745
0,0268984	0,0251151	1,07101	245,217	110,002	-10,8458
0,0282016	0,0292777	0,963245	280,27	110,001	-10,5937
0,0301901	0,0341466	0,884133	315,323	109,999	-9,38585
0,0328622	0,0398109	0,825458	350,377	109,999	-10,0883
0,0358143	0,0464033	0,771806	385,43	110	-9,70873
0,0386429	0,0541054	0,714215	420,514	110	-9,83097
0,037067	0,0631043	0,587392	455,583	110	-9,76647
0,0350229	0,0735773	0,476002	490,621	109,999	-9,69027
0,0316667	0,0858166	0,369004	525,69	110,001	-8,9637
0,031041	0,0999971	0,310419	560,759	110,003	-7,76277
0,0310666	0,116624	0,266383	595,859	109,998	-11,2604
0,020305	0,13602	0,14928	630,881	110,002	-10,9329
0,00316122	0,158707	0,0199186	665,965	110,001	-11,109
-0,0119881	0,1849	-0,0648356	701,018	110,003	-7,83643
-0,0236989	0,215403	-0,110021	736,072	109,998	-9,36553
-0,0195653	0,251264	-0,0778675	771,125	110,002	-7,50637
0,00317198	0,292714	0,0108365	806,194	110,001	-8,39509
0,0284039	0,341565	0,0831583	841,263	110,003	-6,87211
0,0466906	0,397968	0,117323	876,332	109,994	-5,74292

0,0664366 0,463984 0,143187 911,385 110,003 -1,92342 0,112936 0,541353 0,208119 981,491 110,001 4,5291 0,0600226 0,736099 0,0815414 1016,56 109,993 6,66985 0,0243855 0,857707 0,028431 1051,6 110,008 5,9728 0,149172 1,00035 0,149119 1086,68 109,999 5,70461 0,160766 1,16632 0,13784 1121,74 109,993 4,7195 0,00582957 1,36031 0,00428548 1156,8 110,001 5,96235 0,098288 1,58533 -0,0629702 1191,84 110,004 2,76575 0,0334678 1,84795 0,0181107 1226,9 110,001 3,42365 0,0601804 2,15561 0,027918 1261,96 109,997 3,26813 -0,0765554 2,51317 -0,034617 1297 110,006 4,0146 0,0247251 2,92846 0,00837475 1332,09 109,999 3,						
0,131332 0,631043 0,208119 981,491 110,001 4,5291 0,0600226 0,736099 0,0815414 1016,56 109,993 6,66985 0,0243855 0,857707 0,028431 1051,6 110,008 5,9728 0,149172 1,00035 0,149119 1086,68 109,999 5,70461 0,160766 1,16632 0,13784 1121,74 109,993 4,7195 0,00582957 1,36031 0,00428548 1156,8 110,001 5,96235 0,0998288 1,58533 -0,0629702 1191,84 110,004 2,76575 0,0334678 1,84795 0,0181107 1226,9 110,001 3,42365 0,0601804 2,15561 0,027918 1261,96 109,997 3,26813 -0,0765554 2,51317 -0,0304617 12297 110,000 4,00146 0,0245251 2,92846 0,00837475 1332,09 109,999 3,29321 -0,082315 3,41662 -0,0240973 1367,16 109,994 <t< td=""><td>0,0664366</td><td>0,463984</td><td>0,143187</td><td>911,385</td><td>110,003</td><td>-1,92342</td></t<>	0,0664366	0,463984	0,143187	911,385	110,003	-1,92342
0.0600226 0,736099 0,0815414 1016,56 109,993 6,66985 0,0243855 0,857707 0,028431 1051,6 110,008 5,9728 0,149172 1,00035 0,149119 1086,68 109,999 5,70461 0,160766 1,16632 0,13784 1121,74 109,993 4,7195 0,00582957 1,36031 0,00428548 1156,8 110,001 5,96235 0,098288 1,58533 -0,0629702 1191,84 110,004 2,76575 0,0334678 1,84795 0,0181107 1226,9 110,001 3,42365 0,0601804 2,15561 0,027918 1261,96 109,997 3,26813 -0,0765554 2,51317 -0,0304617 1297 110,006 4,00146 0,0245251 2,92846 0,0837475 1332,09 109,999 3,29321 -0,0731838 3,98222 -0,0183776 1402,21 109,994 4,29875 0,071571 5,41329 0,0224949 1472,35 110,004 <td< td=""><td>0,112936</td><td>0,541353</td><td>0,208618</td><td>946,438</td><td>110</td><td>3,36239</td></td<>	0,112936	0,541353	0,208618	946,438	110	3,36239
0.0243855 0,857707 0,028431 1051,6 110,008 5,9728 0,149172 1,00035 0,149119 1086,68 109,999 5,70461 0,160766 1,16632 0,13784 1121,74 109,993 4,7195 0,00582957 1,36031 0,00428548 115,68 110,001 5,96235 0,0998288 1,58533 -0,0629702 1191,84 110,001 3,42365 0,0601804 2,15561 0,027918 1261,96 109,997 3,26813 -0,0765554 2,51317 -0,0304617 1297 110,006 4,00146 0,0823315 3,41662 -0,0240973 1367,16 109,999 3,29321 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,32911 0,034623 4,64313 0,00745682 1437,28 110,000 2,45896 0,121771 5,41329 0,0224949 1472,35 110,004 2,11647 0,0104397 6,3165 0,00165404 1507,43 110,002 <	0,131332	0,631043	0,208119	981,491	110,001	4,5291
0,149172 1,00035 0,149119 1086,68 109,999 5,70461 0,160766 1,16632 0,13784 1121,74 109,993 4,7195 0,00582957 1,36031 0,00428548 1156,8 110,001 5,96235 -0,0998288 1,58533 -0,0629702 1191,84 110,004 2,76575 0,0334678 1,84795 0,0181107 1226,9 110,001 3,42365 0,0601804 2,15561 0,027918 1261,96 109,997 3,26813 -0,0765554 2,51317 -0,0304617 1297 110,006 4,00146 0,0245251 2,92846 0,00837475 1332,09 109,999 3,29321 -0,0823315 3,41662 -0,0240973 1367,16 109,996 4,29875 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,32911 0,0340234 4,64313 0,00745682 1437,28 110,002 2,45896 0,121771 5,41329 0,0224949 1472,35 110,004	0,0600226	0,736099	0,0815414	1016,56	109,993	6,66985
0,160766 1,16632 0,13784 1121,74 109,993 4,7195 0,00582957 1,36031 0,00428548 1156,8 110,001 5,96235 -0,0998288 1,58533 -0,0629702 1191,84 110,004 2,76575 0,0334678 1,84795 0,0181107 1226,9 110,001 3,42365 0,0601804 2,15561 0,027918 1261,96 109,997 3,26813 -0,0765554 2,51317 -0,0304617 1297 110,006 4,00146 0,0245251 2,92846 0,00837475 1332,09 109,999 3,29321 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,32911 0,034623 4,64313 0,00745682 1437,28 110,002 2,45896 0,121771 5,41329 0,0224949 1472,35 110,004 2,11647 0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,0361347 13,5959 0,0036622 1577,54 109,999	0,0243855	0,857707	0,028431	1051,6	110,008	5,9728
0,00582957 1,36031 0,00428548 1156,8 110,001 5,96235 -0,0998288 1,58533 -0,0629702 1191,84 110,004 2,76575 0,0334678 1,84795 0,0181107 1226,9 110,001 3,42365 0,0601804 2,15561 0,027918 1261,96 109,997 3,26813 -0,0765554 2,51317 -0,0304617 1297 110,006 4,00146 0,0245251 2,92846 0,00837475 1332,09 109,999 3,29321 -0,0823315 3,41662 -0,0240973 1367,16 109,998 4,29875 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,32911 0,034623 4,64313 0,00745682 1437,28 110,002 2,45896 0,121771 5,41329 0,0224949 1472,35 110,004 2,11647 0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,0493282 7,35886 0,0067032 1542,17 110,002 <td>0,149172</td> <td>1,00035</td> <td>0,149119</td> <td>1086,68</td> <td>109,999</td> <td>5,70461</td>	0,149172	1,00035	0,149119	1086,68	109,999	5,70461
-0,0998288 1,58533 -0,0629702 1191,84 110,004 2,76575 0,0334678 1,84795 0,0181107 1226,9 110,001 3,42365 0,0601804 2,15561 0,027918 1261,96 109,997 3,26813 -0,0765554 2,51317 -0,0304617 1297 110,006 4,00146 0,0245251 2,92846 0,00837475 1332,09 109,999 3,29321 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,29875 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,32911 0,034623 4,64313 0,00745682 1437,28 110,002 2,45896 0,121771 5,41329 0,0024949 1472,35 110,004 2,11647 0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,00493282 7,35886 0,0067032 1542,17 110,002 3,48719 -0,0340272 8,57925 0,00396622 1577,54 109,999 </td <td>0,160766</td> <td>1,16632</td> <td>0,13784</td> <td>1121,74</td> <td>109,993</td> <td>4,7195</td>	0,160766	1,16632	0,13784	1121,74	109,993	4,7195
0,0334678 1,84795 0,0181107 1226,9 110,001 3,42365 0,0601804 2,15561 0,027918 1261,96 109,997 3,26813 -0,0765554 2,51317 -0,0304617 1297 110,006 4,00146 0,0245251 2,92846 0,00837475 1332,09 109,999 3,29321 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,29875 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,32911 0,034623 4,64313 0,00745682 1437,28 110,002 2,45896 0,121771 5,41329 0,0224949 1472,35 110,004 2,11647 0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,00493282 7,35886 0,00067032 1542,17 110,002 3,48719 -0,0340272 8,57925 0,00396622 1577,54 109,999 4,64415 0,0873049 10,0048 0,00872633 1612,61 109,999 </td <td>0,00582957</td> <td>1,36031</td> <td>0,00428548</td> <td>1156,8</td> <td>110,001</td> <td>5,96235</td>	0,00582957	1,36031	0,00428548	1156,8	110,001	5,96235
0,0601804 2,15561 0,027918 1261,96 109,997 3,26813 -0,0765554 2,51317 -0,0304617 1297 110,006 4,00146 0,0245251 2,92846 0,00837475 1332,09 109,999 3,29321 -0,0823315 3,41662 -0,0240973 1367,16 109,996 4,29875 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,32911 0,034623 4,64313 0,00745682 1437,28 110,002 2,45896 0,121771 5,41329 0,0224949 1472,35 110,004 2,11647 0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,00493282 7,35886 0,00067032 1542,17 110,002 3,48719 -0,0340272 8,57925 0,00396622 1577,54 109,999 4,64415 0,0873049 10,0048 0,0087063 1612,61 109,994 1,6599 0,031471 15,8544 0,00198501 1717,8 109,999 <td>-0,0998288</td> <td>1,58533</td> <td>-0,0629702</td> <td>1191,84</td> <td>110,004</td> <td>2,76575</td>	-0,0998288	1,58533	-0,0629702	1191,84	110,004	2,76575
-0,0765554 2,51317 -0,0304617 1297 110,006 4,00146 0,0245251 2,92846 0,00837475 1332,09 109,999 3,29321 -0,0823315 3,41662 -0,0240973 1367,16 109,996 4,29875 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,32911 0,034623 4,64313 0,00745682 1437,28 110,002 2,45896 0,121771 5,41329 0,0224949 1472,35 110,004 2,11647 0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,00493282 7,35886 0,00067032 1542,17 110,002 3,48719 -0,0340272 8,57925 0,0036622 1577,54 109,999 4,64415 0,0873049 10,0048 0,00872633 1612,61 109,994 1,6599 0,0351611 11,6626 0,00301486 1647,66 110,005 1,19604 0,031471 15,8544 0,00188501 1717,8 109,993 </td <td>0,0334678</td> <td>1,84795</td> <td>0,0181107</td> <td>1226,9</td> <td>110,001</td> <td>3,42365</td>	0,0334678	1,84795	0,0181107	1226,9	110,001	3,42365
0,0245251 2,92846 0,00837475 1332,09 109,999 3,29321 -0,0823315 3,41662 -0,0240973 1367,16 109,996 4,29875 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,32911 0,034623 4,64313 0,00745682 1437,28 110,002 2,45896 0,121771 5,41329 0,0224949 1472,35 110,004 2,11647 0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,00493282 7,35886 0,00067032 1542,17 110,002 3,48719 -0,0340272 8,57925 0,00396622 1577,54 109,999 4,64415 0,0873049 10,0048 0,00872633 1612,61 109,994 1,6599 0,0351611 11,6626 0,00301486 1647,66 110,005 1,19604 0,031471 15,8544 0,00189501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001	0,0601804	2,15561	0,027918	1261,96	109,997	3,26813
-0,0823315 3,41662 -0,0240973 1367,16 109,996 4,29875 -0,0731838 3,98222 -0,0183776 1402,21 109,998 4,32911 0,034623 4,64313 0,00745682 1437,28 110,002 2,45896 0,121771 5,41329 0,0224949 1472,35 110,004 2,11647 0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,00493282 7,35886 0,00067032 1542,17 110,002 3,48719 -0,0340272 8,57925 0,00396622 1577,54 109,999 4,64415 0,0873049 10,0048 0,00872633 1612,61 109,994 1,6599 0,0351611 11,6626 0,00301486 1647,66 110,005 1,19604 0,031471 15,8544 0,00198501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,0715726 29,2988 0,00244285 1823,02 109,99	-0,0765554	2,51317	-0,0304617	1297	110,006	4,00146
-0,0731838 3,98222 -0,0183776 1402,21 109,998 4,32911 0,034623 4,64313 0,00745682 1437,28 110,002 2,45896 0,121771 5,41329 0,0224949 1472,35 110,004 2,11647 0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,00493282 7,35886 0,00067032 1542,17 110,002 3,48719 -0,0340272 8,57925 0,00396622 1577,54 109,999 4,64415 0,0873049 10,0048 0,00872633 1612,61 109,994 1,6599 0,0351611 11,6626 0,00301486 1647,66 110,005 1,19604 0,031471 15,8544 0,00198501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,683738 0,102864 39,8259 0,0024823 1893,16 109,997	0,0245251	2,92846	0,00837475	1332,09	109,999	3,29321
0,034623 4,64313 0,00745682 1437,28 110,002 2,45896 0,121771 5,41329 0,0224949 1472,35 110,004 2,11647 0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,00493282 7,35886 0,00067032 1542,17 110,002 3,48719 -0,0340272 8,57925 0,00396622 1577,54 109,999 4,64415 0,0873049 10,0048 0,00872633 1612,61 109,994 1,6599 0,0351611 11,6626 0,00301486 1647,66 110,005 1,19604 0,031471 15,8544 0,00198501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,0715726 29,2988 0,00244285 1858,09 110,004 -1,03164 0,0822487 34,1531 0,00240823 1893,16 109,997 -0,683738 0,102864 39,8259 0,0024823 1893,16 109,999	-0,0823315	3,41662	-0,0240973	1367,16	109,996	4,29875
0,121771 5,41329 0,0224949 1472,35 110,004 2,11647 0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,00493282 7,35886 0,00067032 1542,17 110,002 3,48719 -0,0340272 8,57925 0,00396622 1577,54 109,999 4,64415 0,0873049 10,0048 0,00872633 1612,61 109,994 1,6599 0,0351611 11,6626 0,00301486 1647,66 110,005 1,19604 0,031471 15,8544 0,00198501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,022414 21,5527 0,00103996 1787,97 110,004 -1,03164 0,0456261 25,1292 0,00181566 1823,02 109,997 -0,683738 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0824487 34,1531 0,00240823 1893,16 109	-0,0731838	3,98222	-0,0183776	1402,21	109,998	4,32911
0,0104397 6,31165 0,00165404 1507,43 110,003 3,73494 0,00493282 7,35886 0,00067032 1542,17 110,002 3,48719 -0,0340272 8,57925 0,00396622 1577,54 109,999 4,64415 0,0873049 10,0048 0,00872633 1612,61 109,994 1,6599 0,0351611 11,6626 0,00301486 1647,66 110,005 1,19604 0,031471 15,8544 0,00198501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,022414 21,5527 0,00103996 1787,97 110,004 -1,03164 0,0456261 25,1292 0,00181566 1823,02 109,997 -0,683738 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 11	0,034623	4,64313	0,00745682	1437,28	110,002	2,45896
0,00493282 7,35886 0,00067032 1542,17 110,002 3,48719 -0,0340272 8,57925 0,00396622 1577,54 109,999 4,64415 0,0873049 10,0048 0,00872633 1612,61 109,994 1,6599 0,0351611 11,6626 0,00301486 1647,66 110,005 1,19604 0,0361347 13,5959 0,00265776 1682,73 110,001 1,2401 0,031471 15,8544 0,00198501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,022414 21,5527 0,00103996 1787,97 110,004 -1,03164 0,0456261 25,1292 0,00181566 1823,02 109,997 -0,683738 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 110	0,121771	5,41329	0,0224949	1472,35	110,004	2,11647
-0,0340272 8,57925 0,00396622 1577,54 109,999 4,64415 0,0873049 10,0048 0,00872633 1612,61 109,994 1,6599 0,0351611 11,6626 0,00301486 1647,66 110,005 1,19604 0,0361347 13,5959 0,00265776 1682,73 110,001 1,2401 0,031471 15,8544 0,00198501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,022414 21,5527 0,00103996 1787,97 110,004 -1,03164 0,0456261 25,1292 0,00181566 1823,02 109,997 -0,683738 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 110,006 1,94262 0,0995273 46,4263 0,00214377 1963,26 110,	0,0104397	6,31165	0,00165404	1507,43	110,003	3,73494
0,0873049 10,0048 0,00872633 1612,61 109,994 1,6599 0,0351611 11,6626 0,00301486 1647,66 110,005 1,19604 0,0361347 13,5959 0,00265776 1682,73 110,001 1,2401 0,031471 15,8544 0,00198501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,022414 21,5527 0,00103996 1787,97 110,004 -1,03164 0,0456261 25,1292 0,00181566 1823,02 109,997 -0,683738 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 110,006 1,94262 0,0995273 46,4263 0,00214377 1963,26 110,001 1,36782 0,156047 63,1163 0,00247237 2033,4 110 <td>0,00493282</td> <td>7,35886</td> <td>0,00067032</td> <td>1542,17</td> <td>110,002</td> <td>3,48719</td>	0,00493282	7,35886	0,00067032	1542,17	110,002	3,48719
0,0351611 11,6626 0,00301486 1647,66 110,005 1,19604 0,0361347 13,5959 0,00265776 1682,73 110,001 1,2401 0,031471 15,8544 0,00198501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,022414 21,5527 0,00103996 1787,97 110,004 -1,03164 0,0456261 25,1292 0,00181566 1823,02 109,997 -0,683738 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 110,006 1,94262 0,0995273 46,4263 0,00214377 1963,26 110,001 1,36782 0,156047 63,1163 0,00247237 2033,4 110 7,46433 0,184251 73,5818 0,00236917 2103,49 110,002 <td>-0,0340272</td> <td>8,57925</td> <td>0,00396622</td> <td>1577,54</td> <td>109,999</td> <td>4,64415</td>	-0,0340272	8,57925	0,00396622	1577,54	109,999	4,64415
0,0361347 13,5959 0,00265776 1682,73 110,001 1,2401 0,031471 15,8544 0,00198501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,022414 21,5527 0,00103996 1787,97 110,004 -1,03164 0,0456261 25,1292 0,00181566 1823,02 109,997 -0,683738 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 110,006 1,94262 0,0995273 46,4263 0,00214377 1963,26 110,001 1,36782 0,156047 63,1163 0,00244237 2033,4 110 7,46433 0,184251 73,5818 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991	0,0873049	10,0048	0,00872633	1612,61	109,994	1,6599
0,031471 15,8544 0,00198501 1717,8 109,993 0,452083 0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,022414 21,5527 0,00103996 1787,97 110,004 -1,03164 0,0456261 25,1292 0,00181566 1823,02 109,997 -0,683738 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 110,006 1,94262 0,0995273 46,4263 0,00214377 1963,26 110,001 1,36782 0,137735 54,1325 0,00254441 1998,35 109,997 -0,174905 0,184251 73,5818 0,00247237 2033,4 110 7,46433 0,184251 73,5818 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00247755 2173,65 110,001 <td>0,0351611</td> <td>11,6626</td> <td>0,00301486</td> <td>1647,66</td> <td>110,005</td> <td>1,19604</td>	0,0351611	11,6626	0,00301486	1647,66	110,005	1,19604
0,0685683 18,4845 0,0037095 1752,9 110,001 -1,41233 0,022414 21,5527 0,00103996 1787,97 110,004 -1,03164 0,0456261 25,1292 0,00181566 1823,02 109,997 -0,683738 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 110,006 1,94262 0,0995273 46,4263 0,00214377 1963,26 110,001 1,36782 0,137735 54,1325 0,00254441 1998,35 109,997 -0,174905 0,156047 63,1163 0,00247237 2033,4 110 7,46433 0,184251 73,5818 0,00250403 2068,44 110 0,705178 0,203249 85,7891 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991	0,0361347	13,5959	0,00265776	1682,73	110,001	1,2401
0,022414 21,5527 0,00103996 1787,97 110,004 -1,03164 0,0456261 25,1292 0,00181566 1823,02 109,997 -0,683738 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 110,006 1,94262 0,0995273 46,4263 0,00214377 1963,26 110,001 1,36782 0,137735 54,1325 0,00254441 1998,35 109,997 -0,174905 0,156047 63,1163 0,00247237 2033,4 110 7,46433 0,184251 73,5818 0,00250403 2068,44 110 0,705178 0,203249 85,7891 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991 0,309539 0,324781 135,978 0,00238849 2208,68 110	0,031471	15,8544	0,00198501	1717,8	109,993	0,452083
0,0456261 25,1292 0,00181566 1823,02 109,997 -0,683738 0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 110,006 1,94262 0,0995273 46,4263 0,00214377 1963,26 110,001 1,36782 0,137735 54,1325 0,00254441 1998,35 109,997 -0,174905 0,156047 63,1163 0,00247237 2033,4 110 7,46433 0,184251 73,5818 0,00250403 2068,44 110 0,705178 0,203249 85,7891 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991 0,309539 0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238524 2278,81 109,997	0,0685683	18,4845	0,0037095	1752,9	110,001	-1,41233
0,0715726 29,2988 0,00244285 1858,09 110,004 -0,414025 0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 110,006 1,94262 0,0995273 46,4263 0,00214377 1963,26 110,001 1,36782 0,137735 54,1325 0,00254441 1998,35 109,997 -0,174905 0,156047 63,1163 0,00247237 2033,4 110 7,46433 0,184251 73,5818 0,00250403 2068,44 110 0,705178 0,203249 85,7891 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991 0,309539 0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003	0,022414	21,5527	0,00103996	1787,97	110,004	-1,03164
0,0822487 34,1531 0,00240823 1893,16 109,998 2,11387 0,102864 39,8259 0,00258285 1928,24 110,006 1,94262 0,0995273 46,4263 0,00214377 1963,26 110,001 1,36782 0,137735 54,1325 0,00254441 1998,35 109,997 -0,174905 0,156047 63,1163 0,00247237 2033,4 110 7,46433 0,184251 73,5818 0,00250403 2068,44 110 0,705178 0,203249 85,7891 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991 0,309539 0,284288 116,629 0,00243755 2173,65 110,001 1,30979 0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003	0,0456261	25,1292	0,00181566	1823,02	109,997	-0,683738
0,102864 39,8259 0,00258285 1928,24 110,006 1,94262 0,0995273 46,4263 0,00214377 1963,26 110,001 1,36782 0,137735 54,1325 0,00254441 1998,35 109,997 -0,174905 0,156047 63,1163 0,00247237 2033,4 110 7,46433 0,184251 73,5818 0,00250403 2068,44 110 0,705178 0,203249 85,7891 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991 0,309539 0,284288 116,629 0,00243755 2173,65 110,001 1,30979 0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994	0,0715726	29,2988	0,00244285	1858,09	110,004	-0,414025
0,0995273 46,4263 0,00214377 1963,26 110,001 1,36782 0,137735 54,1325 0,002544441 1998,35 109,997 -0,174905 0,156047 63,1163 0,00247237 2033,4 110 7,46433 0,184251 73,5818 0,00250403 2068,44 110 0,705178 0,203249 85,7891 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991 0,309539 0,284288 116,629 0,00243755 2173,65 110,001 1,30979 0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001	0,0822487	34,1531	0,00240823	1893,16	109,998	2,11387
0,137735 54,1325 0,00254441 1998,35 109,997 -0,174905 0,156047 63,1163 0,00247237 2033,4 110 7,46433 0,184251 73,5818 0,00250403 2068,44 110 0,705178 0,203249 85,7891 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991 0,309539 0,284288 116,629 0,00243755 2173,65 110,001 1,30979 0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238121 2243,75 110,006 -2,22059 0,440886 184,839 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001	0,102864	39,8259	0,00258285	1928,24	110,006	1,94262
0,156047 63,1163 0,00247237 2033,4 110 7,46433 0,184251 73,5818 0,00250403 2068,44 110 0,705178 0,203249 85,7891 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991 0,309539 0,284288 116,629 0,00243755 2173,65 110,001 1,30979 0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238121 2243,75 110,006 -2,22059 0,440886 184,839 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001 -4,68612	0,0995273	46,4263	0,00214377	1963,26	110,001	1,36782
0,184251 73,5818 0,00250403 2068,44 110 0,705178 0,203249 85,7891 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991 0,309539 0,284288 116,629 0,00243755 2173,65 110,001 1,30979 0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238121 2243,75 110,006 -2,22059 0,440886 184,839 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001 -4,68612	0,137735	54,1325	0,00254441	1998,35	109,997	-0,174905
0,203249 85,7891 0,00236917 2103,49 110,002 1,78409 0,244935 100,028 0,00244866 2138,56 109,991 0,309539 0,284288 116,629 0,00243755 2173,65 110,001 1,30979 0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238121 2243,75 110,006 -2,22059 0,440886 184,839 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001 -4,68612	0,156047	63,1163	0,00247237	2033,4	110	7,46433
0,244935 100,028 0,00244866 2138,56 109,991 0,309539 0,284288 116,629 0,00243755 2173,65 110,001 1,30979 0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238121 2243,75 110,006 -2,22059 0,440886 184,839 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001 -4,68612	0,184251	73,5818	0,00250403	2068,44	110	0,705178
0,284288 116,629 0,00243755 2173,65 110,001 1,30979 0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238121 2243,75 110,006 -2,22059 0,440886 184,839 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001 -4,68612	0,203249	85,7891	0,00236917	2103,49	110,002	1,78409
0,324781 135,978 0,00238849 2208,68 110 0,681592 0,377498 158,532 0,00238121 2243,75 110,006 -2,22059 0,440886 184,839 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001 -4,68612	0,244935	100,028	0,00244866	2138,56	109,991	0,309539
0,377498 158,532 0,00238121 2243,75 110,006 -2,22059 0,440886 184,839 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001 -4,68612	0,284288	116,629	0,00243755	2173,65	110,001	1,30979
0,440886 184,839 0,00238524 2278,81 109,997 -4,78291 0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001 -4,68612	0,324781	135,978	0,00238849	2208,68	110	0,681592
0,510838 215,515 0,00237031 2313,84 110,003 -2,69584 0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001 -4,68612	0,377498	158,532	0,00238121	2243,75	110,006	-2,22059
0,593642 251,258 0,00236268 2348,91 109,994 -2,83932 0,690449 292,951 0,00235688 2383,95 110,001 -4,68612	0,440886	184,839	0,00238524	2278,81	109,997	-4,78291
0,690449 292,951 0,00235688 2383,95 110,001 -4,68612	0,510838	215,515	0,00237031	2313,84	110,003	-2,69584
	0,593642	251,258	0,00236268	2348,91	109,994	-2,83932
0,806891 341,556 0,0023624 2419.03 110.006 -4.69082	0,690449	292,951	0,00235688	2383,95	110,001	-4,68612
, , , , , , , , , , , , , , , , , , , ,	0,806891	341,556	0,0023624	2419,03	110,006	-4,69082

0,944269 398,228 0,00237118 2454,12 109,999 -6,53012 1,09864 464,293 0,00236626 2489,17 109,999 -8,37192 1,27964 541,332 0,00236388 2524,23 110,004 -4,43344 1,50039 631,135 0,0023773 2559,29 109,999 -5,50668 1,75713 735,841 0,00238793 2594,34 110 -5,12194 2,05099 857,883 0,0023887 2664,48 110 -3,79302 2,77872 1166,19 0,00238273 2699,53 110 -4,73534 3,23802 1359,75 0,00238133 2734,57 109,999 -6,7847 3,7711 1585,36 0,00237871 2769,65 110,001 -7,50085 4,39409 1848,37 0,00238485 2909,87 109,999 -16,2469 8,17227 3415,8 0,00239549 2944,92 110 -17,121 9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641						
1,27964 541,332 0,00236388 2524,23 110,004 -4,43344 1,50039 631,135 0,0023773 2559,29 109,999 -5,50668 1,75713 735,841 0,00238793 2594,34 110 -5,12194 2,05099 857,883 0,0023887 2664,48 110 -3,79302 2,77872 1166,19 0,00238273 2699,53 110 -4,73534 3,23802 1359,75 0,00238133 2734,57 109,999 -6,7847 3,7711 1585,36 0,00237728 2804,69 110 -10,8317 4,39409 1848,37 0,00237728 2804,69 110 -10,8317 6,9864 2929,49 0,00238485 2909,87 109,999 -16,2469 8,17227 3415,8 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264	0,944269	398,228	0,00237118	2454,12	109,999	-6,53012
1,50039 631,135 0,0023773 2559,29 109,999 -5,50668 1,75713 735,841 0,00238793 2594,34 110 -5,12194 2,05099 857,883 0,0023877 2629,39 110 -4,83417 2,38937 1000,28 0,0023887 2664,48 110 -3,79302 2,77872 1166,19 0,00238273 2699,53 110 -4,73534 3,23802 1359,75 0,00238133 2734,57 109,999 -6,7847 3,7711 1585,36 0,00237871 2769,65 110,001 -7,50085 4,39409 1848,37 0,00237728 2804,69 110 -10,8317 6,9864 2929,49 0,00238485 2909,87 109,999 -16,2469 8,17227 3415,8 0,00239249 2944,92 110 -17,121 9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427	1,09864	464,293	0,00236626	2489,17	109,999	-8,37192
1,75713 735,841 0,00238793 2594,34 110 -5,12194 2,05099 857,883 0,00239076 2629,39 110 -4,83417 2,38937 1000,28 0,0023887 2664,48 110 -3,79302 2,77872 1166,19 0,00238273 2699,53 110 -4,73534 3,23802 1359,75 0,00238133 2734,57 109,999 -6,7847 3,7711 1585,36 0,00237728 2804,69 110 -10,8317 6,9864 2929,49 0,00238485 2909,87 109,999 -16,2469 8,17227 3415,8 0,00239249 2944,92 110 -17,121 9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753	1,27964	541,332	0,00236388	2524,23	110,004	-4,43344
2,05099 857,883 0,00239076 2629,39 110 -4,83417 2,38937 1000,28 0,0023887 2664,48 110 -3,79302 2,77872 1166,19 0,00238273 2699,53 110 -4,73534 3,23802 1359,75 0,00238133 2734,57 109,999 -6,7847 3,7711 1585,36 0,00237728 2804,69 110 -10,8317 6,9864 2929,49 0,00238485 2909,87 109,999 -16,2469 8,17227 3415,8 0,00239249 2944,92 110 -17,121 9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522	1,50039	631,135	0,0023773	2559,29	109,999	-5,50668
2,38937 1000,28 0,0023887 2664,48 110 -3,79302 2,77872 1166,19 0,00238273 2699,53 110 -4,73534 3,23802 1359,75 0,00238133 2734,57 109,999 -6,7847 3,7711 1585,36 0,00237728 2804,69 110 -10,8317 6,9864 2929,49 0,00238485 2909,87 109,999 -16,2469 8,17227 3415,8 0,00239249 2944,92 110 -17,121 9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859	1,75713	735,841	0,00238793	2594,34	110	-5,12194
2,77872 1166,19 0,00238273 2699,53 110 -4,73534 3,23802 1359,75 0,00238133 2734,57 109,999 -6,7847 3,7711 1585,36 0,00237871 2769,65 110,001 -7,50085 4,39409 1848,37 0,00237728 2804,69 110 -10,8317 6,9864 2929,49 0,00238485 2909,87 109,999 -16,2469 8,17227 3415,8 0,00239249 2944,92 110 -17,121 9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,0024158 3190,34 110,001 -74,5101 </td <td>2,05099</td> <td>857,883</td> <td>0,00239076</td> <td>2629,39</td> <td>110</td> <td>-4,83417</td>	2,05099	857,883	0,00239076	2629,39	110	-4,83417
3,23802 1359,75 0,00238133 2734,57 109,999 -6,7847 3,7711 1585,36 0,00237871 2769,65 110,001 -7,50085 4,39409 1848,37 0,00237728 2804,69 110 -10,8317 6,9864 2929,49 0,00238485 2909,87 109,999 -16,2469 8,17227 3415,8 0,00239249 2944,92 110 -17,121 9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859 24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242623 3260,45 109,999 <td>2,38937</td> <td>1000,28</td> <td>0,0023887</td> <td>2664,48</td> <td>110</td> <td>-3,79302</td>	2,38937	1000,28	0,0023887	2664,48	110	-3,79302
3,7711 1585,36 0,00237871 2769,65 110,001 -7,50085 4,39409 1848,37 0,00237728 2804,69 110 -10,8317 6,9864 2929,49 0,00238485 2909,87 109,999 -16,2469 8,17227 3415,8 0,00239249 2944,92 110 -17,121 9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859 24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242166 3225,39 109,999 -136,995	2,77872	1166,19	0,00238273	2699,53	110	-4,73534
4,39409 1848,37 0,00237728 2804,69 110 -10,8317 6,9864 2929,49 0,00238485 2909,87 109,999 -16,2469 8,17227 3415,8 0,00239249 2944,92 110 -17,121 9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859 24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242156 3225,39 109,999 -136,995 38,4037 15855,6 0,0024209 3295,5 109,999 -189,269	3,23802	1359,75	0,00238133	2734,57	109,999	-6,7847
6,9864 2929,49 0,00238485 2909,87 109,999 -16,2469 8,17227 3415,8 0,00239249 2944,92 110 -17,121 9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859 24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242156 3225,39 109,999 -136,995 38,4037 15855,6 0,00242623 3260,45 109,999 -189,269 44,7545 18485,5 0,00242106 3330,58 110 -256,844	3,7711	1585,36	0,00237871	2769,65	110,001	-7,50085
8,17227 3415,8 0,00239249 2944,92 110 -17,121 9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859 24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242156 3225,39 109,999 -100,907 32,9913 13597,7 0,00242623 3260,45 109,999 -136,995 38,4037 15855,6 0,00242106 3330,58 110 -256,844 52,0388 21553,5 0,00244144 3365,62 110 -348,556	4,39409	1848,37	0,00237728	2804,69	110	-10,8317
9,54321 3982,5 0,00239629 2979,97 109,999 -15,5641 11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859 24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242156 3225,39 109,999 -100,907 32,9913 13597,7 0,00242623 3260,45 109,999 -136,995 38,4037 15855,6 0,0024209 3295,5 109,999 -189,269 44,7545 18485,5 0,0024106 3330,58 110 -256,844 52,0388 21553,5 0,00240684 3400,72 110,002 -474,965<	6,9864	2929,49	0,00238485	2909,87	109,999	-16,2469
11,1221 4643,17 0,00239538 3015,03 110,001 -18,1427 12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859 24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242156 3225,39 109,999 -100,907 32,9913 13597,7 0,00242623 3260,45 109,999 -136,995 38,4037 15855,6 0,00242209 3295,5 109,999 -189,269 44,7545 18485,5 0,00242106 3330,58 110 -256,844 52,0388 21553,5 0,0024144 3365,62 110 -348,556 60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0023969 3470,83 110	8,17227	3415,8	0,00239249	2944,92	110	-17,121
12,9613 5413,4 0,00239431 3050,08 110 -20,8264 15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859 24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242156 3225,39 109,999 -100,907 32,9913 13597,7 0,00242623 3260,45 109,999 -136,995 38,4037 15855,6 0,00242209 3295,5 109,999 -189,269 44,7545 18485,5 0,00242106 3330,58 110 -256,844 52,0388 21553,5 0,0024144 3365,62 110 -348,556 60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0024071 3435,78 110,002 -645,909	9,54321	3982,5	0,00239629	2979,97	109,999	-15,5641
15,1487 6311,58 0,00240014 3085,13 110 -28,2753 17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859 24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242156 3225,39 109,999 -100,907 32,9913 13597,7 0,00242623 3260,45 109,999 -136,995 38,4037 15855,6 0,00242209 3295,5 109,999 -189,269 44,7545 18485,5 0,00242106 3330,58 110 -256,844 52,0388 21553,5 0,0024144 3365,62 110 -348,556 60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0024071 3435,78 110,002 -645,909 81,8664 34155,1 0,0023969 3470,83 110 -873,984	11,1221	4643,17	0,00239538	3015,03	110,001	-18,1427
17,7216 7358,48 0,00240832 3120,19 110,001 -38,7522 20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859 24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242156 3225,39 109,999 -100,907 32,9913 13597,7 0,00242623 3260,45 109,999 -136,995 38,4037 15855,6 0,00242209 3295,5 109,999 -189,269 44,7545 18485,5 0,00242106 3330,58 110 -256,844 52,0388 21553,5 0,0024144 3365,62 110 -348,556 60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0024071 3435,78 110,002 -645,909 81,8664 34155,1 0,0023969 3470,83 110 -873,984	12,9613	5413,4	0,00239431	3050,08	110	-20,8264
20,7098 8579,12 0,00241398 3155,27 110,002 -53,1859 24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242156 3225,39 109,999 -100,907 32,9913 13597,7 0,00242623 3260,45 109,999 -136,995 38,4037 15855,6 0,00242209 3295,5 109,999 -189,269 44,7545 18485,5 0,00242106 3330,58 110 -256,844 52,0388 21553,5 0,0024144 3365,62 110 -348,556 60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0024071 3435,78 110,002 -645,909 81,8664 34155,1 0,0023969 3470,83 110 -873,984	15,1487	6311,58	0,00240014	3085,13	110	-28,2753
24,1722 10002,7 0,00241658 3190,34 110,001 -74,5101 28,2417 11662,6 0,00242156 3225,39 109,999 -100,907 32,9913 13597,7 0,00242623 3260,45 109,999 -136,995 38,4037 15855,6 0,00242209 3295,5 109,999 -189,269 44,7545 18485,5 0,00242106 3330,58 110 -256,844 52,0388 21553,5 0,0024144 3365,62 110 -348,556 60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0024071 3435,78 110,002 -645,909 81,8664 34155,1 0,0023969 3470,83 110 -873,984	17,7216	7358,48	0,00240832	3120,19	110,001	-38,7522
28,2417 11662,6 0,00242156 3225,39 109,999 -100,907 32,9913 13597,7 0,00242623 3260,45 109,999 -136,995 38,4037 15855,6 0,00242209 3295,5 109,999 -189,269 44,7545 18485,5 0,00242106 3330,58 110 -256,844 52,0388 21553,5 0,0024144 3365,62 110 -348,556 60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0024071 3435,78 110,002 -645,909 81,8664 34155,1 0,0023969 3470,83 110 -873,984	20,7098	8579,12	0,00241398	3155,27	110,002	-53,1859
32,9913 13597,7 0,00242623 3260,45 109,999 -136,995 38,4037 15855,6 0,00242209 3295,5 109,999 -189,269 44,7545 18485,5 0,00242106 3330,58 110 -256,844 52,0388 21553,5 0,0024144 3365,62 110 -348,556 60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0024071 3435,78 110,002 -645,909 81,8664 34155,1 0,0023969 3470,83 110 -873,984	24,1722	10002,7	0,00241658	3190,34	110,001	-74,5101
38,4037 15855,6 0,00242209 3295,5 109,999 -189,269 44,7545 18485,5 0,00242106 3330,58 110 -256,844 52,0388 21553,5 0,0024144 3365,62 110 -348,556 60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0024071 3435,78 110,002 -645,909 81,8664 34155,1 0,0023969 3470,83 110 -873,984	28,2417	11662,6	0,00242156	3225,39	109,999	-100,907
44,7545 18485,5 0,00242106 3330,58 110 -256,844 52,0388 21553,5 0,0024144 3365,62 110 -348,556 60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0024071 3435,78 110,002 -645,909 81,8664 34155,1 0,0023969 3470,83 110 -873,984	32,9913	13597,7	0,00242623	3260,45	109,999	-136,995
52,0388 21553,5 0,0024144 3365,62 110 -348,556 60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0024071 3435,78 110,002 -645,909 81,8664 34155,1 0,0023969 3470,83 110 -873,984	38,4037	15855,6	0,00242209	3295,5	109,999	-189,269
60,476 25126,8 0,00240684 3400,72 110,002 -474,965 70,5169 29295,4 0,0024071 3435,78 110,002 -645,909 81,8664 34155,1 0,0023969 3470,83 110 -873,984	44,7545	18485,5	0,00242106	3330,58	110	-256,844
70,5169 29295,4 0,0024071 3435,78 110,002 -645,909 81,8664 34155,1 0,0023969 3470,83 110 -873,984	52,0388	21553,5	0,0024144	3365,62	110	-348,556
81,8664 34155,1 0,0023969 3470,83 110 -873,984	60,476	25126,8	0,00240684	3400,72	110,002	-474,965
	70,5169	29295,4	0,0024071	3435,78	110,002	-645,909
94,5351 39821,9 0,00237395 3505,88 110,001 -1187,25	81,8664	34155,1	0,0023969	3470,83	110	-873,984
	94,5351	39821,9	0,00237395	3505,88	110,001	-1187,25
109,165 46426,9 0,00235133 3540,92 110 -1605,8	109,165	46426,9	0,00235133	3540,92	110	-1605,8

3.4.3.4 ENSAYOS REOLOGICO DEL ACEITE DE JATROPHA A 110° CON UNA VELOCIDAD DE 0-49000 1/s.

Tabla 39. Datos de aceite de Jatropha a 110°, 0-49000 1/s

Stress	Shear rate	Viscosity	Step time	Temp	Normal stress
Pa	1/s	Pa.s	S	°C	Pa
0,101345	0,0184844	5,48273	175,095	109,999	-10,5288
0,101621	0,0215434	4,71704	210,148	109,999	-12,648
0,1013	0,0250994	4,03596	245,17	110,001	-12,554
0,100722	0,0292926	3,43849	280,208	110,002	-10,8304

0,100231 0,0398133 2,47463 350,33 110,001 -11,8508 0,0963666 0,0464074 2,07654 385,367 109,994 -10,9588 0,0897241 0,0540971 1,65858 420,452 110,007 -11,2502 0,0810437 0,0630878 1,28462 455,521 109,99 -11,8068 0,0707189 0,0735569 0,961418 490,574 110,002 -11,5279 0,0839463 0,0857613 0,68733 525,643 109,998 -10,3274 0,0463894 0,0999936 0,463924 560,665 110,005 -8,76062 0,0330764 0,11654 0,28382 595,718 110 -9,2245 0,00906618 0,135957 0,066684 624,485 110,001 -11,6306 -0,0178093 0,158562 -0,112317 665,84 110,001 -11,6204 -0,0697786 0,215337 -0,324043 735,931 110,006 -11,5266 -0,102101 0,341393 -0,349041 806,053 109,999<						
0.0963666 0,0464074 2,07654 385,367 109,994 -10,9588 0.0897241 0,0540971 1,65858 420,452 110,007 -11,2502 0.0810437 0,0630878 1,28462 455,521 109,99 -11,8068 0,0707189 0,0735569 0,961418 490,574 110,002 -15,279 0,0589463 0,0857613 0,68733 525,643 109,998 -10,3274 0,0463894 0,0999936 0,463924 560,665 110,005 -8,76062 0,0330764 0,11654 0,28382 595,718 110 -9,2245 0,00906618 0,135957 0,066684 624,485 110,002 -10,6306 -0,0178093 0,158562 -0,112317 665,84 110,001 -11,6306 -0,0466759 0,184748 -0,252646 700,862 109,992 -10,5221 -0,0697786 0,215337 -0,324043 735,931 110,003 -11,6224 -0,12010 0,341393 -0,354769 770,985 110,00	0,100231	0,0341286	2,93687	315,277	110,005	-9,40391
0,0897241 0,0540971 1,65858 420,452 110,007 -11,2502 0,0810437 0,0630878 1,28462 455,521 109,99 -11,8068 0,0707189 0,0735569 0,961418 490,574 110,002 -11,5279 0,0589463 0,0857613 0,68733 525,643 109,998 -10,3274 0,0463894 0,0999936 0,463924 560,665 110,005 -8,76062 0,0330764 0,11654 0,28382 595,718 110 -9,2245 0,00906618 0,135957 0,066684 624,485 110,001 -11,6306 -0,0178093 0,158562 -0,112317 665,84 110,001 -11,6306 -0,0466759 0,184748 -0,252646 700,862 109,992 -10,5221 -0,087151 0,251106 -0,347069 770,985 110,006 -11,7266 -0,102222 0,292866 -0,349041 806,053 109,999 -12,639 -0,125721 0,463897 -0,271011 911,213 109,9	0,0985231	0,0398133	2,47463	350,33	110,001	-11,8508
0,0810437 0,0630878 1,28462 455,521 109,99 -11,8068 0,0707189 0,0735569 0,961418 490,574 110,002 -11,5279 0,0589463 0,0857613 0,68733 525,643 109,998 -10,3274 0,0463894 0,0999936 0,463924 560,665 110,005 -8,76062 0,0330764 0,11654 0,28382 595,718 110 -9,2245 0,00906618 0,135957 0,066684 624,485 110,001 -11,6306 -0,0178093 0,158562 -0,112317 665,84 110,001 -11,0406 -0,0466759 0,184748 -0,252646 700,862 109,992 -10,5221 -0,0867151 0,251106 -0,347069 770,985 110,003 -10,5132 -0,087151 0,251066 -0,349041 806,053 109,999 -12,6639 -0,122101 0,341393 -0,354459 841,107 110,002 -12,2 -0,125721 0,463897 -0,271011 911,213 109,9	0,0963666	0,0464074	2,07654	385,367	109,994	-10,9588
0,0707189 0,0735569 0,961418 490,574 110,002 -11,5279 0,0589463 0,0857613 0,68733 525,643 109,998 -10,3274 0,0463894 0,0999936 0,463924 560,665 110,005 -8,76062 0,0330764 0,11654 0,28382 595,718 110 -9,2245 0,0090618 0,135957 0,066684 624,485 110,002 -10,6306 -0,0178093 0,158562 -0,112317 665,84 110,001 -11,0406 -0,0466759 0,184748 -0,252646 700,862 109,992 -10,5221 -0,0697786 0,215337 -0,324043 735,931 110,003 -10,5132 -0,0867151 0,251106 -0,347069 770,985 110,006 -11,7266 -0,102222 0,292866 -0,349041 806,053 109,999 -12,6639 -0,12010 0,341393 -0,354459 841,107 110,002 -12,2 -0,125721 0,463897 -0,271011 911,213 109,	0,0897241	0,0540971	1,65858	420,452	110,007	-11,2502
0,0589463 0,0857613 0,68733 525,643 109,998 -10,3274 0,0463894 0,0999936 0,463924 560,665 110,005 -8,76062 0,0330764 0,11654 0,28382 595,718 110 -9,2245 0,00906618 0,135957 0,066684 624,485 110,002 -10,6306 -0,0178093 0,158562 -0,112317 665,84 110,001 -11,0406 -0,0466759 0,184748 -0,252646 700,862 109,992 -10,5221 -0,0697786 0,215337 -0,324043 735,931 110,003 -10,5132 -0,087151 0,251106 -0,347069 770,985 110,006 -11,7266 -0,102222 0,292866 -0,349041 806,053 109,999 -12,6639 -0,12101 0,341393 -0,354459 841,107 110,002 -11,6024 -0,125721 0,463897 -0,271011 911,213 109,992 -9,13325 -0,0404972 0,540793 -0,0748849 946,282 <td< td=""><td>0,0810437</td><td>0,0630878</td><td>1,28462</td><td>455,521</td><td>109,99</td><td>-11,8068</td></td<>	0,0810437	0,0630878	1,28462	455,521	109,99	-11,8068
0,0463894 0,0999936 0,463924 560,665 110,005 -8,76062 0,0330764 0,11654 0,28382 595,718 110 -9,2245 0,00906618 0,135957 0,066684 624,485 110,002 -10,6306 -0,0178093 0,158562 -0,112317 665,84 110,001 -11,0406 -0,0697786 0,215337 -0,324043 735,931 110,003 -10,5132 -0,087151 0,251106 -0,347069 770,985 110,006 -11,7266 -0,102222 0,292866 -0,349041 806,053 109,999 -12,6639 -0,12101 0,341393 -0,354459 841,107 110,002 -11,6024 -0,145613 0,39793 -0,365927 876,144 110,002 -12,2 -0,125721 0,463897 -0,271011 911,213 10,0999 -9,13325 -0,0404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,0	0,0707189	0,0735569	0,961418	490,574	110,002	-11,5279
0,0330764 0,11654 0,28382 595,718 110 -9,2245 0,00906618 0,135957 0,066684 624,485 110,002 -10,6306 -0,0178093 0,158562 -0,112317 665,84 110,001 -11,0406 -0,0466759 0,184748 -0,252646 700,862 109,992 -10,5221 -0,0697786 0,215337 -0,324043 735,931 110,003 -10,5132 -0,087151 0,251106 -0,347069 770,985 110,006 -11,7266 -0,102222 0,292866 -0,349041 806,053 109,999 -12,6639 -0,12101 0,341393 -0,355459 841,107 110,002 -11,6024 -0,125721 0,463897 -0,271011 911,213 109,999 -9,13325 -0,0404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0138256 0,999812 0,0138252 106,48 1	0,0589463	0,0857613	0,68733	525,643	109,998	-10,3274
0,00906618 0,135957 0,066684 624,485 110,002 -10,6306 -0,0178093 0,158562 -0,112317 665,84 110,001 -11,0406 -0,0466759 0,184748 -0,252646 700,862 109,992 -10,5221 -0,0697786 0,215337 -0,324043 735,931 110,003 -10,5132 -0,087151 0,251106 -0,347069 770,985 110,006 -11,7266 -0,102222 0,292866 -0,349041 806,053 109,999 -12,6639 -0,12101 0,341393 -0,354459 841,107 110,002 -11,6024 -0,145613 0,39793 -0,365927 876,144 110,002 -11,6024 -0,125721 0,463897 -0,271011 911,213 109,999 -9,13325 -0,04404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0982027 0,735261 0,133562 1016,39	0,0463894	0,0999936	0,463924	560,665	110,005	-8,76062
-0,0178093 0,158562 -0,112317 665,84 110,001 -11,0406 -0,0466759 0,184748 -0,252646 700,862 109,992 -10,5221 -0,0697786 0,215337 -0,324043 735,931 110,003 -10,5132 -0,087151 0,251106 -0,347069 770,985 110,006 -11,7266 -0,102222 0,292866 -0,349041 806,053 109,999 -12,6639 -0,12101 0,341393 -0,354459 841,107 110,002 -11,6024 -0,145613 0,39793 -0,365927 876,144 110,002 -12,2 -0,125721 0,463897 -0,271011 911,213 109,992 -9,13325 -0,0404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0982027 0,735261 0,133562 1016,39 109,998 -12,0269 0,0138256 0,999812 0,0138282 1086,48 <	0,0330764	0,11654	0,28382	595,718	110	-9,2245
-0,0466759 0,184748 -0,252646 700,862 109,992 -10,5221 -0,0697786 0,215337 -0,324043 735,931 110,003 -10,5132 -0,087151 0,251106 -0,347069 770,985 110,006 -11,7266 -0,102222 0,292866 -0,349041 806,053 109,999 -12,6639 -0,12101 0,341393 -0,354459 841,107 110,002 -11,6024 -0,145613 0,39793 -0,365927 876,144 110,002 -12,2 -0,125721 0,463897 -0,271011 911,213 109,992 -9,13325 -0,0404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0982027 0,735261 0,133562 1016,39 109,998 -12,3895 0,115313 0,857617 0,134457 1051,46 109,999 -12,0269 0,0138256 0,999812 0,0136439 1121,56 <td< td=""><td>0,00906618</td><td>0,135957</td><td>0,066684</td><td>624,485</td><td>110,002</td><td>-10,6306</td></td<>	0,00906618	0,135957	0,066684	624,485	110,002	-10,6306
-0,0697786 0,215337 -0,324043 735,931 110,003 -10,5132 -0,087151 0,251106 -0,347069 770,985 110,006 -11,7266 -0,102222 0,292866 -0,349041 806,053 109,999 -12,6639 -0,12101 0,341393 -0,354459 841,107 110,002 -11,6024 -0,145613 0,39793 -0,365927 876,144 110,002 -12,2 -0,125721 0,463897 -0,271011 911,213 109,992 -9,13325 -0,0404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0982027 0,735261 0,133562 1016,39 109,998 -12,3895 0,115313 0,857617 0,134457 1051,46 109,999 -12,0269 0,0138256 0,999812 0,0138282 1086,48 110,001 -7,84853 0,0159029 1,16557 0,0136439 1121,56 1	-0,0178093	0,158562	-0,112317	665,84	110,001	-11,0406
-0,087151 0,251106 -0,347069 770,985 110,006 -11,7266 -0,102222 0,292866 -0,349041 806,053 109,999 -12,6639 -0,12101 0,341393 -0,354459 841,107 110,002 -11,6024 -0,145613 0,39793 -0,365927 876,144 110,002 -12,2 -0,125721 0,463897 -0,271011 911,213 109,992 -9,13325 -0,0404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0982027 0,735261 0,133562 1016,39 109,998 -12,3895 0,115313 0,857617 0,134457 1051,46 109,999 -12,0269 0,0138256 0,999812 0,0138282 1086,48 110,001 -7,84853 0,0159029 1,16557 0,0136439 1121,56 110,005 -5,88629 0,0924914 1,35881 0,068068 1156,65 110<	-0,0466759	0,184748	-0,252646	700,862	109,992	-10,5221
-0,102222 0,292866 -0,349041 806,053 109,999 -12,6639 -0,12101 0,341393 -0,354459 841,107 110,002 -11,6024 -0,145613 0,39793 -0,365927 876,144 110,002 -12,2 -0,125721 0,463897 -0,271011 911,213 109,992 -9,13325 -0,0404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0982027 0,735261 0,133562 1016,39 109,998 -12,3895 0,115313 0,857617 0,134457 1051,46 109,999 -12,0269 0,0138256 0,999812 0,0138282 1086,48 110,001 -7,84853 0,0159029 1,16557 0,0136439 1121,56 110,005 -5,88629 0,0924914 1,35881 0,068068 1156,65 110 -3,89697 0,0418059 1,8473 0,0226308 1226,8 110,005 <td>-0,0697786</td> <td>0,215337</td> <td>-0,324043</td> <td>735,931</td> <td>110,003</td> <td>-10,5132</td>	-0,0697786	0,215337	-0,324043	735,931	110,003	-10,5132
-0,12101 0,341393 -0,354459 841,107 110,002 -11,6024 -0,145613 0,39793 -0,365927 876,144 110,002 -12,2 -0,125721 0,463897 -0,271011 911,213 109,992 -9,13325 -0,0404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0982027 0,735261 0,133562 1016,39 109,998 -12,3895 0,115313 0,857617 0,134457 1051,46 109,999 -12,0269 0,0138256 0,999812 0,0138282 1086,48 110,001 -7,84853 0,0159029 1,16557 0,0136439 1121,56 110,005 -5,88629 0,0924914 1,35881 0,068068 1156,65 110 -3,89697 0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,85 110,002 <td>-0,087151</td> <td>0,251106</td> <td>-0,347069</td> <td>770,985</td> <td>110,006</td> <td>-11,7266</td>	-0,087151	0,251106	-0,347069	770,985	110,006	-11,7266
-0,145613 0,39793 -0,365927 876,144 110,002 -12,2 -0,125721 0,463897 -0,271011 911,213 109,992 -9,13325 -0,0404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0982027 0,735261 0,133562 1016,39 109,998 -12,3895 0,115313 0,857617 0,134457 1051,46 109,999 -12,0269 0,0138256 0,999812 0,0138282 1086,48 110,001 -7,84853 0,0159029 1,16557 0,0136439 1121,56 110,005 -5,88629 0,0924914 1,35881 0,068068 1156,65 110 -3,89697 0,0885194 1,58445 0,0558676 1191,72 109,991 -6,0397 0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,8 110,005	-0,102222	0,292866	-0,349041	806,053	109,999	-12,6639
-0,125721 0,463897 -0,271011 911,213 109,992 -9,13325 -0,0404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0982027 0,735261 0,133562 1016,39 109,998 -12,3895 0,115313 0,857617 0,134457 1051,46 109,999 -12,0269 0,0138256 0,999812 0,0138282 1086,48 110,001 -7,84853 0,0159029 1,16557 0,0136439 1121,56 110,005 -5,88629 0,0924914 1,35881 0,068068 1156,65 110 -3,89697 0,0885194 1,58445 0,0558676 1191,72 109,991 -6,0397 0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,85 110,002 -8,08293 -0,0721003 2,51087 -0,0287153 1296,89 109,99	-0,12101	0,341393	-0,354459	841,107	110,002	-11,6024
-0,0404972 0,540793 -0,0748849 946,282 110,008 -9,89264 0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0982027 0,735261 0,133562 1016,39 109,998 -12,3895 0,115313 0,857617 0,134457 1051,46 109,999 -12,0269 0,0138256 0,999812 0,0138282 1086,48 110,001 -7,84853 0,0159029 1,16557 0,0136439 1121,56 110,005 -5,88629 0,0924914 1,35881 0,068068 1156,65 110 -3,89697 0,0885194 1,58445 0,0558676 1191,72 109,991 -6,0397 0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,85 110,002 -8,08293 -0,0721003 2,51087 -0,0287153 1296,89 109,994 -7,70615 0,0179588 2,92701 0,00613556 1331,98 110,00	-0,145613	0,39793	-0,365927	876,144	110,002	-12,2
0,0280165 0,630236 0,044454 981,32 110,002 -11,6806 0,0982027 0,735261 0,133562 1016,39 109,998 -12,3895 0,115313 0,857617 0,134457 1051,46 109,999 -12,0269 0,0138256 0,999812 0,0138282 1086,48 110,001 -7,84853 0,0159029 1,16557 0,0136439 1121,56 110,005 -5,88629 0,0924914 1,35881 0,068068 1156,65 110 -3,89697 0,0885194 1,58445 0,0558676 1191,72 109,991 -6,0397 0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,85 110,002 -8,08293 -0,0721003 2,51087 -0,0287153 1296,89 109,994 -7,70615 0,0179588 2,92701 0,00613556 1331,98 110,001 -7,0529 0,0184944 3,4143 0,00541675 1367,03 110,002 <td>-0,125721</td> <td>0,463897</td> <td>-0,271011</td> <td>911,213</td> <td>109,992</td> <td>-9,13325</td>	-0,125721	0,463897	-0,271011	911,213	109,992	-9,13325
0,0982027 0,735261 0,133562 1016,39 109,998 -12,3895 0,115313 0,857617 0,134457 1051,46 109,999 -12,0269 0,0138256 0,999812 0,0138282 1086,48 110,001 -7,84853 0,0159029 1,16557 0,0136439 1121,56 110,005 -5,88629 0,0924914 1,35881 0,068068 1156,65 110 -3,89697 0,0885194 1,58445 0,0558676 1191,72 109,991 -6,0397 0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,85 110,002 -8,08293 -0,0721003 2,51087 -0,0287153 1296,89 109,994 -7,70615 0,0179588 2,92701 0,00613556 1331,98 110,001 -7,0529 0,0184944 3,4143 0,00541675 1367,03 110,002 -6,85025 -0,0703337 3,97951 -0,0176739 1402,11 110,003	-0,0404972	0,540793	-0,0748849	946,282	110,008	-9,89264
0,115313 0,857617 0,134457 1051,46 109,999 -12,0269 0,0138256 0,999812 0,0138282 1086,48 110,001 -7,84853 0,0159029 1,16557 0,0136439 1121,56 110,005 -5,88629 0,0924914 1,35881 0,068068 1156,65 110 -3,89697 0,0885194 1,58445 0,0558676 1191,72 109,991 -6,0397 0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,85 110,002 -8,08293 -0,0721003 2,51087 -0,0287153 1296,89 109,994 -7,70615 0,0179588 2,92701 0,00613556 1331,98 110,001 -7,0529 0,0184944 3,4143 0,00541675 1367,03 110,002 -6,85025 -0,0712763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0102929 1472,25 109,991<	0,0280165	0,630236	0,044454	981,32	110,002	-11,6806
0,0138256 0,999812 0,0138282 1086,48 110,001 -7,84853 0,0159029 1,16557 0,0136439 1121,56 110,005 -5,88629 0,0924914 1,35881 0,068068 1156,65 110 -3,89697 0,0885194 1,58445 0,0558676 1191,72 109,991 -6,0397 0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,85 110,002 -8,08293 -0,0721003 2,51087 -0,0287153 1296,89 109,994 -7,70615 0,0179588 2,92701 0,00613556 1331,98 110,001 -7,0529 0,0184944 3,4143 0,00541675 1367,03 110,002 -6,85025 -0,0703337 3,97951 -0,0176739 1402,11 110,003 -8,29406 -0,0112763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0112929 1472,25 109,9	0,0982027	0,735261	0,133562	1016,39	109,998	-12,3895
0,0159029 1,16557 0,0136439 1121,56 110,005 -5,88629 0,0924914 1,35881 0,068068 1156,65 110 -3,89697 0,0885194 1,58445 0,0558676 1191,72 109,991 -6,0397 0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,85 110,002 -8,08293 -0,0721003 2,51087 -0,0287153 1296,89 109,994 -7,70615 0,0179588 2,92701 0,00613556 1331,98 110,001 -7,0529 0,0184944 3,4143 0,00541675 1367,03 110,002 -6,85025 -0,0703337 3,97951 -0,0176739 1402,11 110,003 -8,29406 -0,0112763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0102929 1472,25 109,991 -3,88694 0,0702672 6,30782 0,0111397 1507,31 110,00	0,115313	0,857617	0,134457	1051,46	109,999	-12,0269
0,0924914 1,35881 0,068068 1156,65 110 -3,89697 0,0885194 1,58445 0,0558676 1191,72 109,991 -6,0397 0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,85 110,002 -8,08293 -0,0721003 2,51087 -0,0287153 1296,89 109,994 -7,70615 0,0179588 2,92701 0,00613556 1331,98 110,001 -7,0529 0,0184944 3,4143 0,00541675 1367,03 110,002 -6,85025 -0,0703337 3,97951 -0,0176739 1402,11 110,003 -8,29406 -0,0112763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0102929 1472,25 109,991 -3,88694 0,0702672 6,30782 0,0111397 1507,31 110,004 -8,50128 0,0496085 9,99513 0,0044416 1577,44 110,00	0,0138256	0,999812	0,0138282	1086,48	110,001	-7,84853
0,0885194 1,58445 0,0558676 1191,72 109,991 -6,0397 0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,85 110,002 -8,08293 -0,0721003 2,51087 -0,0287153 1296,89 109,994 -7,70615 0,0179588 2,92701 0,00613556 1331,98 110,001 -7,0529 0,0184944 3,4143 0,00541675 1367,03 110,002 -6,85025 -0,0703337 3,97951 -0,0176739 1402,11 110,003 -8,29406 -0,0112763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0102929 1472,25 109,991 -3,88694 0,0702672 6,30782 0,0111397 1507,31 110,004 -8,50128 0,0162926 7,35286 0,00221582 1542,36 110,001 -6,15509 -0,037286 8,57316 0,00434916 1577,44 <td< td=""><td>0,0159029</td><td>1,16557</td><td>0,0136439</td><td>1121,56</td><td>110,005</td><td>-5,88629</td></td<>	0,0159029	1,16557	0,0136439	1121,56	110,005	-5,88629
0,0418059 1,8473 0,0226308 1226,8 110,005 -6,73083 0,00645666 2,15396 0,00299758 1261,85 110,002 -8,08293 -0,0721003 2,51087 -0,0287153 1296,89 109,994 -7,70615 0,0179588 2,92701 0,00613556 1331,98 110,001 -7,0529 0,0184944 3,4143 0,00541675 1367,03 110,002 -6,85025 -0,0703337 3,97951 -0,0176739 1402,11 110,003 -8,29406 -0,0112763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0102929 1472,25 109,991 -3,88694 0,0702672 6,30782 0,0111397 1507,31 110,004 -8,50128 0,0162926 7,35286 0,00221582 1542,36 110,001 -6,15509 -0,037286 8,57316 0,00496327 1612,5 109,996 -4,87148 0,0295996 11,6541 0,00253985 1647,55 <t< td=""><td>0,0924914</td><td>1,35881</td><td>0,068068</td><td>1156,65</td><td>110</td><td>-3,89697</td></t<>	0,0924914	1,35881	0,068068	1156,65	110	-3,89697
0,00645666 2,15396 0,00299758 1261,85 110,002 -8,08293 -0,0721003 2,51087 -0,0287153 1296,89 109,994 -7,70615 0,0179588 2,92701 0,00613556 1331,98 110,001 -7,0529 0,0184944 3,4143 0,00541675 1367,03 110,002 -6,85025 -0,0703337 3,97951 -0,0176739 1402,11 110,003 -8,29406 -0,0112763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0102929 1472,25 109,991 -3,88694 0,0702672 6,30782 0,0111397 1507,31 110,004 -8,50128 0,0162926 7,35286 0,00221582 1542,36 110,001 -6,15509 -0,037286 8,57316 0,00434916 1577,44 110,005 -6,78147 0,0496085 9,99513 0,00496327 1612,5 109,998 -4,63155 0,0569173 15,8431 0,00359256 1717,69	0,0885194	1,58445	0,0558676	1191,72	109,991	-6,0397
-0,0721003 2,51087 -0,0287153 1296,89 109,994 -7,70615 0,0179588 2,92701 0,00613556 1331,98 110,001 -7,0529 0,0184944 3,4143 0,00541675 1367,03 110,002 -6,85025 -0,0703337 3,97951 -0,0176739 1402,11 110,003 -8,29406 -0,0112763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0102929 1472,25 109,991 -3,88694 0,0702672 6,30782 0,0111397 1507,31 110,004 -8,50128 0,0162926 7,35286 0,00221582 1542,36 110,001 -6,15509 -0,037286 8,57316 0,00434916 1577,44 110,005 -6,78147 0,0496085 9,99513 0,00496327 1612,5 109,996 -4,87148 0,0295996 11,6541 0,00253985 1647,55 110,004 -4,44283 0,0569173 15,8431 0,003359256 1717,69	0,0418059	1,8473	0,0226308	1226,8	110,005	-6,73083
0,0179588 2,92701 0,00613556 1331,98 110,001 -7,0529 0,0184944 3,4143 0,00541675 1367,03 110,002 -6,85025 -0,0703337 3,97951 -0,0176739 1402,11 110,003 -8,29406 -0,0112763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0102929 1472,25 109,991 -3,88694 0,0702672 6,30782 0,0111397 1507,31 110,004 -8,50128 0,0162926 7,35286 0,00221582 1542,36 110,001 -6,15509 -0,037286 8,57316 0,00434916 1577,44 110,005 -6,78147 0,0496085 9,99513 0,00496327 1612,5 109,996 -4,87148 0,0295996 11,6541 0,00253985 1647,55 110,004 -4,44283 0,0569173 15,8431 0,0033758 1682,6 109,998 -4,63155 0,0342899 18,4698 0,00185653 1752,74 <td< td=""><td>0,00645666</td><td>2,15396</td><td>0,00299758</td><td>1261,85</td><td>110,002</td><td>-8,08293</td></td<>	0,00645666	2,15396	0,00299758	1261,85	110,002	-8,08293
0,0184944 3,4143 0,00541675 1367,03 110,002 -6,85025 -0,0703337 3,97951 -0,0176739 1402,11 110,003 -8,29406 -0,0112763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0102929 1472,25 109,991 -3,88694 0,0702672 6,30782 0,0111397 1507,31 110,004 -8,50128 0,0162926 7,35286 0,00221582 1542,36 110,001 -6,15509 -0,037286 8,57316 0,00434916 1577,44 110,005 -6,78147 0,0496085 9,99513 0,00496327 1612,5 109,996 -4,87148 0,0295996 11,6541 0,00253985 1647,55 110,004 -4,44283 0,0458676 13,5872 0,00033758 1682,6 109,998 -4,63155 0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 <t< td=""><td>-0,0721003</td><td>2,51087</td><td>-0,0287153</td><td>1296,89</td><td>109,994</td><td>-7,70615</td></t<>	-0,0721003	2,51087	-0,0287153	1296,89	109,994	-7,70615
-0,0703337 3,97951 -0,0176739 1402,11 110,003 -8,29406 -0,0112763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0102929 1472,25 109,991 -3,88694 0,0702672 6,30782 0,0111397 1507,31 110,004 -8,50128 0,0162926 7,35286 0,00221582 1542,36 110,001 -6,15509 -0,037286 8,57316 0,00434916 1577,44 110,005 -6,78147 0,0496085 9,99513 0,00496327 1612,5 109,996 -4,87148 0,0295996 11,6541 0,00253985 1647,55 110,004 -4,44283 0,00458676 13,5872 0,00033758 1682,6 109,998 -4,63155 0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 110 -7,98632	0,0179588	2,92701	0,00613556	1331,98	110,001	-7,0529
-0,0112763 4,6402 0,00243013 1437,18 109,998 -4,86202 0,0556728 5,40883 0,0102929 1472,25 109,991 -3,88694 0,0702672 6,30782 0,0111397 1507,31 110,004 -8,50128 0,0162926 7,35286 0,00221582 1542,36 110,001 -6,15509 -0,037286 8,57316 0,00434916 1577,44 110,005 -6,78147 0,0496085 9,99513 0,00496327 1612,5 109,996 -4,87148 0,0295996 11,6541 0,00253985 1647,55 110,004 -4,44283 0,00458676 13,5872 0,00033758 1682,6 109,998 -4,63155 0,0569173 15,8431 0,00359256 1717,69 110,001 -5,71142 0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 110 -7,98632	0,0184944	3,4143	0,00541675	1367,03	110,002	-6,85025
0,0556728 5,40883 0,0102929 1472,25 109,991 -3,88694 0,0702672 6,30782 0,0111397 1507,31 110,004 -8,50128 0,0162926 7,35286 0,00221582 1542,36 110,001 -6,15509 -0,037286 8,57316 0,00434916 1577,44 110,005 -6,78147 0,0496085 9,99513 0,00496327 1612,5 109,996 -4,87148 0,0295996 11,6541 0,00253985 1647,55 110,004 -4,44283 0,00458676 13,5872 0,00033758 1682,6 109,998 -4,63155 0,0569173 15,8431 0,00359256 1717,69 110,001 -5,71142 0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 110 -7,98632	-0,0703337	3,97951	-0,0176739	1402,11	110,003	-8,29406
0,0702672 6,30782 0,0111397 1507,31 110,004 -8,50128 0,0162926 7,35286 0,00221582 1542,36 110,001 -6,15509 -0,037286 8,57316 0,00434916 1577,44 110,005 -6,78147 0,0496085 9,99513 0,00496327 1612,5 109,996 -4,87148 0,0295996 11,6541 0,00253985 1647,55 110,004 -4,44283 0,00458676 13,5872 0,00033758 1682,6 109,998 -4,63155 0,0569173 15,8431 0,00359256 1717,69 110,001 -5,71142 0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 110 -7,98632	-0,0112763	4,6402	0,00243013	1437,18	109,998	-4,86202
0,0162926 7,35286 0,00221582 1542,36 110,001 -6,15509 -0,037286 8,57316 0,00434916 1577,44 110,005 -6,78147 0,0496085 9,99513 0,00496327 1612,5 109,996 -4,87148 0,0295996 11,6541 0,00253985 1647,55 110,004 -4,44283 0,00458676 13,5872 0,00033758 1682,6 109,998 -4,63155 0,0569173 15,8431 0,00359256 1717,69 110,001 -5,71142 0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 110 -7,98632	0,0556728	5,40883	0,0102929	1472,25	109,991	-3,88694
-0,037286 8,57316 0,00434916 1577,44 110,005 -6,78147 0,0496085 9,99513 0,00496327 1612,5 109,996 -4,87148 0,0295996 11,6541 0,00253985 1647,55 110,004 -4,44283 0,00458676 13,5872 0,00033758 1682,6 109,998 -4,63155 0,0569173 15,8431 0,00359256 1717,69 110,001 -5,71142 0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 110 -7,98632	0,0702672	6,30782	0,0111397	1507,31	110,004	-8,50128
0,0496085 9,99513 0,00496327 1612,5 109,996 -4,87148 0,0295996 11,6541 0,00253985 1647,55 110,004 -4,44283 0,00458676 13,5872 0,00033758 1682,6 109,998 -4,63155 0,0569173 15,8431 0,00359256 1717,69 110,001 -5,71142 0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 110 -7,98632	0,0162926	7,35286	0,00221582	1542,36	110,001	-6,15509
0,0295996 11,6541 0,00253985 1647,55 110,004 -4,44283 0,00458676 13,5872 0,00033758 1682,6 109,998 -4,63155 0,0569173 15,8431 0,00359256 1717,69 110,001 -5,71142 0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 110 -7,98632	-0,037286	8,57316	0,00434916	1577,44	110,005	-6,78147
0,00458676 13,5872 0,00033758 1682,6 109,998 -4,63155 0,0569173 15,8431 0,00359256 1717,69 110,001 -5,71142 0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 110 -7,98632	0,0496085	9,99513	0,00496327	1612,5	109,996	-4,87148
0,0569173 15,8431 0,00359256 1717,69 110,001 -5,71142 0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 110 -7,98632	0,0295996	11,6541	0,00253985	1647,55	110,004	-4,44283
0,0342899 18,4698 0,00185653 1752,74 109,992 -6,88942 0,024285 21,5365 0,00112762 1787,81 110 -7,98632	0,00458676	13,5872	0,00033758	1682,6	109,998	-4,63155
0,024285 21,5365 0,00112762 1787,81 110 -7,98632	0,0569173	15,8431	0,00359256	1717,69	110,001	-5,71142
	0,0342899	18,4698	0,00185653	1752,74	109,992	-6,88942
0,0643577 25,1105 0,00256298 1822,88 109,994 -5,7604	0,024285	21,5365	0,00112762	1787,81	110	-7,98632
	0,0643577	25,1105	0,00256298	1822,88	109,994	-5,7604

3,60722 1584,44 0,00227665 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228724 2839,67 110 -15,3926 5,75297 2511,27 0,00229086 2874,71 109,999 -17,0147 17,0892 7353,94 0,00232381 3120,19 109,997 -47,3879 19,9495 8574,33 0,00232666 3155,28 109,998 -64,5662 23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023882 3435,77 110,002						
0,095304 39,7942 0,00239492 1928,05 109,999 -7,54212 0,101834 46,4028 0,00219456 1963,09 110,001 -5,70387 0,131021 54,097 0,0024126 1998,18 109,997 -7,08193 0,145876 63,076 0,0023127 2033,23 109,999 -6,33779 0,1687777 85,741 0,00219005 2103,35 110,004 -5,76696 0,228207 99,9659 0,00228285 2138,42 109,998 -5,63264 0,266508 116,553 0,00228659 2173,47 109,999 -5,81365 0,306723 135,89 0,00223699 2243,6 110,005 -6,68415 0,417655 184,724 0,00223699 2243,6 110,005 -6,68415 0,417655 184,724 0,00223487 2313,75 109,999 -7,74306 0,561044 251,104 0,0022318 2383,89 110 -10,8407 0,653401 292,769 0,0022318 238,88 100 <t< td=""><td>0,0695716</td><td>29,2763</td><td>0,00237638</td><td>1857,92</td><td>110,005</td><td>-5,09915</td></t<>	0,0695716	29,2763	0,00237638	1857,92	110,005	-5,09915
0,101834 46,4028 0,00219456 1963,09 110,001 -5,70387 0,131021 54,097 0,00242196 1998,18 109,997 -7,08193 0,145876 63,076 0,0023127 2033,23 109,999 -6,33779 0,168985 73,5363 0,00229798 2068,3 109,999 -6,74642 0,187777 85,741 0,00219005 2103,35 110,004 -5,76696 0,228207 99,9659 0,00228285 2138,42 109,998 -5,63264 0,266508 116,553 0,00228659 2173,47 109,999 -5,81365 0,306723 135,89 0,00223699 2243,6 110,005 -6,68415 0,417655 184,724 0,00223097 2278,68 109,999 -7,74306 0,482623 215,373 0,00224087 2313,75 109,999 -7,74306 0,561044 251,104 0,0022343 2348,82 109,997 -10,1014 0,653401 292,769 0,0022316 2453,99 110	0,0743937	34,1321	0,00217958	1892,99	110,008	-7,47611
0,131021 54,097 0,00242196 1998,18 109,997 -7,08193 0,145876 63,076 0,0023127 2033,23 109,999 -6,33779 0,168985 73,5363 0,00229798 2068,3 109,999 -6,74642 0,187777 85,741 0,00219005 2103,35 110,004 -5,76696 0,228207 99,9659 0,00228285 2138,42 109,998 -5,63264 0,266508 116,553 0,00228659 2173,47 109,999 -5,81365 0,36723 135,89 0,00223699 2243,6 110,005 -6,68415 0,417655 184,724 0,00223697 2278,68 109,998 -7,89703 0,482623 215,373 0,00224087 2313,75 109,999 -7,74306 0,561044 251,104 0,00223182 238,882 109,997 -10,1014 0,653401 292,769 0,00223182 238,89 110 -10,8407 0,761023 341,338 0,00223182 238,98 110 <t< td=""><td>0,095304</td><td>39,7942</td><td>0,00239492</td><td>1928,05</td><td>109,999</td><td>-7,54212</td></t<>	0,095304	39,7942	0,00239492	1928,05	109,999	-7,54212
0,145876 63,076 0,0023127 2033,23 109,999 -6,33779 0,168985 73,5363 0,00229798 2068,3 109,999 -6,74642 0,187777 85,741 0,00219005 2103,35 110,004 -5,76696 0,228207 99,9659 0,00228859 2173,47 109,999 -5,63264 0,266508 116,553 0,00228659 2173,47 109,999 -5,81365 0,306723 135,89 0,00225713 2208,51 109,999 -7,90576 0,354441 158,446 0,00223699 2243,6 110,005 -6,68415 0,417655 184,724 0,00223697 2278,68 109,999 -7,89703 0,482623 215,373 0,00224087 2313,75 109,999 -7,74306 0,561044 251,104 0,0022341 2348,82 109,997 -10,1014 0,653401 292,769 0,0022318 2383,89 110 -10,8407 0,761023 341,338 0,00222953 2418,96 110	0,101834	46,4028	0,00219456	1963,09	110,001	-5,70387
0,168985 73,5363 0,00229798 2068,3 109,999 -6,74642 0,187777 85,741 0,00219005 2103,35 110,004 -5,76696 0,228207 99,9659 0,00228285 2138,42 109,998 -5,63264 0,266508 116,553 0,00228659 2173,47 109,999 -5,81365 0,306723 135,89 0,00223713 2208,51 109,992 -7,90576 0,354441 158,446 0,00223699 2243,6 110,005 -6,68415 0,417655 184,724 0,00226097 2278,68 109,999 -7,74306 0,482623 215,373 0,00224087 2313,75 109,999 -7,74306 0,561044 251,104 0,00223431 2348,82 109,997 -10,1014 0,653401 292,769 0,0022318 2383,89 110 -10,4079 0,888088 397,953 0,0022318 2383,89 110 -11,01079 0,888088 397,953 0,0022312 254,94 110 <td< td=""><td>0,131021</td><td>54,097</td><td>0,00242196</td><td>1998,18</td><td>109,997</td><td>-7,08193</td></td<>	0,131021	54,097	0,00242196	1998,18	109,997	-7,08193
0,187777 85,741 0,00219005 2103,35 110,004 -5,76696 0,228207 99,9659 0,00228285 2138,42 109,998 -5,63264 0,266508 116,553 0,00228659 2173,47 109,999 -5,81365 0,306723 135,89 0,00223699 2243,6 110,005 -6,68415 0,417655 184,724 0,00226097 2278,68 109,998 -7,89703 0,482623 215,373 0,00224087 2313,75 109,999 -7,74306 0,561044 251,104 0,00223418 2348,82 109,997 -10,1014 0,653401 292,769 0,0022318 2383,89 110 -10,8407 0,761023 341,338 0,00222953 2418,96 110 -10,1014 0,888088 397,953 0,00223164 2453,99 110 -11,7373 1,03321 464 0,00222675 2489,08 110,003 -10,912 1,2064 541,001 0,00222675 2489,08 110,003 -11,	0,145876	63,076	0,0023127	2033,23	109,999	-6,33779
0,228207 99,9659 0,00228285 2138,42 109,998 -5,63264 0,266508 116,553 0,00228659 2173,47 109,999 -5,81365 0,306723 135,89 0,00225713 2208,51 109,992 -7,90576 0,354441 158,446 0,00223699 2243,6 110,005 -6,68415 0,417655 184,724 0,00224087 2313,75 109,998 -7,89703 0,482623 215,373 0,00224087 2313,75 109,999 -7,74306 0,561044 251,104 0,00223418 2348,82 109,997 -10,1014 0,653401 292,769 0,0022318 2383,89 110 -10,8407 0,761023 341,338 0,00222953 2418,96 110 -10,1079 0,888088 397,953 0,0022316 2453,99 110 -11,7373 1,0321 464 0,00222675 2489,08 110,003 -10,912 1,2064 541,001 0,00222694 2524,13 109,999 -9,55	0,168985	73,5363	0,00229798	2068,3	109,999	-6,74642
0,266508 116,553 0,00228659 2173,47 109,999 -5,81365 0,306723 135,89 0,00225713 2208,51 109,992 -7,90576 0,354441 158,446 0,00223699 2243,6 110,005 -6,68415 0,417655 184,724 0,00226097 2278,68 109,999 -7,89703 0,482623 215,373 0,00224087 2313,75 109,999 -7,74306 0,561044 251,104 0,0022318 2383,89 110 -10,8407 0,653401 292,769 0,0022318 2383,89 110 -10,1079 0,888088 397,953 0,00222953 2418,96 110 -11,01079 0,888088 397,953 0,00222164 2453,99 110 -11,7373 1,03321 464 0,00222974 2524,13 10,9099 -9,55056 1,40723 630,771 0,00223097 2594,2 109,997 -11,5186 1,64312 735,438 0,0022342 2594,24 110 -10,942	0,187777	85,741	0,00219005	2103,35	110,004	-5,76696
0,306723 135,89 0,00225713 2208,51 109,992 -7,90576 0,354441 158,446 0,00223699 2243,6 110,005 -6,68415 0,417655 184,724 0,00226097 2278,68 109,998 -7,89703 0,482623 215,373 0,00224087 2313,75 109,999 -7,74306 0,561044 251,104 0,0022318 2383,89 110 -10,8407 0,761023 341,338 0,00222953 2418,96 110 -10,1079 0,888088 397,953 0,00223164 2453,99 110 -11,7373 1,03321 464 0,00222675 2489,08 110,003 -10,9122 1,2064 541,001 0,0022349 2524,13 109,999 -9,55056 1,40723 630,771 0,0022349 2559,2 109,997 -11,5186 1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,9224 857,407 0,0022492 2629,31 110,003 -11,9652	0,228207	99,9659	0,00228285	2138,42	109,998	-5,63264
0,354441 158,446 0,00223699 2243,6 110,005 -6,68415 0,417655 184,724 0,00226097 2278,68 109,998 -7,89703 0,482623 215,373 0,00224087 2313,75 109,999 -7,74306 0,561044 251,104 0,0022318 2383,89 110 -10,8407 0,761023 341,338 0,00222953 2418,96 110 -10,1079 0,888088 397,953 0,00223164 2453,99 110 -11,7373 1,03321 464 0,00222675 2489,08 110,003 -10,9122 1,2064 541,001 0,00223097 2559,2 109,997 -11,5186 1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,00227023 273,47 109,995 -12,5407	0,266508	116,553	0,00228659	2173,47	109,999	-5,81365
0,417655 184,724 0,00226097 2278,68 109,998 -7,89703 0,482623 215,373 0,00224087 2313,75 109,999 -7,74306 0,561044 251,104 0,00223431 2348,82 109,997 -10,1014 0,653401 292,769 0,0022318 2383,89 110 -10,8407 0,761023 341,338 0,00222953 2418,96 110 -10,1079 0,888088 397,953 0,00223164 2453,99 110 -11,7373 1,03321 464 0,00222675 2489,08 110,003 -10,9122 1,2064 541,001 0,00223097 2559,2 109,997 -11,5186 1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00225406 2664,36 110,003 -10,7585 3,08514 1358,95 0,00227023 2734,47 109,995 -12,036 <td>0,306723</td> <td>135,89</td> <td>0,00225713</td> <td>2208,51</td> <td>109,992</td> <td>-7,90576</td>	0,306723	135,89	0,00225713	2208,51	109,992	-7,90576
0,482623 215,373 0,00224087 2313,75 109,999 -7,74306 0,561044 251,104 0,00223431 2348,82 109,997 -10,1014 0,653401 292,769 0,0022318 2383,89 110 -10,8407 0,761023 341,338 0,00222953 2418,96 110 -10,1079 0,888088 397,953 0,00223164 2453,99 110 -11,7373 1,03321 464 0,00222675 2489,08 110,003 -10,9122 1,2064 541,001 0,00223097 2559,2 109,999 -9,55056 1,40723 630,771 0,00223097 2559,2 109,997 -11,5186 1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,0022765 2769,54 109,999 -12,5407	0,354441	158,446	0,00223699	2243,6	110,005	-6,68415
0,561044 251,104 0,00223431 2348,82 109,997 -10,1014 0,653401 292,769 0,0022318 2383,89 110 -10,8407 0,761023 341,338 0,00222953 2418,96 110 -10,1079 0,888088 397,953 0,00223164 2453,99 110 -11,7373 1,03321 464 0,00222675 2489,08 110,003 -10,9122 1,2064 541,001 0,00222994 2524,13 109,999 -9,55056 1,40723 630,771 0,00223097 2559,2 109,997 -11,5186 1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00225406 2664,36 110,003 -10,94 2,64308 1165,49 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,0022765 2769,54 109,995 -12,5407	0,417655	184,724	0,00226097	2278,68	109,998	-7,89703
0,653401 292,769 0,0022318 2383,89 110 -10,8407 0,761023 341,338 0,00222953 2418,96 110 -10,1079 0,888088 397,953 0,00223164 2453,99 110 -11,7373 1,03321 464 0,00222675 2489,08 110,003 -10,9122 1,2064 541,001 0,00223097 2559,2 109,999 -9,55056 1,40723 630,771 0,0022342 2594,24 110 -10,8954 1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00225406 2664,36 110,003 -10,94 2,64308 1165,49 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,00227665 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 <td>0,482623</td> <td>215,373</td> <td>0,00224087</td> <td>2313,75</td> <td>109,999</td> <td>-7,74306</td>	0,482623	215,373	0,00224087	2313,75	109,999	-7,74306
0,761023 341,338 0,00222953 2418,96 110 -10,1079 0,888088 397,953 0,00223164 2453,99 110 -11,7373 1,03321 464 0,00222675 2489,08 110,003 -10,9122 1,2064 541,001 0,0022397 2559,2 109,999 -9,55056 1,40723 630,771 0,00223097 2559,2 109,997 -11,5186 1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00225406 2664,36 110,003 -10,94 2,64308 1165,49 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,00227023 2734,47 109,999 -12,5407 4,21485 1847,28 0,00228165 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204	0,561044	251,104	0,00223431	2348,82	109,997	-10,1014
0,888088 397,953 0,00223164 2453,99 110 -11,7373 1,03321 464 0,00222675 2489,08 110,003 -10,9122 1,2064 541,001 0,00222994 2524,13 109,999 -9,55056 1,40723 630,771 0,00223097 2559,2 109,997 -11,5186 1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00225406 2664,36 110,003 -10,7585 3,08514 1358,95 0,00227023 2734,47 109,995 -12,036 3,60722 1584,44 0,00227665 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228765 2874,71 109,999 -17,0147 17,0892 7353,94 0,0023381 3120,19 109,997 -47,3879<	0,653401	292,769	0,0022318	2383,89	110	-10,8407
1,03321 464 0,00222675 2489,08 110,003 -10,9122 1,2064 541,001 0,00222994 2524,13 109,999 -9,55056 1,40723 630,771 0,00223097 2559,2 109,997 -11,5186 1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00225406 2664,36 110,003 -10,94 2,64308 1165,49 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,00227023 2734,47 109,995 -12,036 3,60722 1584,44 0,00227665 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228765 2769,54 109,999 -17,0147 17,0892 7353,94 0,002238165 2804,6 110,001 -14,0204	0,761023	341,338	0,00222953	2418,96	110	-10,1079
1,2064 541,001 0,00222994 2524,13 109,999 -9,55056 1,40723 630,771 0,00223097 2559,2 109,997 -11,5186 1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00225406 2664,36 110,003 -10,94 2,64308 1165,49 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,00227023 2734,47 109,995 -12,036 3,60722 1584,44 0,00227665 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228724 2839,67 110 -15,3926 5,75297 2511,27 0,00232381 3120,19 109,997 -47,3879 19,9495 8574,33 0,00232381 3120,19 109,997 -47,3879	0,888088	397,953	0,00223164	2453,99	110	-11,7373
1,40723 630,771 0,00223097 2559,2 109,997 -11,5186 1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00225406 2664,36 110,003 -10,94 2,64308 1165,49 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,00227023 2734,47 109,995 -12,036 3,60722 1584,44 0,00228165 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228724 2839,67 110 -15,3926 5,75297 2511,27 0,00229086 2874,71 109,999 -17,0147 17,0892 7353,94 0,00232381 3120,19 109,997 -47,3879 19,9495 8574,33 0,00233018 3190,35 109,996 -84,831	1,03321	464	0,00222675	2489,08	110,003	-10,9122
1,64312 735,438 0,0022342 2594,24 110 -10,8954 1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00225406 2664,36 110,003 -10,74 2,64308 1165,49 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,00227023 2734,47 109,995 -12,036 3,60722 1584,44 0,00227665 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228724 2839,67 110 -15,3926 5,75297 2511,27 0,00229086 2874,71 109,999 -47,3879 19,9495 8574,33 0,0023381 3120,19 109,997 -47,3879 19,9495 8574,33 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,9	1,2064	541,001	0,00222994	2524,13	109,999	-9,55056
1,92224 857,407 0,00224192 2629,31 110,003 -11,9652 2,25334 999,683 0,00225406 2664,36 110,003 -10,94 2,64308 1165,49 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,00227023 2734,47 109,995 -12,036 3,60722 1584,44 0,00227665 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228724 2839,67 110 -15,3926 5,75297 2511,27 0,00229086 2874,71 109,999 -17,0147 17,0892 7353,94 0,00232381 3120,19 109,997 -47,3879 19,9495 8574,33 0,00232666 3155,28 109,998 -64,5662 23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,0023312 3295,54	1,40723	630,771	0,00223097	2559,2	109,997	-11,5186
2,25334 999,683 0,00225406 2664,36 110,003 -10,94 2,64308 1165,49 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,00227023 2734,47 109,995 -12,036 3,60722 1584,44 0,00227665 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228724 2839,67 110 -15,3926 5,75297 2511,27 0,00229086 2874,71 109,999 -17,0147 17,0892 7353,94 0,00232381 3120,19 109,997 -47,3879 19,9495 8574,33 0,002332666 3155,28 109,998 -64,5662 23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,0023359 3260,48 109,997 -15	1,64312	735,438	0,0022342	2594,24	110	-10,8954
2,64308 1165,49 0,00226779 2699,4 110,002 -10,7585 3,08514 1358,95 0,00227023 2734,47 109,995 -12,036 3,60722 1584,44 0,00227665 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228724 2839,67 110 -15,3926 5,75297 2511,27 0,00229086 2874,71 109,999 -17,0147 17,0892 7353,94 0,0023281 3120,19 109,997 -47,3879 19,9495 8574,33 0,00232666 3155,28 109,998 -64,5662 23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 <t< td=""><td>1,92224</td><td>857,407</td><td>0,00224192</td><td>2629,31</td><td>110,003</td><td>-11,9652</td></t<>	1,92224	857,407	0,00224192	2629,31	110,003	-11,9652
3,08514 1358,95 0,00227023 2734,47 109,995 -12,036 3,60722 1584,44 0,00227665 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228724 2839,67 110 -15,3926 5,75297 2511,27 0,00229086 2874,71 109,999 -17,0147 17,0892 7353,94 0,00232381 3120,19 109,997 -47,3879 19,9495 8574,33 0,00232666 3155,28 109,998 -64,5662 23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 <t< td=""><td>2,25334</td><td>999,683</td><td>0,00225406</td><td>2664,36</td><td>110,003</td><td>-10,94</td></t<>	2,25334	999,683	0,00225406	2664,36	110,003	-10,94
3,60722 1584,44 0,00227665 2769,54 109,999 -12,5407 4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228724 2839,67 110 -15,3926 5,75297 2511,27 0,00229086 2874,71 109,999 -17,0147 17,0892 7353,94 0,00232381 3120,19 109,997 -47,3879 19,9495 8574,33 0,00232666 3155,28 109,998 -64,5662 23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233312 3295,54 110 -209,184 43,1459 18473,2 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023882 3435,77	2,64308	1165,49	0,00226779	2699,4	110,002	-10,7585
4,21485 1847,28 0,00228165 2804,6 110,001 -14,0204 4,92646 2153,89 0,00228724 2839,67 110 -15,3926 5,75297 2511,27 0,00229086 2874,71 109,999 -17,0147 17,0892 7353,94 0,00232381 3120,19 109,997 -47,3879 19,9495 8574,33 0,00232666 3155,28 109,998 -64,5662 23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233312 3295,54 110 -209,184 43,1459 18473,2 0,0023359 330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,	3,08514	1358,95	0,00227023	2734,47	109,995	-12,036
4,92646 2153,89 0,00228724 2839,67 110 -15,3926 5,75297 2511,27 0,00229086 2874,71 109,999 -17,0147 17,0892 7353,94 0,00232381 3120,19 109,997 -47,3879 19,9495 8574,33 0,00232666 3155,28 109,998 -64,5662 23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233312 3295,54 110 -209,184 43,1459 18473,2 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,00228803 3505,9 11	3,60722	1584,44	0,00227665	2769,54	109,999	-12,5407
5,75297 2511,27 0,00229086 2874,71 109,999 -17,0147 17,0892 7353,94 0,00232381 3120,19 109,997 -47,3879 19,9495 8574,33 0,00232666 3155,28 109,998 -64,5662 23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233312 3295,54 110 -209,184 43,1459 18473,2 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,0023803 3505,9 110,001 -92	4,21485	1847,28	0,00228165	2804,6	110,001	-14,0204
17,0892 7353,94 0,00232381 3120,19 109,997 -47,3879 19,9495 8574,33 0,00232666 3155,28 109,998 -64,5662 23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233312 3295,54 110 -209,184 43,1459 18473,2 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,0023111 3470,83 110,001 -927,165 91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	4,92646	2153,89	0,00228724	2839,67	110	-15,3926
19,9495 8574,33 0,00232666 3155,28 109,998 -64,5662 23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233312 3295,54 110 -209,184 43,1459 18473,2 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,0023111 3470,83 110,001 -927,165 91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	5,75297	2511,27	0,00229086	2874,71	109,999	-17,0147
23,2939 9996,58 0,00233018 3190,35 109,996 -84,8317 27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233312 3295,54 110 -209,184 43,1459 18473,2 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,0023111 3470,83 110,001 -927,165 91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	17,0892	7353,94	0,00232381	3120,19	109,997	-47,3879
27,2422 11656,2 0,00233714 3225,41 110,002 -117,409 31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233312 3295,54 110 -209,184 43,1459 18473,2 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,0023111 3470,83 110,001 -927,165 91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	19,9495	8574,33	0,00232666	3155,28	109,998	-64,5662
31,7438 13589 0,00233599 3260,48 109,997 -156,021 36,9653 15843,7 0,00233312 3295,54 110 -209,184 43,1459 18473,2 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,0023111 3470,83 110,001 -927,165 91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	23,2939	9996,58	0,00233018	3190,35	109,996	-84,8317
36,9653 15843,7 0,00233312 3295,54 110 -209,184 43,1459 18473,2 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,0023111 3470,83 110,001 -927,165 91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	27,2422	11656,2	0,00233714	3225,41	110,002	-117,409
43,1459 18473,2 0,00233559 3330,61 109,999 -281,467 50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,0023111 3470,83 110,001 -927,165 91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	31,7438	13589	0,00233599	3260,48	109,997	-156,021
50,4263 21535,4 0,00234155 3365,64 110,002 -380,263 58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,0023111 3470,83 110,001 -927,165 91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	36,9653	15843,7	0,00233312	3295,54	110	-209,184
58,7178 25110,2 0,0023384 3400,7 109,998 -509,809 68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,0023111 3470,83 110,001 -927,165 91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	43,1459	18473,2	0,00233559	3330,61	109,999	-281,467
68,1589 29275,4 0,0023282 3435,77 110,002 -689,865 78,8843 34132,8 0,0023111 3470,83 110,001 -927,165 91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	50,4263	21535,4	0,00234155	3365,64	110,002	-380,263
78,8843 34132,8 0,0023111 3470,83 110,001 -927,165 91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	58,7178	25110,2	0,0023384	3400,7	109,998	-509,809
91,0549 39796,2 0,00228803 3505,9 110,001 -1244,52	68,1589	29275,4	0,0023282	3435,77	110,002	-689,865
	78,8843	34132,8	0,0023111	3470,83	110,001	-927,165
104,979 46397,7 0,00226258 3540,94 110 -1665,7	91,0549	39796,2	0,00228803	3505,9	110,001	-1244,52
	104,979	46397,7	0,00226258	3540,94	110	-1665,7

CAPITULO 4

ANALISIS DE LOS RESULTADOS

El capítulo detalla el comportamiento del ángulo de inyección y su relación con los resultados de los ensayos reológicos de los aceites vegetales.

4.1 FORMACION DEL ANGULO DE INYECCION.

A continuación se muestran los resultados finales, obtenidos al realizar los ensayos en el equipo NOZZLE TEST MASTER - Probador de inyectores, se puede apreciar la comparación entre las presiones de trabajo para la formación del ángulo de inyección y el valor del mismo, en cuanto se aumenta o disminuye presión mediante la compresión en el muelle del inyector a través del tornillo de reglaje del mismo.

Tabla 40. Resultados de presión y ángulo de inyección

Compresión	Aceite Soja			Aceite Jatropha			
muelle del	Ángulo	Presión	(lb/in^2)	Ángulo	Presión (lb/in^2)	
inyector	(Grados)	$\boldsymbol{P_o}$	P_f	(Grados)	$\boldsymbol{P_o}$	P_f	
MENOR	12,4	149,25	295,25	17,65	153,75	363,25	
ORIGINAL	65,7	213	384	67,6	216,25	393,25	
MAYOR	72,3	263,5	526,75	72,45	294	550,25	
Compresión	Ace	ite de Pal	ma	Diésel			
muelle del inyector	Ángulo	Presión	(lb/in^2)	Ángulo	Presión (lb/in²)	
myccioi	(Grados)	$\boldsymbol{P_o}$	P_f	(Grados)	$\boldsymbol{P_o}$	P_f	
MENOR	12,55	155,75	335,25	34,9	153,75	334,25	
ORIGINAL	59,7	196,5	388,75	56,65	156,25	345.5	
MAYOR	62,85	291,75	551,5	61,65	161,5	495	

Compresión	Mezcla 50% aceite palma virgen- 50% diésel			Emulsión con aceite palma virgen			
muelle del	Ángulo	Presión	(lb/in^2)	Ángulo	Presión	(lb/in^2)	
inyector	(Grados)	$\boldsymbol{P_o}$	P_f	(Grados)	$\boldsymbol{P_o}$	P_f	
ORIGINAL	65,35	214,5	410,75	56,85	217,25	411,5	
MAYOR	72,15	325	529,25	69,25	315,75	525,75	
	Aceite	de palma usada		Mezcla 50% aceite de palma usada- 50% diesel			
Compresión	120010	ac paiin				-	
muelle del	Ángulo	-	(lb/in^2)	usac Ángulo	da- 50%di	-	
_		-		usac	da- 50%di	iesel	
muelle del	Ángulo	Presión	(lb/in^2)	usac Ángulo	da- 50%di Presión	iesel (<i>lb/in</i> ²)	

En busca de obtención de valores de ángulo de inyección en similitud al formado por el combustible diésel, utilizando razonamiento deductivo-hipotético se procedió a establecer regulaciones de compresión de inyección en el muelle del inyector mediante el tornillo de reglaje obteniendo mayores o menores presiones de inyección como se mencionó anteriormente.

Tabla 41.

Compresión regulada en el muelle del inyector

Muestra	COMPRESION REGULADA EN EL MUELLE DEL INYECTOR					
	$P_o(lb/in^2)$	$P_f(lb/in^2)$	Ángulo(grados)			
Aceite de soja	201,25	399,75	57,05			
Aceite de Jatropha	196,5	398,75	58,1			
Aceite de palma	177,75	414	56,05			
Diésel	153,25	349	55,75			
Aceite de palma usada	188,25	393,5	57,35			
Mezcla 50%aceite de palma virgen- 50%diesel	183,5	396,5	58,1			
Mezcla 50%aceite de palma usado- 50%diesel	187,5	378,75	58,7			

En el caso de la emulsión realizada a base del aceite virgen de palma, el ensayo con la compresión regulada no se lo hizo debido a que con la compresión normal para la presión del inyector dio resultados de ángulos de pulverización en rangos similares a las del diésel.

Así también en cuanto a los ensayos respectivos de la disminución de compresión del muelle del inyector, no se realizaron ni para la emulsión ni para ninguna mezcla. Esto debido a que con los primeros ensayos realizados a los aceites vegetales se logró determinar que lógicamente al disminuir dicha compresión iba a descender el valor del ángulo de inyección y no se iba a poder observar una buena formación del mismo, caso contrario de lo que sucedía al aumentar la compresión, aumentaba tanto la presión como el ángulo de inyección, cada uno con un comportamiento diferente al momento de la pulverización, esto debido a la viscosidad que posee cada aceite.

En las siguientes graficas se puede observar el comportamiento del ángulo de inyección a una compresión normal, incrementada o disminuida de inyección en el inyector

4.1.1 GRAFICA DEL COMPORTAMIENTO DEL ACEITE DE PALMA VIRGEN.

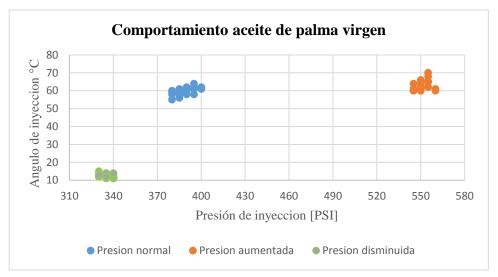


Figura 49. Comportamiento del aceite de palma virgen.

Como se puede apreciar en la figura el aceite de palma virgen presenta un ángulo de pulverización entre 52°C - 65°C con rangos de presión normal de 380 PSI – 410 PSI, también se puede observar que al disminuir presión en ángulo de inyección cae

radicalmente así como al incrementar presión el ángulo incrementa en valores de 60°C y 72°C.

4.1.2 GRAFICA DEL COMPORTAMIENTO DEL ACEITE DE SOJA.

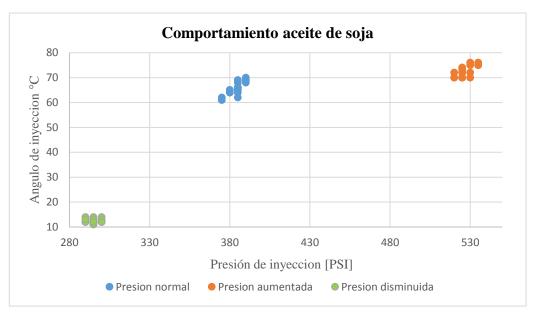


Figura 50. Comportamiento del aceite de Soja

4.1.3 GRAFICA DEL COMPORTAMIENTO DEL ACEITE DE JATROPHA.

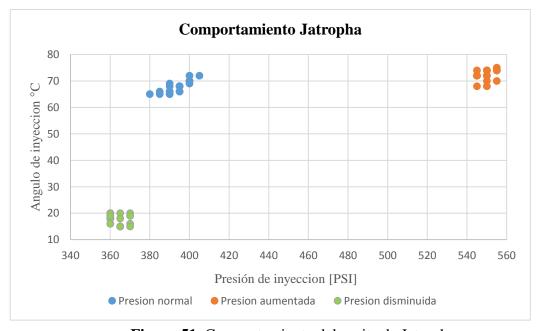


Figura 51. Comportamiento del aceite de Jatropha

4.1.4 GRAFICA DEL COMPORTAMIENTO DEL DIESEL.

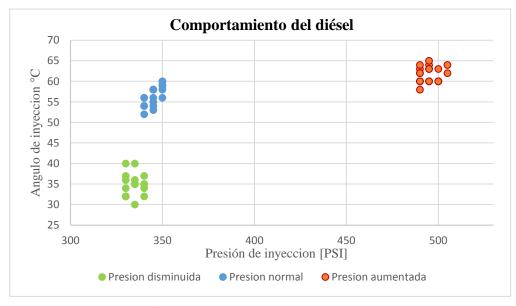


Figura 52. Comportamiento del diésel.

Esta gráfica nos muestra valores ideales (puntos azules) que se deberían dar al momento de una correcta pulverización.

4.1.5 GRAFICA DEL COMPORTAMIENTO DEL ACEITE DE PALMA USADA.

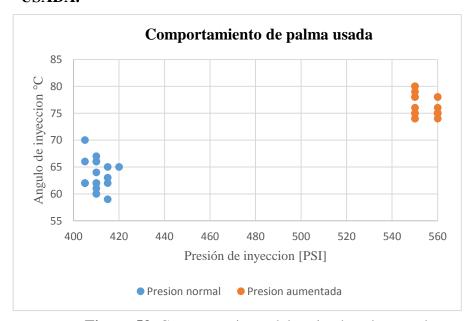
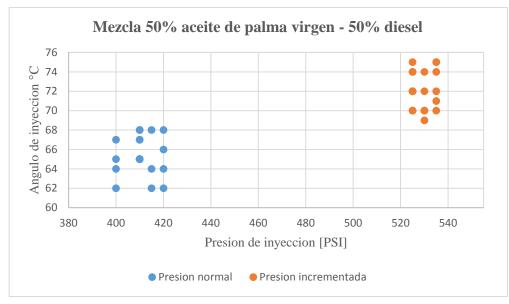



Figura 53. Comportamiento del aceite de palma usada

4.1.6 GRAFICA DEL COMPORTAMIENTO DE LA MEZCLA DE ACEITE DE PALMA VIRGEN-DIESEL.

Figura 54. Comportamiento de la mezcla de aceite de palma virgendiésel.

4.1.7 GRAFICA DEL COMPORTAMIENTO DE LA MEZCLA ACEITE DE PALMA USADA-DIESEL.

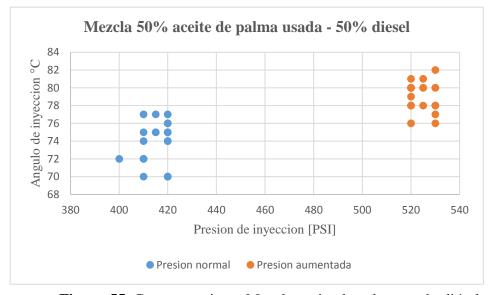


Figura 55. Comportamiento Mezcla aceite de palma usada-diésel

4.1.8 GRAFICA DEL COMPORTAMIENTO DE LA EMULSION.

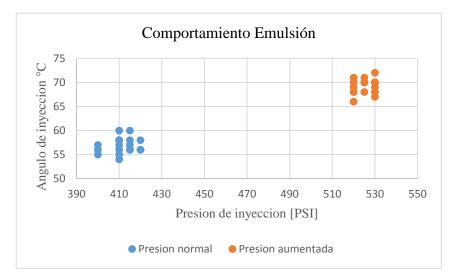
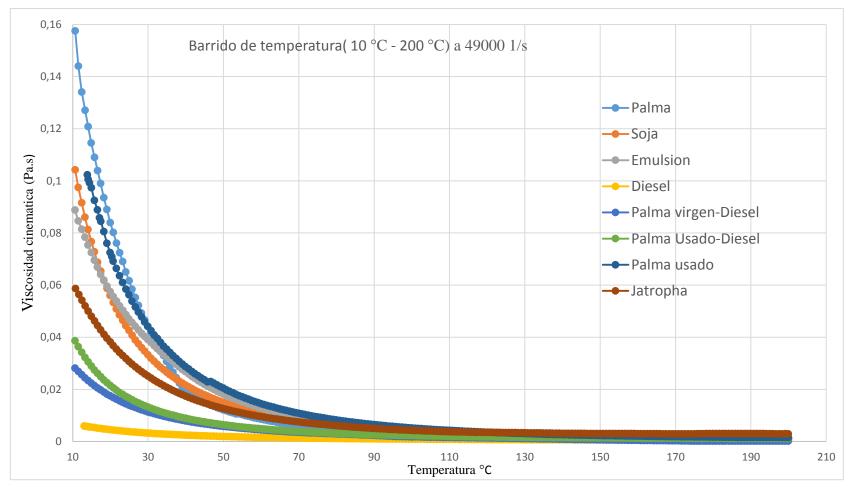


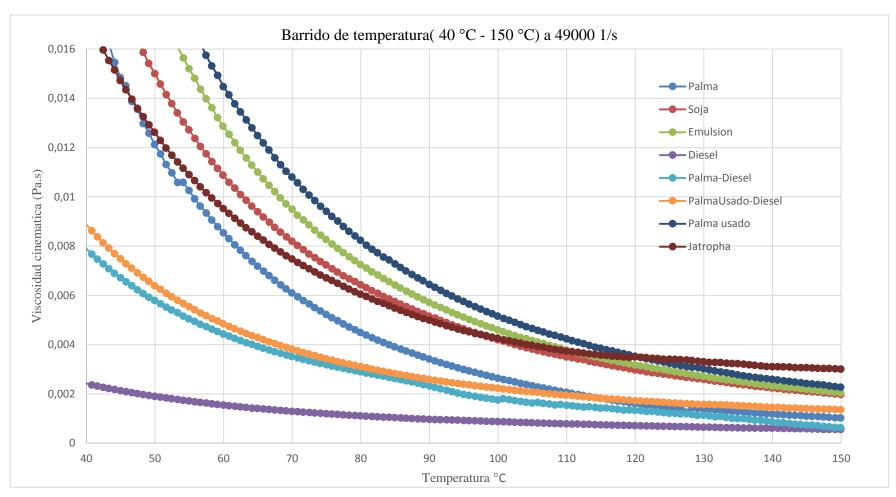
Figura 56. Comportamiento de la emulsión.

4.1.9 ANALISIS GENERAL DE LAS GRAFICAS DEL ANGULO DE INYECCION.

- En las gráficas podemos observar que cada aceite muestra valores distintos de ángulo de inyección, ya sea que se hayan realizado a una presión normal, disminuida o incrementada.
- Como se pudo observar, al disminuir compresión de inyección en el inyector también disminuye la presión y por ende el ángulo de inyección, así mismo sucede al aumentar compresión, aumenta presión y aumenta el ángulo de inyección.
- El hecho de disminuir compresión en el inyector, no mostro una formación de pulverización muy clara, dando valores pequeños de ángulo de inyección, es por eso que se excluyó de realizar este ensayo para las mezclas y la emulsión.
- Los puntos rojos en las gráficas pertenecientes a un aumento de presión muestran valores de una presión máxima a la cual se puede visualizar una mejor formación de ángulo de inyección, ya que al exceder dicho aumento, la formación de pulverización se evaporiza siendo imposible hacer capturas para la cámara de alta velocidad utilizada. No obstante este es una


zona que debe ser explorada desde el punto de vista de la combustión pues la mejor combinación aire-combustible puede resultar beneficiosa.

- Se puede observar que a una compresión normal del inyector el aceite de palma muestra diferencias al estar en estado virgen y usado, es así que el aceite de palma usada muestra valores más altos de ángulo formado tanto en una compresión normal o mayor del inyector.
- El mismo análisis se da al momento de mezclar 50% de combustible diésel con 50% de aceite de palma virgen o usada, se observa un aumento de valores de ángulo de inyección al realizar ensayos con compresión normal o incrementada en el inyector.
- La gráfica del diésel nos muestra valores ideales de ángulo de inyección que se deberían dar al realizar con un inyector a una compresión normal de inyección, es debido a esto que se procedió hacer regulaciones pertinentes en el muelle del inyector y ensayar a los aceites, mezclas y emulsión para lograr similitud de dichos valores.
- En la gráfica de la emulsión observamos que al momento de ensayar a una compresión normal de inyección dio valores similares a los del diésel, al igual que el aceite de palma virgen.
- Entre las muestras ensayadas a compresión normal del inyector las que dieron el mayor ángulo de inyección está la mezcla 50% de aceite de palma usada-50% diésel con 73,8°, seguida del aceite de Jatropha con 67,6°, mientras que al aumentar compresión, el aceite de palma usada es una de las que más aumenta su ángulo de inyección cuando aumenta la presión.


4.2 ESTUDIO REOLOGICO.

Los ensayos realizados permitieron determinar la viscosidad cinemática de los aceites, mezclas y emulsión. Con el barrido de temperatura se logró observar el comportamiento de la viscosidad de cada uno estos aceites ante cambios de temperatura y con una tasa de cizalla constante de 49000 1/s.

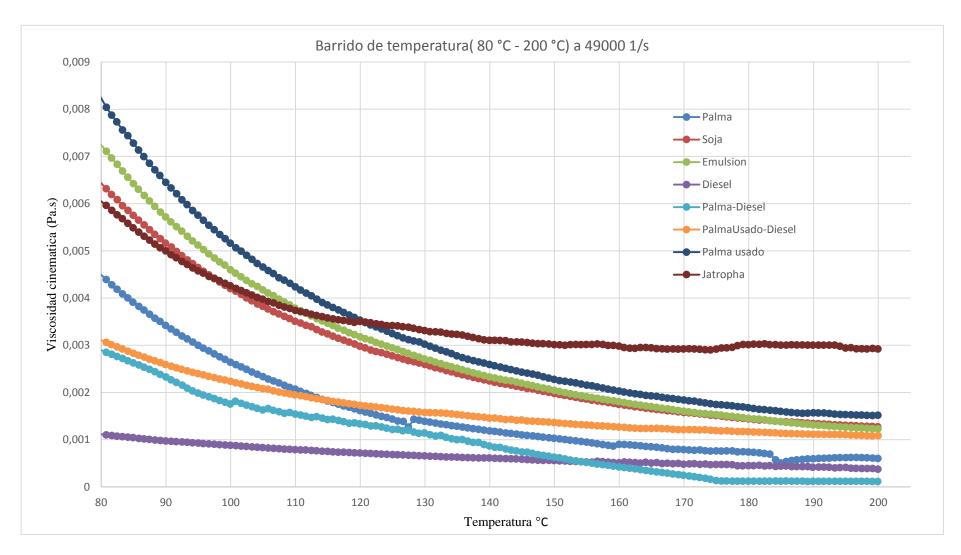
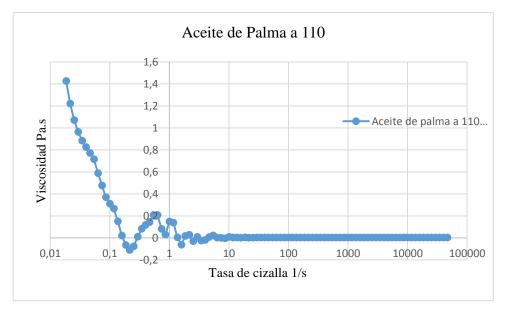

4.2.1 CURVA BARRIDO DE TEMPERATURA (10° C $- 200^{\circ}$ C) A 49000 1/s

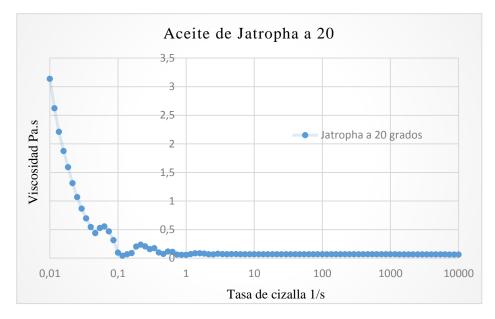
Figura 57. Curva barrido de temperatura (10°C-200°C) A 49000 1/s



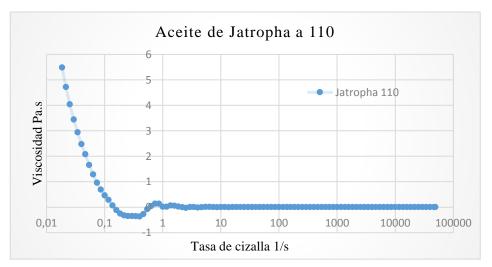
Figura 58. Ampliación de la curva de barrido de temperatura (40°C-150°C) A 49000 1/s


Figura 59. Ampliación de la curva de temperatura (80°C-200°C) A 49000 1/s

4.2.2 CURVA DE VARIACION DE TASA DE CIZALLA (0-49000 1/s) A 20 °C PARA EL ACEITE DE PALMA VIRGEN.


Figura 60. Curva de rampa de tasa de cizalla (0-49000 1/s) a 20 °C para el aceite de palma virgen

4.2.3 CURVA DE VARIACION DE TASA DE CIZALLA (0-49000 1/s) A 110 °C PARA EL ACEITE DE PALMA VIRGEN.


Figura 61. Curva de rampa de tasa de cizalla (0-49000 1/s) a 110 °C para el aceite de palma virgen

4.2.4 CURVA DE VARIACION DE TASA DE CIZALLA (0-49000 1/s) A 20 °C PARA EL ACEITE DE JATROPHA.

Figura 62. Curva de rampa de tasa de cizalla (0-49000 1/s) a 20 °C para el aceite de Jatropha

4.2.5 CURVA DE VARIACION DE TASA DE CIZALLA (0-49000 1/s) A110 °C PARA EL ACEITE DE JATROPHA.

Figura 63. Curva de rampa de tasa de cizalla (0-49000 1/s) a 110 °C para el aceite de Jatropha

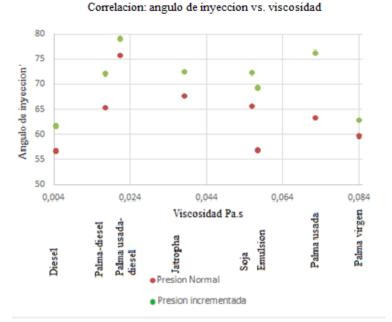
4.2.6 ANALISIS DE LOS ENSAYOS REOLOGICOS.

- La primera observación de las gráficas es como la viscosidad cinemática tiende a decaer conforme se aumenta la temperatura, lo que resulta el comportamiento esperado. Igualmente debe destacarse que el aumento de la tasa de cizalla no influye en la viscosidad para valores mayores de 100 1/s, en los aceites analizados.
- A 20°C la que mayor viscosidad presenta es el aceite de palma virgen, seguida del aceite de soja, y con el aumento de temperatura la viscosidad de los aceites disminuyen radicalmente en comparación a la viscosidad del diésel, es así como a una temperatura de 130°C la viscosidad de los aceites tienden a estabilizarse en un rango de 0.002 0.004 Pa.s que son valores semejantes a la viscosidad del diésel.
- Se puede visualizar que radica un comportamiento diferente entre el aceite de palma en estado virgen y usado, confirmando así la teoría que el aceite en estado usado es más viscoso que uno en estado virgen.
- La emulsión realizada con 70% de aceite de palma virgen, 20% de etanol,
 5% de tween 80 y 5% de agua, no baja mucho su viscosidad.
- Los valores de viscosidad de las mezclas palma virgen y usado con diésel son las que mayor se asemejan a los del diésel, concluyendo así que son las que mejor se comportan, las que más se asemejan al diésel, y si mayor porcentaje de diésel se agrega a la mezcla se obtendrían valores más cercanos.
- Las gráficas de variación de taza de cizalla a una temperatura constante nos establece que vamos a tener valores fiables de viscosidad a una taza de cizalla alrededor de los 100 1/s que es relativamente baja.

4.3 CORRELACION ENTRE VISCOSIDAD, ANGULO Y PRESION DE INYECCION.

Para observar el comportamiento entre la formación del cono de inyección, presiones de trabajo para la pulverización y la viscosidad cinemática presente en los aceites, mezclas y emulsión, se realizó una correlación seleccionando los datos de viscosidad a una temperatura cerca de los 20 °C, que fue la temperatura ambiente con

la que se trabajó los ensayos en el probador de inyectores, y seleccionando también la presión normal y máxima para la formación del cono de inyección.


Tabla 42. Datos reológicos de los aceites, mezclas y emulsión a 20°C

Muestra	Shear rate	Viscosity	Step time	Temperat	Normal stress
Muestra	1/s	Pa.s	S	°C	Pa
Aceite de					
Palma Virgen	49047,9	0,08839373	120,048	19,945	-2225,58
Aceite de Soja	49007,3	0,0560135	120,032	19,931	-2132,6
Emulsión	49044,4	0,057464	120,032	19,942	-1740,55
Diésel	49007,5	0,00450863	120,044	19,91	-1883,17
Mezcla de					
aceite de Palma					
virgen -Diésel	49010,2	0,0174984	120,024	19,907	-1938,87
Mezcla de					
aceite de palma					
usada-Diésel	49041,8	0,0214847	120,02	19,944	-1985,1
Aceite de					
Palma usada	49032,3	0,072482	120,048	19,925	-2147,59
Aceite de					
Jatropha	49343,8	0,0382195	240,016	19,941	-1765,3

Tabla 43.

Datos de correlación entre viscosidad, presión y ángulo de inyección

Muestras ensayadas	Viscosity	P_f	Ángulo
Widesitas elisayadas	Pa.s	PSI	Grados)
Diésel presión normal	0,00450863	345,5	56,65
Diésel mayor presión	0,00450863	495	61,65
Palma-Diésel presión normal	0,0174984	410,75	65,35
Palma-Diésel presión mayor	0,0174984	529,25	72,15
Palma Usada-Diésel presión normal	0,0214847	415,25	75,75
Palma Usada-Diésel mayor presión	0,0214847	524,5	79,1
Jatropha presión normal	0,0382195	393,25	67,6
Jatropha mayor presión	0,0382195	550,25	72,45
Soja presión normal	0,0560135	384	65,7
Soja mayor presión	0,0560135	519	72,3
Emulsión presión normal	0,057464	411,5	56,85
Emulsión mayor presión	0,057464	525,75	69,25
Palma Usada presión normal	0,072482	410,25	63,3
Palma Usada mayor presión	0,072482	555	76,25
Palma virgen presión normal	0,0839373	388,75	59,7
Palma virgen mayor presión	0,0839373	551,5	62,85

Figura 64. Correlación entre viscosidad, ángulo y presión de inyección.

- Del grafico de correlación cabe recalcar que si se aumenta la presión aumenta también el ángulo de inyección para todos los casos estudiados.
- Analizando el comportamiento del diésel y las mezclas de aceite de palma en estado virgen y usado con el diésel, se puede apreciar como al aumentar su viscosidad incrementa también el ángulo de inyección, mientras que para el resto de los aceites no se aprecia una tendencia dominante.
- Es así también como en el caso de la palma usada al tener mayor viscosidad baja el ángulo de inyección respecto a la palma en estado virgen, soja y Jatropha.
- El grafico nos permite concluir que en principio la viscosidad de los aceites, mezcla y emulsión no es un factor influyente en la formación del ángulo de inyección.
- Cabe mencionar que las mezclas del aceite de palma virgen en estado virgen o usado con el diésel presentan una ligera tendencia en cuanto a la viscosidad, pero de ahí en relación con los demás aceites no existe ninguna influencia.

4.4 APLICACIÓN DEL MODELO DE LA EXPRESION EMPIRICA DE HIROYASU.

Se aplicó el modelo de Hiroyasu para ver la fiabilidad de esta expresión de medición del ángulo del cono de inyección con nuestros ensayos realizados, debido a que correlaciona el ángulo con las características geométricas del inyector y las densidades del combustible y del aire.

$$\theta = 83.5 \left(\frac{L}{D}\right)^{-0.22} \left(\frac{D}{D_0}\right)^{0.15} \left(\frac{\rho_a}{\rho_1}\right)^{0.26}$$

Tabla 44.

Parámetros para aplicación del modelo de Hiroyasu

Nomenclatura				
θ	Ángulo de inyección			
D	Diámetro del orificio de la boquilla			
L	Longitud del orificio de la boquilla			
D_0	Diámetro de la cámara del inyector			
$ ho_a$	Densidad del aire			
$ ho_1$	Densidad del liquido			

Donde:
$$D = 1.01 mm$$

 $D_o = 1.506 mm$
 $L = 0.93 mm$

La densidad del aire se determinó mediante la ley de gases ideal a una presión atmosférica de 693,93 hPa y 20°C equivalente a la presión atmosférica y temperatura respectivamente de la ciudad de Sangolqui.

$$\rho_a = \rho_o \left(\frac{T_o}{T}\right) \left(\frac{P}{P_o}\right)$$

$$\rho_a = 1,29 \ kg/m^3 \left(\frac{273,15 \ K}{293,15 \ K}\right) \left(\frac{693,93 \ hPa}{1013 \ hPa}\right)$$

$$\rho_a = 0.8233 \ kg/m^3$$

Los datos de densidad de los aceites son los valores seleccionados de tablas correspondientes a una temperatura de 20°C, mientras que para la densidad de las mezclas y emulsión fue hallada empíricamente mediante la formula $\rho=\frac{m}{v}$, con volumen de 10ml de líquido equivalente a 0,00001 m^3 y la masa correspondiente a cada mezcla.

Tabla 45. Ángulo de inyección según el modelo de Hiroyasu

Muestras ensayadas	Densidad a 20°C	Ángulo de inyección
Aceite de Soja	920	12,912
Aceite de Jatropha	917	12,923
Aceite de palma virgen	901	12,983
Diésel	829	13,267
Aceite de palma usada	903	12,975
Mezcla aceite palma virgen-diésel	890	13,0,24
Mezcla aceite palma usada-diésel	900	12,986
Emulsión	1000	12,635

Aplicando el modelo de Hiroyasu, se puede apreciar que existe una correlación entre la densidad y el ángulo de inyección, es decir si la densidad disminuye el ángulo va aumentando, como se muestra en la figura 65. Cabe recordar que este modelo fue establecido para el combustible diésel.

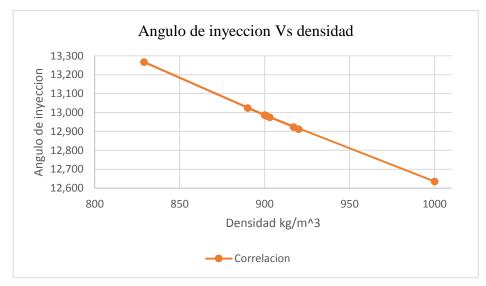


Figura 65. Correlación según el modelo de Hiroyasu

En este modelo de expresión se debe tener en cuenta que Hiroyasu trabajo con factores de relación $\left(\frac{L}{D}\right)^{-0.22}$ y $\left(\frac{D}{D_0}\right)^{0.15}$ mayores que 1, esto debido a que los ensayos lo realizo haciendo pasar el fluido a través de un inyector con flujo continuo, muy diferente a nuestro caso. En esta investigación fue utilizado un solo tipo de inyector por lo que los factores de relación mencionados van a ser constantes y fraccionarios, razón por la cual varían de una forma exagerada con nuestros datos de ángulo de inyección obtenidas en el probador de inyectores.

La formación de turbulencia presente en nuestro inyector es también un factor que influye para tal divergencia de nuestros valores de ángulo con los de la expresión desarrollada por Hiroyasu.

Tabla 46.

Datos de correlación de densidad, presión y ángulo de inyección

Muestras	Densidad	Presión max	Ángulo
Muestras	kg/m ³	(lb/in^2)	grados
Diésel	829	345,5	56,65
Diésel	829	495	61,65
Palma-Diésel	890	410,75	65,35
Palma-Diésel	890	529,25	72,15
PalUsa-Diesel	900	415,25	75,75
PalUsa-Diesel	900	524,5	79,1
Palma virgen	901	388,75	59,7
Palma virgen	901	551,5	62,85
Palma usada	903	410,25	63,3
Palma usada	903	555	76,25
Jatropha	917	393,25	67,6
Jatropha	917	550,25	72,45
Soja	920	384	65,7
Soja	920	519	72,3
Emulsión	1000	411,5	56,85
Emulsión	1000	525,75	69,25

En la tabla 46 se muestran los resultados obtenidos para los ensayos realizados con la densidad de cada muestra ensayada, los datos de densidad son valores a una temperatura ambiente. Al graficar estos resultados en la figura 68 se observa que los resultados obtenidos experimentalmente distan mucho de la regularidad establecida por el modelo.

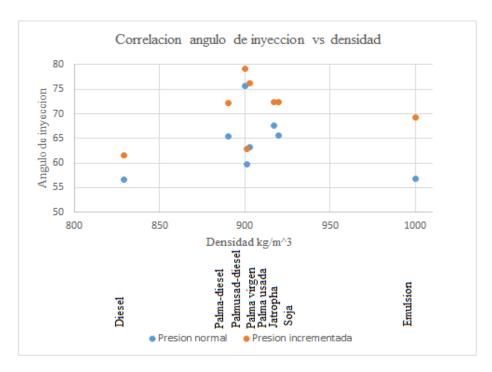


Figura 66. Correlación densidad, presión y ángulo de inyección.

Como se observa en la figura 68, el comportamiento real es totalmente opuesto al determinado por Hiroyasu, en nuestro caso el aumento de la densidad del combustible se traduce en un aumento del ángulo de inyección.

Este comportamiento se aprecia sobre todo en las mezclas de diésel con aceite de palma virgen y usado, se puede observar que existe una tendencia de incremento de ángulo formado según incrementa densidad.

De la comparación entre los entre solo los aceites de palma, soja y Jatropha no existe ninguna correlación, ya que cada uno presenta un comportamiento diferente de ángulo de inyección.

Siendo la emulsión totalmente excluida de una posible correlación, esto debido que pese a presentar mayor viscosidad del resto de muestras ensayadas y a una presión normal de inyección presenta un valor de ángulo semejante al diésel, pero con un valor de viscosidad más alto.

4.5 APLICACIÓN DEL MODELO DE LA EXPRESION EMPIRICA DE ARRÉGLE.

Se aplicó el modelo de arregle para ver la relación entre el ángulo con la presión máxima de inyección.

$$\tan\left(\frac{\theta}{2}\right) = D^{0,508} P_i^{0,00943} \rho_a^{0,335}$$

Tabla 47.

Datos para relación de modelo de Arrégle

Muestras	Presión	Ángulo
	(lb/in^2)	(grados)
Diésel	345,5	89,108
Diésel	495	89,411
Palma-Diésel	410,75	89,254
Palma-Diésel	529,25	89,467
PalUsa-Diesel	415,25	89,263
PalUsa-Diesel	524,5	89,460
Jatropha	393,25	89,217
Jatropha	550,25	89,500
Soja	384	89,197
Soja	519	89,451
Emulsión	411,5	89,255
Emulsión	525,75	89,462
Palma Usada	410,25	89,253
Palma Usada	555	89,507
Palma	388,75	89,207
Palma	551,5	89,502

Se puede observar que la expresión de arrégle nos da resultados de ángulo de inyección más cercanos a nuestros valores obtenidos, esto se debe a que arregle utilizo inyectores reales para realizar los ensayos y desarrollar dicha expresión de correlación.

Esta expresión nos determina también que con el aumento de presión existe un aumento de ángulo de inyección, por ejemplo para el caso de la Jatropha en instantes de presiones máximas: a una $P = 393,25 \, PSI \cong$ a un ángulo de 89,217 y $P = 560,25 \, PSI \cong$ a un ángulo de 89.5 grados.

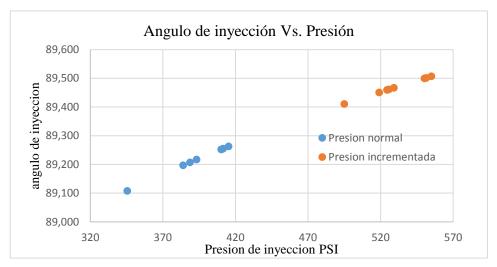


Figura 67. Correlación según el modelo de Arrégle.

Comparando las gráficas de los dos modelos aplicados, la figura 40 correspondiente al modelo de Arrégle es la que más se acerca al comportamiento general cuando se trabaja con aceites, aunque se mantienen diferencias importantes en los valores obtenidos.

4.6 GRAFICAS DE ERROR.

Mediante la desviación estándar =2 de los datos ensayados, nos muestra que existe una tendencia de error y se puede observar en las gráficas 68 y 69 de barras de error, dándonos un margen de error para los valores analizados y una tendencia analizada sobre el error.

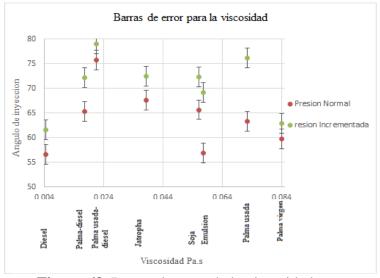


Figura 68. Barras de error de la viscosidad.

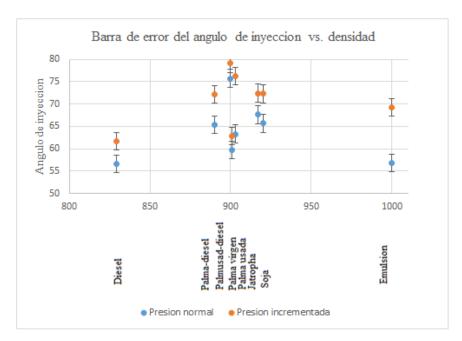


Figura 69. Barras de error de la densidad.

Cabe recalcar que tanto el aumento de la densidad y viscosidad en los aceites conduce a un cierto incremento de ángulo de inyección, pero dicho aumento no presenta ninguna tendencia clara, ya que no todos los aceites presentan el mismo comportamiento de pulverización, queda claro que solo existe una ligera tendencia entre el diésel y las mezclas del mismo.

CAPITULO 5

CONCLUSIONES Y RECOMENDACIONES

A continuación se exponen las conclusiones y recomendaciones derivadas de la realización de este trabajo. De igual manera, se proponen ciertas líneas de investigación futuras.

5.1 CONCLUSIONES.

- El estudio del comportamiento de la forma y penetración del cono de inyección de los aceites ensayados se evaluó en comparaciones desarrolladas por el comportamiento mostrado por el diésel, y serán de ayuda para un análisis futuro de proceso de inyección en un motor real.
- Las propiedades de densidad y viscosidad de los aceites ensayados no influyeron de forma evidente en la formación del cono de inyección.
- Los parámetros geométricos del inyector utilizado así como la presión de inyección, fueron factores que influyeron dentro de la forma y penetración del cono de inyección.
- Los ensayos realizados a los aceites, mezclas y emulsión mostraron comportamientos diferentes. Cada uno de ellos presenta diferentes formas de pulverización, unas con formas más claras de formación de cono de inyección que otras.
- De los ensayos realizados a las mezclas y emulsión en base solo al aceite de palma, se logró determinar un comportamiento similar al efectuado por el diésel, esto debido a su cercanía de valores de densidades.

- El protocolo de ensayo para el estudio reológico con una tasa de cizalla máxima de 49000 1/s, no mostro diferencias apreciables con los realizados encima de 100 1/s.
- Se evaluó un comportamiento muy cercano entre el diésel y el aceite de palma virgen, presentando un ángulo de inyección de 56,65° y 59,7° respectivamente, así mismo una relación aún más corta entre el aceite de soja y aceite de Jatropha con 65.7° y 67,7° cada uno, es así como en referencia a estos valores obtenidos, también fueron influencia para realizar las mezclas y emulsión en base al aceite de palma.
- Se determinó una notable diferencia en cuanto al comportamiento de pulverización del aceite de palma en estado virgen y en estado usado, dando un valor de 59,7° para palma virgen y 63,3° para aceite de palma usada, así mismo al mezclar con diésel, existieron diferencias, 65,35° para el caso de mezcla con palma virgen y 73,8° para la mezcla con palma usada. Siendo este el mayor valor de ángulo obtenido del ensayo de todas las muestras.
- De los ensayos reológicos se obtuvo el comportamiento esperado inicialmente, se pudo observar claramente como la viscosidad cinemática disminuye conforme aumenta la temperatura, hasta tomar valores de viscosidad semejantes a la del diésel, haciendo hincapié al aceite de palma que es el que disminuye con mayor rapidez.
- A una temperatura mayor a los 150°C las muestras ensayadas tienden a estabilizar su viscosidad con valores alrededor de un promedio de los 0.001-0.002 Pa.s, de igual manera los ensayos que se realizaron con una tasa de cizalla variable de 0 49000 1/s, nos demostró que el aumento de la tasa de cizalla no es un factor que influye en los valores de la viscosidad, puesto que para valores mayores de 100 1/s la viscosidad tiende a una estabilización.

- Mediante el gráfico de correlación de la viscosidad cinemática, presión y ángulo de inyección, se determinó que no hay una clara correlación general entre el comportamiento de la viscosidad con el comportamiento del ángulo de los aceites ensayados. Existe una ligera correlación de aumento de viscosidad, ángulo formado y presión de inyección en las mezclas con aceite de palma virgen y usado, de ahí para el resto de muestras no hay una tendencia con la viscosidad, es decir en principio no hay una influencia clara de la viscosidad sobre el ángulo de inyección.
- Analizando la correlación de la densidad con el ángulo de inyección, se determinó que tampoco existe una correlación coherente del comportamiento de la densidad con el comportamiento del ángulo de inyección, y al igual que en el caso de la viscosidad existe una ligera influencia de la densidad en el ángulo formado cuando se mezcla aceite-diésel, claro esta influencia dependerá del porcentaje de aceite en la mezcla con el diésel.
- Analizando la expresión de Hiroyasu, se concluye que dicha expresión no cumple con nuestros datos ensayados, por ejemplo para el diésel existe una diferencia de 43,83° entre el valor del ángulo de inyección ensayado al obtenido mediante Hiroyasu, por tanto no puede aplicarse dicha expresión para el caso del aceites ensayados, por no cumplir una tendencia en cuanto al comportamiento de las densidades con el comportamiento del ángulo formado, esto debido a la diferencia de los parámetros de ensayo utilizado para el desarrollo de la expresión con nuestros parámetros de inyección.

5.2 RECOMENDACIONES.

- Debido a que no existe una tendencia clara del comportamiento de la densidad y viscosidad sobre el comportamiento del ángulo de inyección de los aceites ensayados, se recomienda investigar que otros factores intervienen para generar una correlación más clara y gradual.
- Analizar desde el punto de vista de la combustión, la influencia de presión máxima para una mejor visualización de la formación del ángulo de inyección, debido a que la mejor combinación aire-combustible resulta más beneficiosa.
- Respecto a los ensayos realizados con una mezcla 50% aceite de palma ya sea virgen o usada y 50% diésel, se recomienda analizar estos casos respecto al rendimiento y emisiones de gases en un motor, debido a que siguió una ligera tendencia de comportamiento en cuanto a la densidad y viscosidad.
- Para evitar que las muestras a ensayar tengan contacto con alguna impureza no requerida que impidan la libre circulación del flujo del fluido, es necesario realizar la limpieza con aire comprimido las tuberías de alta presión del probador de inyectores.
- Para posteriores experimentos y análisis a realizar en el probador de inyectores, sería necesario una cámara de alta velocidad con lente de aproximaciones ópticas cambiable, puesto que obtendría mejor visualización de la forma y penetración del cono de inyección.

BIBLIOGRAFIA

- Allen, A.C.W., Watts, K.C., Ackman, R.G. & Pegg, M.J. (1998). *Predicting the viscosity of biodiesel fuels from their fatty acid ester composition*. Fuel measurement, p. 1319-1326.
- Bajpai, S., Sahoo, P.K. & Das, L.M. (2008). Feasibility of blending karanja vegetable oil in petro-diesel and utilization in a direct injection diesel engine. Colorado School of Mines. EE.UU, Colorado: Elsevier.
- Barnes, H.A. (2000). A handbook of elementary rheology. Institute of Non-Newtonian Fluid Mechanics. University of Wales: Tech
- Barnes, H.A., Hutton, J. F., &Walters, K. (1989). *An introduction to rheology*. volume3: Elsevier.
- Bernat, E., Riba, J.R., Baquero, G., Rius, A. & Puig, R. (2012). *Temperature dependence of density and Viscosity of vegetable oils*. University of Gent: Elsevier.
- Castanheira, M.D. (2005). The Influence of physico-chemical Properties of Diesel/Biodiesel Mixtures on Atomization quality in Direct Injection Diesel Engines. Madrid: Gimeno
- Dam, B.S. (2007). Experimental and numerical investigations of sprays in two stroke diesel engines. Technical University of Denmark: Lyngby
- Defruit, S. y Van de Maele, C. (2012). A study of the atomization of biofuels in medium-speed diesel engines. University Ghent: Grimaldi
- Diesel, R., (1912). The diesel oil-engine. S.E., S.L., Engineering, pp.395-405.
- García Quesada, J. C. (2008). *Tema 5. Técnicas reométricas. Reología.* Recuperado de http://hdl.handle.net/10045/3626
- Hiroyasu, H., Arai, M. (1990). Structures of Fuel Sprays in Diesel Engine. Elsevier
- Ilass. (2010). T23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic. Spray Characterization. Europe: Tech
- Issue. (2012). A Comparative Study on Physicochemical, Rheological and Surface Tension Properties of Tunisian Jujube (Zizyphus lotus L.). Article 11. Seed and Vegetable Oils. International Journal of Food Engineering: Brazilian Mustard
- Irgens, F. (2008). *Continuum mechanics*. Journal of Mech: Springer Science & Business Media
- Irgens, F. (2014). Rheology and Non-Newtonian Fluids. Rheology: Springer.

- Jones, S., Peterson, Ch. L. (2001). *Using Unmodified Vegetable Oils as a Diesel Fuel Extender A Literature Review*. Idaho Univ: Ejim
- Macosko, C. (1994). *Rheology: Principles, Measurements and Applications*. Physics in fluids: Wiley-VCH.
- Mezger, T.G. (2006). *The rheology handbook: for users of rotational and oscillatory rheometers*. Development for diesel spray conditions: Vincentz Network Gmbh & Co KG.
- Mostafa S., Graboski y Robert L. McCormick. (1998). *Combustion of fat and vegetable oil derived fuels in Diesel engines*. Fuels and High Altitude Engine Research and Department of Chemical Engineering and Petroleum Refining, Colorado School of Mines. EE.UU, Colorado: Elsevier.
- Mucci, M., Sánchez, L., Criado, M., & Bianchi, G. (2003). *Desarrollo de fluidos viscoelásticos para la estimulación de pozos*. In Jornadas SAM, Conamet, Simposio Materia.
- Naber, J., Siebers, D.L. (1996). Effects of gas density and vaporisation on penetration and dispersion of Diesel spray. Elsevier
- Payri, F., Desantes, J. M. & Arrégle, J. (1996). *Characterization of D.I. Diesel Sprays in High Density Conditions*. Madrid: SAE Tech
- Pogorevc, P., Dobovisek, K. (2007). *Diesel and biodiesel macro-spray characteristics*. Eindhoven Univ: SAE Tech
- Reitz, R.D., Bracco, F.V. (1982). *Mechanism of atomization of a liquid jet. Physics in Fluids.* p. 1730-1742.
- Riba, J.R., Bernat, E., Baquero, G., Puig, R. & Rius, A. (2010). Caracterización de las propiedades físicas de aceites vegetales para ser utilizados como carburantes en motores diésel. Universidad Politécnica de Cataluña, España: Sekar
- Scharmm, G. (1998). *A practical Approach to Rheology and Reometry*. 2nd edition. Federal Republic of Germany: Gebrueder Haake.
- Walton, J. (1938). Gas &Oil Power. S.E., S.L., p. 167.