

ARMY FORCE UNIVERSITY- ESPE DEPARTMENT OF ENERGY AND MECHANICS MECHATRONIC ENGINEERING DEGREE

PAPER TITLE : "SYNERGISTIC INTEGRATION OF TECHNIQUES OF VC, COMMUNICATION TECHNOLOGIES AND UNITIES OF CALCULATION TRANSPORTABLE FOR GENERATE A SYSTEM EMBEDDED THAT MONITORS PYROCLASTIC FLOWS IN REAL TIME"

PRESENTER: BARRERA LLANGA KEVIN IVAN

Langkawi-Malaysia, DECEMBER 2016

Introduction:

- A volcano is a rupture in the crust of Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.
- Mount Tambora in Indonesia, caused 82,000 direct victims in 1815
- In 2015 in the province of Cotopaxi, Ecuador was put in a state of emergency due to the possible reactivation of the volcano in this area, causing panic among the inhabitants of the villages.

Mount Tambora


```
Cotopaxi Volcano
```


Bibliographical review

- A person was designated to night and day watch if a volcano changed state.
- Using VC (computer vision) in embedded systems we can obtain a greater precision in the acquisition of data in real time

Methodology

a: Segment images of volcanoes

b: Compare variations between matrices

c: Filter the disturbances on each pixel.

d: Calculate the existing displacement

e: Generate an angle of motion.

f: Send data in massive alert

ESPE UNIVERSIDAD DE LAS FUERZAS ARMADAS INNOVACIÓN PARA LA EXCELENCIA

Development

Cameras of the Geophysical Institute of Ecuador

Characteristics:

- 1. Resolution of 2560x1440 pixels
- 2. Aperture f/1.4-5.6
- 3. Electronic inclinometers
- 4. Infrared Vision
- 5. Thermal Vision
- 6. Internal Battery

Image Processing

1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	17	18	19	20	21	
22	23	24	25	26	27	28	
29	30	31	32	33	34	35	
36	37	38	39	40	41	42	
43	44	45	46	47	48	49	

1	2	3	4	5	6	7
8	9	10	11	4	13	14
15	16	17	18	19	4	21
22	23	24	25	26	4	28
29	30	31	32	33	34	35
36	37	38	39	40	41	42
43	44	45	46	47	48	49

1	2	3	4	5	6	7
8	9	10	11		13	14
15	16	17	18	19		21
22	23	24	25	26		28
29	30	31	32	33	34	35
36	37	38	39	40	41	42
43	44	45	46	47	48	49

Functions in Open CV

Automatically record video of the data obtained and comparison by layers:

VideoWriter grab() y capture.set();

Segment and filter images of volcano:

cvtColor();inRange(); morphOps(); trackFilteredObject(); erodeElement = getStructuringElement(MORPH_RECT,Size(2,1)); dilateElement = getStructuringElement(MORPH_RECT,Size(4,2));

Determination of trajectories

Arduino Monitoring

HTML Page in Arduino

The mac address: byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; Server IP: byte ip[] = { 192, 168, 0, 120}; IP of the web page: byte gateway[] = { 192, 168, 0, 1 }; Submask: byte subnet[] = { 255, 255, 255, 0 }; The communication port: EthernetServer

server(80);

Remote Monitoring

Overflying Cotopaxi volcano Ecuador, using portable Android application

Interfaces

Interface PC

Interface Android

Experimental Results

	nic eruptions	esult, test volca	Table.1. Res	++
	ETECTION	I	TESTS	
PORCENTAJE DE FUNCIONAMIENT	100%	350T	1	
1%	100%	100T	2	
	100%	250T	3	
	98%	590T	4	
	100%	160T	5	
	100%	480T	6	
	99%	560T	7	
Acerto	100%	420T	8	
99%	97%	650T	9	
	100%	360T	10	
	99.40%	Succ	Result	
	0.60%	Error		

Experimental Results Video

CONCLUSION

- The program helps to have a permanent monitoring every day of the year with a great field of accuracy.
- Determines each type of flow, the area it presents, it's possible trajectories depending on the behavior of the volcano.
- Enclosing the area and determining the exact positioning of the center of the same with respect to the camera.

- The different operating systems alert both the common user and the operator of this program.
- The people affected in the eruption can anticipate any kind of catastrophe by visualizing where the lava flows, saving a greater number of lives by using early warnings.
- This system will help less lives to be lost in future disasters of nature, with the use of new technologies in a field that has not yet been explored in depth.

ACKNOWLEDGMENTS

This work is supported by the Arm Force University ESPE Extension Latacunga.

THANKS FOR YOUR ATTENTION

