

CONTROL DE MARCHA AUTÓNOMO PARA LA ANIMACIÓN DEL ROBOT HUMANOIDE EN UN ENTORNO DE REALIDAD VIRTUAL.

Realizado por:

Jaime Santiago Guamán Gualpa

Director: Jorge Sánchez

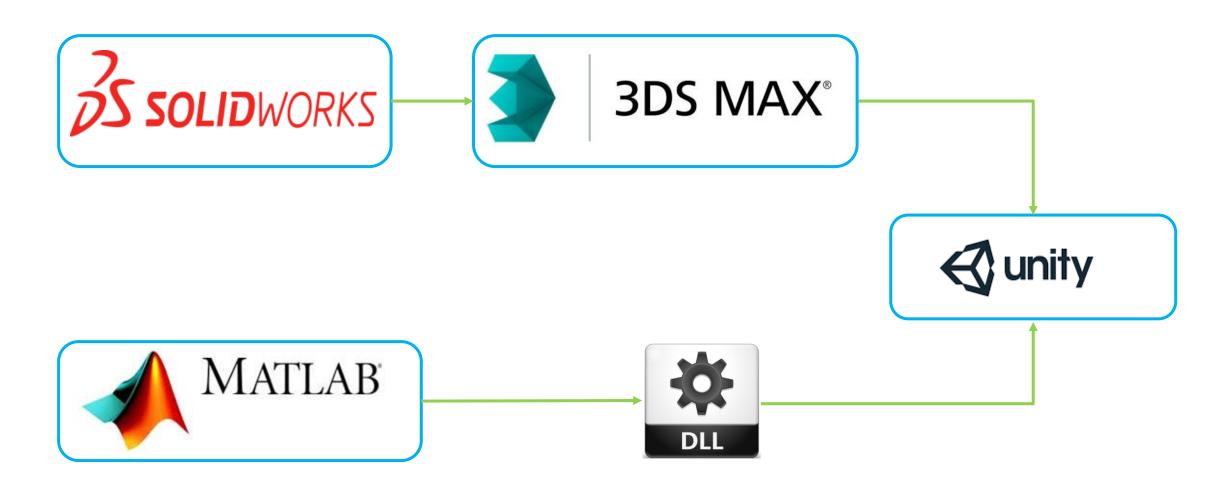
Objetivo General

• Proponer un esquema de control para la marcha autónoma de un robot humanoide en un entorno de realidad virtual.

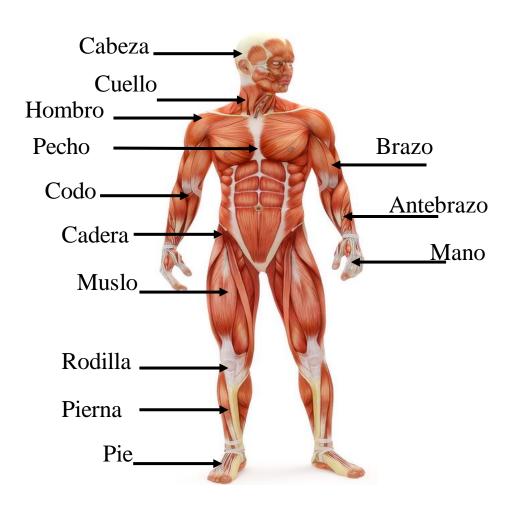
Objetivos específicos

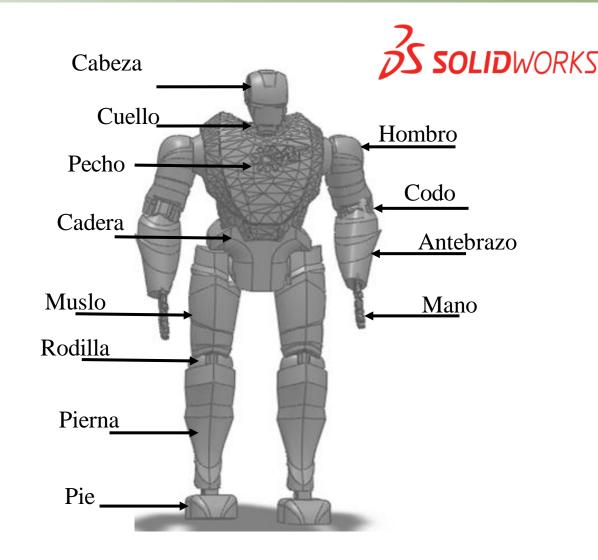
- Determinar el modelo cinemático de un robot humanoide a fin de ser utilizados en un esquema de control en lazo cerrado.
- Proponer un esquema de control basado en la cinemática de un humanoide a fin de realizar tareas autónomas de desplazamiento en ambientes estructurados.
- Evaluar por simulación el desempeño del esquema de control propuesto para la marcha autónoma del humanoide.
- Implementar un entorno de realidad virtual para la animación del desplazamiento autónomo de un robot humanoide en ambientes de trabajo estructurados.

ESQUEMA DEL PROYECTO

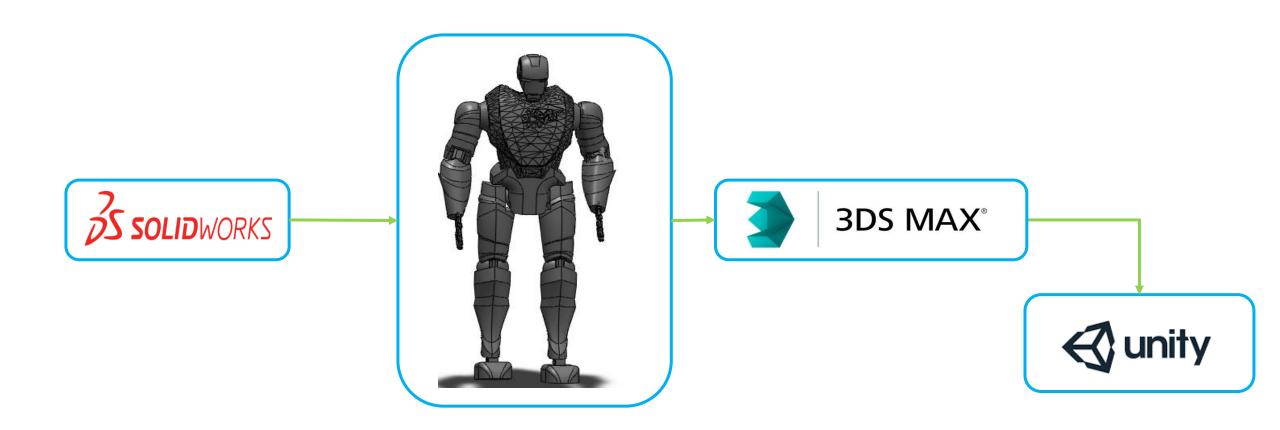


MODELADO DEL UN ROBOT HUMANOIDE

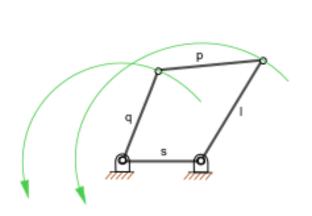




MODELADO DEL ROBOT HUMANOIDE.



FUNDAMENTACIÓN TEÓRICA

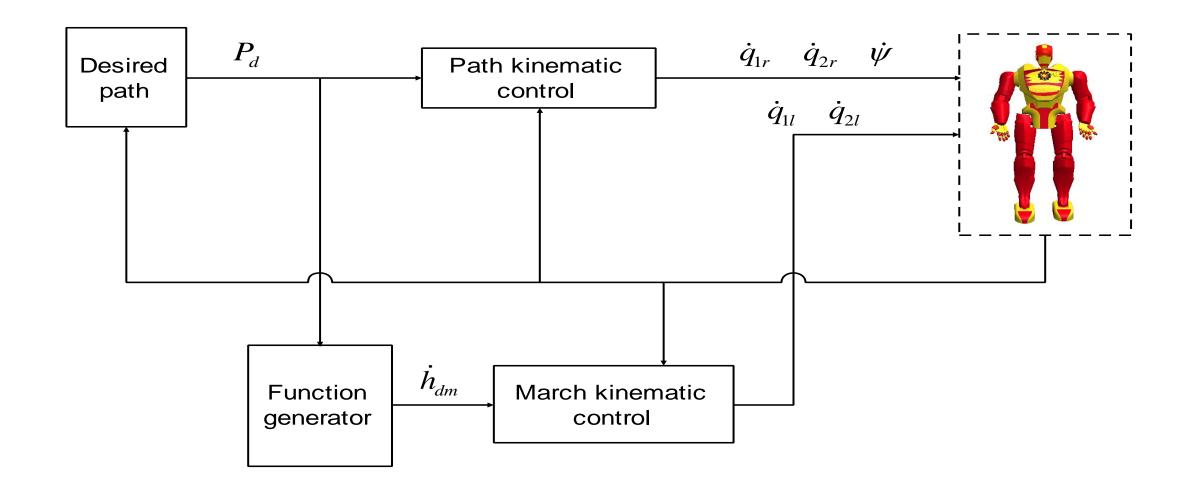


Mecanismo

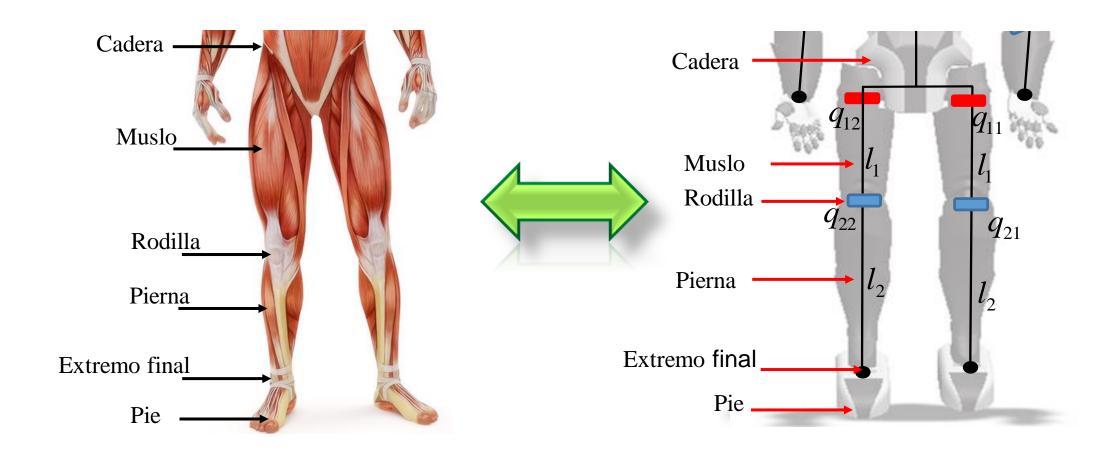
Cinemática Directa

Cinemática Inversa

Esquema del control

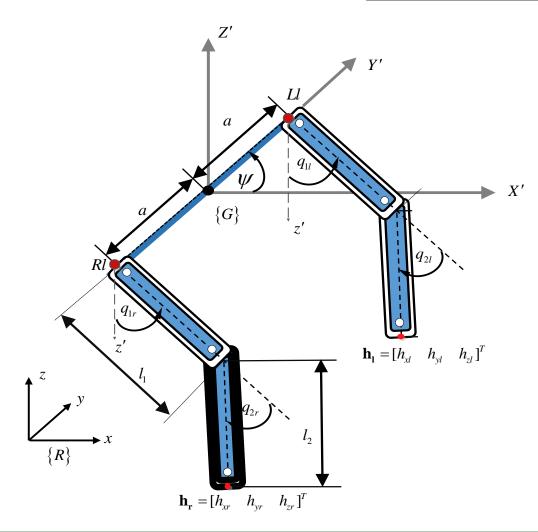


ANALOGÍA



MODELO CINEMÁTICO

Método Geométrico



$$\begin{cases} h_{xr} = x + aS_{\psi} + l_1 C_{\psi} C_{q_{1r}} + l_2 C_{q_{1r}, q_{2r}} C_{\psi} \\ h_{yr} = y - aC_{\psi} + l_1 C_{q_{1r}} S_{\psi} + l_2 C_{q_{1r}, q_{2r}} S_{\psi} \end{cases}$$
(1)
$$h_{zr} = h + l_1 S_{q_{1r}} + l_2 S_{q_{1r}, q_{2r}}$$

Modelo Cinemático

Método Matricial

$$\left|\dot{\mathbf{h}}_{r}\left(t\right) = \mathbf{J}_{r}\left(q_{r}\right)\dot{\mathbf{q}}_{r}\left(t\right)\right| \quad (2)$$

$$\begin{bmatrix}
\dot{h}_{xr} \\
\dot{h}_{yr} \\
\dot{h}_{zr}
\end{bmatrix} = \begin{bmatrix}
aC_{\psi} - l_{2}C_{q1r,q2r}S_{\psi} - l_{1}C_{q1r}S_{\psi} & -l_{2}S_{q1r,q2r}C_{\psi} - l_{1}C_{\psi}S_{q1r} & -l_{2}S_{q1r,q2r}C_{\psi} \\
-aS_{\psi} + l_{2}C_{q1r,q2r}C_{\psi} + l_{1}C_{\psi}C_{q1r} & -l_{2}S_{q1r,q2r}S_{\psi} - l_{1}S_{\psi}S_{q1r} & -l_{2}S_{q1r,q2r}S_{\psi} \\
0 & l_{2}C_{q1r,q2r} & l_{2}C_{q1r,q2r}
\end{bmatrix} \begin{bmatrix}
\dot{\psi} \\
\dot{q}_{1r} \\
\dot{q}_{2r}
\end{bmatrix} (3)$$

$$\rightarrow \dot{\mathbf{h}}_{\mathbf{r}}(t) = [\dot{h}_{xr} \quad \dot{h}_{yr} \quad \dot{h}_{zr}]^{T}$$

$$\rightarrow \mathbf{J}_{r}(q_{r})$$

$$\rightarrow \dot{\mathbf{q}}_r(t) = [\dot{q}_{1r} \quad \dot{q}_{2r} \quad \dot{\psi}]^T$$

CONTROL DE CAMINO

Modelo cinemático

Método Geométrico

Método Matricial

Controlador

CONTROL DE CAMINO

$$\begin{cases} h_{xrp} = x + aS_{\psi} + l_{2}C_{q_{1r}, q_{2r}}C_{\psi} + l_{1}C_{\psi}C_{q_{1r}} \\ h_{yrp} = y - aC_{\psi} + l_{2}C_{q_{1r}, q_{2r}}S_{\psi} + l_{1}C_{q_{1r}}S_{\psi} \end{cases}$$
 (3) Cinemática Directa.

$$\dot{\mathbf{h}}_{\mathbf{rp}}(t) = \mathbf{J}_{rp}(q_{rp})\dot{\mathbf{q}}_{\mathbf{rp}}(t)$$
 (4) Forma Matricial.

$$\begin{bmatrix} \dot{h}_{xrp} \\ \dot{h}_{yrp} \end{bmatrix} = \begin{bmatrix} aC_{\psi} - l_{2}C_{q1rp,q2rp}S_{\psi} - l_{1}C_{q1rp}S_{\psi} & -l_{2}S_{q1rp,q2rp}C_{\psi} - l_{1}C_{\psi}S_{q1rp} & -l_{2}S_{q1rp,q2rp}C_{\psi} \\ -aS_{\psi} + l_{2}C_{q1rp,q2rp}C_{\psi} + l_{1}C_{\psi}C_{q1rp} & -l_{2}S_{q1rp,q2rp}S_{\psi} - l_{1}S_{\psi}S_{q1rp} & -l_{2}S_{q1rp,q2rp}S_{\psi} \end{bmatrix} \begin{bmatrix} \dot{\psi} \\ \dot{q}_{1rp} \\ \dot{q}_{2rp} \end{bmatrix}$$
(5)

Control de camino

Donde:

$$\left| \tilde{\mathbf{h}}_{\mathbf{p}} = [\tilde{h}_{xp} \quad \tilde{h}_{yp}]^T \right| (6)$$

Descomposición de un vector unitario:

$$\to \tilde{h}_{xp} = P_{xd} - x$$

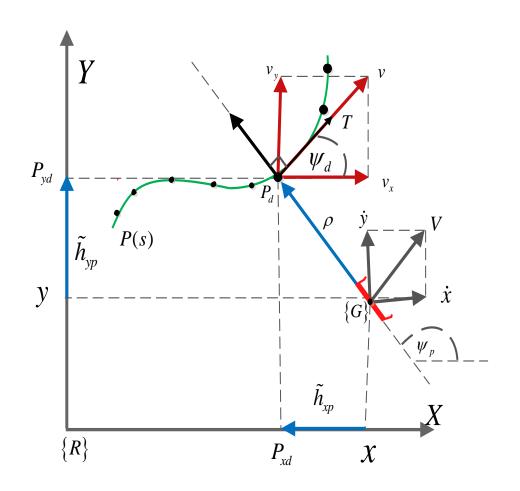
$$v_x = |v| \cos(\psi_d)$$

$$v_y = |v| sen(\psi_d)$$

$$\to \tilde{h}_{yp} = P_{yd} - y$$

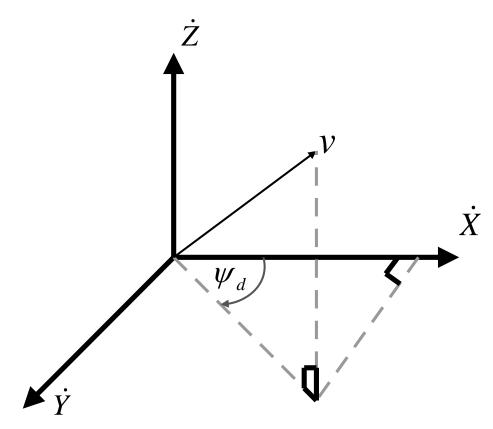
$$x, y$$
 Posición real del Robot. $\mathbf{V}_{xyd} = [v\cos(\psi_d) \quad vsen(\psi_d)]^T$ (7)

$$v = velocida _d$$



Control de camino

Para hallar el ángulo Ψ_d se lo realiza con la derivada de las funciones del camino a seguir P(s).



$$\tan(\psi_d) = \frac{V_{Yd}}{V_{Xd}}$$

$$\psi_d = \tan^{-1} \left(\frac{V_{Yd}}{V_{Xd}} \right)$$

Control de camino

• La ley de control propuesta para resolver el problema de seguimiento de camino se basa en la cinemática del sistema obtenida en (4). y con las consideras dichas anteriormente.

$$\mathbf{V_r}\left(t\right) = \mathbf{J_{rp}^{\#}}\left(\mathbf{V_{xyd}} + \mathbf{K}_p \tanh\left(\tilde{\mathbf{h}_p}\right)\right) \tag{8}$$

Donde:

 $\mathbf{V_r}(t)$ vector de maiobrabilidad.

 $J_{rp}^{\#}$ matriz pseudoinversa por la derecha.

V_{xyd} vector de velocidad deseada del camino.

 \mathbf{K}_{p} matriz de ganancia positiva para la compensación del error generado.

tanh(.) imita las velocidades de referencia, evitando así la saturación de la velocidad del robot.

 $\tilde{\mathbf{h}}_{\mathbf{p}}$ vector de errores.

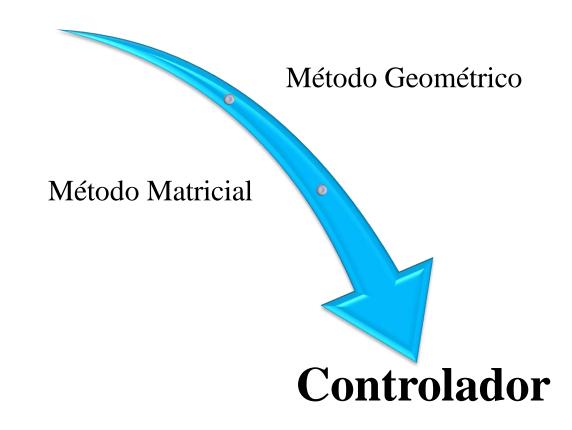
Control de Camino

• De acuerdo a lo expresado anteriormente, para la ley de control de camino para K+1 la pierna izquierda se obtiene con,

$$\dot{\mathbf{q}}_{\mathbf{l}}(t) = \mathbf{J}_{\mathbf{lp}}^{\#} \left(\mathbf{V}_{\mathbf{xyd}} + \mathbf{K}_{\mathbf{p}} \tanh \left(\tilde{\mathbf{h}}_{\mathbf{p}} \right) \right)$$
 (9)

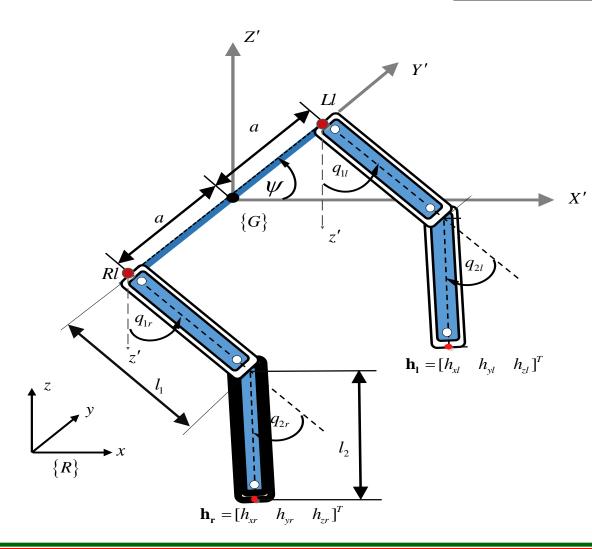
CONTROL DE MARCHA

Modelo Cinemático



Modelo cinemático

Método Geométrico



$$\begin{cases}
h_{xlm} = l_1 C_{q_{1l}} + l_2 C_{q_{2l}, q_{1l}} \\
h_{zlm} = l_1 S_{q_{1l}} + l_2 S_{q_{2l}, q_{1l}}
\end{cases} (10)$$

Modelo cinemático

Método Matricial

$$\left|\dot{\mathbf{h}}_{lm}\left(t\right) = \mathbf{J}_{lm}\left(q_{lm}\right)\dot{\mathbf{q}}_{lm}\left(t\right)\right| \tag{11}$$

$$\begin{bmatrix} \dot{h}_{xlm} \\ \dot{h}_{zlm} \end{bmatrix} = \begin{bmatrix} -l_2 S_{q1l,q2l} - l_1 S_{q1l} & -l_2 S_{q1l,q2l} \\ l_2 C_{q1l,q20l} + l_1 C_{q1l} & l_2 C_{q1l,q2l} \end{bmatrix} \begin{bmatrix} \dot{q}_{1l} \\ \dot{q}_{2l} \end{bmatrix}$$

$$\rightarrow \dot{\mathbf{h}}_{\mathbf{lm}}(t) = [\dot{h}_{xlm} \quad \dot{h}_{zlm}]^T$$

$$ightarrow \mathbf{J}_{\mathbf{lm}}\left(q_{lm}\right)$$

$$\rightarrow \dot{\mathbf{q}}_{\mathbf{lm}}(t) = [\dot{q}_{1l} \quad \dot{q}_{2l}]^T$$

Control de Marcha

$$\to P(t) = \begin{bmatrix} X_{dt} & Z_{dt} \end{bmatrix}^T$$

$$\rightarrow P_{dm} = (P_{xdt}, P_{zdt})$$

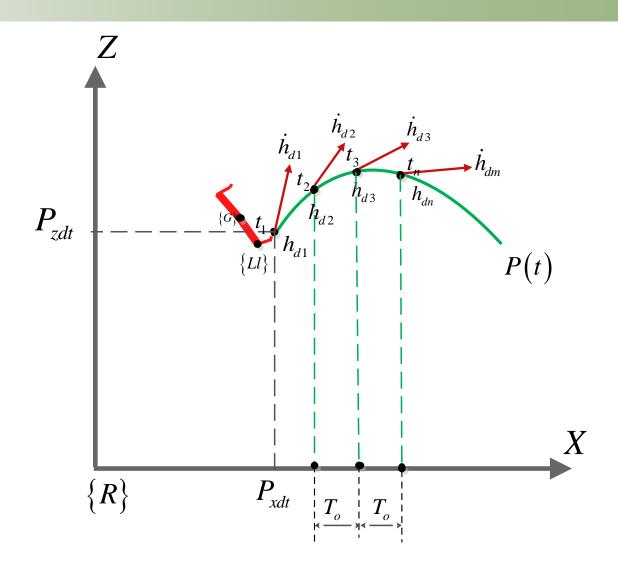
$$\tilde{h}_{zm} = P_{zdt} - h_{zlm}$$

$$\left| \tilde{h}_{xm} = \left| V \right| f + \left| E \right| g$$

$$\rightarrow P(t) = \begin{bmatrix} X_{dt} & Z_{dt} \end{bmatrix}^{T} \qquad \tilde{\mathbf{h}}_{\mathbf{m}}(t) = \begin{bmatrix} \tilde{h}_{xm} & \tilde{h}_{zm} \end{bmatrix}^{T}$$
 (12)

$$\begin{vmatrix} \dot{\mathbf{h}}_{\mathbf{dm}} (\mathbf{t}) = \begin{bmatrix} \dot{h}_{xdt} & \dot{h}_{zdt} \end{bmatrix}^T \end{vmatrix}$$
 (13)

$$\left|E
ight|=\sqrt{\left(ilde{h}_{_{XP}}
ight)^{^{2}}+\left(ilde{h}_{_{YP}}
ight)^{^{2}}}$$



Control de Marcha

$$\dot{\mathbf{q}}_{\mathbf{lm}} = \mathbf{J}_{\mathbf{lm}}^{-1} \dot{h}_{lm} \left(t \right) \qquad (14)$$

$$\left|\dot{\mathbf{q}}_{lm}\left(t\right) = \mathbf{J}_{lm}^{-1}\left(\dot{\mathbf{h}}_{dm} + \mathbf{K}_{m} \tanh\left(\tilde{\mathbf{h}}_{m}\right)\right)\right|$$
 (15)

 $\dot{\mathbf{q}}_{lm}(t)$ \Longrightarrow vector de maniobrabilidad del sistema.

 J_{lm}^{-1} \Longrightarrow matriz Jacobiana inversa Ll.

 $\dot{\mathbf{h}}_{\mathbf{dm}}$ vector de las velocidades deseadas de la trayectoria.

 \mathbf{K}_m es la constante de ganancia para la compensación del error generado.

tanh(.) imita las velocidades de referencia, evitando así la saturación del sistema.

 $\tilde{\mathbf{h}}_{\mathbf{m}} \implies$ vector de errores.

Control de Marcha

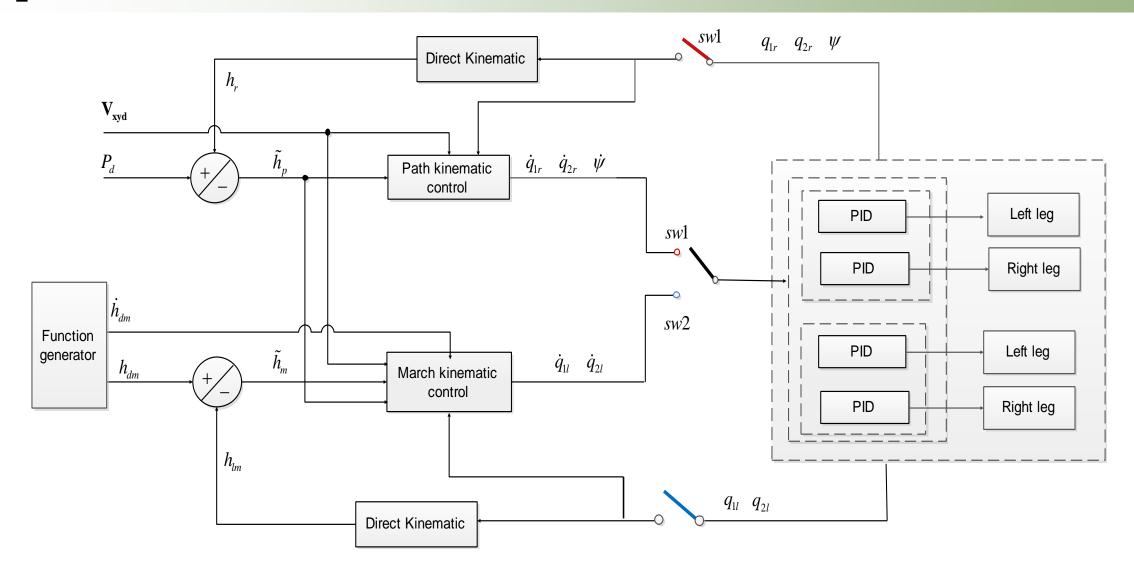
• De acuerdo a lo expresado a lo anterior el modelo cinemático de la pierna derecha respecto $\{Rl\}$.

$$\dot{\mathbf{h}}_{\mathbf{rm}}(t) = \mathbf{J}_{\mathbf{rm}}(q_{rm})\dot{\mathbf{q}}_{\mathbf{rm}}(t)$$
 (16)

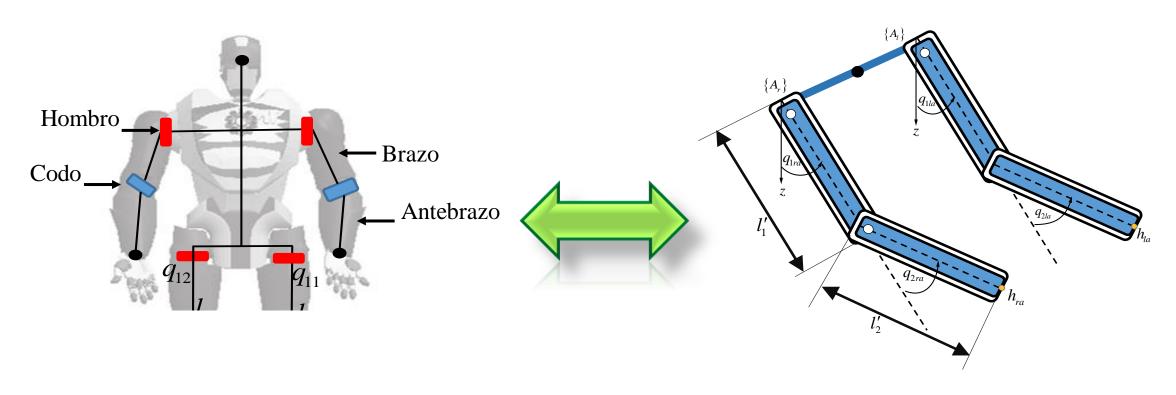
Además, la ley de control de marcha que se presenta para la pierna derecha del robot humanoide se obtiene con (16)

$$\dot{\mathbf{q}}_{\mathbf{rm}}\left(t\right) = \mathbf{J}_{\mathbf{rm}}^{-1} \left(\dot{\mathbf{h}}_{\mathbf{dm}} + \mathbf{K}_{m} \tanh\left(\tilde{\mathbf{h}}_{m}\right)\right) \tag{17}$$

Esquema de control Cinemático

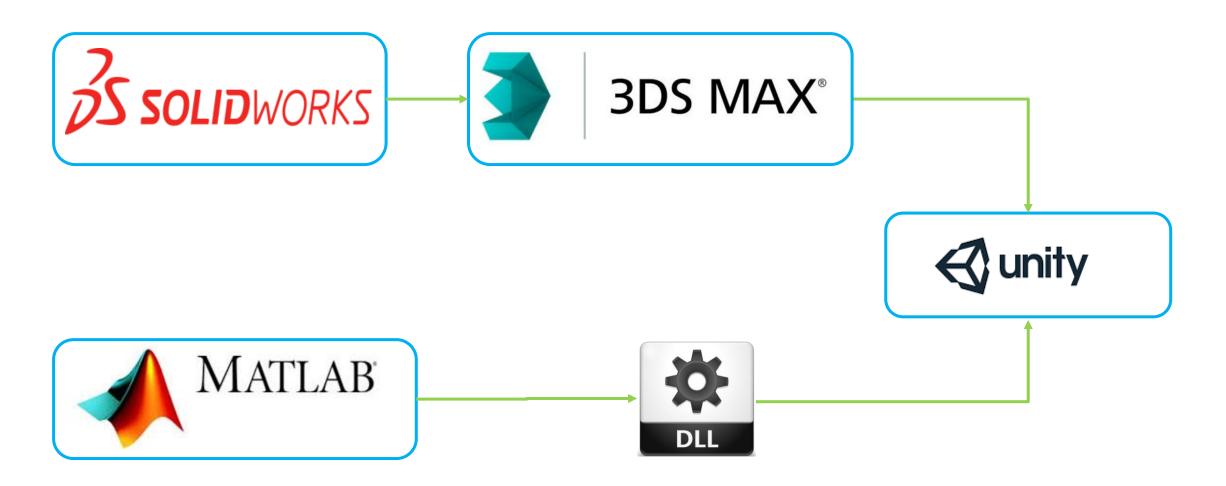


Modelo cinemático de los brazos

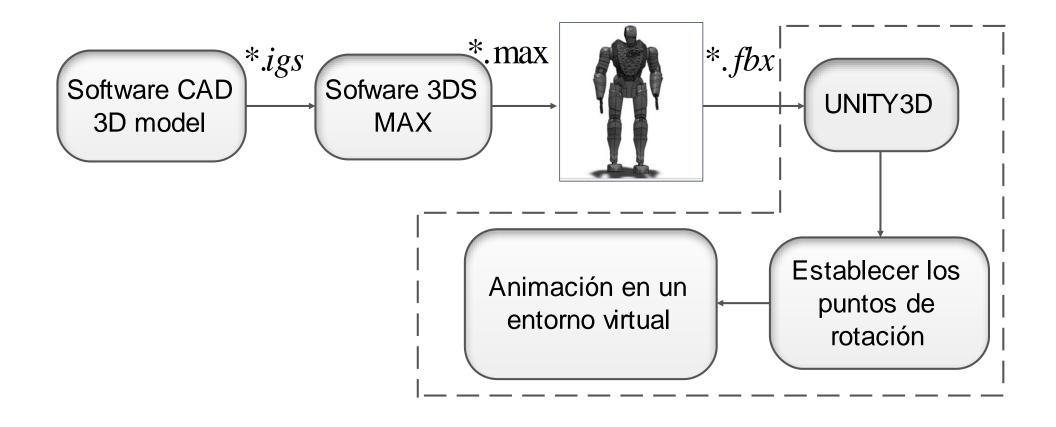


$$\begin{cases} h_{xra} = l_1' S_{q_{1ra}} + l_2' S_{q_{1ra}, q_{2ra}} \\ h_{zra} = l_1' C_{q_{1ra}} + l_2' C_{q_{1ra}, q_{2ra}} \end{cases}$$
(18)

ANIMACIÓN EN UN ENTORNO VIRTUAL



Exportación y puntos de rotación



Comunicación MatLab-Unity3D

Técnica DLL(Dynamic-Link-Library)

Memoria Compartida


```
% load dll---->-->-->--->--->----
    loadlibrary('dll64Matlab.dll','simple.h');
    calllib ('dll64Matlab','initMemory');
%Initialization
```

```
calllib('dll64Matlab', 'setValue', VRq1(k), VRq2(k), VRq3(k), VRq4(k),
VRq5(k), VRposx(k), VRposy(k), VRA1(k), VRA3(k), 0);
```



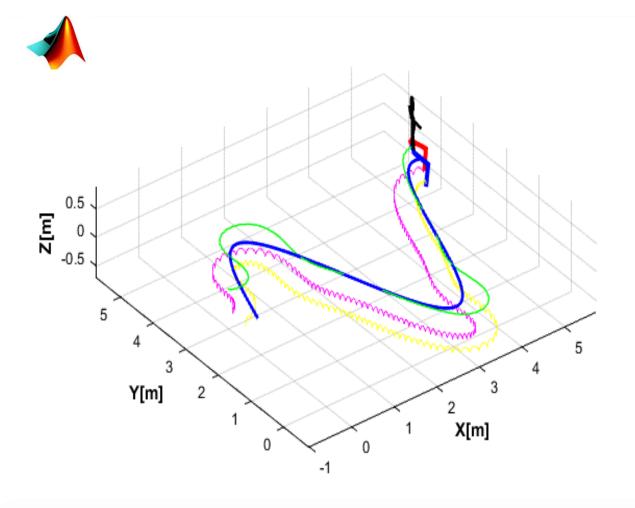
```
[DllImport(@"D:\SMDLL2Matlab\dll64Matlab.dll")]
    private static extern void destroyMemory();
Liberar Memoria
```

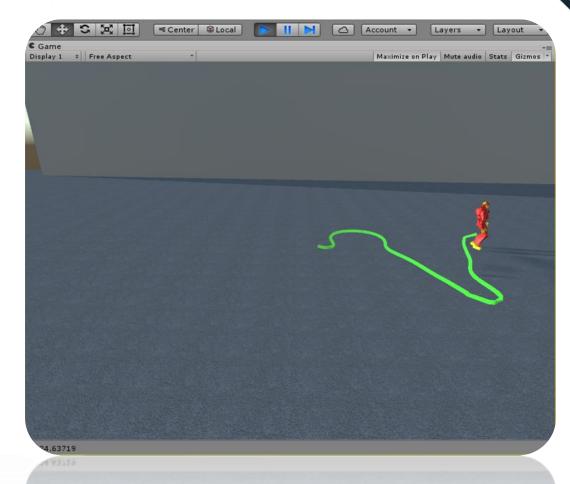
```
[DllImport(@"D:\SMDLL2Matlab\dll64Matlab.dll")]
    private static extern void openMemory();
Abrir Memoria
```

```
[DllImport(@"D:\SMDLL2Matlab\dll64Matlab.dll")]
    private static extern int getValue1();

[DllImport(@"D:\SMDLL2Matlab\dll64Matlab.dll")]
    private static extern int getValue2();
Datos recibidos
```


RESULTADOS



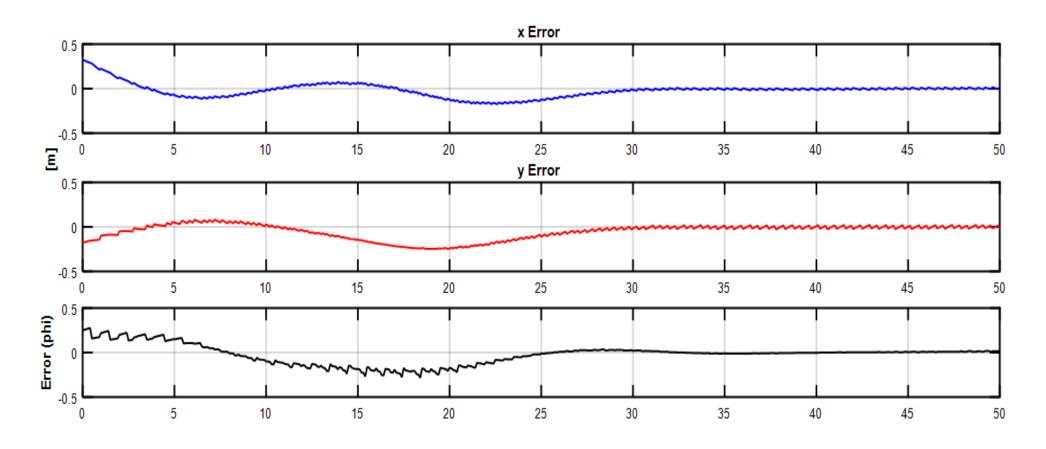


Y[m]

3

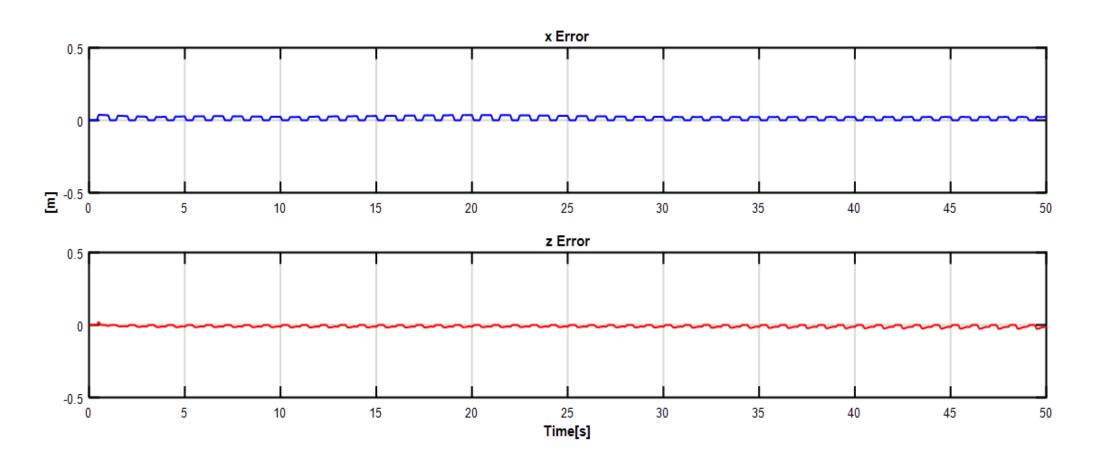
Resultados

Controlador de camino



Resultados

Controlador de marcha



CONCLUSIONES

- Para determinar un esquema de control cinemático necesariamente se debe obtener el modelo matemático del mecanismo.
- Desde el punto de vista computacional el método de Transformación Homogénea es muy factible al implementar el esquema de Control en un software matemático.
- El esquema de control propuesto es sensible, ya que a la mínima modificación tiende a reaccionar sobre el mecanismo.
- El esquema de control en un periodo de muestreo k la pierna derecha alcanza la posición deseada a través del controlador de camino, mientras que con el controlador de trayectoria la pierna izquierda realiza la marcha; en el instante k+1 se invierten los controladores, i.e., la pierna derecha realiza la marcha mientras que la izquierda alcanza una posición deseada del camino.

CONCLUSIONES

- Para ejecutar las escenas en el software de realidad virtual se considera la capacidad de la tarjeta de video que contiene el computador donde se va a realizar la animación.
- La correcta animación en un Entorno Virtual depende de las jerarquías y puntos de rotación establecidas en cada eslabón que conforman el mecanismo.

FIN

