

DEPARTAMENTO DE CIENCIAS DE ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA EN MECATRÓNICA

"INVESTIGACIÓN DE PROPIEDADES MECÁNICAS DE MATERIALES FLEXIBLES IMPRESOS EN 3D PARA EL DISEÑO E IMPLEMENTACIÓN DE UN PROTOTIPO DE ÓRTESIS FUNCIONAL DE MANO, CONTROLADA AUTOMÁTICAMENTE PARA FACILITAR HABILIDADES MOTRICES"

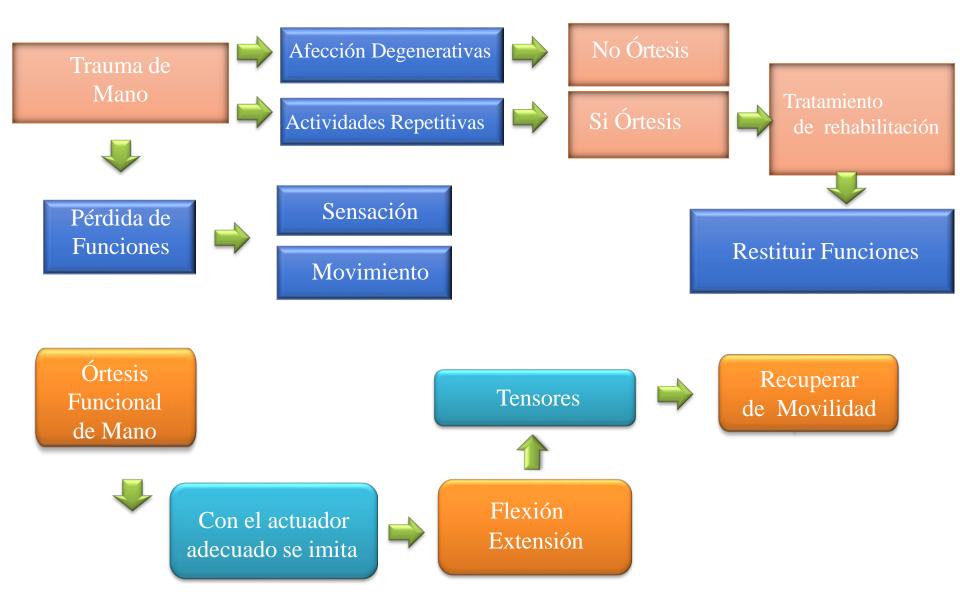
LEÓN CÁRDENAS MANUEL ALEJANDRO ROMERO ANDRADE PAUL ALEJANDRO

TUTOR: Ing. VICTOR ANDALUZ

PUBLICACIONES

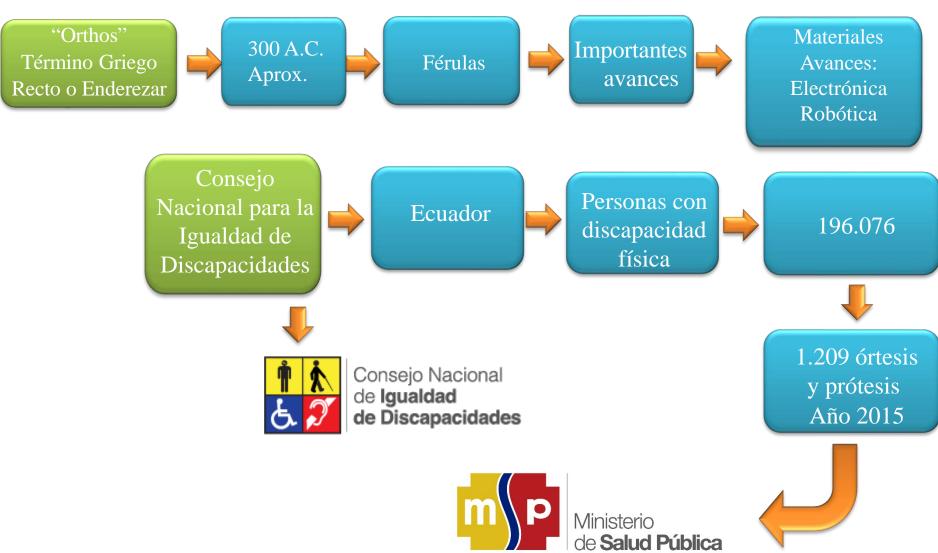
Paul Romero, Manuel León, Oscar Arteaga, Víctor H. Andaluz and Mauricio Cruz.
 "Composite Materials for the Construction of Functional Orthoses", 2017 3rd
 Advanced Research in Material Sciences, Manufacturing, Mechanical and
 Mechatronic Engineering Technology International Conference.

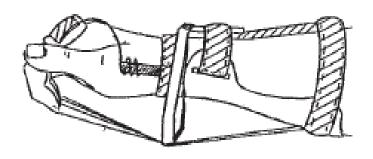
PUBLICACIONES

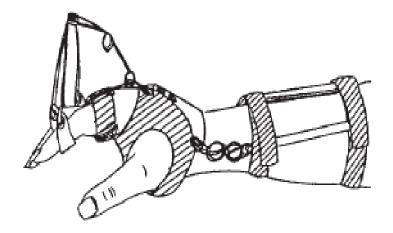


Manuel A. León, Paul A. Romero, Washington X. Quevedo, Oscar Arteaga,
 Cochise Terán, Marco E. Benalcázar and Víctor H. Andaluz "Virtual Rehabilitation
 System for Fine Motor Skills Using a Functional Hand Orthosis", The 5th
 International Conference on Augmented Reality, Virtual Reality, and Computer
 Graphics (SALENTO AVR 2018).

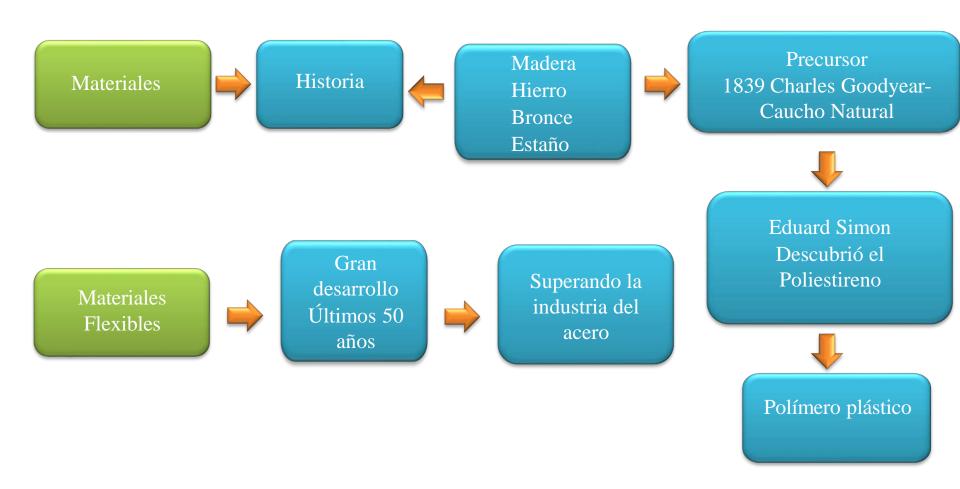
<u>INTRODUCCIÓN</u>




ANTECEDENTES



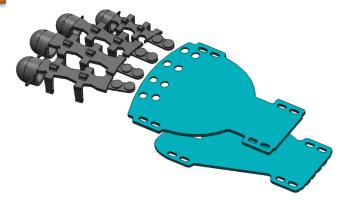
Órtesis Funcionales de Mano

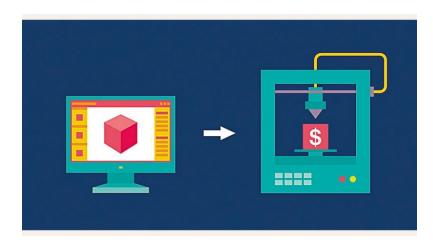

Aditamento Flexor

Aditamento Extensor

ANTECEDENTES

PROPUESTA

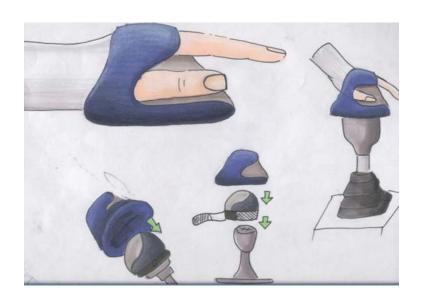

Investigación de
Propiedades
mecánicas de
materiales flexibles


Implementación de un prototipo de órtesis funcional de mano

Impresos en 3D

OBJETIVO GENERAL

• Investigar las características mecánicas de materiales flexibles impresos en 3D, para el diseño de una órtesis functional de mano controlada automáticamente para rehabilitación, mejorando la motricidad fina.

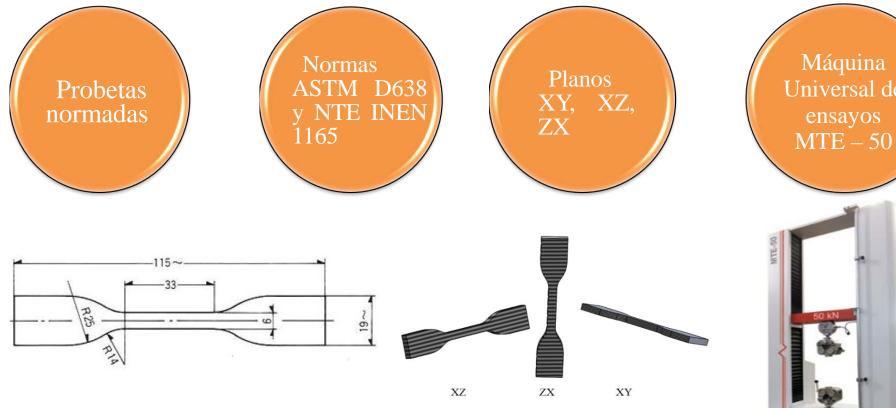

OBJETIVOS ESPECÍFICOS

- Investigar las propiedades tecnológicas, físicas y químicas de diferentes materiales flexibles a través de procesos normalizados.
- Diseñar un prototipo de órtesis funcional de mano, que provea comodidad y flexibilidad al usuario.
- Construir un prototipo de órtesis funcional de manomediante el uso de tensores alámbricos que proporcionen los movimientos necesariospara tareas de rehabilitación facilitando la motricidad fina.
- Implementaruncontrol autónomo que permita el accionamiento delos actuadores de la órtesis estimulando la funcionalidad dela mano.
- Realizar evaluaciones experimentales de la órtesisdesarrollada para comprobar la utilidaddel material flexible y su comportamiento en base al algoritmode control propuesto.

TRABAJOS PREVIOS

DISEÑO Y ELABORACIÓN DE UNA ORTESIS PARA MANO DURANTE LA CONDUCCION DE UN AUTOMOVIL COLOMBIA

Rehabilitación de la mano con órtesis robóticas **COLOMBIA**



ANÁLISIS Y SELECCIÓN DE MATERIAL

CARACTERIZACIÓN DE MATERIALES IMPRESOS EN 3D

Universal de

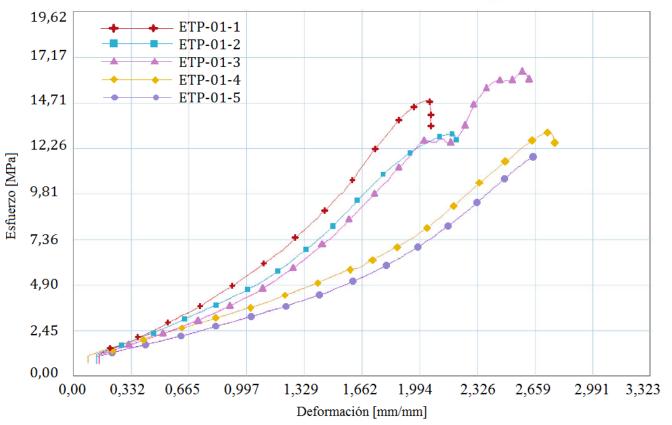
NINJA FLEX

Propiedades

NinjaFlex está hecho de TPU

Puede presentar fisuras si se ve expuesto a aguas saladas, a hongos nocivos o a hidrolisis

Los poliuretanos termoplásticos poseen baja toxicidad – aplicaciones biomédicas

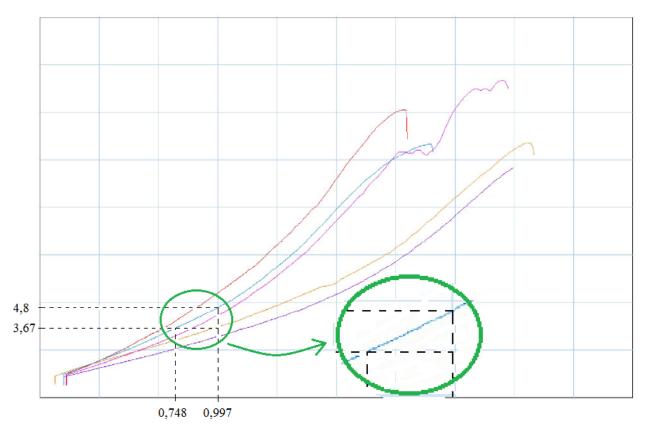

Deformación Térmica 0,455 [MPa] de 74 [°C] → ASTM D648

Lulzbot Mini a 210°C

INNOVACIÓN PARA LA EXCELENCIA

Diagrama Esfuerzo Vs Deformación, probetas XY

Deformación de las probetas	De 1,994 a 2,72 [mm/mm]
Esfuerzos máximos	De 11,87 a 16,35 [MPa],
Coeficiente de variación	12,6%
Desviación estándar	1,75 [MPa]


CÁLCULO DEL MÓDULO DE ELASTICIDAD

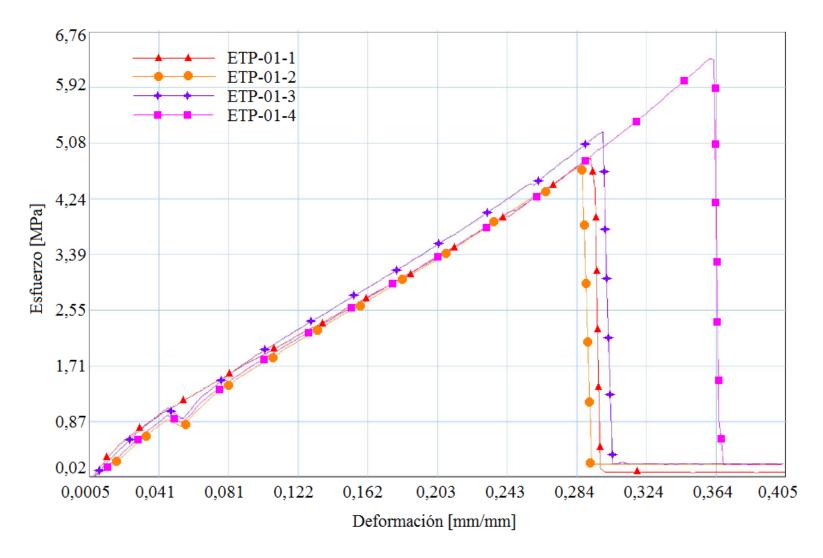
$$\sigma = E\epsilon$$

$$E = \frac{\sigma}{\epsilon}$$

$$E = \frac{\sigma}{\epsilon} = \frac{4,8 - 3,67}{0,997 - 0,748} [MPa]$$
$$= \frac{1,13}{0,249} [MPa] = 4,5381 [MPa]$$

RESULTADOS ENSAYOS

PROBETA (XY)	FMax(N)	CMax(MPa)	CYield(MPa)	E(MPa)
ETP-01-1	445,14	14,84	3,48	7,409
ETP-01-2	394,45	13,15	1,47	3,794
ETP-01-3	356,01	11,87	1,20	2,691
ETP-01-4	490,46	16,35	1,29	5,422
ETP-01-5	391,77	13,06	1,35	4,538
	415,566	13,852	1,758	4,7708
PROBETA (XZ)	FMax(N)	CMax(MPa)	CYield(MPa)	E(MPa)
ETP-02-1	291,22	9,71	2,18	2,854
ETP-02-2	228,45	7,61	1,82	2,318
ETP-02-3	284,34	9,48	1,54	2,882
ETP-02-4	247,58	8,25	1,80	2,318
ETP-02-5	301,13	10,04	2,20	2,936
	270,544	9,018	1,909	2,6616


PROBETA (ZX)	FMax(N)	CMax(MPa)	CYield(MPa)	E(MPa)
ETP-03-1	64,79	2,16	0,81	2,458
ETP-03-2	47,33	1,58	0,84	1,219
ETP-03-3	41,29	1,38	0,82	1,667
ETP-03-4	56,90	1,90	0,91	1,525
ETP-03-5	42,47	1,42	0,83	2,125
L11-03-3	50,556	1,685	0,83	1,7988

NinjaFlex	Esfuerzo Máximo [MPa]
Hoja de datos	26
Plano XY	13,85
Plano XZ	9,018
Plano ZX	1,685

RESINA POLIMERICA

RESULTADOS DE LOS ENSAYOS

PROBETA (XZ)	FMax(N)	CMax(MPa)	CYield(MPa)	E(MPa)
ETP-01-1	157,78	4,86	1,09	13,803
ETP-01-2	148,21	4,76	0,79	14,915
ETP-01-3	157,95	5,25	0,95	16,787
ETP-01-4	197,39	6,35	0,96	13,939
	165,332	5,305	0,948	14,861
PROBETA (XY)	FMax(N)	CMax(MPa)	CYield(MPa)	E(MPa)
ETP-02-1	157.95	4.87	0.78	14.832
ETP-02-2	160,47	5,27	0,75	16,135
ETP-02-3	127,90	3,90	0,45	14,859
ETP-02-4	181,45	5,54	0,81	13,939
	156,942	4,895	0,697	14,941

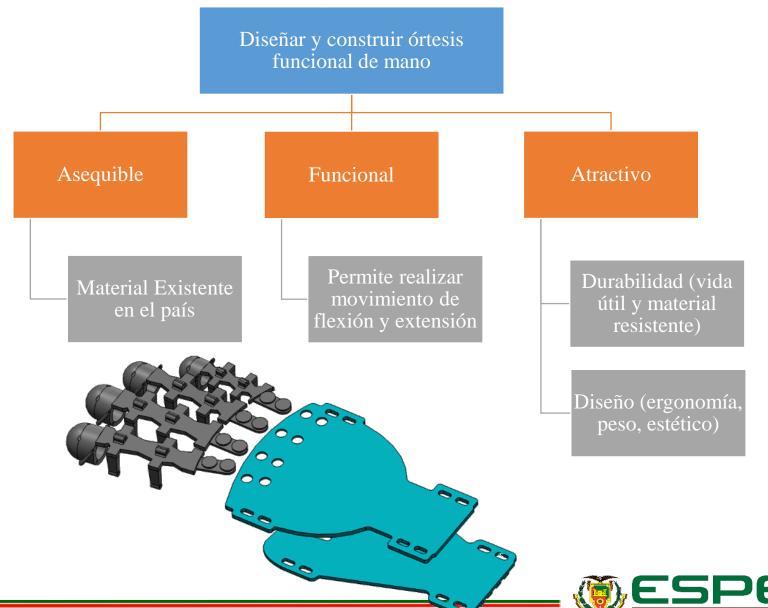
RESULTADOS DE LOS ENSAYOS

PROBETA (ZX)	FMax(N)	CMax(MPa)	CYield(MPa)	E(MPa)
ETP-03-1	127,90	4,26	0,56	13,889
ETP-03-2	157,45	5,33	0,69	15,089
ETP-03-3	155,26	5,33	0,62	15,821
ETP-03-4	155,10	5,34	0,59	16,135
	148,928	5,062	0,615	15,234

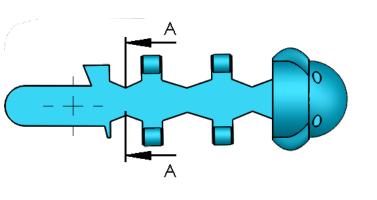
Resina polimérica	Esfuerzo Máximo [MPa]
Hoja de datos	8,5
Plano XY	5,305
Plano XZ	4,895
Plano ZX	5,062

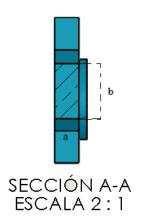
SEMIFLEX

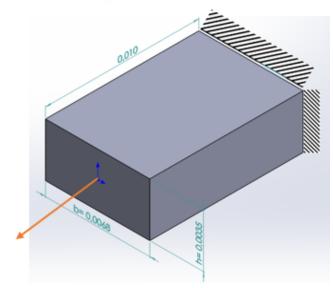
La composición un poco más rígida que la tradicional NinjaFlex permite una mayor resistencia a la tracción


Esfuerzo máximo 43 [MPa] → Hoja de datos

PROBLEM (XY)	FMax(N)	CMax(MPa)	CYield(MPa)	E(MPa)
ETP-01-1	590,10	20,88	3,01	4,931
ETP-01-2	577,48	20,30	3,11	4,931
ETP-01-3	561,70	19,76	2,94	4,739
ETP-01-4	590,10	20,64	2,81	5,44
ETP-01-5	575,90	20,06	2,97	4,68
	579,06	20,33	2,969	4,944


DISEÑO DE ÓRTESIS DE MANO

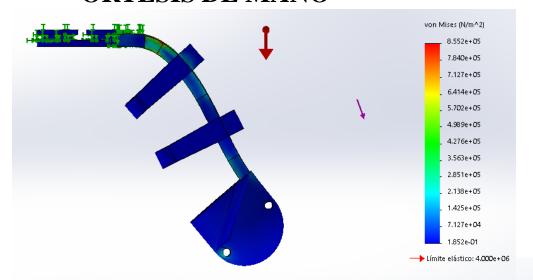



 F_i : Fuerza Agarre individual = $\frac{F_A}{4}$

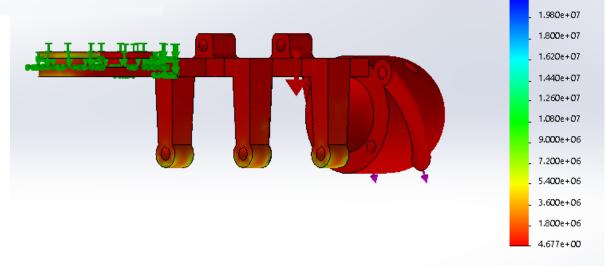
$$F_i = \frac{417,57}{4} [N] = 104,4 [N]$$

$$\sigma_T$$
: Esfuerzo a tensión $=\frac{F}{A}$

$$\sigma_T = \frac{104,4 \ [N]}{(6,8 \ x10^{-3} \ . \ 3,5 x10^{-3})[m^2]}$$

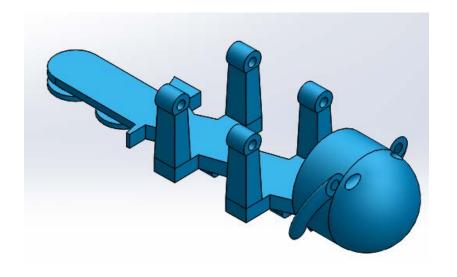

$$= 4,4 [MPa]$$

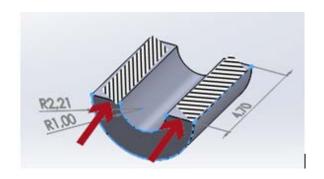
$$F_S = \frac{20,33}{4,4} \frac{[MPa]}{[MPa]} = 4,6$$



ESFUERZOS CRÍTICOS DE LA ÓRTESIS DE MANO

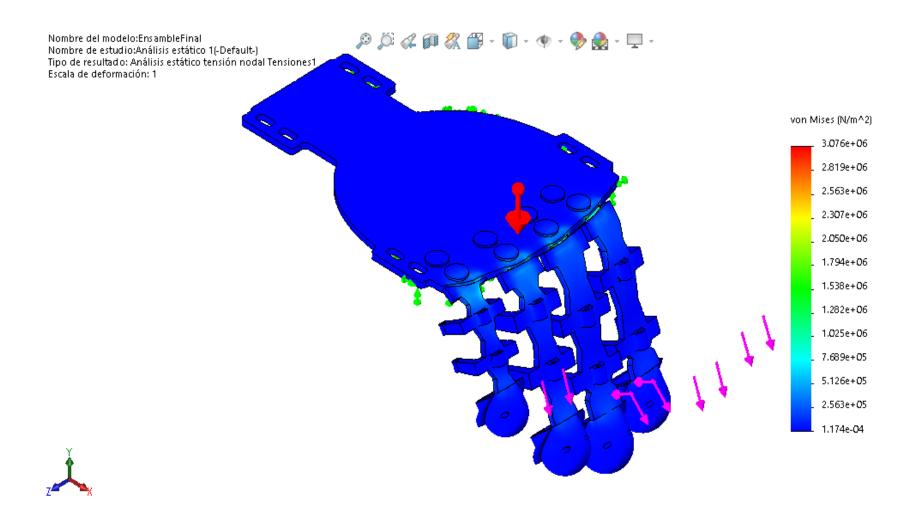
$$F_{\rm S} = 4.7$$




FDS

2.160e+07

Esfuerzo por corte



$$\tau = \frac{F_i}{A}$$

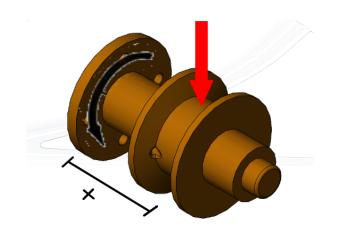
$$\tau = \frac{104.4}{18.52 \ x 10^{-3}} \frac{[N]}{[m^2]} = 5.6 \ [KPa]$$

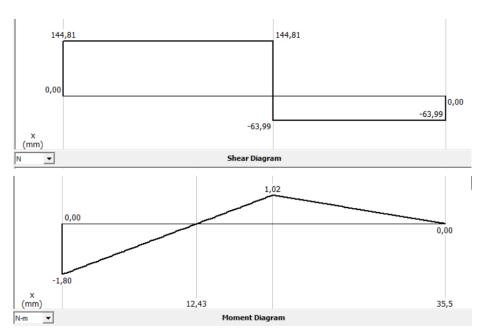
$$F_s = \frac{S_{ut}}{\tau} = \frac{20,33 \times 10^6}{5,6 \times 10^3} \frac{[Pa]}{[Pa]} = 3630$$

Tensor

 F_R : Resistencia del tensor = 15,3 [Kgf] = 150,04 [N]

$$F_i = 104,4 [N]$$


$$F_S = \frac{F_R}{F_i}$$


$$F_S = \frac{150,04}{104,4} \frac{[N]}{[N]} = 1,44$$

Análisis de esfuerzos en el eje

$$\sigma = \frac{32 M}{\pi \Phi^3} = 18,33 [MPa]$$

$$T = 2(104,4 [N]).19,5x10^{-3}[m]$$

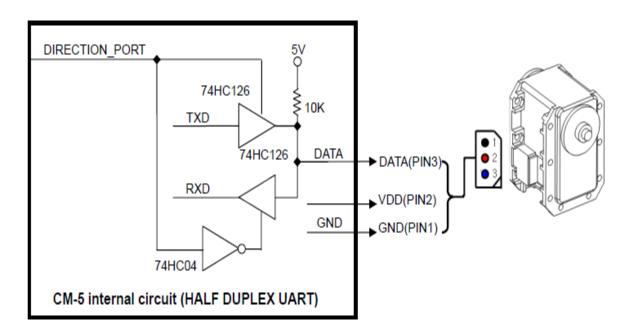
$$\tau = \frac{16T}{\pi \, \phi^3} =$$

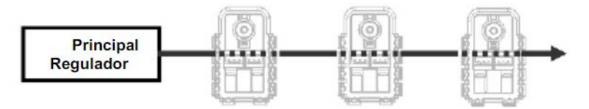
$$\tau_{max} = \sqrt{(\frac{\sigma}{2})^2 + \tau^2} = 22,67[MPa]$$

$$Fs = \frac{50}{22,67} \frac{[MPa]}{[MPa]} = 2,2$$

Selección de componentes eléctricos y control

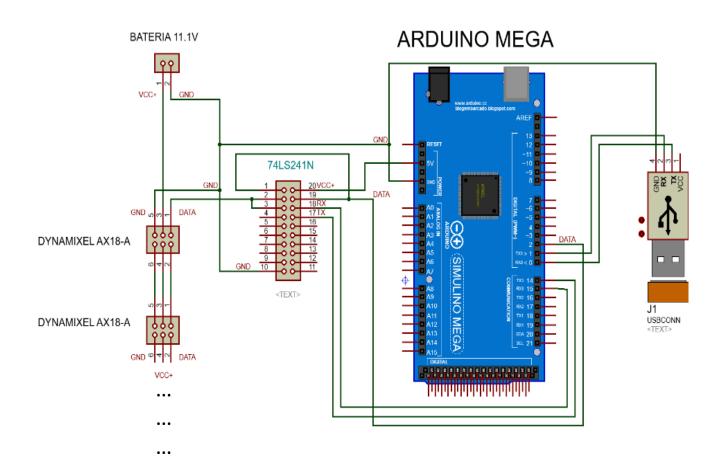
Actuadores


Alternativ	vas	Parámetros						
Fabricante	Modelo	Tamaño	Peso	Torque	Voltaje	Control	Sensore	Resultado
Tower Pro	MG996R	4	2	1	3	1	1	12
Power HD	3001HB	4	2	1	3	1	1	12
XYZ Robot	A1-16	3	2	3	3	2	3	16
Dynamixel	AX-18A	3	2	4	3	4	4	20
Feetech	SM80	3	2	2	2	4	3	16



Comunicación

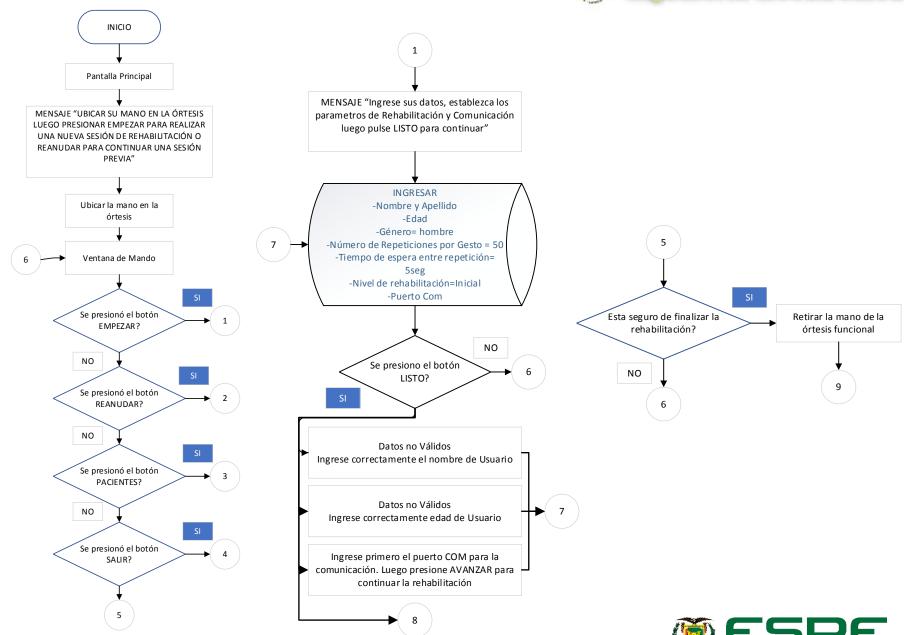
Comunicación

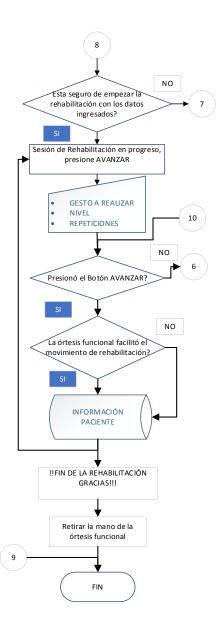

Alternati	vas Parámetros			Parámetros		
Fabricante	Modelo	Tamaño	Velocidad	Protección	Precio	Resultado
Dynamixel	USB2D	4	4	3	1	12
Arduino	Mega 2560	2	4	3	4	13
Open CM	9.04-C	4	3	2	3	12
ArbotiX	M	2	3	2	2	9

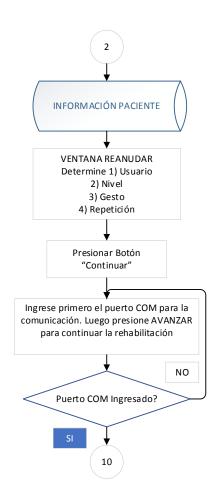
Circuito de Control

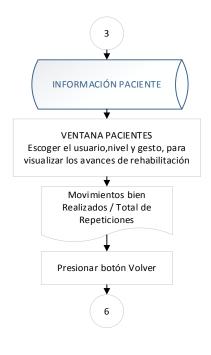
Alimentación

Alternati	Alternativas			Parámetros de Selección				
Fabricante	Modelo	Tamaño	Capacidad	Voltaje	Descarga	Calificación		
MultiStar	5200mA 3s	3	3	4	2	12		
ZIPPY Compact	2200mAh 3S	2	3	4	1	10		
Turnigy	2200mAh 3S	4	3	4	4	15		
Traxxas	2200mAh 2S	3	2	1	3	9		


Sistema de Control Asistido por Computador


PROGRAMACIÓN EN EL SOFTWARE MATLAB




UNIVERSIDAD DE LAS FUERZAS ARMADAS Innovación para la excelencia

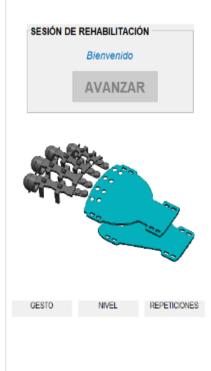
🏂 ।।।एकाविक 🖟वस्काकाति

Interfaz gráfica del sistema de control

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE-EL

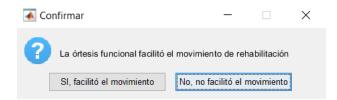
INGENIERIA MECATRONICA

INVESTIGACIÓN DE PROPIEDADES MECÁNICAS DE MATERIALES FLEXIBLES IMPRESOS EN 3D PARA EL DISEÑO E IMPLEMENTACIÓN DE UN PROTOTIPO DE ÓRTESIS FUNCIONAL DE MANO, CONTROLADA AUTOMÁTICAMENTE PARA FACILITAR HABILIDADES MOTRICES.

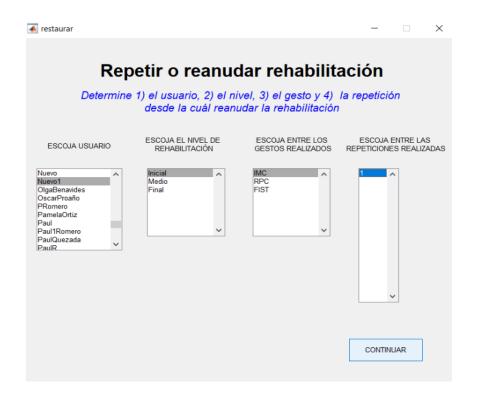

UBICAR SU MANO EN LA ÓRTESIS LUEGO PRESIONAR EMPEZAR PARA REALIZAR UNA NUEVA SESIÓN DE REHABILITACIÓN O REANUDAR PARA CONTINUAR UNA SESIÓN PREVIA

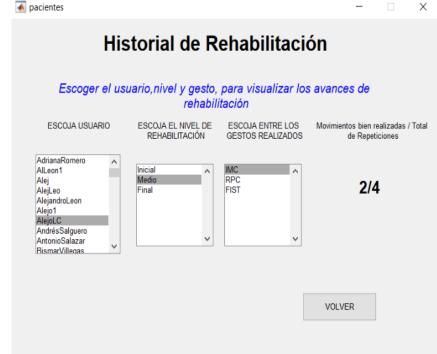
LISTO

Empezar Sesión

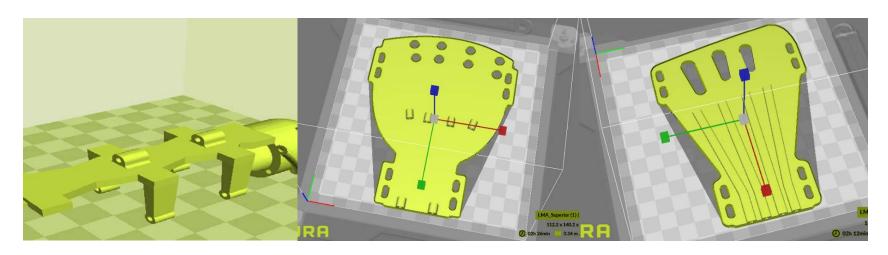


Movimientos de rehabilitación programados





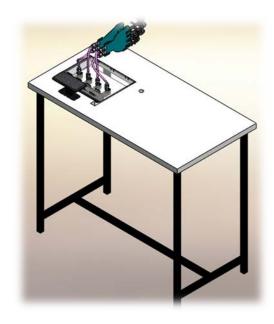
Ventanas Auxiliares



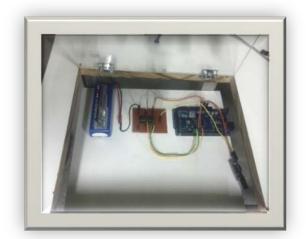

IMPLEMENTACIÓN

Impresión del Prototipode Órtesis Funcional

Ensamble de la Órtesis

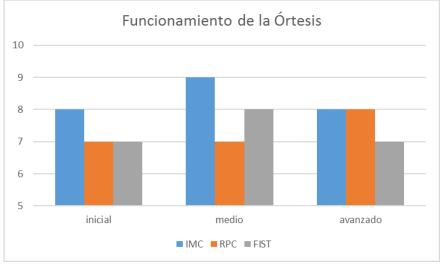


Construcción de la Estación



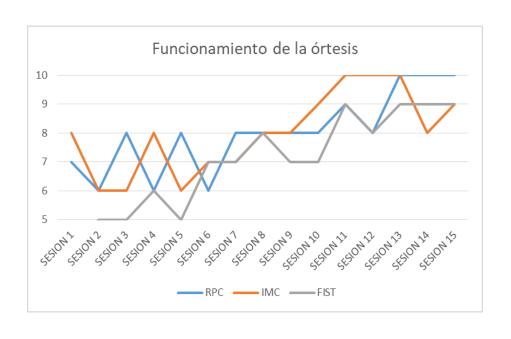
Ensamble Total de la Estación

PRUEBAS Y RESULTADOS



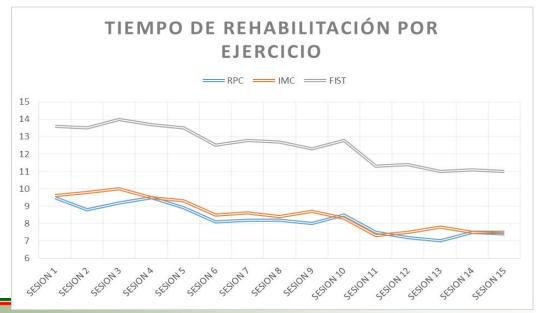
Funcionamiento de órtesis sin sujeto de prueba

Nivel	Gesto	Correcto				
		Funcionamiento				
Inicial	IMC	8/10				
_	RPC	7/10				
	FIST	7/10				
_	IMC	9/10				
Medio -	RPC	7/10				
Wiculo	FIST	8/10				
_	IMC	8/10				
Avanzado -	RPC	8/10				
114 anzado	FIST	7/10				



Funcionamiento de órtesis con sujeto de prueba

	SESION 1	SESION 2	SESION 3	SESION 4	SESION 5	SESION 6	SESION 7	SESION 8	SESION 9	SESION 10	SESION 11	SESION 12	SESION 13	SESION 14	SESION 15
		1 Semana (Inicial) 2 Semana (Medio)							3 Semana (Avanzado)						
RPC	7	6	8	6	8	6	8	8	8	8	9	8	10	10	10
IMC	8	6	6	8	6	7	7	8	8	9	10	10	10	8	9
FIST	4	5	5	6	5	7	7	8	7	7	9	8	9	9	9



Tiempo de rehabilitación por ejercicio

	SESION	SESION	SESION	SESION 4	SESION 5	SESION	SESION 7	SESION 8	SESION	SESION 10	SESION 11	SESION 12	SESION 13	SESION 14	SESION	
		1 Sem	ana (I	nicial)	/	2 Sem	ana (N	Medio)	3.5	3 Semana (Avanzado)				
RPC	9,5	8,8	9,2	9,5	8,9	8,1	8,2	8,2	8	8,5	7,5	7,2	7,0	7,5	7,4	
IMC	9,6	9,8	10	9,5	9,3	8,5	8,6	8,4	8,7	8,3	7,3	7,5	7,8	7,5	7,5	
FIST	13,6	13,5	14,0	13,7	13,5	12,5	12,8	12,7	12,3	12,8	11,3	11,4	11,0	11,1	11,0	

Validación de la hipótesis

N°	Nivel	Gesto	Cumple	No cumple	# de pruebas
1		IMC	6	4	10
2	Inicial	RPC	8	2	10
3	_	FIST	5	5	10
4		IMC	9	1	10
5	Medio	RPC	8	2	10
6		FIST	7	3	10
7		IMC	9	1	10
8	Avanzado	RPC	10	0	10
9	_	FIST	9	1	10
		Total	71	19	90

$$\lambda^2 = \sum_{i=1}^k \frac{\left(O_i - E_i\right)^2}{E_i}$$

Donde λ^2 es el Chi cuadrado, O_i es la Frecuencia absoluta observada y E_i es la Frecuencia esperada.

$$\lambda^2 = 12,546$$

CONCLUSIONES

- Al díade hoyenel país existen tres tiposde materiales que se pueden imprimir en 3D y brindan flexibilidad, los mismos que se caracterizaron a travésde ensayosde tracción. Los resultados permitieron determinarque el material SemiFlexes el que presta mejores características, con una resistencia a la tracción de 20,33 [MPa], yun módulo de elasticidadde 4,94 [MPa].
- La caracterización de materiales flexibles impresos en 3D, fue necesaria en virtud de que al compararlas con las características que ofreceel filamento antes de ser impreso existen variaciones representativas, debidas a la direcciónde deposicióndel material al momento de imprimirloyal porcentajede relleno que se utilice para la impresión, el tiempoy costo de la impresión estarán sujetos a estos dos factores.
- Para el diseño se utilizó medidas antropométricas de la manopara proporcionar la comodidad requerida porel usuario, peroa causade la diferencia de dimensionesde la mano entre las personas, se implementó en el diseño, el intercambio de uno o todos los dedos a finde que el usodela órtesis pueda ser apta para varias personas. De la misma manera en el di-seño de los dedos se toma en cuenta que el tensor debe permitir realizar movimientos de flexión y extensión para los ejerciciosde rehabilitación.

CONCLUSIONES

- En cuando a la implementación del diseño electrónico, se generó un sistema en lazo cerrado a fin de proporcionar asistencia al paciente, para ejecutar diferentes tipos de movimientos asociados a ejercicios de rehabilitación motriz.
- Para facilitar la usabilidad de la órtesisde mano, se creó una interfaz de usuario que permite al paciente visualizar los movimientos a ejecutar y sus avances de rehabilitación, logrando además interacción y confianza entre paciente y terapeuta
- Los ejercicios de recuperación muscular fueron elegidos en función de una sesiónde rehabilitacióndel Fisioterapeuta Carlos López Cuba (Carlos López Cubas, 2015), además se tomó en cuenta el artículo de MAPS Therapy enel que se hablade 15 sesiones y 3 niveles diferentes para mejorar la motricidad, dichas sesiones fueron utilizadas para comprobar la funcionalidadde la órtesis. Se debe tomar en cuentaque el número de sesiones y repeticiones dependerádela gravedadde la lesión que posea el paciente y sólo el fisioterapeuta decidirá ese valor.

RECOMENDACIONES

- Durante el diseñode piezasque sean impresas, es necesario tomar en cuenta que las impresiones se pueden realizaren diferentes direcciones, pero cada una ofrece distintas característicasy mayor o menor facilidadde impresión, siendo necesario o no,el usode materialde apoyo o a su vez soportes que permitan imprimir correctamente el sólido quese requiere.
- Adquirir más experiencia en la impresiónde materiales flexibles, en cuanto a los parámetros de cadamaterial como temperatura de fusión y velocidad de deposición del filamento.
- Es preciso el uso de medidas antropométricasen el diseñode prototipo de órtesis funcional para brindar la comodidad y ergonomía necesaria
- Para trabajos futuros, implementar otros mecanismos que permitan ejecutar movimientos de diferentes terapias de rehabilitación

