

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA AUTOMOTRIZ

Tema:

"INVESTIGACIÓN DE MATERIALES COMPUESTOS CON FIBRA NATURAL PARA LA CONSTRUCCIÓN DE LA CARROCERÍA DEL VEHÍCULO DE COMPETICIÓN FORMULA STUDENT"

Director: Ing. Paredes Gordillo, Cristian Alejandro

Autores::

- Bautista Bravo, Christian Giovanni
- Mena Izurieta, Patricio Iván

Objetivos Específicos

UNIVERSIDAD DE LAS FUERZAS ARMADAS INNOVACIÓN PARA LA EXCELENCIA

RECOPILAR	
ANALIZAR	
DISEÑAR	
REALIZAR	
CONSTRUIR	
COMPARAR	

Diseñar

Formula student

COMPETICIÓN

Construir

Desarrollar

Competir

Conocimientos técnicos y de la gestión empresarial

Clase Uno.- Construidos y capaces de moverse

Clase dos.- Vehículo completo y deben tener a disposición un chasis

Clase tres.- Diseño y validación diseño, presentación y coste

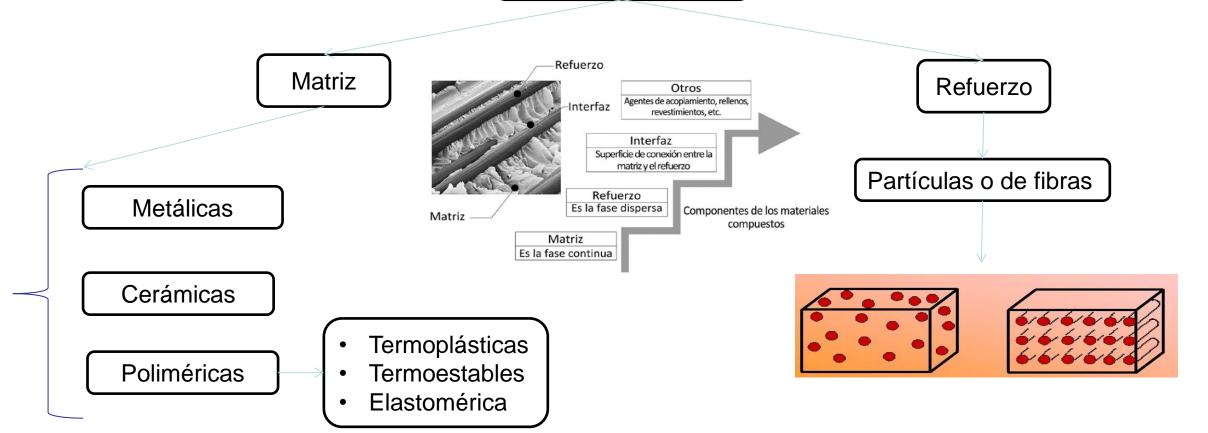
CATEGORÍAS

Normativas Formula Student Germany para la — carrocería.

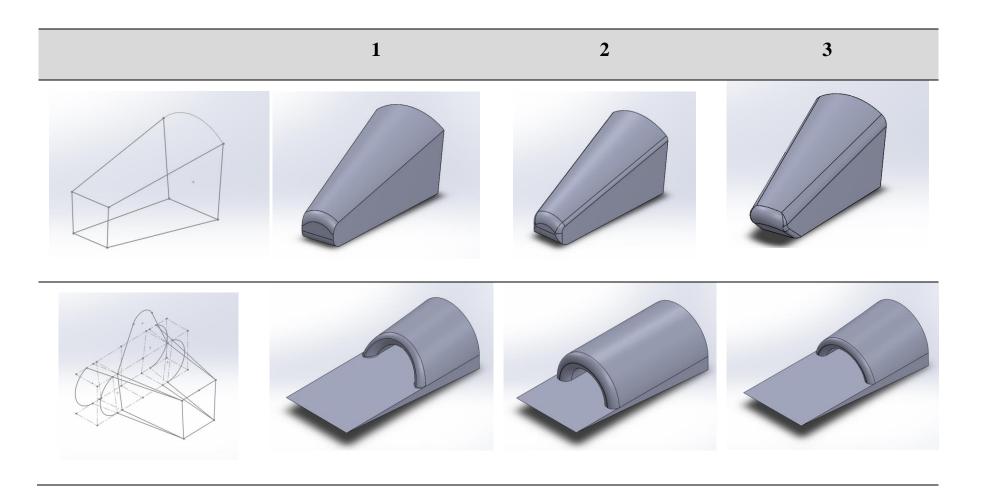
Carrocería.

No aberturas

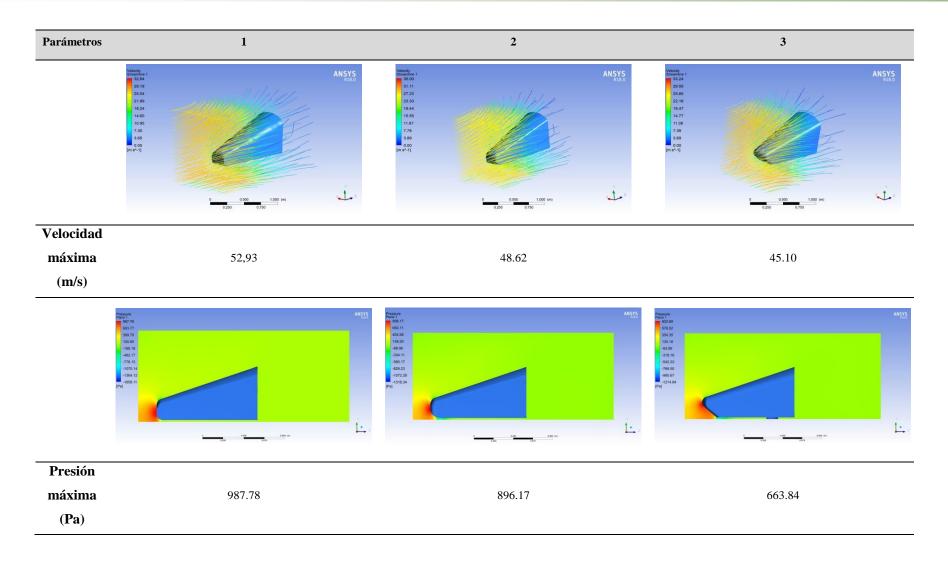
orificios de ventilación

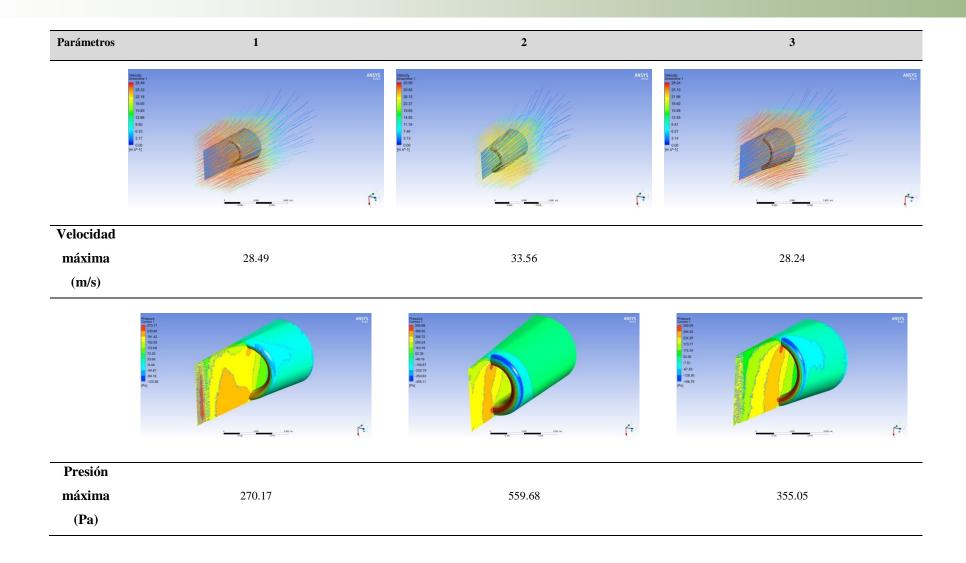

Bordes 1 mm

Bordes 38 mm



Materiales compuestos




DISEÑO E IMPLEMENTACIÓN

Elección de modelos

Características	Factor de ponderación	Diseño 1	Diseño 2	Diseño 3
Velocidad máxima	0.3	0.3	0.9	0.6
Presión máxima	0.3	0.3	0.6	0.9
Estética	0.1	0.1	0.2	0.3
Fuerza aerodinámica	0.2	0.6	0.4	0.2
Calidad mallado	0.1	0.3	0.1	0.2
Total		1.6	2.2	2.2

Características	Factor de ponderación	Diseño 1	Diseño 2	Diseño 3
Velocidad máxima	0.3	0.6	0.9	0.3
Presión máxima	0.3	0.9	0.3	0.6
Estética	0.1	0.3	0.1	0.2
Fuerza aerodinámica	0.2	0.4	0.2	0.6
Calidad mallado	0.1	0.1	0.2	0.3
Total		2.3	1.7	2
Nota: Los valores para la calificación son: 3 Bueno, 2 Medio, 1 Malo				

Octoato

Resina

Matriz

Meck

Estireno

Crin de caballo

Industria

Tapicería Accesorios musicales Brochas y pinceles, y Recubrimiento para ambientes

Raza Forma de crianza Alimentación Clima donde vive

ASTM

Normas Probetas

Tracción

Flexión

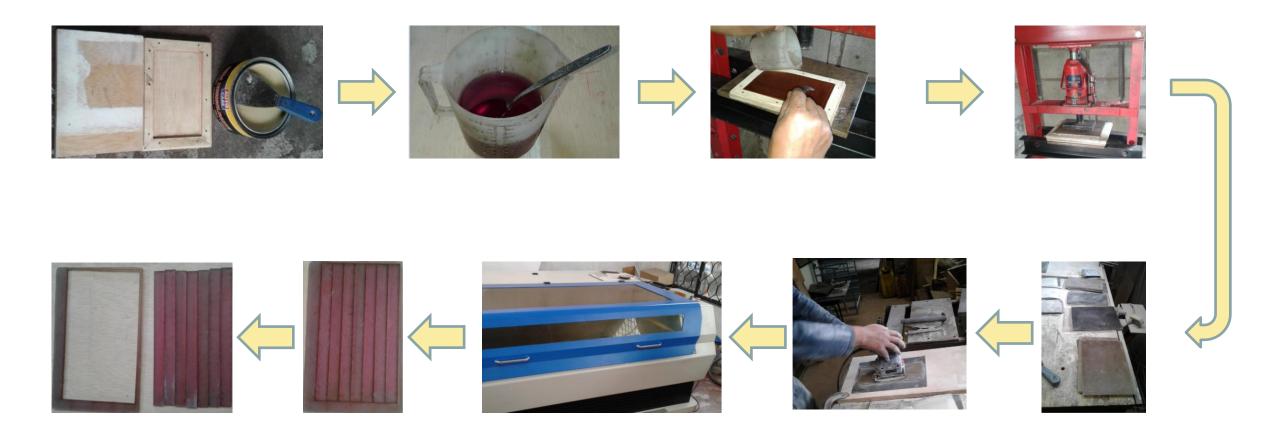
Impacto

D3039/D3039M-17

D7264/D7264M-15

ASTM D5628-10

Especificaciones	Dimensiones (mm)
Largo	250
Ancho	25
Espesor	2,5


Especificaciones	Dimensiones (mm)
Largo	160
Ancho	13
Espesor	4

Especificaciones	Dimensiones (mm)
Largo	60
Ancho	60
Espesor	2

Grupo	Característica
Re	100% resina poliéster
Ce1	Matriz con refuerzo de 1 capa de crin de caballo
Ce2	Matriz con refuerzo de 2 capas de crin de caballo
Ce3	Matriz con refuerzo de 3 capas de crin de caballo
M2	Matriz con refuerzo de 2 capas de cerda de caballo y 1 capa intermedia

Elaboración de las probetas

PRUEBAS Y ANÁLISIS DE RESULTADOS

Equipos utilizados

Tracción

Impacto

ENSAYO DE TRACCIÓN ASTM D3039/D3039M-17 Fuerza última Resistencia última a Módulo de elasticidad Deformación última a a tracción (N) tracción (MPa) secante (MPa) tracción (%) Re 1016,06 17,20 4695,25 0,35 Ce1 1123,35 17,12 5043,10 0,36 Ce2 1600,98 21,81 7911,02 0,32 Ce3 783,04 13,27 7690,02 0,19 M2 1227,80 25,65 8358,24 0,57

ENSAYO DE FLEXIÓN ASTM D7264/D7264M-15						
	Fuerza última	Fuerza última Resistencia última a Módulo a flexión Deformación máxi				
	a flexión (N)	flexión (MPa)	(MPa)	(%)		
Re	80,33	72,98	3248,16	2,47		
Ce1	75,33	69,60	2890,09	2,99		
Ce2	59,78	55,86	2684,14	2,28		
Ce3	59,17	53,14	3162,08	1,80		
M2	61,00	56,60	2936,80	2,23		

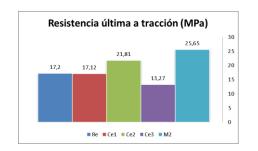
Resultados

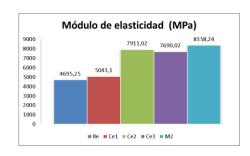
ENSAYO DE	IMPACTO AS	TM D7264/D7264M-15
Grupo	h (mm)	EMF (J)
Re	83,33	0,0961
Ce1	97,27	0,1121
Ce2	122,00	0,1406
Ce3	123,64	0,1425
M2	125,00	0,1441

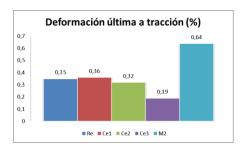
EMF: Energía media de fallo

h: Altura media de fallo

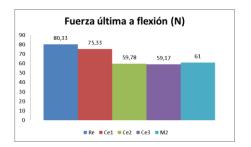
Probetas después del ensayo






Análisis de resultados

Ensayos de tracción

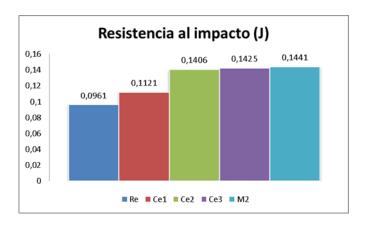





Aumento del 57,58% Ce2 Aumento del 49,12% M2 Aumento del 78,01% M2 Aumento del 82,85% M2

Ensayos de flexión

Disminución del 6,22% Ce1


Disminución del 4,63% Ce1

Disminución del 2.65% Ce3

Aumento del 21.05% Ce1

Ensayos de flexión

Aumento del 49,94 % M2

PROCESO DE CONSTRUCCIÓN

Molde P1

Aplicación M2

Extracción

Comparación

Masillado

Acabado

PROCESO DE CONSTRUCCIÓN

Molde P1

Aplicación M2

Masillado

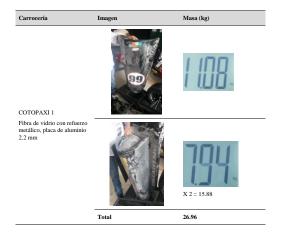
Comparación

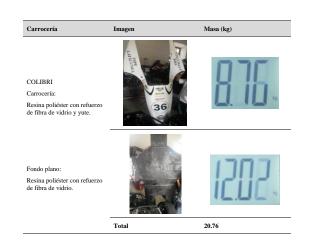
Extracción

Acabado

Proceso de fondeado

Proceso de pintado y abrillantado





Comparación versiones carrocería

Resultados obtenidos

Modelo	Masa	Masa reducida	Porcentaje
COTOPAXI 1	26.96 kg	13.398 kg	49.68 %,
COTOPAXI 2	23.36 kg	9.8 kg	41.95 %,
COLIBRI 2014	20.76 kg	7.19 kg	34.67 %.
CÓNDOR 2018	13.56 kg		

