ESCUELA POLITÉCNICA DEL EJÉRCITO PROYECTO DE GRADO

Presentado a la

FACULTAD DE INGENIERÍA MECÁNICA

"DISEÑO Y CONSTRUCCIÓN DE UNA MÁQUINA PARA ESTAMPAR, JABONES DE TIPO COSMÉTICO DE 10 GR."

POR

ANDRÉS RICARDO ECHEVERRÍA ESTUPIÑÁN. SANTIAGO CÉSAR RECALDE RIVADENEIRA.

En cumplimiento parcial a los requerimientos para el

TÍTULO DE INGENIERO MECÁNICO

CERTIFICACIÓN

Certificamos que el siguiente trabajo	o fue realizado en su totalidad por los señores
Andrés Ricardo Echeverría Estupiñá	n y Santiago Cesar Recalde Rivadeneira como
requerimiento parcial a la obtención o	del titulo de INGENIERO MECÁNICO
Fecha	
	ING. FERNANDO OLMEDO
	DIRECTOR
	ING. CARLOS NARANJO

CODIRECTOR

AGRADECIMIENTO

Por el apoyo brindado durante el transcurso de toda mi vida estudiantil les doy mi mas sincero agradecimiento a Dios y a mis padres, los cuales han sido la base primordial para mi desarrollo social y profesional, a mis hermanas que en todo momento me apoyaron y a todos quienes hicieron posible aumentar el cúmulo de mis conocimientos en la Escuela Politécnica del Ejercito.

SANTIAGO

INDICES

INDICE DE CONTENIDO

CAPITULO 1 DESCRIPCION DEL PROYECTO

	1.1 ANTECE	EDENTES	1
	1.1.1	Jabón	1
		Fabricación	
	111.2	1.1.2.1 Homogenizado y Terminado	1
	1.1.3	•	1
	1.1.0	Empresa Quinnou rui ii (B) em 2 Em 2	1
	1.2 DEFINIC	CION DEL PROBLEMA	1
	1.3 OBJETIV		
		Objetivo General	2
		Objetivo Especifico	3
	1.4 ALCANO		2 3 3 3
			3
2	CAPITULO	2 ANALISIS Y SELECCIÓN DE LA	4
-		IVA MAS IDONEA	
	ALILMIAI	IVA MAS IDONEA	
	2.1 ENGAVO	D DE DEFORMACION Y DUREZA	5
		PCION DEL PROCESO DE PRODUCCION	
		Diagrama de flujo	5
		Parámetros del proceso	5
	2.2.2	2.2.2.1 Velocidad de producción	6
		2.2.2.2 Características del producto	6
		2.2.2.2 Caracteristicas dei producto	6
	23 CARACT	TERÍSTICAS Y FUNCIONES DE LA MAQUINA	6
		CARACTERISTICAS Y FUNCIONES	
		CICLO DE LA MAQUINA	
	2.3.2	CICLO DE LITIMIQUITA	7
	2.4 ESTUDIO	O DE LA ALTERNATIVA MAS IDONEA	7
		SISTEMAS QUE PODRIA USAR LA MAQUINA	7
	2.1.1	2.4.1.1 Sistemas mecánicos	
		2.4.1.2 Sistemas hidráulicos	8
		2.4.1.3 Sistemas neumáticos	8
		2.4.1.4 Sistemas electromecánicos	8
		2 sistemas electroniceanicos	8
	2.4.2	SISTEMAS QUE REQUIERE LA MAQUINA	8
	2.1.2	2.4.2.1 Sistema de alimentación	8
		2.4.2.2 Sistema de estampado	
		2.4.2.3 Sistema de expulsión	8
		2.4.2.4 Sistema de corte	8
		2.4.2.5 Sistema de extracción	9
		2.4.2.6 Estructura bastidor	9
		zz.o zor gottara outottaoi	9

2.5 SELECCIÓN DE LA ALTERNATIVA MAS IDONEA

- 2.5.1 Sistema de alimentación
- 2.5.2 Sistema de estampado
 - 2.5.2.1 Mordazas
 - 2.5.2.2 Sistema impulsor
- 2.5.3 Sistema expulsor
- 2.5.4 Sistema de corte
- 2.5.5 Sistema de extracción
- 2.5.6 Estructura Bastidor
- 2.5.7 Subsistema eléctrico

2.6 SUMARIO

- 2.6.1 SISTEMAS PRINCIPALES
 - 2.6.1.1 Leva
 - 2.6.1.2 Biela Manivela
 - 2.6.1.3 Sistema de resortes
- 2.6.2 SISTEMA DE POTENCIA

2.7 SINCRONIZACION DE MOVIMIENTOS

3 CAPITULO 3 DISEÑO Y SELECCIÓN DE MATERIALES

3.1 ESTRUCTURA BASTIDOR

- 3.1.1 Diseño tomado en cuenta el ensamble
- 3.1.2 Diseño tomado en cuenta el mantenimiento
- 3.1.3 Diseño tomado en cuenta la construcción

3.2 ESTAMPADO

- 3.2.1 Memoria de calculo de la leva de estampado
 - Análisis de perfil –
 - 3.2.1.1 Introducción
 - 3.2.1.2 Cálculos
 - 3.2.1.2.1 Desplazamiento
 - 3.2.1.2.2 Velocidad
 - 3.2.1.2.3 Aceleración
 - 3.2.1.2.4 Sobre aceleración
 - 3.2.1.3 Perfil de leva
 - 3.2.1.3.1 Angulo de presión
 - 3.2.1.3.2 Radio de curvatura
 - 3.2.1.4 Análisis de fuerzas dinámicas
 - 3.2.1.4.1 Datos

de amortiguación, constante de amortiguación critica y constante de amortiguación real

		e un sistema dinámica	
		Par de torsión	29
3.2.2	Memoria de calci de Hertz	ulo Fuerzas de contacto, esfuerzos	30
3.3 SISTEMA	A EXPULSOR		33
3.3.1		ulo del movimiento de la biela	33
	manivela 3.3.1.1 Introduce	ión	33
	3.3.1.2 Análisis d		34
		le velocidad del seguidor	35
		de la aceleración angular	36
3.3.2		anivela –Fuerzas dinámicas-	37
3.3.3	Memoria de calca	ulo – Análisis biela manivela –	48
	Calculo de esfuer	zos	
3.3.4	Memoria de calcu	ulo de resortes helicoidales	52
		e resortes helicoidales	52
		s de mordaza –	
		e resortes helicoidales	57
	– Soporte	s de guía –	
3.4 SISTEMA	A DE POTENCIA		61
3.4.1	Memoria de calcu	ulo y selección de cadenas y	61
	catalinas		
	•	Motoreductor Leva Biela	61
	3.4.1.2 Calculo d	e la longitud de la cadena	62
3.4.2	Memoria de calc	ulo del primer eje	64
	– Eje Leva –		
	3.4.2.1 Introduce	ión	64
	3.4.2.2 Datos inic	ciales	65
	3.4.2.3 Calculo d		66
	3.4.2.3.1	Motoreductor	67
	3.4.2.3.2	Catalina	67
	3.4.2.3.3	Leva	67
	3.4.2.4 Calculo d	e reacciones	69
	3.4.2.5 Función d	le corte	72
	3.4.2.6 Función d	e momento	74
	3.4.2.7 Análisis d	e diámetros	78
	3.4.2.7.1		78
	3.4.2.7.2		78
	3.4.2.7.3	\mathcal{E}	78
	3.4.2.7.4	Recalculo de diámetros	78
	3.4.2.7.5	Recalculo de los efectos de la	80
		carga en el punto C (d2)	

	3.4.2.8 Cuñas	84
	3.4.2.8.1 Datos del material	85
	3.4.2.9 Comparación de los factores de seguridad	86
	3.4.2.10 Calculo de las deflexiones	87
	3.4.2.11 Frecuencias criticas	90
	3.4.2.11.1 Análisis de la leva	91
	3.4.2.11.2 Análisis de la catalina	92
	3.4.2.11.3 Frecuencia natural	92
	3.4.2.11.4 Frecuencia torsional	93
	3.4.2.11.5 Frecuencia critica a torsión	93
3.4.3	Memoria de calculo del segundo eje – Eje Biela –	94
	3.4.3.1 Introducción	94
	3.4.3.2 Datos iniciales	95
	3.4.3.3 Estática del Eje Biela	95
	3.4.3.3.1 Motoreductor	96
	3.4.3.3.2 Análisis de la Biela	96
	3.4.3.3.3 Análisis de la catalina	97
	3.4.3.4 Calculo de las reacciones	98
	3.4.3.4.1 Evaluación de formulas	99
	3.4.3.5 Función de corte	101
	3.4.3.6 Función de momento	101
	3.4.3.7 Análisis de los diámetros	104
	3.4.3.7.1 Datos del material	105
	3.4.3.7.2 Efectos de la carga	106
	3.4.3.7.3 Sensibilidad de muescas	105
	3.4.3.8 Recalculo de los diámetros	107
	3.4.3.8.1 Recalculo de los efectos de la	108
	carga en el punto B (d2)	
	3.4.3.8.2 Recalculo de la sensibilidad de la	107
	muesca en el punto B (d2)	
	3.4.3.9 Cuña	111
	3.4.3.9.1 Comparación de los factores de seguridad	114
	3.4.3.10 Calculo de deflexiones	114
	3.4.3.11 Frecuencias criticas	118
	3.4.3.11.1 Peso de la catalina $Z = 36$	119
	3.4.3.11.2 Peso de la manivela	119
	3.4.3.11.3 Frecuencia natural	120
	3.4.3.11.4 Frecuencia torsional	120
	3.4.3.11.5 Frecuencia critica a torsión	120
3.4.4	Memoria de calculo del tercer eje – Eje Principal –	121
	3.4.4.1 Introducción	121
	3.4.4.2 Datos iniciales	122
	3.4.4.3 Estática del eje principal	123
	3.4.4.3.1 Análisis de la catalina $z = 20$	124

		3.4.4.4 Calculo de reacciones	125
		3.4.4.4.1 Evaluación de formulas	126
		3.4.4.5 Función de corte	128
		3.4.4.6 Función de momento	130
		3.4.4.7 Análisis de diámetros	133
		3.4.4.7.1 Datos del material	133
		3.4.4.7.2 Efectos de la carga	134
		3.4.4.7.3 Sensibilidad de muescas	134
		3.4.4.8 Recalculo de diámetros	136
		3.4.4.9 Recalculo de los efectos de la carga en el	137
		punto C (d1)	
		3.4.4.10 Recalculo de la sensibilidad de las	137
		muescas C (d1)	
		3.4.4.11 Cuña	140
		3.4.4.11.1 Comparación de los factores de	143
		seguridad	1.5
		3.4.4.12 Calculo de las deflexiones	143
		3.4.4.13 Frecuencias criticas	147
		3.4.4.13.1 Frecuencia natural	148
		3.4.4.13.2 Frecuencia torsional	148
		3.4.4.13.3 Frecuencia critica a la torsión	149
	3 4 5	Subsistema eléctrico	150
	3.4.6	Diseño y simulación en computadora de los sistemas	150
	3.1.0	mecánicos de estampado	150
		3.4.6.1 Importación del modelo	150
4		CONSTRUCCION	153
	4.1 Lista de m		153
		on de los componentes del equipo	154
	_	ientos y facilidades	155
		Materiales disponibles	155
		Instalaciones disponibles	156
		procesos (Construcción del equipo)	158
	4.4.1		158
	4.4.2	Mordaza inferior 2	160
	4.4.3	Mordaza inferior 1	162
	4.4.4	Mordaza inferior 2	163
	4.4.5	1	164
	4.4.6	Mordaza superior 2	166
	4.4.7	Mordaza superior 3	168
		Expulsor superior 1	169
	4.4.9	Expulsor superior 2	170
		Eje Biela	171
		Eje Leva	173
	4.4.12	Eje principal	175
5	CAPITULO 5		177
	5.1 Pruebas		177
		Pruebas manuales	

	5.1.2	Pruebas automáticas	177
	5.1.3	Pruebas con materia prima	177
	5.2 Puesta a p	ounto y Calibración	177
	5.3 Análisis d	·	178
6	CAPITULO 6		179
	6.1 Análisis e	económico	179
	6.1.1	Costos directos	179
		6.1.1.1 Costos de materiales	179
		6.1.1.1.1 Materiales directos	179
		6.1.1.1.2 Materiales Indirectos	180
		6.1.1.2 Costo uso Máquina Herramienta	182
		6.1.1.3 Costo mano de obra	182
	6.1.2	Costos Indirectos	183
	6.1.3	Costo total	183
	6.2 Análisis F	Financiero	184
	6.2.1	Valor actual neto VAN	185
	6.2.2	Tasa interna de retorno TIR	187
	6.2.3	Calculo de la depreciación de la maquina	187
		estampadora	
7	CAPITULO 7		189
	7.1 Conclusio	ones	189
	7.1.1	Conclusión general	189
	7.1.2	Conclusión especifica	189
	7.2 Recomend	•	190
	7.3 Bibliogra	fía	

ANEXOS PLANOS

MANUAL DE OPERACIONES MANUAL DE MANTENIMIENTO

LISTADO DE FIGURAS

Figura 1.1 Presentación de los jabones de Química RIANDI	2
Figura 2.1 a. Alimentación y corte de la barra de jabón.	5
Figura 2.1 b. Retorno y retro alimentación.	6
Figura 2.2.Fases del corte y el estampe	7
Figura 2.3 Esquema de movimiento de alimentación con biela manivela.	10
Figura 2.4 Esquema de movimiento de alimentación con leva.	11
Figura 2.5 Esquema de movimiento de alimentación con cadena.	11
Figura 2.6 Esquema de movimiento de estampe con biela manivela.	13
Figura 2.7 Esquema de movimiento de estampe con leva.	13
Figura 2.8 Esquema de movimiento de estampe con solenoide.	14
Figura 2.9 Sincronización de los movimientos de la máquina.	18
Figura 3.1. Bosquejo de estructura bastidor	19
Figura 3.1. Sección soporte	20
Figura 3.3 Desplazamiento lineal del seguidor vs desplazamiento angular de	23
la leva Subida y Detenimiento Alto.	
Figura 3.4 Desplazamiento lineal del seguidor vs desplazamiento angular de	24
la leva	
Figura 3.5 Velocidad del seguidor vs Desplazamiento angular de la leva	25
Figura 3.6 Aceleración del seguidor vs Desplazamiento angular de la leva	25
Figura 3.7 Sobre aceleración r vs Desplazamiento angular de la leva	26
Figura 3.8 Perfil leva de estampado vertical	27
Figura 3.9 Angulo de presión	27
Figura 3.10 Radio de curvatura	28
Figura 3.11 Fuerza de contacto	29
Figura 3.12 Par de torsión	30
Figura 3.13 Relación de radios comparativos	33
Figura 3.14 Desplazamiento pistón vs. Angulo impulsor	34
Figura 3.15 Angulo de biela vs. Angulo del impulsor	35
Figura 3.16 Vel. angular biela vs. Áng. impulsor	35
Figura 3.17 Velocidad del seguidor vs. Angulo del impulsor	36
Figura 3.18 Aceleración angular biela vs. Áng. impulsor	36
Figura 3.19 Aceleración del seguidor vs. Áng. Impulsor	37
Figura 3.20 Diagrama del cuerpo libre del acoplado	38
Figura 3.21 Fuerza por rozamiento en el seguidor	39
Figura 3.22 Brazo de biela	39
Figura 3.23 Diagrama del cuerpo libre de la manivela	41
Figura 3.24 Diagrama del cuerpo libre de la biela	42
Figura 3.25 Aceleración del centro de gravedad del eslabón 3	43
Figura 3.26 Diagrama del cuerpo libre del seguidor acoplado	43
Figura 3.27 Coeficiente de fricción en el ciclo	43
Figura 3.28 Grafico de la aceleración del molde	44
Figura 3.29 Grafico de las fuerzas en función del ángulo de tiro	45
Figura 3.30 Grafico de los módulos en función del ángulo de tiro	46
Figura 3.31 Grafico del torque durante el ciclo	47
Figura 3.32 Diagrama biela cuerpo libre a fatiga	48
Figura 3.33 Diagrama de cuerpo libre de la manivela	49
Figura 3.34 Sección transversal de la manivela	

Figura 3.35 Diagrama de momento de manivela	50
Figura 3.36 Esquema de conjunto mordazas – resorte	52
Figura 3.37 Esquema de conjunto mordazas – resorte	57
Figura 3.38. Esquema de ejes y cadenas	61
Figura 3.39 Disposición de ejes	65
Figura 3.40 Disposición de los elementos del eje leva	66
Figura 3.41 Estática del Eje Leva	66
Figura 3.42 Fuerzas tangenciales en la catalina	67
Figura 3.43 Angulo de presión del seguidor en la leva	68
Figura 3.44 Comprobación del comando TRACE	69
Figura 3.45 Estática del eje leva	70
Figura 3.46 Fuerza cortante en X vs. Longitud del eje leva	72
Figura 3.47 Fuerza cortante en Y vs. Longitud del eje leva	73
Figura 3.48 Magnitud de corte	74
Figura 3.49 Momento xz	75
Figura 3.50 Momento yz	76
Figura 3.51 Magnitud de Momento	77
Figura 3.52 Dimensiones de la cuña	84
Figura 3.53 Deflexión en Eje X	88
Figura 3.54 Deflexión en Eje Y	89
Figura 3.55 Magnitud de la deflexión	90
Figura 3.56 Vibración lateral	90
Figura 3.57 Características de la leva	91
Figura 3.58 Disposición de ejes	94
Figura 3.59 Disposición de los elementos del Eje Biela	95
Figura 3.60 Estática del Eje Biela	96
Figura 3.61 Fuerzas tangenciales en la catalina	97
Figura 3.62 Diagrama de cuerpo libre del Eje Biela	98
Figura 3.63a Diagrama de Función de Corte Eje X	101
Figura 3.63b Diagrama de Función de Corte Eje Y	101
Figura 3.64a Diagrama de Momento xz	102
Figura 3.64b Diagrama de Momento yz	102
Figura 3.64c Diagrama de magnitud de Momento	103
	103
Figure 3.65 Diagrama de momento para punto A1	104
Figura 3.66 Dimensiones de la cuña	
Figura 3.67a Deflexión en el Eje Biela Eje X	116
Figura 3.67b Deflexión en el Eje Biela Eje Y	118
Figura 3.68 Vibraciones del Eje Biela	118
Figura 3.69 Disposición de Eje Principal	121
Figura 3.70 Disposición de elementos en Eje Principal	122
Figura 3.71 Estática del Eje Principal	123
Figura 3.72 Fuerzas tangenciales en la catalina	124
Figura 3.73 Diagrama de cuerpo libre Eje Principal	126
Figura 3.74a Función de corte Eje X	128
Figura 3.74b Función de corte Eje Y	129
Figura 3.75a Función de Momento Eje XZ	131
Figura 3.75b Función de Momento Eje YZ	132
Figura 3.75c Función de magnitud de Momento	133
Figura 3.76 Dimensiones de la cuña	140
Figura 3 77a Deflexión en el Fie Principal Fie X	145

Figura 3.77b Deflexión en el Eje Principal Eje Y	146
Figura 3.77c Deflexión Magnitud	147
Figura 3.78 frecuencias criticas Eje Principal	147
Figura 3.79 Selección de eslabonamientos y anclas	151
Figura 3.80 Render del modelo 3d	152
Figura 6.1 Flujo vs. VAN	186
LISTADO DE TABLAS	
Tabla 2.1 Tabla cualitativa sistema de Alimentación	12
Tabla 2.2 Tabla de criterio de valoración.	12
Tabla 2.3 Tabla cualitativa Sistema de Estampado	14
Tabla 2.4 Tabla de criterio de valoración.	14
Tabla 2.5 Tabla cualitativa de materiales del bastidor.	15
Tabla 2.6 Tabla de criterio de valoración.	16
Tabla 4.1 Lista de materiales	153
Tabla 4.2 Lista de componentes	154
Tabla 4.3 Lista de materiales disponibles	156
Tabla 4.4 Lista de equipos disponibles	156
Tabla 4.5 Personal disponible	157
Tabla 4.4.1 Hoja de proceso para mordaza inferior	158
Tabla 4.4.2.Hoja de proceso para mordaza inferior 2	160
Tabla 4.4.3 Hoja de proceso para expulsor inferior 1	162
Tabla 4.4.4 Hoja de proceso para expulsor inferior 2	163
Table 4.4.5 Hoja de proceso para mordaza superior 1	164
Table 4.4.6 Hoja de proceso para mordaza superior 2	166
Table 4.4.7. Hoja de proceso para mordaza superior 3	168 169
Tabla 4.4.8. Hoja de proceso para expulsor superior 1 Tabla 4.4.9 Hoja de proceso para expulsor superior 2	170
Tabla 4.4.10. Hoja de proceso para espuisor superior 2	170
Tabla 4.4.11. Hoja de proceso para eje leva	173
Tabla 4.4.12. Hoja de proceso para eje principal	175
Tabla 6.1 Costos Materiales directos	180
Tabla 6.2 Costos materiales indirectos	181
Tabla 6.3 Costo uso Maquina Herramienta	182
Tabla 6.4 Costos Mano de Obra	182
Tabla 6.5 Costos Indirectos	183
Tabla 6.6 Total Costos Materiales	183
Tabla 6.7 Total Costos Directos	183
Tabla 6.8 Costo Total	184
Tabla 6.9 Producción mensual	184
Tabla 6.10 Egresos del proyecto	185
Tabla 6.11 Flujo total	186
Tabla 6.12 Calculo del VAN	186
Tabla 6.13 Depreciación Simple	187
Tabla 6.13 Depreciación compuesta	188

NOMENCLATURA UTILIZADA

w12 Ancho de la catalina Z = 12 w20 Ancho de la cuña W Ancho de la cuña wleva Φ Angulo de presión L Carrera de la manivela Fa Componente medio del esfuerzo Kfsm Componente medio del esfuerzos en el cuñero Kf Concentrador de esfuerzos en el cuñero k Constante del resorte kefect Constante efectiva del resorte δ Deflexión ρ Densidad del acero s Desplazamiento lineal d Diámetro L Distancia (pulg) d Distancia (pulg) d Distancia (pulg) h Distancia (pulg) h Distancia (pulg) h Distancia de subida del seguidor Ccarga Efecto de la carga por condición superficial Ctemperatura Efecto de la carga por confiabilidad Ctamaño Efecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo Sy Esfuerzo Sy Esfuerzo </th <th>a</th> <th>Aceleración</th>	a	Aceleración
W Ancho de la leva φ Angulo de presión L Carrera de la manivela Fa Componente de la fuerza Kfsm Componente medio del esfuerzo Kf Concentrador de esfuerzos en el cuñero k Constante del resorte kefect Constante efectiva del resorte δ Deflexión ρ Densidad del acero s Desplazamiento lineal d Diámetro L Distancia (pulg) d Distancia (pulg) d Distancia (pulg) d Distancia de subida del seguidor Cc arg a Efecto de la carga a flexión y a torsión Ctemperatura Efecto de la carga por condición superficial Ctemperatura Efecto de la carga por tamaño Ctemperatura Efecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo Sy Esfuerzo cortante ε Excentricidad Nc Factor de seguridad de la cuña Nc	w12	Ancho de la catalina $Z = 12$
wlevaAncho de la leva ϕ Angulo de presión L Carrera de la manivela Fa Componente de la fuerza $Kfsm$ Componente medio del esfuerzo Kf Concentrador de esfuerzos en el cuñero k Constante del resorte k Constante efectiva del resorte δ Deflexión ρ Densidad del acero s Desplazamiento lineal d Diámetro L Distancia (pulg) d Distancia (pulg) d Distancia (pulg) d Distancia de subida del seguidor Cc arg a Efecto de la carga a flexión y a torsión $Ctemperatura$ Efecto de la carga por condición superficial $Cconfiabilidad$ Efecto de la carga por tamaño $Ctemperatura$ Efecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nc Factor de seguridad de la cuña Fp Factor de seguridad de la cuña Fp Factor de seguridad de la cuña Kf Factor geométrico de esfuerzos dinámicos a flexión Kf Factor geométrico de esfuerzos estáticos a flexión Kt Factor geométrico de esfuerzos estáticos a flexión Kt Factor geométrico de esfuerzos estáticos a torsión	w20	Ancho de la catalina $Z = 20$
φ Angulo de presión L Carrera de la manivela Fa Componente de la fuerza Kfsm Componente medio del esfuerzo Kf Concentrador de esfuerzos en el cuñero k Constante del resorte kefect Constante efectiva del resorte $φ$ Deflexión $φ$ Densidad del acero $φ$ Desplazamiento lineal $φ$ Diámetro L Distancia (pulg) $φ$ Distancia (pulg) $φ$ Distancia (pulg) $φ$ Distancia de subida del seguidor $φ$ Cc arg $φ$ Efecto de la carga a flexión $φ$ a torsión Ctemperatura Efecto de la carga por condición superficial $φ$ Cconfiabil idad Efecto de la carga por tamaño Ctemperatura Efecto de la carga por temperatura $φ$ Esfuerzo Sy Esfuerzo a la cedencia $φ$ Esfuerzo cortante $φ$ Excentricidad $φ$ Nf Factor de seguridad de la cuña Fp Factor de seguridad $φ$ Factor geométrico de esfuerzos dinámicos a flexión $φ$ Frecuencia de giro	W	Ancho de la cuña
L Carrera de la manivela Fa Componente de la fuerza $Kfsm$ Componente medio del esfuerzo Kf Concentrador de esfuerzos en el cuñero k Constante del resorte k Constante efectiva del resorte δ Deflexión ρ Densidad del acero s Desplazamiento lineal d Diámetro L Distancia (pulg) d Distancia (pulg) d Distancia (pulg) d Distancia de subida del seguidor Cc arg a Efecto de la carga a flexión y a torsión $Ctemperatura$ Efecto de la carga por condición superficial $Cconfiabil idad$ Efecto de la carga por tamaño $Ctemperatura$ Efecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad Nc Factor de seguridad de la cuña Fp Factor de servicio Kf Factor geométrico de esfuerzos dinámicos a flexión Kf sFactor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión σ Frecuencia de giro	wleva	Ancho de la leva
Fa Componente de la fuerza $Kfsm$ Componente medio del esfuerzo Kf Concentrador de esfuerzos en el cuñero k Constante del resorte k Constante efectiva del resorte $δ$ Deflexión $ρ$ Densidad del acero s Desplazamiento lineal d Diámetro L Distancia (pulg) d Distancia (pulg) d Distancia (pulg) d Distancia de subida del seguidor Cc arg a Efecto de la carga a flexión y a torsión Cc arg a Efecto de la carga por condición superficial Cc ang a Efecto de la carga por confiabilidad Cc ang a Efecto de la carga por tamaño Ct camaño Efecto de la carga por tamaño Ct camaño Efecto de la carga por temperatura $σ$ Esfuerzo Sy Esfuerzo cortante $ε$ Excentricidad Nf Factor de seguridad de la cuña Fp Factor geométrico de esfuerzos dinámicos a flexión<	ϕ	Angulo de presión
$Kfsm$ Componente medio del esfuerzo Kf Concentrador de esfuerzos en el cuñero k Constante del resorte k Constante efectiva del resorte δ Deflexión ρ Densidad del acero s Desplazamiento lineal d Diámetro L Distancia (pulg) 1 Distancia (pulg) d Distancia (pulg) d Distancia de subida del seguidor Cc arg a Efecto de la carga a flexión y a torsión $Ctemperatura$ Efecto de la carga por condición superficial $Cconfiabil idad$ Efecto de la carga por tamaño $Ctemperatura$ Efecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad de la cuña Fp Factor de servicio Kf Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión F Factor geométrico de esfuerzos estáticos a flexión F Factor geométrico de esfuerzos estáticos a torsión F Factor geométrico de esfuerzos estáticos a flexión	L	Carrera de la manivela
Kf Concentrador de esfuerzos en el cuñero k Constante del resorte $kefect$ Constante efectiva del resorte δ Deflexión ρ Densidad del acero s Desplazamiento lineal d Diámetro L Distancia (pulg) 1 Distancia (pulg) d Distancia (pulg) d Distancia de subida del seguidor Cc arg a Efecto de la carga a flexión y a torsión $Ctemperatura$ Efecto de la carga por condición superficial $Cconfiabil idad$ Efecto de la carga por tamaño $Ctemperatura$ Efecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad de la cuña Fp Factor de seguridad de la cuña Fp Factor geométrico de esfuerzos dinámicos a flexión Kf Factor geométrico de esfuerzos estáticos a flexión Kt Factor geométrico de esfuerzos estáticos a flexión Kt Factor geométrico de esfuerzos estáticos a torsión F Factor geométrico de esfuerzos estáticos a flexión F Factor geométrico de esfuerzos estáticos a torsión F Factor geométrico de esfuerzos estáticos a flexión F Factor geométrico de esfuerzos estáticos a torsión	Fa	Componente de la fuerza
k Constante del resorte kefect Constante efectiva del resorte δ Deflexión ρ Densidad del acero s Desplazamiento lineal d Diámetro L Distancia (pulg) d Distancia (pulg) d Distancia de subida del seguidor Cc arg a Efecto de la carga a flexión y a torsión Ctemperatura Efecto de la carga por condición superficial Cconfiabil idad Efecto de la carga por confiabilidad Ctamaño Efecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad de la cuña Rp Factor de servicio Kf Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos estáticos a flexión Fractor geométrico de esfuerzos estáticos a torsión Frecuencia de giro	Kfsm	Componente medio del esfuerzo
kefectConstante efectiva del resorte δ Deflexión ρ Densidad del acero s Desplazamiento lineal d DiámetroLDistancia (pulg) l Distancia (pulg) d Distancia (pulg) d Distancia de subida del seguidor Cc arg a Efecto de la carga a flexión y a torsión C temperaturaEfecto de la carga por condición superficial C confiabil idadEfecto de la carga por tamaño C temperaturaEfecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad de la cuña F Factor de servicio Kf Factor geométrico de esfuerzos dinámicos a flexión Kf Factor geométrico de esfuerzos estáticos a torsión Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión F Factor geométrico de esfuerzos estáticos a torsión Kts Factor geométrico de esfuerzos estáticos a torsión	Kf	Concentrador de esfuerzos en el cuñero
δDeflexiónρDensidad del acerosDesplazamiento linealdDiámetroLDistancia (pulg)lDistancia (pulg)dDistancia de subida del seguidorCc arg aEfecto de la carga a flexión y a torsiónCtemperaturaEfecto de la carga por condición superficialCconfiabil idadEfecto de la carga por tamañoCtemperaturaEfecto de la carga por temperaturaσEsfuerzoSyEsfuerzo a la cedenciaτEsfuerzo cortanteεExcentricidadNfFactor de seguridad de la cuñaFpFactor de servicioKfFactor geométrico de esfuerzos dinámicos a flexiónKfsFactor geométrico de esfuerzos estáticos a flexiónKtFactor geométrico de esfuerzos estáticos a flexiónKtsFactor geométrico de esfuerzos estáticos a torsiónFrecuencia de giro	k	Constante del resorte
ρDensidad del acerosDesplazamiento linealdDiámetroLDistancia (pulg)1Distancia (pulg)dDistancia (pulg)hDistancia de subida del seguidorCc arg aEfecto de la carga a flexión y a torsiónCtemperaturaEfecto de la carga por condición superficialCconfiabil idadEfecto de la carga por tamañoCtamañoEfecto de la carga por temperaturaσEsfuerzoSyEsfuerzo a la cedenciaτEsfuerzo cortanteεExcentricidadNfFactor de seguridad de la cuñaFpFactor de servicioKfFactor geométrico de esfuerzos dinámicos a flexiónKfsFactor geométrico de esfuerzos estáticos a flexiónKtFactor geométrico de esfuerzos estáticos a flexiónKtsFactor geométrico de esfuerzos estáticos a torsiónFrecuencia de giro	kefect	Constante efectiva del resorte
sDesplazamiento linealdDiámetroLDistancia (pulg)lDistancia (pulg)dDistancia (pulg)hDistancia de subida del seguidorCc arg aEfecto de la carga a flexión y a torsiónCtemperaturaEfecto de la carga por condición superficialCconfiabil idadEfecto de la carga por tamañoCtamañoEfecto de la carga por temperaturaσEsfuerzoSyEsfuerzo a la cedenciaτEsfuerzo cortanteεExcentricidadNfFactor de seguridad de la cuñaFpFactor de servicioKfFactor geométrico de esfuerzos dinámicos a flexiónKfsFactor geométrico de esfuerzos estáticos a flexiónKtFactor geométrico de esfuerzos estáticos a flexiónKtsFactor geométrico de esfuerzos estáticos a torsiónFrecuencia de giro	δ	Deflexión
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ho	Densidad del acero
LDistancia (pulg) d Distancia (pulg) d Distancia (pulg) h Distancia de subida del seguidor Cc arg a Efecto de la carga a flexión y a torsión $Ctemperatura$ Efecto de la carga por condición superficial $Cconfiabilidad$ Efecto de la carga por tamaño $Ctemperatura$ Efecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad Nc Factor de seguridad de la cuña Fp Factor geométrico de esfuerzos dinámicos a flexión Kf Factor geométrico de esfuerzos estáticos a torsión Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión ρ Frecuencia de giro	\boldsymbol{S}	Desplazamiento lineal
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d	Diámetro
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L	Distancia (pulg)
h Distancia de subida del seguidor Cc arg a Efecto de la carga a flexión y a torsión $Ctemperatura$ Efecto de la carga por condición superficial $Cconfiabil idad$ Efecto de la carga por confiabilidad $Ctamaño$ Efecto de la carga por tamaño $Ctemperatura$ Efecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad Nc Factor de seguridad de la cuña Fp Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos dinámicos a torsión Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión ω Frecuencia de giro	1	Distancia (pulg)
Cc arg a Efecto de la carga a flexión y a torsión $Ctemperatura$ Efecto de la carga por condición superficial $Cconfiabilidad$ Efecto de la carga por confiabilidad $Ctamaño$ Efecto de la carga por tamaño $Ctemperatura$ Efecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad Nc Factor de seguridad de la cuña Fp Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos dinámicos a torsión Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión ω Frecuencia de giro		
CtemperaturaEfecto de la carga por condición superficialCconfiabil idadEfecto de la carga por confiabilidadCtamañoEfecto de la carga por tamañoCtemperaturaEfecto de la carga por temperatura σ EsfuerzoSyEsfuerzo a la cedencia τ Esfuerzo cortante ε ExcentricidadNfFactor de seguridadNcFactor de seguridad de la cuñaFpFactor de servicioKfFactor geométrico de esfuerzos dinámicos a flexiónKfsFactor geométrico de esfuerzos estáticos a flexiónKtFactor geométrico de esfuerzos estáticos a flexiónKtsFactor geométrico de esfuerzos estáticos a torsión ω Frecuencia de giro	h	_
Cconfiabil idadEfecto de la carga por confiabilidadCtamañoEfecto de la carga por tamañoCtemperaturaEfecto de la carga por temperatura σ EsfuerzoSyEsfuerzo a la cedencia τ Esfuerzo cortante ε ExcentricidadNfFactor de seguridadNcFactor de servicioKfFactor geométrico de esfuerzos dinámicos a flexiónKfsFactor geométrico de esfuerzos estáticos a torsiónKtFactor geométrico de esfuerzos estáticos a torsiónKtsFactor geométrico de esfuerzos estáticos a torsión σ Frecuencia de giro	$Cc \arg a$	Efecto de la carga a flexión y a torsión
CtamañoEfecto de la carga por tamañoCtemperaturaEfecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad Nc Factor de servicio Kf Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos estáticos a flexión Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a flexión $Factor geométrico de esfuerzos estáticos a flexiónFactor geométrico de esfuerzos estáticos a flexión$	Ctemperatura	Efecto de la carga por condición superficial
CtemperaturaEfecto de la carga por temperatura σ Esfuerzo Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad Nc Factor de seguridad de la cuña Fp Factor de servicio Kf Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos estáticos a flexión Kt Factor geométrico de esfuerzos estáticos a torsión Kts Factor geométrico de esfuerzos estáticos a torsión σ Frecuencia de giro	Cconfiabil idad	Efecto de la carga por confiabilidad
σ Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad Nc Factor de seguridad de la cuña $rac{1}{2}$ Factor de servicio $rac{1}{2}$ Factor geométrico de esfuerzos dinámicos a flexión $rac{1}{2}$ Factor geométrico de esfuerzos estáticos a flex	Ctamaño	Efecto de la carga por tamaño
Sy Esfuerzo a la cedencia τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad Nc Factor de seguridad de la cuñaFpFactor de servicio Kf Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos dinámicos a torsión Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión ω Frecuencia de giro	Ctemperatura	Efecto de la carga por temperatura
 τ Esfuerzo cortante ε Excentricidad Nf Factor de seguridad Nc Factor de seguridad de la cuña Fp Factor de servicio Kf Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos dinámicos a torsión Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión ω Frecuencia de giro 	σ	Esfuerzo
 ε Excentricidad Nf Factor de seguridad Nc Factor de seguridad de la cuña Fp Factor de servicio Kf Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos dinámicos a torsión Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión Factor geométrico de esfuerzos estáticos a torsión Frecuencia de giro 	Sy	Esfuerzo a la cedencia
 Nf Factor de seguridad Nc Factor de seguridad de la cuña Fp Factor de servicio Kf Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos dinámicos a torsión Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión ω Frecuencia de giro 	τ	Esfuerzo cortante
NcFactor de seguridad de la cuñaFpFactor de servicioKfFactor geométrico de esfuerzos dinámicos a flexiónKfsFactor geométrico de esfuerzos dinámicos a torsiónKtFactor geométrico de esfuerzos estáticos a flexiónKtsFactor geométrico de esfuerzos estáticos a torsiónωFrecuencia de giro	${\cal E}$	
 Fp Factor de servicio Kf Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos dinámicos a torsión Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión ω Frecuencia de giro 	Nf	Factor de seguridad
 Kf Factor geométrico de esfuerzos dinámicos a flexión Kfs Factor geométrico de esfuerzos dinámicos a torsión Kt Factor geométrico de esfuerzos estáticos a flexión Factor geométrico de esfuerzos estáticos a torsión Frecuencia de giro 	Nc	Factor de seguridad de la cuña
 Kfs Factor geométrico de esfuerzos dinámicos a torsión Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión Φ Frecuencia de giro 	Fp	Factor de servicio
 Kt Factor geométrico de esfuerzos estáticos a flexión Kts Factor geométrico de esfuerzos estáticos a torsión ω Frecuencia de giro 	Kf	Factor geométrico de esfuerzos dinámicos a flexión
Kts Factor geométrico de esfuerzos estáticos a torsión ω Frecuencia de giro	Kfs	Factor geométrico de esfuerzos dinámicos a torsión
ω Frecuencia de giro	Kt	Factor geométrico de esfuerzos estáticos a flexión
	Kts	Factor geométrico de esfuerzos estáticos a torsión
Fbiela Fuerza biela	ω	_
	Fbiela	Fuerza biela

Fc12xFuerza catalina Z = 12 en el eje XFuerza catalina Z = 12 en el eje Y *Fc*12 y Fc20xFuerza catalina Z = 20 en el eje X *Fc*20*y* Fuerza catalina Z = 20 en el eje Y Fuerza catalina Z = 36 en el eje X*Fc*36*x* Fuerza catalina Z = 36 en el eje Y Fc36y Fuerza de contacto Fc**Fcontacto** Fuerza de contacto de la leva Fuerza de resorte FrFuerza tangencial de la catalina FcFuerza tangencial de la leva en el eje X Flevax Fuerza tangencial de la leva en el eje Y Flevay FtFuerza tangencial neta F Fuerza (Lb fuerza) VFunción de corte Inercia Ι Longitud (pies,pulg) LLongitud manivela r Masa del cuerpo m Modulo de elasticidad \boldsymbol{E} Modulo de Poisson γ GModulo de rigidez Ε Modulo de Young Ε Modulo de Young Modulo de Poisson γ M Momento Número de dientes de engrane o catalina \mathbf{Z} Numero de revoluciones del motor η TPar de torsión Wbiela Peso de la biela Wcatalina Peso de la catalina Peso de la catalina Z = 12W12W20Peso de la catalina Z = 20Wleva Peso de la leva P Potencia Potencia máxima del motor P R Radio (pulg) r Radio (pulg) Radio base Rb

> Radio de curvatura Radio de la muesca

 ρ

rm

Reacción en punto de apoyo
Relación de amortiguación
Relación de velocidades
Resistencia a la fatiga
Resistencia a la fatiga corregida
Resistencia a la tensión
Resorte efectivo
Sobre aceleración
Tramo angular recorrido de la leva
Velocidad
Velocidad angular (R.P.M.)
Velocidad angular del cigüeñal

CAPITULO 1

DESCRIPCIÓN DEL PROYECTO

1.1. ANTECEDENTES

1.1.1 JABÓN

El jabón es agente limpiador, que en su mayoría eliminan la grasa y otras suciedades debido a que algunos de sus componentes son agentes activos en superficie o agentes tenso activos. Estos agentes tienen una estructura molecular que actúa como un enlace entre el agua y las partículas de suciedad, soltando las partículas de las fibras subyacentes o de cualquier otra superficie que se limpie.

1.1.2 FABRICACIÓN

En esencia, la fabricación de jabones consta de dos partes principales:

- 1.- Saponificación del material graso.
- 2.-Homogenizado y terminado.

EL presente proyecto se enfoca en la parte del terminado o acabado final del jabón, partiendo así de una base que previamente ha sido homogenizada, coloreada, y aromatizada.

1.1.2.1- HOMOGENIZADO Y TERMIDADO

El jabón base pasa por un laminado continuo para posteriormente agregarle los aditivos (perfume y color). El jabón ya homogéneo, pasa por un extrusor con vacío para posteriormente ser compactado y tomar la forma y peso deseado, esto se realiza por los métodos de troquelado, estampado y corte simple. La presentación final del producto puede ser variada, así tenemos por ejemplo: formas rectangulares,

circulares, elípticas, cóncavas, convexas, con logotipos, de formas diversas e innumerables, todo con el fin de captar la atención del cliente.

1.1.3.- EMPRESA QUÍMICA RIANDI CÍA. LTDA.

La Empresa Química Riandi Cía. Ltda. se dedica a la producción y comercialización de diversos productos químicos de los cuales la ultima línea de productos es el jabón de tipo cosmético, actualmente la empresa produce jabones estampados de 100gramos (*Figura 1.a*). 75gramos (*Figura 1.b*) y jabón de tocador de 10 gramos(*Figura 1.c*) de corte simple. Los jabones de 100 y 75 gramos poseen una forma regular y agradable a la vista dado la forma en la que fue terminado "estampado", mientras que el jabón de 10 gramos muestra formas toscas que si bien son funcionales no son estéticas.

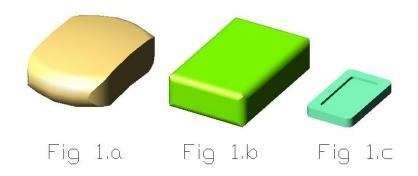


Figura 1.1 Presentación de los jabones de Química RIANDI

1.2 DEFINICION DEL PROBLEMA

La Empresa Química Riandi Cía. Ltda. desea producir los jabones de tocador de 10 gramos con formas mas refinadas, para lo cual desean agregar a su planta de producción una maquina que permita dicha opción. A fin de solucionar el problema se propone diseñar y construir una máquina estampadora para jabones de 10 gr., utilizando las instalaciones metalmecánica de la misma empresa, los factores de diseño a tomarse en cuenta, irán de acuerdo a las necesidades de producción de la mencionada empresa. Mediante lo planteado, la empresa puede disponer de una

nueva presentación como es el jabón cosmético de 10 gramos de forma redondeada que se obtiene con estampado y troquelado, los productos serán usados en hoteles, hostales o lugares que presten los mismos servicios de hospedaje.

Como resultado de este trabajo la empresa tendrá la capacidad de producir dos clases diferentes de jabones sin necesidad de incurrir en un gasto excesivo o la remodelación del esquema de la planta de producción.

A fin de ingresar en un nuevo mercado, la empresa tiene la opción de adquirir una máquina estampadora nueva de procedencia hindú cuyo valor, transporte y desaduanización oscila en los \$25.000 (Veinte y cinco mil dólares norteamericanos), sin contar con los problemas y el tiempo que esto ocasiona.

El costo de nuestro proyecto es del 70 al 60 % menor en comparación con la máquina de origen extranjero (*Anexo1*), sumándole a esto el beneficio de ser ejecutado el proyecto con los recursos de la Empresa Química Riandi Cía. Ltda. y del medio local. El proyecto presente se concebirá será auspiciado por la Empresa Química Riandi Cía. Ltda. la cual brindará su apoyo y su colaboración con sus instalaciones. Además el proyecto cuenta con la colaboración de la empresa Chemequip Industrias Cía. Ltda. perteneciente al mismo grupo empresarial.

1.3 OBJETIVOS

1.3.1 OBJETIVO GENERAL

 Diseñar y construir una máquina que estampe jabones de 10gr., de alimentación continua, y que cumpla con los tolerancias de la empresa. El proyecto involucra el uso de mecanismos, procesos de manufactura y calculo de resistencias, los cuales son temas puramente de Ingeniería Mecánica

1.3.2 OBJETIVOS ESPECÍFICOS

- Realizar un estudio de la situación actual del proceso y sus sistemas complementarios a se utilizadas en el proyecto
- Seleccionar las alternativas viables para la solución del problema.

- Diseñar una máquina estampadora troqueladora que permita la producción de jabones cosméticos de 10 gramos.
- Simular en computadora el sistema mecánico de estampado
- Construir una máquina estampadora troqueladora que permita la producción de jabones cosméticos de 10 gramos.
- Efectuar pruebas de funcionamiento, puesta a punto y calibración de la máquina.

1.4 ALCANCE

Tomando en cuenta la tecnología necesaria para construir la máquina estampadora de jabones de tipo cosmético 10 gr., es un proyecto realizable debido a que se utilizará procesos de manufactura que dispone las instalaciones metalmecánica propiedad de la Empresa Química Riandi Cía. Ltda.,

Diseñar y construir una máquina que estampe jabones de 10gr., de alimentación continua, y que cumpla con los tolerancias de la empresa (más menos 2 gr.), utilizando materiales nacionales y un diseño ajustado a los requerimientos de la empresa.

La máquina a diseñar y construir de ser una tal que estampe y troquele jabones, que sea de alimentación continua y automática, que produzca jabones de forma definida, que tenga una capacidad de producción mínima de 180 jabones la cual pueda acoplarse al sistema de homogenización y extrusión para ser usado cuando no se utilice el sistema de producción que actualmente se encuentra acoplado

Además como resultados directos se obtendrán:

- Memorias de cálculo.
- Planos
- Lista de materiales/ costo
- Guías de construcción
- Máquina construida

El proyecto concluye cuando satisfactoriamente se efectúen las pruebas piloto de producción aprobadas por la empresa.

El proyecto presente se concebirá será auspiciado por la Empresa Química Riandi Cía. Ltda. la cual brindará su apoyo y su colaboración con sus instalaciones. Además el proyecto cuenta con la colaboración de la empresa Chemequip Industrias Cía. Ltda. perteneciente al mismo grupo empresarial. A fin de abaratar costos la empresa dispone de varios elementos en inventario de los cuales desearía usar la mayor cantidad posible en la elaboración de este proyecto (*Anexo 2*).

CAPITULO 2

ANÁLISIS Y SELECCIÓN DE LA ALTERNATIVA MAS IDÓNEA

2.1. ENSAYO DE DEFORMACION Y DUREZA

El material en cuestión presenta un comportamiento puramente plástico en el momento de la extrusión, es en ese momento y en ese estado de la materia prima que la maquina se requiere trabaje.

Para motivos de ensayos se utilizo la máquina neumática que actualmente produce los jabones de 75 y 100 gramos, variando la presión de aire en el cilindro principal podemos conocer la presión necesaria para obtener un acabado óptimo.

Producto de este ensayo se determino que con una presión aplicada de 65.42 p.s.i. se obtiene un producto con calidad optima aceptable. El procedimiento del ensayo así como los resultados obtenidos así como el procedimiento seguido se observan en el *Anexo 3*.

2.2. DESCRIPCION DEL PROCESO DE PRODUCCIÓN

Para nuestro interés el proceso de producción inicia a la salida del extrusor de vació, aquí nuestra materia prima es una tripa de jabón de sección rectangular (*Figura 2.1. a & 2.1.b*), el diagrama de flujo muestra el proceso que se sigue a partir de este punto.

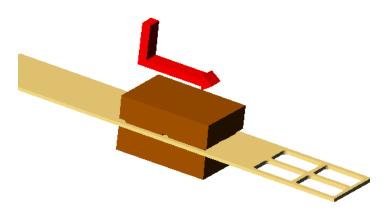


Figura 2.1 a. Alimentación y corte de la barra de jabón.

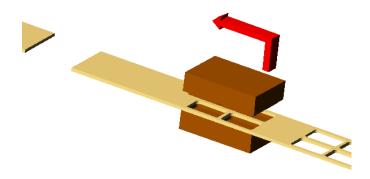


Figura 2.1 b. Retorno y retro alimentación.

2.2.1 DIAGRAMA DE FLUJO

Vea Anexo 12.

2.2.2 PARÁMETROS DEL PROCESO

2.2.2.1. VELOCIDAD DE PRODUCCIÓN.

Las necesidades de la empresa requieren una capacidad de producción máxima actual de 6000 jabones por hora, teniendo en cuenta las capacidades de la planta se diseñara la máquina de manera tal que posea una capacidad de producción de 7200 jabones por hora, trabajando a una velocidad de 30 R.P.M. estampando 4 jabones por vez.

2.2.2.2.1. CARACTERÍSTICAS DEL PRODUCTO.

El producto terminado debe tener las siguientes características físicas:

- Debe poseer una forma rectangular bien definida de acuerdo a lo indicado en el *Anexo 4*.
- Las dimensiones se observan en el *Anexo 4*.
- Debe observarse claramente el logotipo estampado.
- Debe presentar un acabado libre de golpes o raspones que dañen su acabado.

2.3. CARACTERÍSTICAS Y FUNCIONES DE LA MAQUINA.

2.3.1 CARACTERÍSTICAS Y FUNCIONES

La maquina terminada debe tener las siguientes características:

- Debe ser alimentada manualmente con barras de jabón de aproximadamente 3 m de largo.
- Debe troquelar y estampar el jabón.
- La máquina debe expulsara el material de reproceso así como el jabón terminado en forma suave y delicada evitando dañar al mismo.
- El molde mordaza debe ser tal que evite la adhesión de la materia prima al mismo.

2.3.2. CICLO DE LA MAQUINA

Las mordaza superior debe realizar un movimiento vertical de descenso de esto producirá el corte y estampado en el jabón además de la sujeción de la barra "figura 2.1.a y figura 2.2". Mientras las mordazas se encuentran cerradas estas se desplazarán al unísono en un movimiento horizontal que hará que el resto de la barra no troquelada se desplace para su posterior procesamiento. La mordaza superior debe realizar un movimiento vertical de ascenso al momento que las mordazas llegan al final de su recorrido horizontal. (figura 2.1.b y figura 2.2). Ambas mordazas contaran con sistemas de expulsión que evitaran que el material se pegue al molde y ubicaran el material de manera tal que facilite su remoción. Mientras las mordazas se encuentran abiertas estas se desplazarán al unísono en un movimiento horizontal

regresando a su posición inicial desalojando el material ya estampado y ubicando el resto de material no procesado.

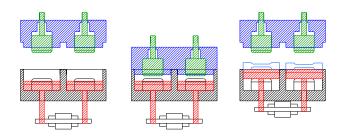


Figura 2.2. Fases del corte y el estampe

2.4. ESTUDIO DE LA ALTERNATIVA MÁS IDÓNEA

2.4.1. SISTEMAS QUE PODRIA USAR LA MAQUINA

2.4.1.1 SISTEMAS MECÁNICOS

Para los desplazamientos horizontales y verticales se pueden utilizar los siguientes mecanismos:

- Sistema leva seguidor
- Sistema biela manivela
- Mecanismo de cuatro barras
- Levas de cuña
- Piñones y cremalleras
- Cadenas y catalinas
- Sistemas de contra pesos

2.4.1.2 SISTEMAS HIDRAULICOS

Para los desplazamientos horizontales y verticales se pueden utilizar los siguientes actuadores hidráulicos: pistones y motores hidráulicos.

2.4.1.3 SISTEMAS NEUMATICOS

Para los desplazamientos horizontales y verticales se pueden utilizar los siguientes actuadores neumáticos: pistones y motores neumáticos.

2.4.1.1 SISTEMAS ELECTROMECÁNICOS

Para los desplazamientos horizontales y verticales se pueden utilizar solenoides inductivas.

2.4.2. SISTEMAS QUE REQUIERE LA MAQUINA

Se detalla a continuación los sistemas que requiere la máquina para su adecuado funcionamiento según el diseño pensado.

2.4.2.1... SISTEMA DE ALIMENTACIÓN

La máquina esta pensada de manera tal que las mordazas de estampe y corte sean las encargadas de auto alimentarse, para esto se requiere que las mordazas posean un movimiento horizontal oscilante con una amplitud de 118 mm., amplitud que permitirá economizar la mayor cantidad de material al mismo tiempo que evitara el sobre montaje entre un jabón y otro.

2.4.2.2. SISTEMA DE ESTAMPADO

El sistema de estampado debe ser tal que permita el descenso de mordaza superior en una distancia vertical de 30 mm. permitiendo obtener reposos en los movimientos durante el ciclo.

Además no debe interferir con el movimiento horizontal de alimentación de las mordazas.

2.4.2.3. SISTEMA DE EXPULSION

A fin de extraer el producto de una manera rápida, sencilla, y que no dañe al mismo es necesario poseer expulsores tanto en la mordaza superior tanto como en la mordaza inferior, estos deben ser tales que una vez realizado el estampado eviten que el jabón queda adherido a los moldes y al mismo tiempo que lo ubicaran en una posición de fácil extracción.

2.4.2.4. SISTEMA DE CORTE

Como muestran las *figuras 2.1*. el jabón a más de ser estampado debe ser troquelado o cortado de manera tal que sus dimensiones sean las indicadas en el *Anexo 4*..

2.4.2.5. SISTEMA DE EXTRACCIÓN

La materia prima troquelada debe se desalojada totalmente de manera tal que permita el ingreso de nuevo material para su procesamiento.

2.4.2.6. ESTRUCTURA BASTIDOR

La estructura soporte o bastidor será diseñada y construida de manera tal permita el alojamiento de los sistemas; cadenas y catalinas, ejes, soportes, moto reductor, etc. en forma rígida. teniendo en cuenta que se necesita una altura aproximada de un metro para la alimentación de la maquina.

2.5 SELECCIÓN DE LA ALTERNATIVA MÁS IDÓNEA

Una de las prioridades del proyecto es reducir costos tanto en la construcción de la máquina como los costos de operación que tendrá la misma.

Los sistemas de tipo neumático e hidráulico se encuentran descartados pues estos necesitan unidades de servicio, bombas hidráulicas, compresores de aire, etc., elementos que significan un gasto significativo.

2.5.1 SISTEMA DE ALIMENTACIÓN

BIELA MANIVELA.

Se obtiene el movimiento de alimentación y retorno de manera armónica mediante un acoplado o seguidor.

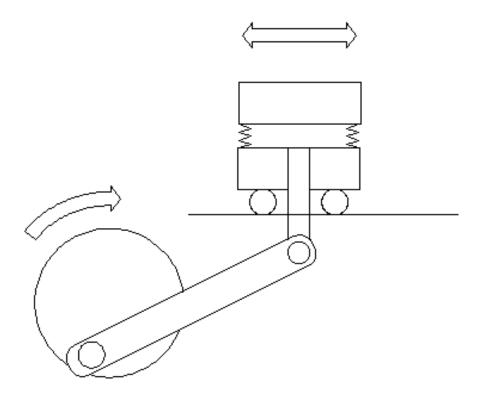


Figura 2.3 Esquema de movimiento de alimentación con biela manivela.

LEVA.

Se obtiene el movimiento de alimentación y retorno con gran amplitud en el diseño del movimiento.

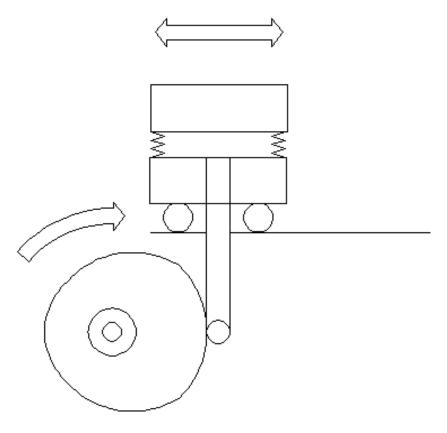


Figura 2.4 Esquema de movimiento de alimentación con leva.

CADENA SEGUIDOR

Se obtiene el movimiento de alimentación y retorno de lineal mediante un acoplado o seguidor

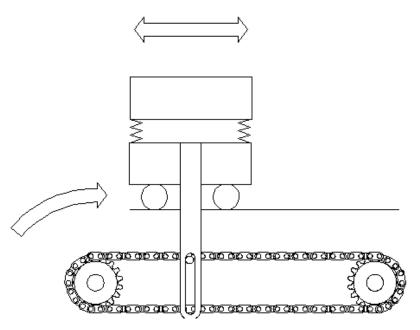


Figura 2.5 Esquema de movimiento de alimentación con cadena.

Tabla 2.1 Tabla cualitativa sistema de alimentación

	BIELA MANIVELA	LEVA	CADENA
			SEGUIDOR
COSTO	5	7	3
FACILIDAD	6	10	3
CONSTRUCCION		(por el desplazamiento necesario)	
PRESICION DEL	2	1	8
MOVIMIENTO			
DURABILIDAD	2	3	8
TOTAL	<mark>15</mark>	21	22
	2		_

Tabla 2.2. tabla de criterio de valoración.

	1	3	5	7	10
COSTO	Insignificante	Muy económico	Aceptable	Alto pero aceptable	Excesivo
FACILIDAD CONSTRUCCION	Muy fácil	Fácil	Mediano	Con alguna complicación	Complicado
PRESICION DEL MOVIMIENTO	Muy preciso	Aceptable	Estable	Oscilante	Impreciso
DURABILIDAD Y MANTENIABILIDAD	No requiere mantenimiento	Mantenimien to ocasional	Mantenimiento periódico	Mantenimien to constante	Desgaste constante

2.5.2 SISTEMA DE ESTAMPADO

2.5.2.1. MORDAZAS

Como se desea obtener un jabón con las dimensiones indicadas en el (**Anexo 4.**) se parte de este punto, alrededor del cual se diseñara el resto de la máquina. El material puede estar en contacto directo con una capa de silicona de, teflón, o poli estireno antiadherente.

Las bases de mordazas pueden ser construidas en bronce fosfòrico, acero al carbono, o acero inoxidable.

Se selecciona teflón por su mayor dureza y propiedad antiadherente y el acero inoxidable por su resistencia a la corrosión.

2.5.2.2 SISTEMA IMPULSOR

BIELA MANIVELA

Se obtiene el movimiento impulsor de estampado de manera armónica simple mediante un acoplado o seguidor.

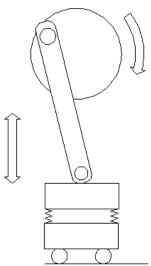


Figura 2.6 Esquema de movimiento de estampe con biela manivela.

LEVA

Se obtiene el movimiento impulsor de estampado de manera armónica simple mediante un acoplado o seguidor.

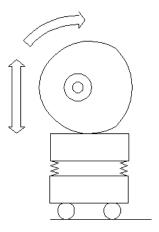


Figura 2.7 Esquema de movimiento de estampe con leva.

SOLENOIDE O BOBINADO

Se obtiene el movimiento impulsor de estampado de lineal mediante un bobinado acoplado a la mordaza superior.

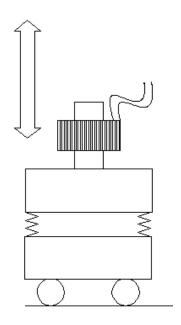


Figura 2.8 Esquema de movimiento de estampe con solenoide.

Tabla 2.3 Tabla cualitativa Sistema de Estampado

	BIELA MANIVELA	LEVA	SOLENOIDES
COSTO	5	7	3
FACILIDAD	6	6	3
CONSTRUCCION			
PRECISION DEL	2	1	8
MOVIMIENTO			
DURABILIDAD	2	3	8
FUERZA QUE	6	2	8
ENTREGA			
TOTAL	21	<mark>19</mark>	30

Tabla 2.4 Tabla de criterio de valoración.

	1	3	5	7	10
COSTO	Insignificante	Muy	Aceptable	Alto pero	Excesivo
		económico		aceptable	
FACILIDAD	Muy fácil	Fácil	Mediano	Con alguna	Complicado
CONSTRUCCION				complicación	
PRESICION DEL	Muy preciso	Aceptable	Estable	Oscilante	Impreciso
MOVIMIENTO					
DURABILIDAD Y	No requiere	Mantenimiento	Mantenimien	Mantenimiento	Desgaste
MANTENIABILIDAD	mantenimiento	ocasional	to periódico	constante	constante
FUERZA QUE	Excesiva	Sobre	Justo	Se acerca mucho	Insuficiente
ENTREGA		dimensionado		al necesario	

2.5.3. SISTEMA EXPULSOR

En la parte inferior el expulsor pude ser accionado por:

- Una leva de cuña y retorno con resorte.
- Un micro pistón de doble o simple efecto.

Se selecciona la leva de cuña. En el (*Anexo 6*) se observa el esquema de estos sistemas.

2.5.4. SISTEMA DE CORTE

El sistema de estampado realizara esta tarea conjuntamente con la alimentación y el corte. Las mordazas pueden cortar con:

- Borde maquinado y afilado en fresa.
- Fleje de acero quirúrgico.

Se selecciona borde maquinado y afilado en fresa por facilidad de construcción y costos.

2.5.5. SISTEMA DE EXTRACCIÓN

La materia prima debe ser la encargada de retirar el jabón estampado el momento de su ingreso a las mordazas a fin de ser troquelado. Su posterior extracción será de tipo manual.

2.5.6. ESTRUCTURA BASTIDOR

Tabla 2.5 Tabla cualitativa de materiales del bastidor.

	TUBO REDONDO	TUBO CUADRADO	PERFILES
COSTO	5	5	6
FACILIDAD CONSTRUCCION	7	6	5
FACILIDAD DE SUJECION DE LOS ELEMENTOS	8	3	4
PESO	5	6	5

	TUBO REDONDO	TUBO CUADRADO	PERFILES
TOTAL	25	20	20

Tabla 2.6 tabla de criterio de valoración.

	1	3	5	7	10
COSTO	Insignificante	Muy económico	Aceptable	Alto pero aceptable	Excesivo
FACILIDAD CONSTRUCCION	Muy fácil	Fácil	Mediano	Con alguna complicación	Complicado
FACILIDAD DE SUGECION DE LOS ELEMENTOS	Muy fácil	Fácil	Mediano	Con alguna complicación	Complicado
PESO	Insignificante	Liviano	Aceptable	Alto pero aceptable	Excesivo

Se utilizara una combinación entre tubos cuadrados de una pulgada por una pulgada y de 3 mm. de espesor y perfiles varios de acuerdo a los requerimientos del diseño.

2.5.7. SUBSISTEMA ELÉCTRICO

El moto reductor trabajara con una corriente eléctrica de 220 V, el tablero de control contendrá botones de encendido, apagado, para de emergencia, así como un regulador de voltaje.

2.6 SUMARIO

2.6.1 SISTEMAS PRINCIPALES

La alimentación y estampado son realizados por los sistemas Biela manivela y el sistema de leva respectivamente. Los cálculos y análisis descritos nos permiten conocer las dimensiones, materiales, fuerzas ejercidas por estos sistemas involucrados.

2.6.1.1. LEVA

La acción de estampado que harán las mordazas será realizada por una leva de tipo armónica. La memoria de cálculo 3.2.1 y 3.2.2 muestra el diseño y calculo respectivos.

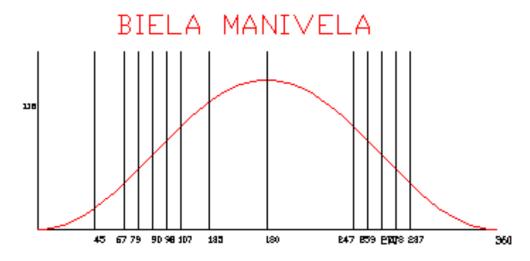
2.6.1.2. BIELA MANIVELA

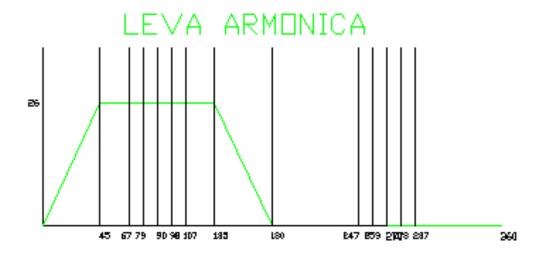
La acción de alimentación y expulsión será realizada por un sistema biela manivela regulable con detenimiento. La memoria de cálculo 3.3.1 Y 3.3.2 muestra el cálculo y diseño respectivo.

2.6.1.3. SISTEMA DE RESORTES

A fin de que los sistemas antes mencionados funcionen es necesario el uso de resortes, de compresión en el caso del sistema de leva, y de tracción en el sistema biela manivela. La memoria de calculo 3.4 muestra el calculo respectivo.

2.6.2 SISTEMA DE POTENCIA


Se cuenta con un moto reductor de 0.75 Kw. y una salida de 90 R.P.M, partiendo de este punto se realiza el calculo necesario para obtener un velocidad de 30 R.P.M. "velocidad máxima de trabajo de la maquina". Teniendo en cuenta la disponibilidad del mercado se usara cadenas No 60 de paso ¾", la memoria de calculo 3.1 muestra el análisis respectivo, mientras que las memorias de calculo 3.5.1., 3.5.2, 3.5.3 muestran el calculo de los ejes.


2.7. SINCRONIZACIÓN DE MOVIMIENTOS

A fin lograr el correcto funcionamiento de la maquina es necesario lograr una sincronización perfecta, evitando los desfases entre los movimientos entre los elementos leva armónica, biela manivela, y leva de cuña, encargados de prensar, cortar y expulsar la materia prima.

La sincronización parte desde el movimiento armónico simple descrito por el sistema biela manivela encargado del sistema de alimentación en una revolución del mismo, a partir de esto se determinaron los desplazamientos requeridos por la leva armónica, cuya velocidad angular será igual a la del conjunto biela manivela, así como la posición y desplazamiento de la leva de cuña a fin de que en conjunto produzcan la serie de movimientos impuestos por el diseño.

La *figura 3* muestra los diagramas de movimientos [d (mm) vs.θ] de la leva armónica, biela manivela, y leva de cuña, así mismo el (*Anexo 7*) muestra el sistema de mordazas durante los movimientos.

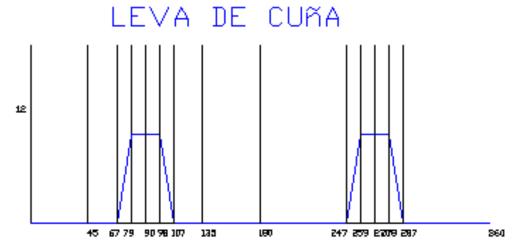


Figura 2.9 Sincronización de los movimientos de la máquina.

CAPITULO 3 DISEÑO Y SELECCIÓN DE MATERIALES

3.1. ESTRUCTURA BASTIDOR

La estructura bastidor para la maquina se realizo utilizando perfil L de 50*50*2 mm. utilizando soldadura por arco eléctrico SMAW con electrodo E6011, materiales disponibles en CHEMequip industrias. Para su diseño se tomo en cuenta factores de ensamblado, mantenimiento, y construcción. (**Plano TRV-007, ANEXO22**)

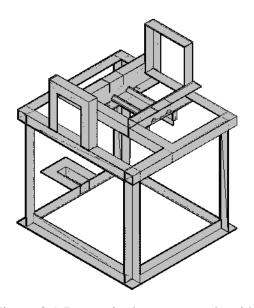


Figura 3.1 Bosquejo de estructura bastidor

3.1.1 DISEÑO TOMANDO EN CUENTA EL ENSAMBLE

Se trazaron en primera instancia bosquejos de un bastidor que permita soportar los elementos motrices y de transmisión de potencia. Los bosquejos fueron modificados a medida que los cálculos arrojaban datos sobre distancias y medidas.

3.1.2 DISEÑO TOMANDO EN CUENTA EL MANTENIMIENTO

Sobre los primeros bosquejos tomando en cuenta puntos de mantenimiento como son graseros y brochas para aceite se realizan aguajeros o se liberan espacios para el libre ingreso los aplicadores de grasa y aceite.

DISEÑO TOMANDO EN CUENTA LA CONSTRUCCIÓN 3.1.3

El bastidor fue diseñado tal que permite el desmontaje de todos los componentes físicos del equipo, para esto se tomo en cuenta las dimensiones promedio de las herramientas y facilidad del operario para montaje y desmontaje.

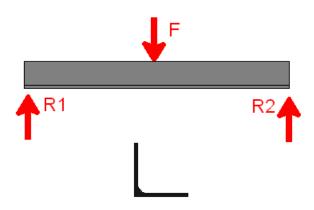


Figura 3.2 Sección soporte

DATOS		Fuerza altenante
Fmx := 1350.7	(N)	Maxima
Fmn := 0		Minima
1:= 0.25	(m)	Longitud de viga
Sut := 550	Mpa	Acero estructural ASTM A 36 catálogo IPAC
Sy := 250	Mpa	Anexo 31
Se := $0.5 \cdot \text{Sut}$ CALCULO	Mpa	Estimación de la resistensia teorica a la fatiga Sf´ o del limite de resistencia a la fatiga Se´ Anexo 24
$R1 := \frac{Fmx}{2}$ $R1 = 675.35$	(N)	Reacciones
$R2 := \frac{Fmx}{2}$ $R2 = 675.35$	(N)	

R2 = 675.35

----- REGIONES -----

Area: 305.0986
Perimetro: 196.5212
Centroid: X: 0.0000
Y: 0.0000

Momentos de inercia: X: 72568.1104

Y: 72568.1104

Productos de inercia: XY: -41676.8622

Radio de giro: X: 15.4224

Y: 15.4224

Principales momentos y direcciones X-Y respecto del centroide

I: 30891.2482 along [0.7071 -0.7071] J: 114244.9726 along [0.7071 0.7071]

Autocad 2008 Massprop command

 $Mmx := Fmx \cdot \frac{1}{2}$ Momento máximo

Mmx = 168.838 (Nm)

 $Mmn := Fmn \cdot \frac{1}{2}$ Momento minimo

Mmn = 0 (Nm)

 $I := \frac{114244.9726}{1000^4}$ Momento de Inercia

c := 0.0154224 (m) Radio de giro

 $\sigma \text{max} := \frac{\text{Mmx} \cdot \text{c}}{\text{I}} \cdot \frac{1}{10^6}$

 $\sigma max = 22.792$ (Mpa)

 $\sigma min := \frac{Mmn \cdot c}{I}$

 $\sigma min = 0$ (Mpa)

 $\sigma m := \frac{\sigma max + \sigma min}{2}$

 $\sigma a := \frac{\sigma m ax - \sigma m in}{2}$

 $\eta s := \frac{1}{\frac{\sigma m}{Sy} + \frac{\sigma a}{Se}}$

 $\eta s = 11.491$

Factor de seguridad en la biela aceptable por alto margen

3.2 ESTAMPADO

3.2.1 LEVA DE ESTAMPADO ANÁLISIS DEL PERFIL

3.2.1.1 INTRODUCCIÓN

Se ha diseñado la leva de acuerdo al siguiente ciclo de temporización

Tramo

Descripción

 $\beta 1 := 45$

Representa al primer tramo del recorrido en el cual el seguidor de la leva empieza el estampado, moviendo este a su vez a la matriz que es la que realiza la acción de estampar

 $\beta 2 := 90$

Representa al segundo tramo del recorrido en el cual el seguidor de la leva tiene la posición en la cual permanece estampando

 $\beta 3 := 45$

Representa al tercer tramo del recorrido en el cual el seguidor de la leva permite que las mordazas que realizan el estampado se abran, facilitando de esta manera que actue la leva de cuña para la activación del sistema de expulsión del jabon de la matriz.

 $\beta 4 := 180$

Representa al cuarto tramo del recorrido en el cual el seguidor de la leva permanece inmòvil, debido a que en esta parte del ciclo el material se encuentra ingresando a la camara de estampado

3.2.1.2 CALCULOS

Datos

h := 30 mm

Distancia de subida del seguidor

 $\theta := 0, 5..360$

Rango

39

3.2.1.2.1 DESPLAZAMIENTO

 $s1(\theta) := \frac{h}{2} \cdot \left(1 - \cos\left(\pi \cdot \frac{\theta}{\beta 1}\right)\right)$

Ecuación de subida del seguidor

$$s2(\theta) := h$$

Ecuación de detenimiento alto

$$s3(\theta) := if(\theta \ge \beta 1, s2(\theta), s1(\theta))$$

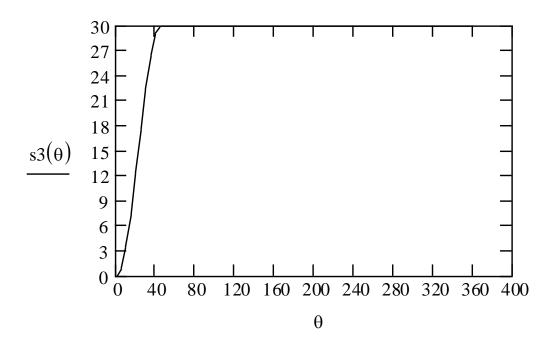


Figura 3.3 Desplazamiento lineal del seguidor vs desplazamiento angular de la leva
Subida y Detenimiento Alto.

$$s4(\theta) := \frac{h}{2} \cdot \left[1 + \left[\cos \left[\pi \cdot \frac{\left[\theta - (\beta 1 + \beta 2) \right]}{\beta 3} \right] \right] \right]$$

Ecuación de descenso del seguidor

$$s5(\theta) := if(\theta \ge \beta 1 + \beta 2, s4(\theta), s3(\theta))$$

Ecuación de detenimiento bajo

$$s6(\theta) := 0$$

$$s(\theta) := if(\theta \ge \beta 1 + \beta 2 + \beta 3, s6(\theta), s5(\theta))$$

Ecuación general de movimiento

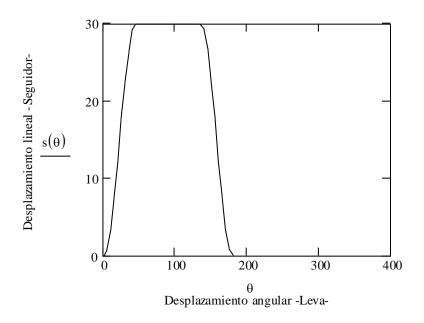


Figura 3.4 Desplazamiento lineal del seguidor vs desplazamiento angular de la leva

Càlculo realizado por tramos

3.2.1.2.2 VELOCIDAD

$$v1(\theta) := \frac{d}{d\theta} s1(\theta)$$

$$v2(\theta) := \frac{d}{d\theta} s2(\theta)$$

$$v3(\theta) := if(\theta \ge \beta 1, v2(\theta), v1(\theta))$$

$$v4(\theta) := \frac{d}{d\theta} s4(\theta)$$

$$v5(\theta) := if(\theta \ge \beta 1 + \beta 2, v4(\theta), v3(\theta))$$

$$v6(\theta) := \frac{d}{d\theta} s6(\theta)$$

$$v(\theta) := if(\theta \ge \beta 1 + \beta 2 + \beta 3, v6(\theta), v5(\theta))$$

Figura 3.5 Velocidad del seguidor vs Desplazamiento angular de la leva La figura nos indica que la primera derivada del desplazamiento es una función continua en todo el intervalo

3.2.1.2.3 ACELERACION

$$a1(\theta) := \frac{d}{d\theta} v1(\theta)$$

$$a2(\theta) := \frac{d}{d\theta}v2(\theta)$$

$$a3(\theta) := if(\theta \ge \beta 1, a2(\theta), a1(\theta))$$

$$a4(\theta) := \frac{d}{d\theta}v4(\theta)$$

$$a\big(\theta\big) \coloneqq if\big(\theta \geq \beta \mathbf{1} + \beta \mathbf{2} + \beta \mathbf{3}, a6\big(\theta\big), a5\big(\theta\big)\big)$$

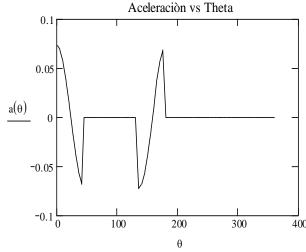


Figura 3.6 Aceleración del seguidor vs Desplazamiento angular de la leva

La no continuidad de esta función y sus dos primeras derivadas indican que existen puntas infinitas o delta de Dirac, con lo cual podrían a existir golpes destructivos, sin embargo debido a la baja velocidad de trabajo y tal como lo indica el diagrama de fuerza, no se produce desprendimientos por parte del seguidor.

3.2.1.2.4. SOBREACELERACION

$$j1(\theta) := \frac{d}{d\theta} a1(\theta)$$
 $j2(\theta) := \frac{d}{d\theta} a2(\theta)$

$$j3(\theta) := if(\theta \ge \beta 1, j2(\theta), j1(\theta))$$

$$j4(\theta) := \frac{d}{d\theta}a4(\theta)$$

$$j5(\theta) := if(\theta \ge \beta 1 + \beta 2, j4(\theta), j3(\theta))$$
 $j6(\theta) := \frac{d}{d\theta} a6(\theta)$

$$j(\theta) := if(\theta \ge \beta 1 + \beta 2 + \beta 3, j6(\theta), j5(\theta))$$

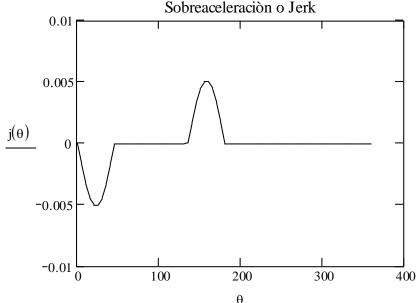


Figura 3.7 Sobreaceleración r vs Desplazamiento angular de la leva

El grafico presenta en la realidad pequeños saltos infinitos lo cual a podría presentar discontinuidad e impacto, pero debido a su baja velocidad también se observa que el seguidor no se desprende en todo su ciclo.

3.2.1.3 PERFIL DE LA LEVA

 $\epsilon := 0$

Rb := 100 mm Radio base

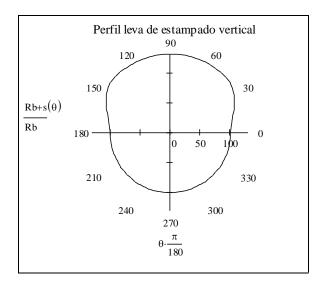


Figura 3.8 Perfil leva de estampado vertical

Radio de curvatura

rodillo := 20 mm

Rp := Rb + rodillo

3.2.1.3.1 ANGULO DE PRESIÓN

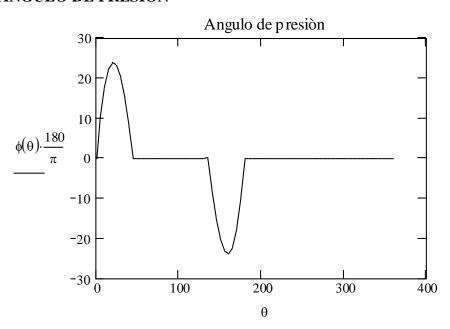


Figura 3.9 Angulo de presiòn

El ángulo de presión se encuentra en 24 grados, lo cual indica que no existirán cargas excesivas laterales, lo cual impide que exista un deslizamiento del seguidor

3.2.1.3.2 RADIO DE CURVATURA

$$\rho(\theta) := \frac{\left[\left(Rp + s(\theta) \right)^2 + \left(v(\theta) \cdot \frac{180}{\pi} \right)^2 \right]^{\frac{3}{2}}}{\left[\left(Rp + s(\theta) \right)^2 + \left[2 \cdot \left(v(\theta) \cdot \frac{180}{\pi} \right)^2 \right] - \left[\left[a(\theta) \cdot \left(\frac{180}{\pi} \right)^2 \cdot \left(Rp + s(\theta) \right) \right] \right] \right]}$$

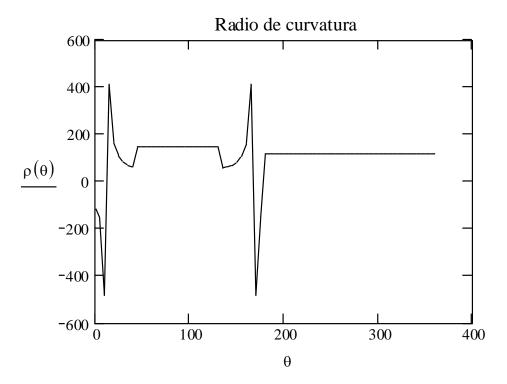


Figura 3.10 Radio de curvatura

3.2.1.4 ANÁLISIS DE FUERZAS DINÁMICAS

3.2.1.4.1 DATOS

Masa del sistema en Kg y precarga en N del resorte

Masa := 9.1 Kg

Precarga := 48 N

Frecuencia de giro de la leva en radianes por segundo

$$\omega := 30 \cdot \frac{2 \cdot \pi}{60}$$

3.2.1.4.2 CONSTANTE DEL RESORTE Y FRECUENCIA NATURAL

$$K := \left(2.934 \times 10^4\right) \quad N / m$$

$$K := K \cdot 1.48$$

Factor de seguridad de diseño

$$\omega N := \sqrt{\frac{K}{M \text{ as a}}}$$

$$\omega$$
N = 69.078

rad / s

3.2.1.4.3 RELACIÓN DE AMORTIGUACIÓN, CONSTANTE DE AMORTIGUACIÓN CRITICA Y CONSTANTE DE AMORTIGUACIÓN REAL

 $\xi := 0.06$

Ccritico := $2 \cdot M asa \cdot \omega N$

 $C := Ccritico \cdot \xi$

C = 75.433 Kg/s

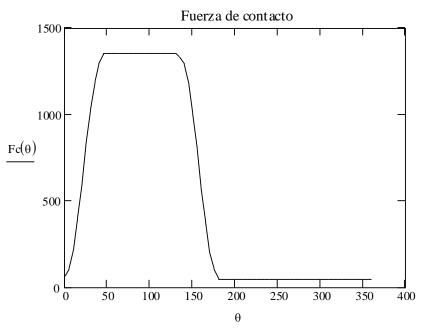


Figura 3.11 Fuerza de contacto

El gráfico nos indica que la Fuerza de contacto (Fuerza Cineostàtica) es mayor entre los 45 y 135 grados, y su valor es de 1351 N que representa el momento en el cual se realiza el estampado

3.2.1.4.. PAR DE TORSIÓN

$$T(\theta) := Fc(\theta) \cdot \frac{v(\theta) \cdot \frac{180}{\pi}}{\omega \cdot 1000} \qquad N \cdot m$$

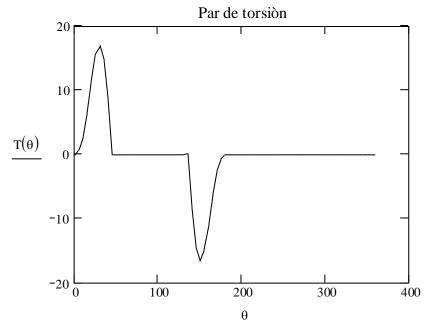


Figura 3.12 Par de torsiòn

3.2.2. ANÁLISIS DE LA LEVA – FUERZAS DE CONTACTO, ESFUERZO DE HERTZ

DATOS INICIALES

Material de la leva: Acero al carbono
Material del seguidor: Acero al carbono

R1 := 20	(mm)	Radio del seguidor
R2 := 135	(mm)	Radio de la leva en Fmax
v1 := 0.28		Modulo de Poisson Seguidor
v2 := 0.28		Modulo de Poisson Leva
E1 := 206800	(MPa)	Modulo de Young Seguidor
E2 := 206800	(MPa)	Modulo de Young Leva
Li := 50	(mm)	Longitud de contacto-ancho
Fm := 1351		de leva (inicio de interacion)
1111.— 1331	(N)	Fuerza de contaco maxima

CALCULO

$$B := \frac{1}{2} \cdot \left(\frac{1}{R1} + \frac{1}{R2} \right)$$

Constante de geometria

Constante de material

$$B = 0.029$$

 $\left(mm^{-1}\right)$

$$m1 := \frac{1 - v1^2}{E1}$$

$$m1 = 4.456 \times 10^{-6}$$

Seguidor $\left(\mathbf{MPa}^{-1}\right)$

$$m2 := \frac{1 - v2^2}{F2}$$

Constante de material

$$m2 = 4.456 \times 10^{-6}$$

$$a := \sqrt{\frac{2}{\pi} \cdot \frac{m1 + m2}{B} \cdot \frac{Fm}{Li}}$$

Semiancho de contacto

$$a = 0.073$$

(mm)

Area := $2 \cdot a \cdot Li$

Area rectangular de la huella

$$Area = 7.308$$

 $\left(\mathrm{mm}^{2}\right)$

$$Pprom := \frac{Fm}{Area}$$

(MPa)

Presion promedio

Pprom = 184.855

 $Pmax := \frac{2Fm}{\pi a \cdot Li}$

Pmax = 235.364

 $\mu := 0.33$

Presion maxima (MPa)

> Con μ = 0.33 los esfuerzos son maximos. z=0 y x=0.3a

 $fmax := Pmax \cdot \mu$

z := 0

 $x := 0.3 \cdot a$

x = 0.022

fmax = 77.67

(MPa)

Presion tangencial

 $\sigma xn := -Pmax \cdot \sqrt{1 - \frac{x^2}{a^2}}$

(MPa)

En este caso |xka

 $\sigma xn = -224.523$

Esfuerzos normales maximos en el centro de la superficie

 $\sigma z n := \sigma x n$

$$\sigma xt := -2 \cdot \text{fmax} \cdot \left(\frac{x}{a}\right)$$

$$\sigma xt = -46.602$$

$$\sigma zt := 0$$

$$\tau xzn := 0$$

$$\tau xzt \coloneqq -fmax \cdot \sqrt{1 - \frac{x^2}{a^2}}$$

$$\tau xzt = -74.093 \tag{MPa}$$

$$\sigma x := \sigma x n + \sigma x t$$

$$\sigma z := \sigma z n + \sigma z t$$

 $\sigma y := 0$

$$\tau xz := \tau xzn + \tau xzt$$

Esfuerzos aplicados

$$\sigma x = -271.125$$
 (MPa) Para rodillos cortos se tiene $\sigma z = -224.523$ $\sigma z = -74.093$

ES FUERZOS PRINCIPALES (CIRCULODE MOHR)

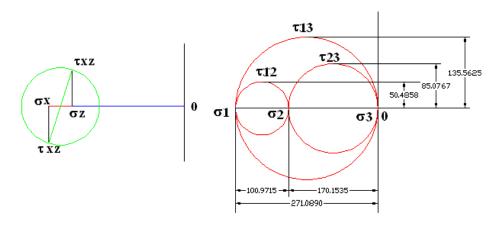


Figura 3.12 Circulo de Mhor

$$\sigma 1 := -271.0890$$
 Es fuerzos principales $\sigma 2 := -170.1535$ $\sigma 3 := 0$

$$\tau 12 := 50.4858$$

 $\tau 23 := 85.0767$
 $\tau 13 := 135.5625$

Se compara con la resistencia a la fatiga

Material: Acero al carbono 760 AISI 1045 " catalogo de aceros IBCA"

Anexo 11

BHN := 220
Se :=
$$400 \cdot BHN - 10000$$

$$\left(\frac{lb}{pulg^2}\right)$$

Se
$$\cdot \frac{9.81}{2.2 \cdot 25.4^2} = 539.105$$
 (Mpa)

ES ACEPTABLE

3.2 SISTEMA EXPULSOR

3.3.1 MOVIMIENTO DE LA BIELA MANIVELA

3.3.1.1 INTRODUCCIÓN

Los datos que a continuación se delatan provienen del siguiente planeamiento de incógnitas de acuerdo al siguiente esquema.

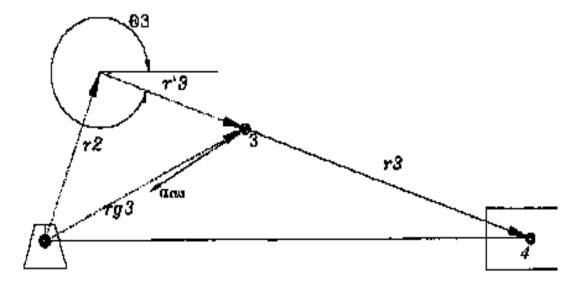


Figura 3.13 Relación de radios comparativos

$$r2 := 66$$

$$r3 := 200$$

Radio del cigueñal [mm]

Radio de la biela [mm]

$$rpm := 30$$

$$w2 := rp \, m \cdot 2 \cdot \frac{\pi}{60}$$

w2 = 3.142 rad / seg

RANGO

$$\theta 2 := 0, 0.001...2\pi$$

Angulo de rotacion del cigueñal

3.3.12 ANÁLISIS DE POSICIÓN

$$\theta 3(\theta 2) := a \sin \left[\left(\frac{-r2}{r3} \right) \cdot \sin(\theta 2) \right]$$

$$r1(\theta 2) := r3 - \frac{r2^2}{4 \cdot r3} + r2 \cdot \left[\cos(\theta 2) + \left[\left(\frac{r2}{4 \cdot r3}\right) \cdot \cos(2 \cdot \theta 2)\right]\right]$$

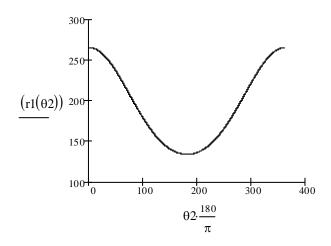


Figura 3.14 Desplazamiento pistón vs. Angulo impulsor

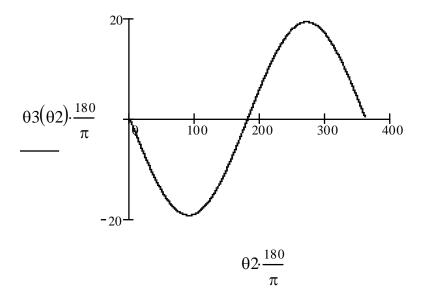


Figura 3.15 Angulo de biela vs Angulo del impulsor

3.3.1.3 ANÁLISIS DE VELOCIDAD

$$w3(\theta 2) := \frac{-r2 \cdot w2 \cdot \cos(\theta 2)}{r3 \cdot \cos(\theta 3(\theta 2))}$$

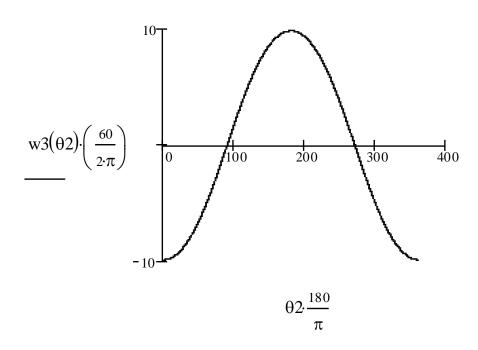


Figura 3.16 Vel. angular biela vs Ang impulsor

3.3.1.4 ANÁLISIS DE LA ACELERACIÓN ANGULAR

$$\alpha 3(\theta 2) := \frac{\sin(\theta 3(\theta 2)) \cdot w 3(\theta 2) \cdot r 3}{(r 3 \cdot \cos(\theta 3(\theta 2)))^2} \cdot (-r 2 \cdot \cos(\theta 2) \cdot w 2)$$

Figura 3.18 Aceleración angular biela vs Ang impulsor

3.3.1.4.1 ANÁLISIS DE LA ACELERACIÓN DEL SEGUIDOR

$$\frac{r^2}{r^3} = 0.33$$
 Relación entre radios

Seguidor(
$$\theta 2$$
) := w2 (tan($\theta 3(\theta 2)$) · sin($\theta 2$) + cos($\theta 2$))

$$ap(\theta 2) := r2 \cdot w2 \cdot \left(w3(\theta 2) \frac{\cos(\theta 2)}{\cos(\theta 3(\theta 2)) \cos(\theta 3(\theta 2))} - Seguidor(\theta 2) \right)$$

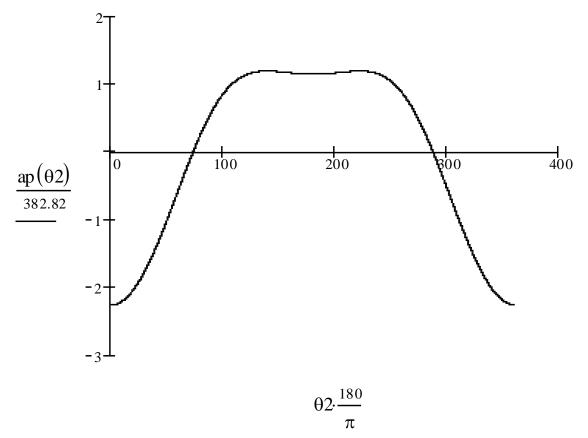


Figura 3.19 Aceleración del seguidor vs Ang impulsor

3.3.2 ANALISIS DE BIELA MANIVELA - Analisis de fuerzas dinamicas -

$$\omega_2 := 30 \qquad \qquad \text{R.P.M.} \qquad \text{Velocidad del impulsor}$$

$$\omega_2 := \omega_2 \cdot 2 \cdot \frac{\pi}{60}$$

$$r_2 := 65.9 \qquad \qquad \text{mm} \qquad \qquad \text{Longitud manivela}$$

$$r_3 := \frac{r^2}{1000}$$

$$r_3 := \frac{r^3}{1000}$$

$$\text{Lingitud biela}$$

$$\text{Carrera}$$

$$\text{Lingitud biela}$$

$$\text{Lingitud biela}$$

CALCULO DE LA FUERZA ESTÁTICA

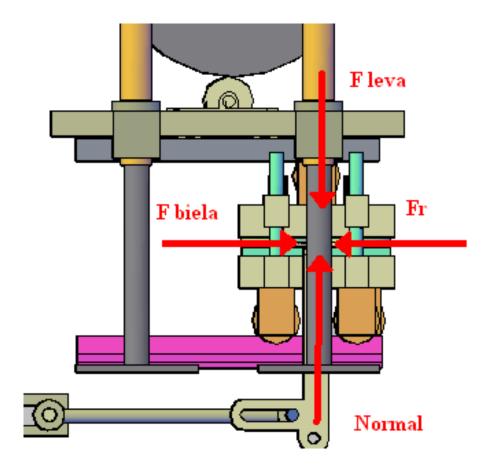


Figura 3.20 Diagrama del cuerpo libre del acoplado

Normal := 1351

v := 0.8

 $Fr := v \cdot Normal$

 $\theta := 0, 0.1 \cdot \frac{\pi}{180}..2\pi$

 $x(\theta) := Fr$

$$x\!\left(\theta\right) := if\!\!\left(\theta \leq 180 \cdot \frac{\pi}{180}, x\!\!\left(\theta\right), 0\right)$$

$$x'\!\left(\theta\right) := if\!\!\left(\theta \geq 180 \cdot \frac{\pi}{180}, 0, 0\right)$$

$$Fr(\theta) := x(\theta) + x'(\theta)$$

N

Coeficiente de rozamiento experimental acero-acero.

Se supone traba total en los rodamientos.

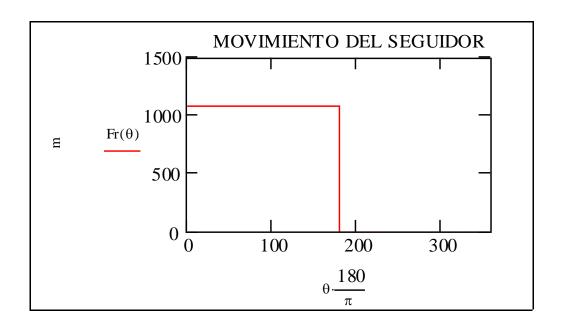
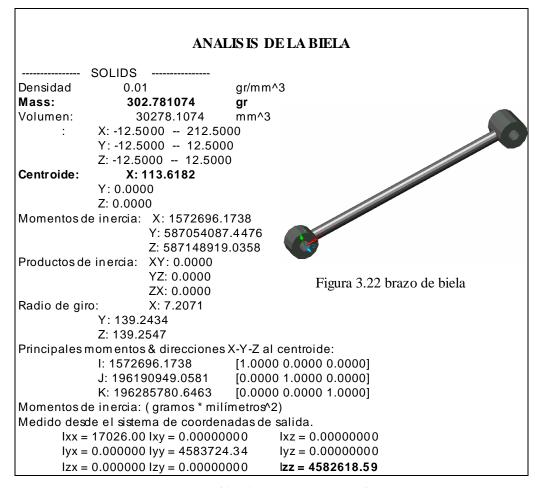



Figura 3.21 Fuerza por rozamiento en el seguidor

$$\theta 3(\theta) := a \sin \left(\frac{-r^2}{r^3} \cdot \sin(\theta) \right)$$

Autocad 2008 Massprop command

$$rCG3:=\frac{1000^{2}}{1000}$$
m
Radio al centro de gravedad

Modelo dinámico de la biela

Modelo de péndulo doble para balancear el mecaismo

$$1 := 200$$
 $1a := 113.61$ $1b := 1 - 1a$ $1b = 86.39$

$$m3a := m3 \cdot \frac{1b}{1} \qquad \qquad m3a = 0.131 \qquad \qquad m3b := m3 \cdot \frac{1a}{1} \qquad \qquad m3b = 0.172$$

Inércia calculada

$$IcG3 := m3a \cdot \left(\frac{1a}{1000}\right)^2 + m3b \cdot \left(\frac{1b}{1000}\right)^2$$

$$IcG3 = 2.972 \times 10^{-3}$$

ANALISIS DE LA MANIVELA

$$mr := -[m3a + 0.5 \cdot (m3b + m4)] \cdot r2$$
 $mr = -0.037$

$$\alpha 2 := 0$$
 El motor debe trabajar a velocidad constante

Densidad = 0.01 gramos por milímetro cúbico

Masa = 876.50 gramos

Volumen = 112372.16 milímetros^3

Área de superficie = 29468.09 milímetros^2

Centro de masa: (milímetros)

X = -14.90

Y = -0.00

Z = 16.66

Ejes principales de inercia y momentos principales de inercia: (gramos * milímetros^2) Medido desde el centro de masa.

 Ix = (0.98, 0.00, -0.21)
 Px = 328166.54

 Iy = (-0.21, 0.00, -0.98)
 Py = 969039.13

 Iz = (0.00, 1.00, 0.00)
 Pz = 1042466.75

Momentos de inercia: (gramos * milímetros^2)

(Medido desde el centro de masa y alineado con el sistema de coordenadas resultante)

Lxx = 355628.57 Lxy = 0.00 Lxz = -129790.21

Autocad 2008 Massprop command

lyx = 18.66	lyy = 1480290.84	lyz = -20.86
Izx = -347344.85	Izy = -20.86	Izz = 1136148.61

Autocad 2008 Massprop command

$$m2:=0.8765 Kg$$

$$rCG2:=\frac{16.66}{1000} m$$

$$IG2:=\frac{1480.290}{1000^2} Kg \cdot m^2$$

PARÁMETROS FÍSICOS

r2 = 0.066	m
r3 = 0.2	m
rCG2 = 0.017	m
rCG3 = 0.114	m

DIAGRAMAS DE CUERPO LIBRE

MANIVELA

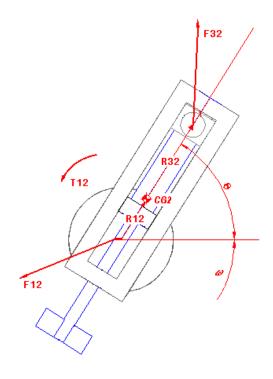


Figura 3.23. Diagrama del cuerp o libre de la manivela

$$aCG2(\theta) := -rCG2 \cdot \omega^2 \cdot \cos(\theta)$$
 $aCG2(\theta) := -rCG2 \cdot \omega^2 \cdot \sin(\theta)$

$$R32(\theta) := (r2 - rCG2) \cdot \cos(\theta)$$

$$R32(\theta) := (r2 - rCG2) \cdot \sin(\theta)$$

$$R12x(\theta) := -rCG2 \cdot \cos(\theta)$$

$$R12y(\theta) := -rCG2 \cdot \sin(\theta)$$

BIELA

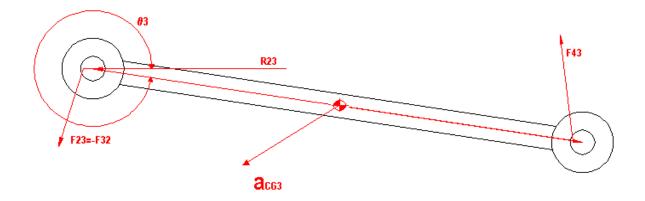


Figura 3.24 Diagrama del cuerp o libre de la Biela

$$R23(\theta) := -rCG3 \cdot \cos(\theta 3(\theta)) \qquad \qquad R23(\theta) := -rCG3 \cdot \sin(\theta 3(\theta))$$

$$R43(\theta) := (r3 - rCG3 \cdot \cos(\theta 3(\theta))) \qquad \qquad R43(\theta) := (r3 - rCG3 \cdot \sin(\theta 3(\theta)))$$

DETERMINACION DE acc3X acc3Y

$$\omega 3(\theta) := \frac{-r2}{r3} \cdot \omega 2 \cdot \frac{\cos(\theta)}{\cos(\theta 3(\theta))}$$

$$\alpha 3(\theta) := \frac{r2 \cdot \omega 2^2 \cdot \sin(\theta) + r3 \cdot \omega 3(\theta)^2 \cdot \sin(\theta 3(\theta)) - r2 \cdot \alpha 2 \cdot \cos(\theta)}{r3 \cdot \cos(\theta 3(\theta))}$$

$$aCG3(\theta) := -r2 \cdot \omega 2^2 \cdot \cos(\theta) - rCG3 \cdot \alpha 3(\theta) \cdot \sin(\theta 3(\theta)) - rCG3 \cdot \omega 3(\theta)^2 \cdot \cos(\theta 3(\theta))$$

$$aCG3y(\theta) := -r2 \cdot \omega 2^2 \cdot \sin(\theta) + rCG3 \cdot \alpha 3(\theta) \cdot \cos(\theta 3(\theta)) - rCG3 \cdot \omega 3(\theta)^2 \cdot \sin(\theta 3(\theta))$$

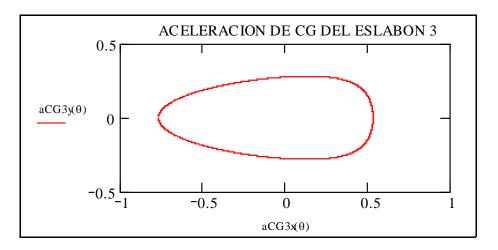


Figura 3.25 Aceleración del centro de gravedad del eslabón 3

MOLDE ACOPLADO

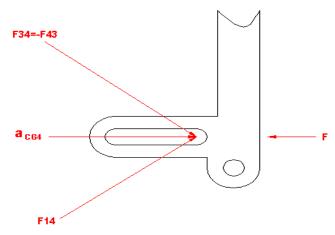


Figura 3.26 Diagrama del cuerp o libre del seguidor acop lado

v := 0.1

$$\upsilon(\theta 2) := if(\theta 2 \ge \pi, \upsilon, -\upsilon)$$

Figura 3.27 Coeficiente de fricción en el ciclo

ACELERACION DEL MOLDE ACOPLADO

$$ap(\theta) := -r2 \cdot \omega 2^2 \cdot \cos(\theta) - r3 \cdot \alpha 3(\theta) \cdot \sin(\theta 3(\theta)) - r3 \cdot \omega 3(\theta)^2 \cdot \cos(\theta 3(\theta)) - r2 \cdot \alpha 2 \cdot \sin(\theta)$$

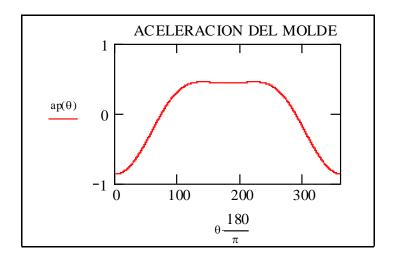


Figura 3.28 Gráfico de aceleración del molde

SOLUCION DE LAS ECUACIONES VECTORIALES

$$\mathbf{M}(\theta) := \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -R12y(\theta) & R12x(\theta) & -R32y(\theta) & R32x(\theta) & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & R23y(\theta) & -R23x(\theta) & -R43y(\theta) & R43x(\theta) & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & \upsilon(\theta) & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \end{pmatrix}$$

$$C(\theta) := \begin{pmatrix} m2 \cdot aC G2x(\theta) \\ m2 \cdot aC G2x(\theta) \\ IG2 \cdot \alpha2 \\ m3 \cdot aC G3x(\theta) \\ m3 \cdot aC G3x(\theta) \\ IG3 \cdot \alpha3(\theta) \\ m4 \cdot ap(\theta) + Fr(\theta) \\ 0 \end{pmatrix}$$

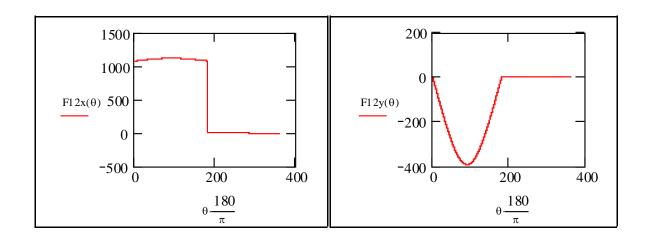
$$F\!\!\left(\theta\right):=M\!\left(\theta\right)^{-1}\cdot C\!\!\left(\theta\right)$$

RESULTADOS

 $F12x(\theta) := F(\theta)_0$

 $F12y(\theta) := F(\theta)_1$

 $F32x(\theta) := F(\theta)_2$


 $F32y(\theta) := F(\theta)_3$

 $F43x(\theta) := F(\theta)_4$

 $F43y(\theta) := F(\theta)_5$

 $F14y(\theta) := F(\theta)_6$

 $T12(\theta) := F(\theta)_7$

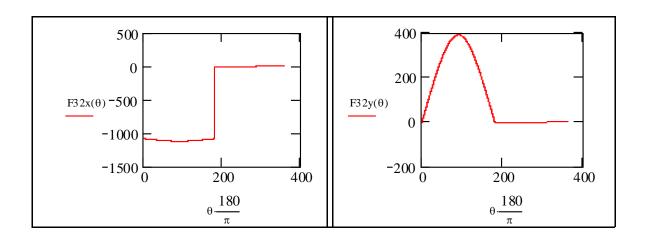


Figura 3.29 Gráficos de las fuerzas en función del angu-

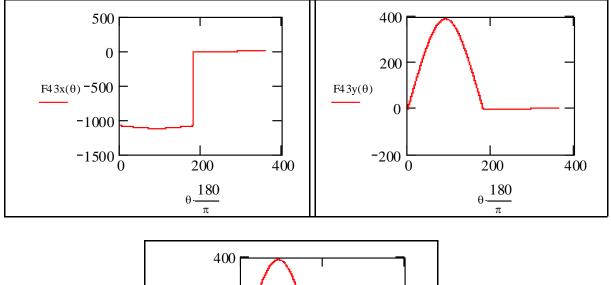


Figura 3.29 Gráficos de las fuerzas en función del angulo

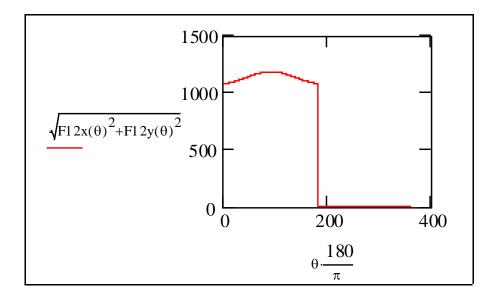
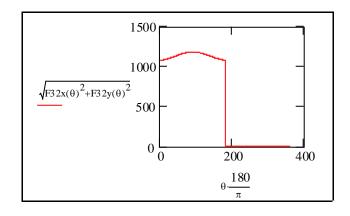



Figura 3.30 Gráficos de los módulos de las fuerzas en función del angulo de giro

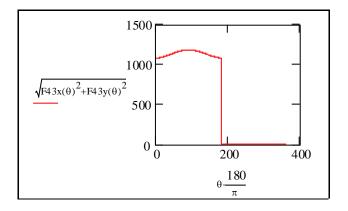


Figura 3.30 Gráficos de los módulos de las fuerzas en función del angulo de giro

ANÁLISIS DE TORQUE

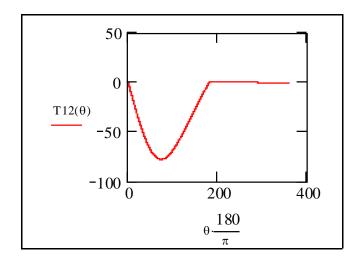
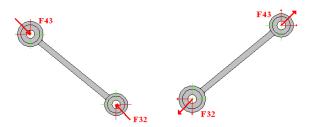


Figura 3.31 Gráfico del torque durante el ciclo
Torque real máximo que presenta el modelo= 77.615 KG.m

 $77.616 \cdot 9.81 = 761.413$


Nm

3.3.3 ANALISIS BIELA MANIVELA -Calculo de esfuerzos -

DATOS BIELA

Cargas máximas alternates obtenidas de los calculos cinematicos

$$F43 := 0$$
 Kg
 $F43 := 1186.4$ Kg
 $F32 := 0$ Kg
 $F32 := 1186.4$ Kg

Figura 3.32 Diagrama biela cuerpo libre a fatiga			
$Ab := 2\pi \cdot \left(\frac{10}{1000}\right)^2$	m^2	Sección transversal	
Sut := 586	Mpa	Acero inox AISI 304	
Sy := 276	Mpa	catálogo IVAN BOHMAN Anexo 23	
Se := $0.5 \cdot \text{Sut}$	Mpa	Estimación de la resistensia teorica a la fatiga Sf´ o del limite de resistencia a la fatiga Se´ Anexo 24	
$\sigma \max := \frac{\text{F43}}{\text{Ab}} \cdot \frac{9.81}{10^6}$		IMICAU ZT	
$\sigma max = 18.523$	Mpa	Esfuerzos alternates	
$\sigma \min := \frac{0}{Ab} \cdot \frac{9.81}{10^6}$			
σ min = 0	Mpa		
$\sigma m := \frac{\sigma max + \sigma min}{2}$			
$\sigma a := \frac{\sigma max - \sigma min}{2}$			
1			

$$\eta s = 3.836$$

Factor de seguridad en la biela

ACEPTABLE

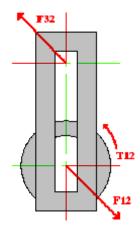


Figura 3.33 Diagrama del cuerp o libre de la manivela

DATOS

Se obetienen los mayores esfuerzos a 90 y a 180 grados

Tq := 761.4	Nm	Torque máximo que presenta el modelo
$F32X_{90} := -1120.1 \cdot 9.83$	l N	
$F32Y_{90} := 391.16 \cdot 9.81$	N	
$F12X_{90} := 1120.1 \cdot 9.81$	N	
$F12Y_{90} := 391.16 \cdot 9.81$	N	
$F32X_{180} := 0$	N	
$F32Y_{180} := 0$	N	
$F12X_{180} := 0$	N	
$F12Y_{180} := 0$	N	
	13	•

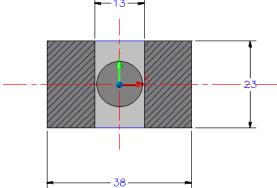


Figura 3.34 Sección transversal de la manivela

----- REGIONES -----

Area: 676.54 Perimetro: 175.42

Envolvente: X: -19.00 -- 19.00

Y: -11.50 -- 11.50

Centroide: X: 0.00

Y: 0.00

Momentos de inercia: X: 26852.71

Y: 102350.21

Productos de inercia: XY: 0.00
Radio de giro: X: 6.30

Y: 12.30

Momentos principales & direcciones X-Y sobre el centroide:

I: 26852.71 a lo largo de [1.00 0.00] J: 102350.21 a lo largo de [0.00 1.00]

Autocad 2008 Massprop command

$$Ix := \frac{26852.71}{1000^4}$$
 Momento de inércia

$$C := \frac{6.3}{1000}$$
 m Radio de Giro

$$Ar := \frac{676.54}{1000^2}$$
 m² Area de la sección

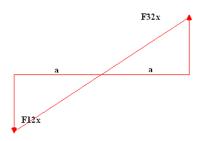


Figura 3.35 Diagrama de momentos de manivela

$$a := \frac{33}{1000} \qquad \qquad m$$

$$Q := \frac{Ix}{C}$$
 Función geométrica de la sección transversal

$$Mx1 := \frac{F12X_{90} \cdot a}{2}$$
 Momentos flectores en los puntos críticos

$$Mx1 = 181.305$$

$$Mx2 \coloneqq \frac{F12X_{180} \cdot a}{2}$$

$$Mx2 = 0$$

Nm

$$\sigma x1 := \frac{Mx1}{Q} \cdot 10^{-6}$$

Esfuerzos combinados

$$\sigma y1 := \frac{F12Y_{90}}{Ar} \cdot 10^{-6}$$

$$\sigma y2 \coloneqq \frac{F12Y_{180}}{Ar} \cdot 10^{-6}$$

$$\sigma y 1 = 5.672$$

$$\sigma y 2 = 0$$

Mpa

$$\tau max1 := \frac{Tq}{Q} \cdot 10^{-6}$$

$$\tau \text{max}1 = 178.634$$

Mpa

$$\sigma xm \coloneqq \frac{\sigma x1 + \sigma x2}{2}$$

$$\sigma xa := \frac{\sigma x1 - \sigma x2}{2}$$

$$\sigma y m := \frac{\sigma y 1 + \sigma y 2}{2}$$

$$\sigma ya := \frac{\sigma y1 - \sigma y2}{2}$$

$$\sigma xm = 21.268$$

$$\sigma ym = 2.836$$

$$\sigma xa = 21.268$$

$$\sigma ya = 2.836$$

$$\tau xym := \frac{\tau max1 + \tau max1}{2}$$

$$\tau xya := \frac{\tau max1 - \tau max1}{2}$$

$$\tau xym := \frac{\tau max1 + \tau max1}{2}$$

$$\tau xya := \frac{\tau max1 - \tau max1}{2}$$

$$\sigma \cdot a := \sqrt{\sigma x a^2 + \sigma y a^2 - \sigma x a \cdot \sigma y a + 3\tau x y a^2}$$

$$\sigma \cdot m := \sqrt{\sigma x m^2 + \sigma y m^2 - \sigma x m \cdot \sigma y m + 3\tau x y m^2}$$

$$\eta s \coloneqq \frac{1}{\frac{\sigma \cdot m}{Sy} + \frac{\sigma \cdot a}{Se}}$$

$$\eta s := 1.01$$

Método de Von Miss para esfuerzos multi axiales

Factor de seguridad en la biela ACEPTABLE tomando en consideración que la fuerza de calculo posee un factor de seguridad del 70%

3.4.4 RESORTES HELICOIDALES

3.3.4.1 ANÁLISIS DE RESORTES HELICOIDALES

(Mordaza)

Se usaran 4 resortes iguales como se muestra en el esquema

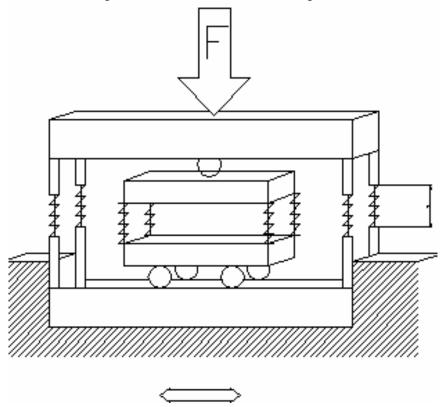


Figura 3.36 Esquema de conjunto mordazas-resortes.

CARGAS APLICADAS

$$FTM := 1351$$

$$Fmax := \frac{FTM \cdot 0.7}{4 \cdot 9.81} \qquad kg$$

Longitud y medidas de los resortes

$$Lm := 10 \text{ mm}$$

$$Di := 22 \text{ mm}$$

Longitud ensamblada disponible:

Material del resorte

$$G' := 80.8 \cdot 10^9$$

$$d := 3.5$$
 mm

Diámetro del alanbre

CALCULO

Nvida :=
$$30 \cdot 60 \cdot 2080 \cdot 5$$

Nvida =
$$1.872 \times 10^7$$

$$Fa := \frac{Fmax - Fmin}{2}$$

$$Fm := \frac{Fmax + Fmin}{2}$$

$$Fa = 7.05$$

$$Fm = 17.05$$

Fuerza media y alternante

\mathbf{D}		Di	d
v	:=	Di+	a

D = 25.5

 $C1 := \frac{D}{d}$

C1 = 7.286

 $Ks := 1 + \frac{0.5}{C1}$

Ks = 1.069

 $\tau i := Ks \cdot \frac{8 \cdot Fmin \cdot D}{\pi \cdot d^3} \cdot \frac{9.81 \cdot 1000^2}{10^6}$

 $\tau i = 158.771$

Mpa

 $\tau m := Ks \cdot \frac{8 \cdot Fm \cdot D}{\pi \cdot d^3} \cdot \frac{9.81 \cdot 1000^2}{10^6}$

 $\tau m = 270.708$

Mpa

 $Kw := \frac{4 \cdot C1 - 1}{4 \cdot C1 - 4} + \frac{0.615}{C1}$

Kw = 1.204

 $\tau a := Kw \cdot \frac{8 \cdot Fa \cdot D}{\pi \cdot d^3} \cdot \frac{9.81 \cdot 1000^2}{10^6}$

 $\tau a = 126.089$

Mpa

MPa

MPa

MPa

b := -0.1833

 $A \cdot := 1831.2$

Sut := $A \cdot \cdot d^b$

Sut = 1.455×10^3

Sus := $0.67 \cdot Sut$

Sus = 975.176

Diametro medio de la espira

Rango optimo 4<C1<12 OK

Factor de cortante directo

Esfuerzo en la deflexión inicial

Factor de Wahl

Esfuerzo cortante alternate en la espira

Coeficientes para material revenido

en aceite.ANEXO 26

Resistencia máxima a la tensión

Resistencia máxima al cortante

$$Sys := 0.60 \cdot Sut$$

$$Sys = 873.292$$

MPa

Límite elástico a la torsión

Tabla 13-6

MPa

Límite de resistencia a la fatiga para resortes sin granallar

ANEXO 27

Ses :=
$$0.707 \frac{\text{Sew} \cdot \text{Sus}}{\text{Sus} - 0.707 \text{Sew}}$$

$$Ses = 282.709$$

MPa

$$Nfs := \frac{Ses \cdot \left(Sus - \tau i\right)}{Ses \cdot \left(\tau m - \tau i\right) + Sus \cdot \tau a}$$

$$Nfs = 1.493$$

Factor de seguridad Es un margen aceptable

$$k := \frac{Fmax - Fmin}{yt} \cdot 9.81$$

$$k = 4.611$$

$$\frac{N}{mm}$$

Constante del resorte

Na :=
$$\frac{d^4 \cdot G'}{8 \cdot D^3 \cdot k} \cdot \frac{1}{1000^2}$$

$$Na = 19.824$$

Número de espiras activas

$$Nt := Na + 2$$

$$Nt = 21.824$$

Número de total de espiras 22

CALCULO DE MEDIDAS REALES LIMITE

$$Ls := d \cdot Nt$$

$$Ls = 76.384$$

mm

Altura de cierre Aceptable pues es menor a la disponible igual a 155 mm

$$yinicial = \frac{Fmin}{k}$$

yinicia⊨ 2.169

mm

Deflexión inicial de la precarga

 $ygolpe := 0.15 \cdot yt$

ygolpe = 4.5

mm

Holgura de golp eo supuesta de

15%

Lf := Ls + ygolpe + yt + yinicial

Fcierre := $k \cdot y$ cierre

Fcierre = 169.074

N

Fuerza a la deflexión de cierre

 $\tau cierre := Ks \cdot \frac{8F cierre \cdot D}{\pi \cdot d^3} \cdot \frac{1000^2}{10^6}$

 τ cierre = 273.639

Mpa

Esfuerzo a la altura de cierre

Nscierre := $\frac{Sys}{\tau cierre}$

Nscierre = 3.191

Factor de seguridad a la altura

de cierre.

Extremedamente confiable

Dado que existen guias al interior de cada resorte no es necesario el cálculo de pandeo del resorte

Lf = 113.053

mm

Longitud libre real

La = 183

mm

Dado que **Lf** < **La** se toma **La** como la longitud de libre de

construcción

 $paso := \frac{La}{22}$

paso = 8.318

mm

RES UMEN

La = 183

mm

Longitud libre

Nt = 21.824

Número de total de espiras 22

Di := 22

mm

Diámetro interior del resorte

Acero ASII 1080 al carbono d = 3.5mm paso = 8.318mm

3.3.4.2 ANÁLISIS DE RESORTES HELICOIDALES (Guía)

Se usan 4 resortes iguales como muestra el esquema.

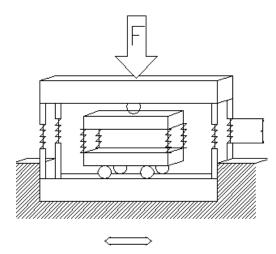


Figura 3.37 Esquema de conjunto mordazas-resortes

Cargas aplicadas

$Fp := \frac{15}{4}$	kg	Precarga: peso del conjunto mordaza superior
FTM := 1351	N	
$Fmax := \frac{FTM \cdot 0.3}{4 \cdot 9.81}$	kg	Carga máxima de trabajo Comparada en el analisis dinámico F=1351N
Fmin := 2	kg	Fuerza mínima precarga 2 kg de mordaza
Longitud y medidas d	le los resortes	

Longitud y medidas de los resortes			
yt:= 30 mm		Distancia de trabajo	
Lm := 15 mm		Longitud minima de trabajo	
Di := 11.8 mm		Diámetro interior del resorte	
Material del resorte		Módulo de corte, módulo de	
$G' := 74.1 \cdot 10^9$	Pa	rigidez Acero inoxidabel AISI 304	
d := 1.8	mm	Diámetro del alambre	

Diámetro del alambre

mm

CALCULO

Nvida :=
$$30 \cdot 60 \cdot 2080 \cdot 2$$

Nvida =
$$7.488 \times 10^6$$

Fuerza media y alternante

$$Fa := \frac{Fmax - Fmin}{2}$$

$$Fm := \frac{Fmax + Fmin}{2}$$

$$Fa = 4.164$$

$$Fm = 6.164$$

$$D := Di + d$$

$$D = 13.6$$

$$C1 := \frac{D}{d}$$

$$C1 = 7.556$$

$$Ks := 1 + \frac{0.5}{C1}$$

$$Ks := 1 + \frac{0.5}{C1}$$

$$Ks = 1.066$$

$$\tau i := Ks \cdot \frac{8 \cdot Fmin \cdot D}{\pi \cdot d^3} \cdot \frac{9.81 \cdot 1000^2}{10^6}$$

$$\tau i = 124.219$$

$$\tau m \coloneqq Ks \cdot \frac{8 \cdot Fm \cdot D}{\pi \cdot d^3} \cdot \frac{9.81 \cdot 1000^2}{10^6}$$

Esfuerzo medio

$$\tau m = 382.868$$

$$Kw := \frac{4 \cdot C1 - 1}{4 \cdot C1 - 4} + \frac{0.615}{C1}$$

Factor de Wahl

$$Kw = 1.196$$

$$\tau a := Kw \cdot \frac{8 \cdot Fa \cdot D}{\pi \cdot d^3} \cdot \frac{9.81 \cdot 1000^2}{10^6}$$

Esfuerzo cortante alternate en la espira

$\tau a = 290.095$	Mpa	
b := -0.1625		
$A \cdot := 2153.5$	MPa	Coeficientes para Alambre de piano. ANEXO 26
Sut := $A \cdot \cdot d^b$ Sut = 1.957×10^3	MPa	Resistencia máxima a la tensión
$Sus := 0.67 \cdot Sut$ $Sus = 1.311 \times 10^3$	MPa	Resistencia máxima al cortante
$Sys := 0.60 \cdot Sut$ $Sys = 1.174 \times 10^3$	MPa	Límite elástico a la torsión Tabla 13-6 ANEXO 28
Sew := 465	MPa	Límite de resistencia a la fatiga para resortes granallados ANEXO 27
$Ses := 0.707 \frac{Sew \cdot Sus}{Sus - 0.707 Sew}$		
Ses = 438.743	MPa	
$Nfs := \frac{Ses \cdot (Sus - \tau i)}{Ses \cdot (\tau m - \tau i) + Sus \cdot \tau a}$		
Nfs = 1.055		Factor de seguridad Es un margen aceptable
$k := \frac{Fmax - Fmin}{yt} \cdot 9.81$		
k = 2.724	N mm	Constante del resorte
$Na := \frac{d^4 \cdot G'}{8 \cdot D^3 \cdot k} \cdot \frac{1}{1000^2}$		

$$Na = 14.193$$

Número de espiras activas

$$Nt := Na + 2$$

$$Nt = 16.193$$

Número de total de espiras 17

CALCULO DE MEDIDAS REALES LIMITE

$$Ls := d \cdot Nt$$

Altura de cierre

$$Ls = 29.147$$

mm

Altura de cierre disponible

$$yinicial = \frac{Fmin}{k}$$

mm

Deflexión inicial de la precarga

$$ygolpe := 0.15 \cdot yt$$

$$ygolpe = 4.5$$

mm

Holgura de golpeo supuesta de

$$Lf := Ls + ygolpe + yt + yinicial$$

$$Lf = 64.382$$

mm

Longitud libre real

$$y cierre := Lf - Ls$$

mm

Deflexión hasta la altura de

cierre

Fcierre :=
$$k \cdot y$$
cierre

N

Fuerza a la deflexión de cierre

$$\tau cierre := Ks \cdot \frac{8F cierre \cdot D}{\pi \cdot d^3} \cdot \frac{1000^2}{10^6}$$

$$\tau$$
cierre = 607.553

Mpa

Esfuerzo a la altura de cierre

$$Nscierre := \frac{Sys}{\tau cierre}$$

Factor de seguridad a la altura

Nscierre = 1.933

de cierre.

Extremedamente confiable

Dado que existen guias al interior de cada resorte no es necesario el cálculo de pandeo del resorte

Lf = 64.382 mm Longitud libre real

 $paso := \frac{Lf}{17}$

paso = 3.787 mm

RES UMEN

Lf = 64.382	mm	Longitud libre
Nt = 16.193		Número de total de espiras 17
Di = 11.8	mm	Diámetro interior del resorte
d = 1.8	mm	Acero ASII 1080 al carbono
paso = 3.787	mm	

3.4 SISTEMA DE POTENCIA

3.4.1 CALCULO Y SELECCION DECADENAS Y CATALINAS

3.4.1.1 CONJUNTO MOTOREDUCTOR - LEVA - BIELA

La velocidad del motoreductor sera exactamente la misma del eje1 (Eje principal)

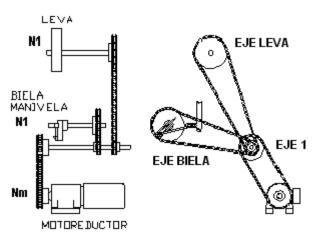


Figura 3.38 Esquema de ejes & cadenas

DATOS

Nm := 90	R.P.M	Velocidad de salida del motoreductor.
NI := 30	R.P.M	Velocidad deseada en la leva-biela
Nm		
$r := \frac{r \cdot m}{Nl}$		Relación de velocidades
r = 3		
Z1 := 12		Número de dientes catalina en motoreductor
$Z2 := Z1 \cdot r$		
Z2 = 36		Número de dientes del conducido
$NR eal := Nm \cdot \frac{Z1}{Z2}$		
NR eal = 30	R.P.M	Velocidad real en la leva y en la biela

A partir de la tabla de capacidad del **anexo 9** se observa que para un piñon de 12 dientes y una velocidad interpolada de 90 la capacidad de transmisión de 1.434 Hp lo que indica que es apta para la aplicación. Entonces selecionamos la cadena **No 60 paso 3/4" o 19 mm.**

$$paso := \frac{3}{4}$$
 pulg

Tipo de lubricación A

La posición relativa de todos los piñones es considerable aceptable, no se usaran piñones tensores u otros accesorios auxiliares.

3.4.1.2 CALCULO DE LA LONGITUD DE LA CADENA

MOTOREDUCTOR - EJE 1 (EJE PRINCIPAL)

MOTOREDUCTOR - ESET (ESET RETUEN)			
Zme := 20		Número de dientes de los pinones del eje y	
Zem := 20		motoreductor	
L1 := 300	mm	Distancia entre centros	
$d1 := \frac{L1}{25.4}$			
d1 = 11.811	pulg	Distancia entre centros	
$C' := \frac{d1}{paso}$			

$$S' := Zme + Zem$$

$$D' := Zme - Zem$$

$$D' = 0$$

$$K' := 0$$

$$Long := 2C' + \frac{S'}{2} + \frac{K'}{C'}$$

$$Long = 51.496$$

Según el **Anexo 10** para un valor D existe un K correspondiente

Número de eslabones = 52

Lreal :=
$$52 \cdot \frac{3}{4}$$

$$Lreal = 39$$
 pulg

$$Lreal \cdot 25.4 = 990.6$$
 mm

$$Z2 = 36$$

$$Z1 = 12$$

$$L2 := 465$$
 mm

$$d1' := \frac{L2}{25.4}$$

$$d1' = 18.307 \qquad \qquad \mathsf{pulg}$$

$$C" := \frac{d1'}{paso}$$

$$S'' := Z2 + Z1$$

$$D'' := Z2 - Z1$$

$$D'' = 24$$

$$K'' := 14.59$$

Long :=
$$2C'' + \frac{S''}{2} + \frac{K''}{C''}$$

$$Long = 73.417$$
 pulg

$$\text{Long} \cdot \frac{25.4}{1000} = 1.865$$

Número de eslabones = 74

Lreal :=
$$74 \cdot \frac{3}{4}$$

Número de dientes mayor

Número de dientes menor

Distancia entre centros

Distancia entre centros

Según el **Anexo 10** para un valor D existe un K correspondiente

pulg

Lreal
$$\cdot \frac{25.4}{1000} = 1.41$$
 m

EJE 1(EJE PRINCIPAL) - LEVA

$$Z2 = 36$$

Número de dientes mayor

$$Z1 = 12$$

Número de dientes menor

$$L3 := 558$$

mm

Distancia entre centros

$$d1" := \frac{L3}{25.4}$$

$$d1'' = 21.969$$

pulg

Distancia entre centros

$$C"' \coloneqq \frac{d1"}{paso}$$

$$S''' := Z2 + Z1$$

$$D''' := Z2 - Z1$$

Long :=
$$2C''' + \frac{S'''}{2} + \frac{K'''}{C'''}$$

$$Long = 83.081$$

pulg

Long
$$\cdot \frac{25.4}{1000} = 2.11$$

Número de eslabones = 84

Lreal :=
$$84 \cdot \frac{3}{4}$$

$$Lreal = 63$$

pulg

Lreal
$$\cdot \frac{25.4}{1000} = 1.6$$

m

3.4.2 EJE LEVA

3.4.2.1 INTRODUCCIÓN

Para el calculo de los ejes, se utiliza la siguiente disposición de ejes , en los cuales se ha dividido en tres ejes principales.

Primer eje.- En este eje se encuentra la leva, la cual realizará un conjunto con el seguidor que permitirá efectuar el estampado.

Segundo eje.-En este eje se encuentra la biela , la misma que nos servirá p ara el desp lazamiento del carro

Tercer eje.-Este será el eje el cual transmita la potencia tanto al eje en el cual se encuentra la leva, y ademas al eje en el cual se encuentra la leva

La disposicion en la cual serán diseñadas se detallan a continuación en el siguiente esquema

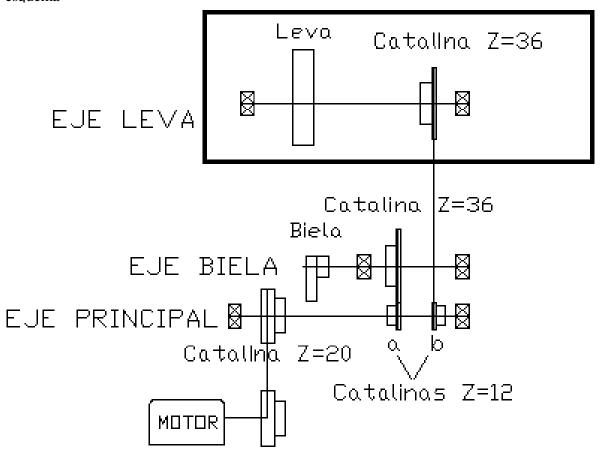


Figura 3.39 Disposición de ejes

3.4.2.2 DATOS INICIALES

Moto Reductor

 $\eta 1 := 30$ Nùmero de revoluciones [rp m]

P1 := 1 Potencia màxima del motor [hp]

La disposición y las distancias que serán utilizadas se esquematizan a continuación

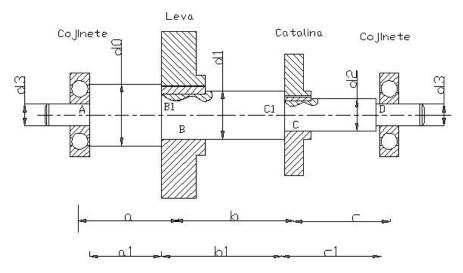


Figura 3.40 Disposición de los elementos del eje leva

b1 := 325	mm	Distancia entre el punto B1 a C1
c1 := 40	mm	Distancia entre el punto C1 a D
a := 208	mm	Distancia entre el punto A a B
b := 314	mm	Distancia entre el punto B a C
c := 94	mm	Distancia entre el punto C a D

3.4.2.3 CACULO DE LA ESTÁTICA (Eje leva)

Como primer paso, se calcula el torque que nos ofrece el motoreductor, para determinar las fuerzas que actuan en el eje

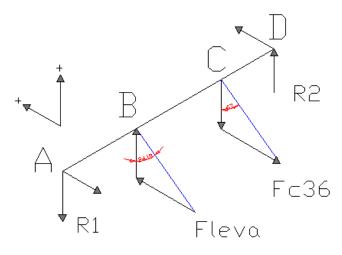


Figura 3.41 Estàtica del Eje Leva

3.4.2.3.1 MOTOREDUCTOR

$$\eta 1 := 30$$
 rp m Nùmero de revoluciones [rp m]

$$\eta := 30 \cdot 2 \cdot \frac{\pi}{60}$$

$$\eta = 3.142$$
 rad / seg

$$T := \frac{P1 \cdot 746760}{\eta}$$
 Torque(hp*746760 N.mm/seg)

$$T = 2.377 \times 10^5$$
 N.mm

3.4.2.3.2 CATALINA

r36 := 114.5 mm Radio de la catalina Z = 36 Diametro 9.02 plg

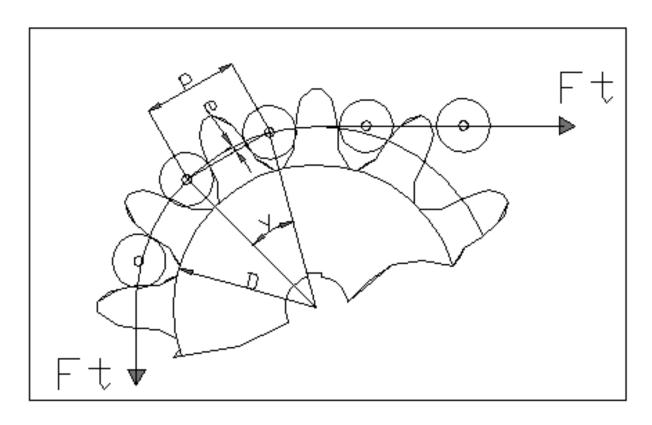


Figura 3.42 Fuerzas tangenciales en la catalina

Las fuerzas tangenciales sobre la catalina se determinan de acuerdo al par de torsión y radios respectivos.

$$\begin{aligned} \text{Ft} &:= \frac{T}{\text{r}36} & \text{Fuerza tangencial neta asociada} \\ \text{Ft} &= 2.076 \times 10^3 \quad \text{N} \\ \psi &:= 67 & \text{Angulo entre el Eje Leva y Eje principal} \\ \text{Fc}36x &:= \text{Ft} \cdot \cos \left(\psi \cdot \frac{\pi}{180} \right) & \text{Fuerza de la catalina } Z = 36 \\ \text{Fc}36y &:= \text{Ft} \cdot \sin \left(\psi \cdot \frac{\pi}{180} \right) & \text{Fuerza de la catalina } Z = 36 \end{aligned}$$

3.4.2.3.3 Leva

Para determinar las fuerzas que ejerce la leva en el eje, debido a la fuerza de contacto y el angulo de presión que es aquel angulo entre la dirección de movimiento vertical del seguidor y la dirección del eje de transmisión (figura 3.35)

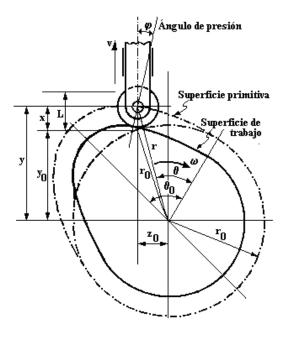


Figura 3.43 Angulo de presión del seguidor en la leva

Para determinar el angulo de presión se recurre al gràfico y mediante la ayuda del comando TRACE del programa MATHCAD se determina el mayor angulo de presión y obtenemos que :

 $\theta := 160$ grados Angulo de rotación de la leva $\phi := 24.18$ grados Angulo de presión màximo

Figura 3.44 Comprobacion del comando TRACE

Fcontacto := 1351 N Fuerza dinàmica de contacto de la leva eje y

Flevay := Fcontacto $\cos\left(\phi \cdot \frac{\pi}{180}\right)$ Fuerza de contacto de la leva Eje Y

Flevay = 1.232×10^3 N

 $Flevax := Fcontacto \cdot sin \left(\phi \cdot \frac{\pi}{180} \right)$ Fuerza tangencial de la leva Ejex

Flevax = 553.376 N

3.4.2.4 CALCULO DE REACCIONES (Eje leva)

Se calcula las fuerzas en y.

Reacciones en el Punto A
Reacciones en el Punto D
Fuerza de la leva
Fuerza de la catalina Z=36
Fc36

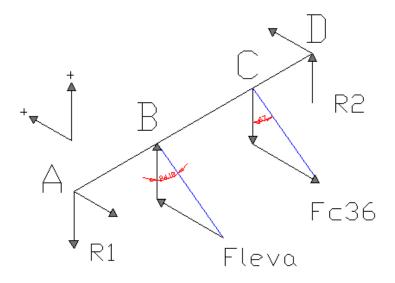


Figura 3.45 Estàtica del eje leva

 $\Sigma F := 0$

$$R1 + R2 - Fc36 + Fleva = 0$$

Ecuación A

Ecuación B

Ahora se realiza el cálculo de momentos en el punto A

$$\Sigma$$
 MA := 0
_ a · Fleva + Fc36 · (a + b) - [R2 · (a + b + c)] = 0
a + b = 522 mm
a + b + c = 616 mm

Evaluación de fórmulas

ECUACIÓN B

EJE X

De la ecuación B

$$(-a \cdot \text{Fleva}) + [\text{Fc36} \cdot (a+b)] - [\text{R2} \cdot (a+b+c)] = 0$$

$$(a+b+c) R2 = -a Fleva + (a+b) Fc36$$

Evaluación en el eje x

$$(a + b + c) R2x = -a Flevax + (a + b) Fc36x$$

Reemplazando valores:

$$R2x := \frac{(-a \cdot Flevax) + [(a+b) \cdot Fc36x]}{a+b+c}$$

$$R2x = 500.52$$

N

Reacción apoyo D

EJE Y

De la ecuación B

$$(-a \cdot \text{Fleva}) + [\text{Fc36} \cdot (a+b)] - [\text{R2} \cdot (a+b+c)] = 0$$

$$(a+b+c) R2 = -a Fleva + (a+b) Fc36$$

Evaluación en el eje y

$$(a + b + c) R2y = -a Flevay + (a + b) Fc36y$$

Reemplazando valores

$$R2y \coloneqq \frac{(-a \cdot Flevay) + [(a+b) \cdot Fc36y]}{a+b+c}$$

$$R2y = 1.203 \times 10^3$$
 N

Reacción apoyo D

ECUACIÓN A

Evaluación de la segunda ecuación en los dos ejes

$$R1 + R2 - Fc36 + Fleva = 0$$

Ecuación A

$$R1 + R2 = -Fleva + Fc36$$

Evaluación en el eje x

$$R1x + R2x = -Flevax + Fc36x$$

Reemplazando valores

$$R1x := -Flevax + Fc36x - R2x$$

R1x = -242.742 N

Reaccción apoyo Ax

EJE Y

$$R1 + R2 - Fc36 + Fleva = 0$$

Ecuación A

$$R1 + R2 = -Fleva + Fc36$$

Evaluación en el eje y

$$R1y + R2y = -Flevay + Fc36y$$

Reemplazando valores

$$R1y := -Flevay + Fc36y - R2y$$

$$R1y = -524.702$$
 N

Reacción apoy o Ay

3.2.2.5 FUNCIÓN DE CORTE

En la siguiente gráfica se analiza la función de corte

EJE X

PUNTO B

R1x = -242.742

R1x + Flevax = 310.634

Flevax = 553.376

PUNTO C

Fc36x = 811.155

R2x = 500.52

R1x + Flevax - Fc36x = -500.52

PUNTO D

$$R1x + Flevax + R2x - Fc36x = 0$$

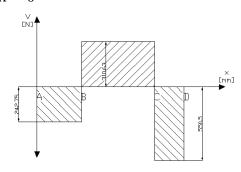


Figura 3.46 Fuerza cortante en X vs Longitud del eje leva

EJE Y

PUNTO B

$$R1y + Flevay = 707.766$$

R1y = -524.702

 $Flevay = 1.232 \times 10^3$

PUNTO C

 $Fc36y = 1.911 \times 10^3$

$$R1y + Flevay - Fc36y = -1.203 \times 10^3$$

 $R2y = 1.203 \times 10^3$

PUNTO D

$$R1y + Flevay + R2y - Fc36y = 0$$

Figura 3.47 Fuerza cortante en Y vs Longitud del eje leva

MAGNITUD DE FUERZA DE CORTE

PUNTO A

$$\sqrt{(R1x^2 + R1y^2)} = 578.131$$

PUNTO B

$$\sqrt{(R1x + Flevax)^2 + (R1y + Flevay)^2} = 772.933$$

PUNTO C

$$\sqrt{(R1y + Flevay - Fc36y)^2 + (R1x + Flevax + Fc36x)^2} = 1.645 \times 10^3$$

PUNTO D

$$\sqrt{(R1y + Flevay + R2y - Fc36y)^2 + (R1x + Flevax + R2x - Fc36x)^2} = 0$$

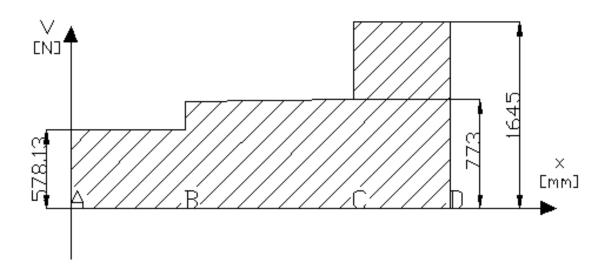


Figura 3.48 Magnitud de corte

3.4.2.6 FUNCIÓN DE MOMENTO

EJE X

MAx := 0 N mm Momento en el punto A

 $Q1x := a \cdot R1x$ Función de carga Punto A - B

 $Q1x = -5.049 \times 10^4$

MBx := MAx + Q1x Momento en el punto B

 $MBx = -5.049 \times 10^4$ N mm

$$Q2x := b \cdot (R1x + Flevax)$$

Función de carga Punto B - C

$$Q2x = 9.754 \times 10^4$$

$$MCx := MBx + Q2x$$

Momento en el punto C

$$MCx = 4.705 \times 10^4$$
 N mm

$$Q3x := c \cdot (-R2x)$$

Función de carga Punto C - D

$$Q3x = -4.705 \times 10^4$$

$$MDx := MCx + Q3x$$

Momento en el punto D

$$MDx = -5.821 \times 10^{-11}$$

N mm

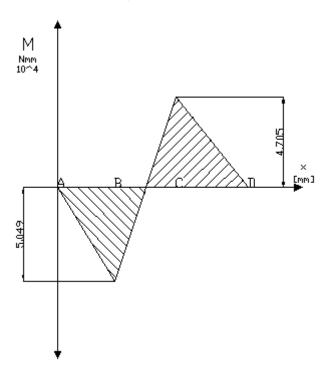


Figura 3.49 Momento xz

EJE Y

$$MAy := 0$$
 N mm

Momento en el punto A

$$Q1y := a \cdot R1y$$

Función de carga Punto A - B

$$Q1y = -1.091 \times 10^5$$

$$MBy := MAy + Q1y$$

Momento en el punto B

$$MBy = -1.091 \times 10^5 \quad N mm$$

$$Q2y := b \cdot (R1y + Flevay)$$

$$Q2y = 2.222 \times 10^5$$

Función de carga Punto B - C

$$MCy := MBy + Q2y$$

Momento en el punto C

$$MCy = 1.131 \times 10^5$$
 N mm

$$Q3y := c \cdot (-R2y)$$

Función de carga Punto C - D

$$Q3y = -1.131 \times 10^5$$

$$MDy := MCy + Q3y$$

Momento en el punto D

$$MDy = -8.731 \times 10^{-11}$$
 N mm

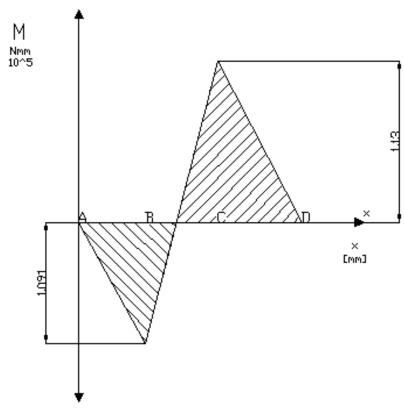


Figura 3.50 Momento y z

MAGNITUD DE MOMENTO

Se procede a calcular la magnitud de los momentos en sus respectivos puntos

$$M\,A := \sqrt{\!\!\left(M\,Ax^2 + M\,Ay^2\right)}$$

Magnitud de Momento A

MA = 0 N - mm

$$MB := \sqrt{MBx^2 + MBy^2}$$

$$MB = 1.203 \times 10^5$$

$$N - mm$$
Magnitud de Momento B

$$MC := \sqrt{MCx^2 + MCy^2}$$
 Magnitud de Momento C
 $MC = 1.225 \times 10^5$ N - mm

$$MD := \sqrt{MDx^2 + MDy^2}$$
 Magnitud de Momento D

$$MD = 1.049 \times 10^{-10}$$
 N - mm

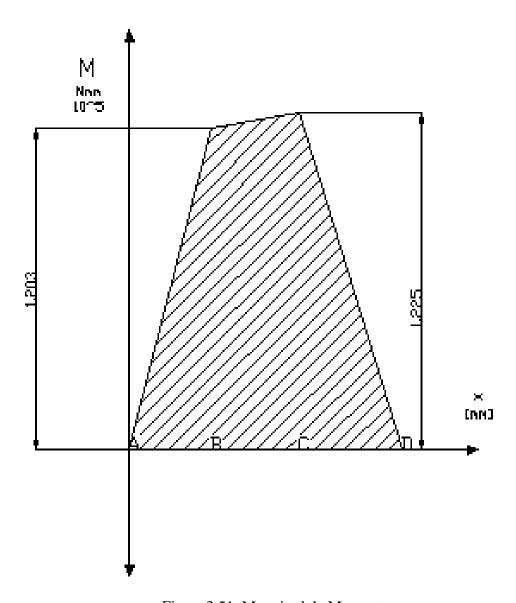


Figura 3.51 Magnitud de Momento

3.4.2.7 ANÁLISIS DE DIÁMETROS (Eje leva)

El material ha ser utilizado es un acero de transmisión SAE 1018, el mismo que se encuentra en el mercado a ser suministrado por IVAN BHOMAN, el mismo que tiene las siguientes características.

3.4.2.7.1 DATOS DEL MATERIAL

Sy := 483 N/mm2 Esfuerzo a la cede	encia
------------------------------------	-------

Se1 :=
$$0.5 \cdot \text{Sut}$$
 Resistencia a la fatiga corregida

$$Se1 = 283 \qquad N / mm2$$

3.4.2.7.2 EFECTOS DE LA CARGA

Ccarga:=1 Debido a que la carga es a flexión y torsión

Ctamaño:= 0.8 Valor asumido – no se conoce los diámetros-

Ctemperatura:= 1 No es elevada la temperatura de trabajo

Cconfiabilidad:= 1 Se otorga un 50% de confiabilidad

Csuperficie:= 0.78 Acabado Maquinado Anexo 13

2.4.2.7.3 SENSIBILIDAD EN LA MUESCA (Eje biela)

rm := 1.5 mm Radio de la muesca - sup uesto -

q := 0.75 Anexo 14

Kt := 1.75 Factor geométrico de concentración de

esfuerzos estático a flexión - Asumido -

 $Kf := 1 + q \cdot (Kt - 1)$ Factor geométrico de concentración de

Kf = 1.563 esfuerzos dinámico

Kts := 1.5Factor geométrico de concentración de

esfuerzos torsional - Asumido-

Factor geométrico de concentración de $Kfs := 1 + q \cdot (Kts - 1)$

esfuerzos dinámico torsional Kfs = 1.375

Kfsm := KfsComponente medio del esfuerzo

Nf := 1.9Factor de seguridad - asumido -

ANÁLISIS EN EL PUNTO B

Debido a que en el punto B del eje se encuentra la leva, la misma que tiene una cuña para acoplarla a el eje, se recalcula el Kt, debido al aumento del concentrador de esfuerzos

Concentrador de esfuerzos en el cuñero Kt := 1.75- Asumido -

 $Kf := 1 + q \cdot (Kt - 1)$

$$d1A := \frac{\sqrt{(Kf \cdot MB)^2 + \left[0.75 \cdot (Kfs \cdot T)^2\right]}}{Se}$$

$$d1B := \frac{\sqrt{(Kf \cdot MB)^2 + \left[0.75 \cdot (Kfsm \cdot T)^2\right]}}{Sut}$$

$$d1 := \left[\frac{32 \cdot Nf}{\pi} \cdot (d1A + d1B)\right]^{\left(\frac{1}{3}\right)}$$

$$d1 = 36.556$$
 mm

ANÁLISIS EN EL PUNTO C

$$d2A := \frac{\sqrt{(Kf \cdot MC)^2 + \left[[0.75 \cdot (Kfs \cdot T)]^2 \right]}}{Se}$$
$$d2B := \frac{\sqrt{(Kf \cdot MC)^2 + (Kfsm \cdot T)^2}}{Sut}$$

$$d2B := \frac{\sqrt{(Kf \cdot MC)^2 + (Kfsm \cdot T)^2}}{Sut}$$

$$d1 := \left[\frac{32 \cdot Nf}{\pi} \cdot (d1A + d1B)\right]^{\left(\frac{1}{3}\right)}$$

$$d1 = 36.556$$
 mm

ANÁLISIS EN EL PUNTO C

$$d2A := \frac{\sqrt{\left(Kf \cdot MC\right)^2 + \left[\left[0.75 \cdot \left(Kfs \cdot T\right)\right]^2\right]}}{Se}$$

$$d2B := \frac{\sqrt{\left(Kf \cdot M\,C\right)^2 + \left(Kfsm \cdot T\right)^2}}{Sut}$$

$$d2 := \left[32 \cdot \frac{Nf}{\pi} \cdot (d2A + d2B)\right]^{\left(\frac{1}{3}\right)}$$

$$d2 = 36.097$$
 mm

3.4.2.7.4 RECALCULO DE DIÁMETROS (Eje biela)

Se recalcula los diámetros debido a que los puntos en los cuales se llevan los rodamientos estos deben estar acorde a los diámetros existentes y disponibles en los catálogos de rodamientos y del mercado. En nuestro caso el manual utilizado fue suministrado por la SKF- "Casa del Ruliman Sangolquí.

Los puntos en los cuales se realiza el análisis con los puntos B y C, los diámetros respectivos son d2 y d3.

VALORES MÍNIMOS DE LOS DIÁMETROS

Los valores obtenidos son:

$$d1 = 36.556$$
 mm

$$d2 = 36.097$$
 mm

Los valores a ser utilizados en la primera interación son:

d3 := 35	mm	Diâmetro modificado de acuerdo a tabla Corresponde a 35 mm (Rodamiento)
d2 := 36.5	mm	Diámetro modificado
d1 := 38	mm	Valor que se encuentra en los limites de la leva
d0 := 48	mm	Valor necesario p ara formar un hombro

Recálculo de los efectos de la carga en el punto C (d2(Eje leva)

CcargaC := 1 Debido a que la carga es a flexión y torsión

 $Ctama\~noC \coloneqq 1.189 \cdot d1^{-0.097}$

CtamañoC = 0.835

CtemperaturaC:= 1 No es elevada la temperatura de trabajo

CconfiabilidadC:= 1 Se otorga un 50% de confiabilidad

CsuperficieC:= 4.51 · Sut^{-0.265} Acabado Maquinado Anexo 13

CsuperficieC= 0.841

SeC := CcargaC · CtamañoC · CtemperaturaC · CconfiabilidadC · Csup erficieC · Se1

SeC = 198.797 N/mm2 Resistencia a la fatiga

SENSIBILIDAD EN LA MUESCA

rm := 1.52 mm Radio de la muesca qC := 0.75

CALCULO DE LOS ESFUERZOS GEOMETRICOS

$$\frac{d1}{d2} = 1.041$$
 Anexo 15

Los valores de la interacción para la formula Kt = A (r/d) "b1 son :

A := 0.98061

b1 := -0.19653

$$KtsC \coloneqq A \cdot \left(\frac{rm}{d2}\right)^{b1}$$

Factor geométrico de concentración de esfuerzos a flexión

KtsC = 1.831

$$KfsC := 1 + qC \cdot (KtsC - 1)$$

Factor geométrico de concentración de esfuerzos

KfsC = 1.624

dinámico

KfsmC := KfsC

Componente medio del esfuerzo

A := 0.90337

$$b1 := -0.12692$$

$$KtC := A \cdot \left(\frac{rm}{d2}\right)^{b1}$$

Factor geométrico de concentración de esfuerzos estático a torsiòn

KtC = 1.352

$$KfC := 1 + qC \cdot (KtC - 1)$$

Factor geométrico de concentración de esfuerzos dinámico torsional

KfC = 1.264

Se realiza el análisis en el mayor momento que se produce en el eje, en nuestro caso el análisis será en el punto B, calculando el factor de seguridad.

ANÁLISIS EN EL PUNTO B

Debido a que en el punto B del eje se encuentra la leva, la misma que tiene una cuña para acoplarla al ele, se debe recalcular el Kt, debido al aumento del concentrador de esfuerzos.

$$\frac{\text{rm}}{\text{d1}} = 0.04$$

KtB := 1.75

ANEXO 16

$$KfB := 1 + q \cdot (KtB - 1)$$

$$KfB := 1.437$$

$$KtsB := 2.30$$

ANEXO 16

$$KfsB := 1 + q \cdot (KtsB - 1)$$

Factor geométrico de concentración de

$$KfsB := 1.732$$

esfuerzos dinámico

$$KfsmB := KfsB$$

Componente medio del esfuerzo

NfBa :=
$$\frac{\sqrt{(KfB \cdot MB)^2 + \left[0.75 \cdot (KfsB \cdot T)^2\right]}}{SeC}$$

NfBb :=
$$\frac{\sqrt{(KfB \cdot MB)^2 + \left[0.75 \cdot (KfsmB \cdot T)^2\right]}}{Sut}$$

$$NfB := \frac{d1^3 \cdot \frac{\pi}{32}}{(NfBa + NfBb)}$$

$$NfB = 2$$

ANÁLISIS EN EL PUNTO C

Debido a que en el punto C del eje se encuentra la catalina, la misma que tiene una cuña para acoplarla a el eje, se debe recalcular el Kt, debido al aumento del concentrador de esfuerzos

$$\frac{rm}{d2} = 0.042$$

ANEXO 16

$$KtC = 1.352$$

$$KfC := 1 + q \cdot (KtC - 1)$$

$$KfC = 1.264$$

$$KtsC = 1.831$$

ANEXO 16

$$KfsC := 1 + q \cdot (KtsC - 1)$$

$$KfsC = 1.624$$

Factor geométrico de concentración de esfuerzos dinámico

$$KfsmC := KfsB$$

Componente medio del esfuerzo

NfCa :=
$$\frac{\sqrt{(KfC \cdot MC)^2 + \left[0.75 \cdot (KfsC \cdot T)^2\right]}}{SeC}$$

NfCb :=
$$\frac{\sqrt{(KfC \cdot MC)^2 + \left[0.75 \cdot (KfsmC \cdot T)^2\right]}}{Sut}$$

$$NfC := \frac{d2^3 \cdot \frac{\pi}{32}}{(NfCa + NfCb)}$$

$$NfC = 1.88$$

3.4.2.8 CUÑAS

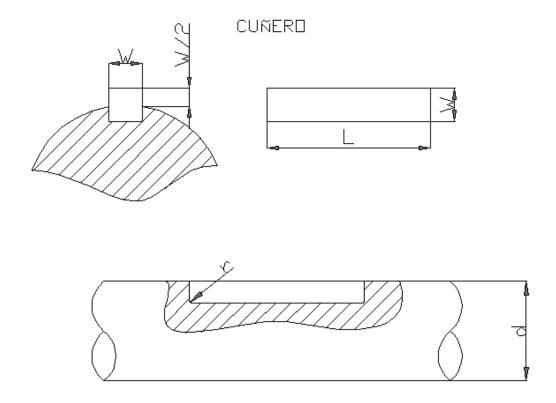


Figura 3.52 Dimensiones de la cuña

3.4.2.8.1 DATOS DEL MATERIAL

Material: Acero de bajo carbono SAE 1010

 $Sy := 303 \qquad N / mm2$

Esfuerzo a la cedencia

Sut := 365 N / mm2

Resistencia a la tensión

PUNTO B

Componentes de la fuerza sobre el punto B

$$Fa := \frac{T}{\left(\frac{d1}{2}\right)}$$

$$Fa = 1.251 \times 10^4$$

N

$$W := 10$$
 mm

Anexo 17

Mediante la teoria de la energia de la distorsión la resistencia al cortante es

 $Ssy := 0.557 \cdot Sy$

Ssy = 168.771 N / mm2

NcB := 1.5

Factor de seguridad - Asumido-

La falla por cortante a lo largo del área cortante W*L =Área corte

$$LB1 := \frac{NcB \cdot Fa}{Ssy \cdot W}$$

LB1 = 11.119

mm

PUNTO C

Componentes medios y alternantes de la fuerza sobre el punto C.

$$Fa := \frac{T}{\left(\frac{d2}{2}\right)}$$

$$Fa = 1.302 \times 10^4 \quad \text{N}$$

$$W := 9$$
 mm Anexo 17

La falla por cortante a lo largo del area cortante W*L = Area corte

$$LC1 := \frac{Fa \cdot NcC}{Ssy \cdot W}$$

$$LC1 = 12.862$$
 mm

Para resistir el aplastamiento se utiliza la mitad del area

$$LC2 := \frac{2 \cdot Fa \cdot NcC}{Sy \cdot W}$$

$$LC2 = 14.329$$
 mm

3.4.2.9 COMPARACIÓN DE LOS FACTORES DE SEGURIDAD (Eje leva)

Factores de seguridad en los diámetros

$$NfB = 2$$

$$NfC = 1.88$$

Factores de seguridad en los cuñeros

$$NcB = 1.5$$

$$NcC = 1.5$$

Los factores de seguridad para fallas de cuñas, son inferiores a la de los diámetros, lo que es deseable ya que en caso de sobrecarga las cuñas fallarán, por lo tanto, el diseño es deseable

3.4.2.10 CALCULO DE DEFLEXIONES (Eje leva)

$$EI\frac{d^2\delta}{d^2x} = M = R1x - Fleva(x - 5.91) + R2(x - 11.85) - Fc36(x - 18.3)$$

$$EI\frac{d\delta}{dx} = EI\theta = (1/2)R1x^2 - (1/2)Fleva(x - 5.91)^2 + (1/2)R2(x - 11.85)^2 - (1/2)Fc36(x - 18.3)^w + c1$$

$$EI\delta = (1/6)R1x^3 - (1/6)Fleva(x - 5.91)^3 + (1/6)R2(x - 11.85)^3 - (1/6)Fc36(x - 18.3)^3 + c1x + c2$$

x := a + b + c

Distancia a la cual se realiza el corte

$$M := -R1 \cdot x + Fleva \cdot (x - a) + [R2 \cdot [x - (a + b)]] - [Fc36 \cdot [x - (a + b + c)]]$$

Evaluamos las condiciones de borde

Condición de Borde CB1

Si

$$x := 0$$

$$EIδ := 0$$
 En consecuencia $C2 := 0$

Condición de Borde CB2

Si

$$x := a + b + c$$

$$\theta := 0$$
 Entonces $EI\theta := 0$

En consecuencia

$$C1 = \frac{1}{6}Fleva(a + b)3 - \frac{1}{6}R1(a + b + c)3 - \frac{1}{6}R2c3$$

Reestableciendo la ecuación de la deflexión

$$\left[\frac{R1 \cdot x^{3}}{6} - \left[\frac{Fleva \cdot (x-a)^{3}}{6}\right] - \frac{Fc36 \cdot [x - (a+b+c)]^{3}}{6}\right] + C2 = 0$$

$$x := 0, .1.. (a + b + c)$$

$$E := 207 \cdot 10^3 \qquad N/mm2$$

Módulo de elasticidad

Longitud total del eje

$$I := \frac{\frac{1}{\frac{a}{64} + \frac{b}{64} + \frac{c}{\frac{\pi d2^4}{64}}} + \frac{c}{\frac{\pi d2^4}{64}}$$

$$I = 1.316 \times 10^5$$
 mm 4

Càlculo de deflexiones en el Eje X

$$\delta 1x(x) := R1x \cdot x^3$$

$$\delta 2x(x) := Flevax \cdot (x - a)^3$$

$$\delta 3x(x) := Fc36x \cdot [x - (a+b)]^3$$

$$C1x(x) := \frac{-x}{(a+b+c)} \cdot \left[\text{Flevax} \cdot (b+c)^3 - R2x \cdot c^3 + R1x \cdot (a+b+c)^3 \right]$$

$$\delta x \mathbf{1}(x) := if \Big(x \leq a, \delta \mathbf{1} x(x) + C \mathbf{1} x(x), \delta \mathbf{1} x(x) + \delta \mathbf{2} x(x) + C \mathbf{1} x(x) \Big)$$

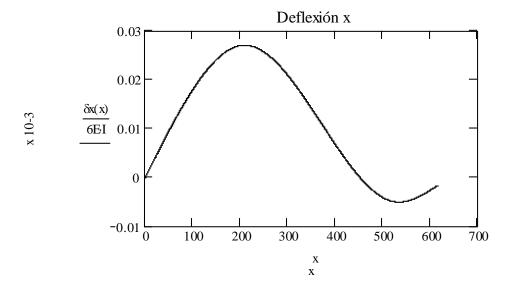


Figura 3.53 Deflexión en Eje X

Càlculo de deflexiones en el Eje Y

$$\delta 1y(x) := R1y \cdot x^3$$

$$\delta 2y(x) := \text{Flevay} \cdot (x - a)^3$$

$$\delta 3y(x) := Fc36y \cdot [x - (a+b)]^3$$

C1ya := Flevay
$$\cdot$$
 (b + c)³ - Fc36y \cdot c³ + $\left[R1y \cdot (a + b + c)^{3} \right]$

$$C1y(x) := \frac{-x}{(a+b+c)} \cdot (C1ya)$$

$$\delta y 1(x) := if(x \le a, \delta 1y(x) + C1y(x), \delta 1y(x) + \delta 2y(x) + C1y(x))$$

$$\delta y 2(x) := if \left[x \le (a+b), \delta y 1(x), \delta 1y(x) + \delta 2y(x) - \delta 3y(x) + C1y(x) \right]$$

$$\delta y(x) := if \left[x \le (a+b+c), \delta y 2(x), 0 \right]$$

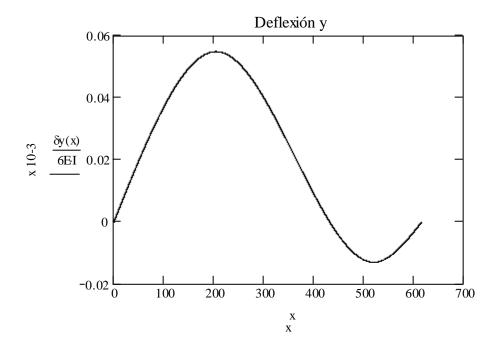


Figura 3.54 Deflexión en Eje Y

Càlculo de la deflexión de la deflexión(Eje leva)

$$\begin{split} \delta 1(x) &:= \sqrt{\left[\left(\delta 1 x(x) + C 1 x(x)\right)^2 + \left(\delta 1 y(x) + C 1 y(x)\right)^2\right]} \\ \delta 2(x) &:= \sqrt{\left(\delta 1 x(x) + \delta 2 x(x) + C 1 x(x)\right)^2 + \left(\delta 1 y(x) + \delta 2 y(x) + C 1 y(x)\right)^2} \end{split}$$

$$\delta 31(x) := \delta 1x(x) + \delta 2x(x) - \delta 3x(x) + C1x(x)$$

$$\delta 32(x) := \delta 1y(x) + \delta 2y(x) - \delta 3y(x) + C1y(x)$$

$$\delta 3(x) := \sqrt{\left(\delta 31(x)\right)^2 + \left(\delta 32(x)\right)^2}$$

$$\delta 4(x) := if(x < a, \delta 1(x), \delta 2(x))$$

$$\delta 5(x) := if(x < a + b, \delta 4(x), \delta 3(x))$$

$$\delta(x) := if(x < a + b + c, \delta 5(x), 0)$$

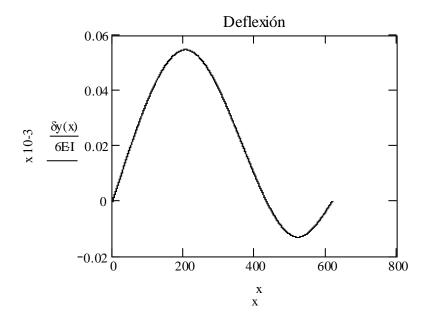


Figura 3.53 Deflexiòn en Eje X

3.4.2.11 FRECUENCIAS CRITICAS

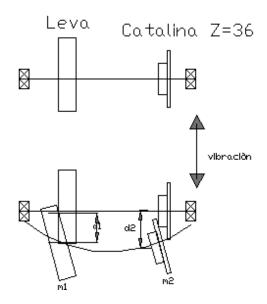


Figura 3.56 Vibraciòn lateral

Las deflexiones en los puntos B y C son

PUNTO B

Si
$$x := a$$

$$\delta B \coloneqq \frac{1}{E \cdot I} \cdot \left(\delta \mathbf{1}(x)\right)$$

$$\delta B = 0.367$$
 mm

PUNTO C

Si
$$x := a + b$$

$$\delta D \coloneqq \frac{1}{E \cdot I} \cdot \left(\delta 2(x) \right)$$

$$\delta D = 0.084$$
 mm

$$\rho := 7.795 \cdot 10^{-6}$$
 Kg/mm 3 Densidad del acero

3.4.2.11.1 ANÁLISIS DE LA LEVA

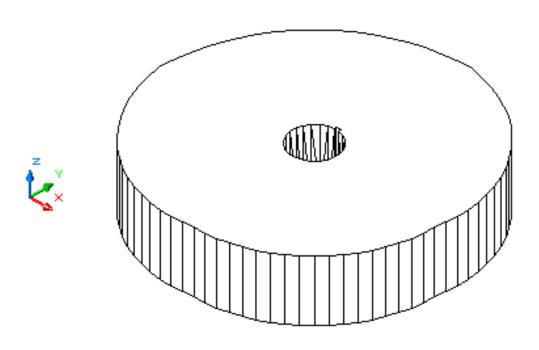


Figura 3.57 Características de la leva

SOLIDS Masa 2044167,7379 2044167,7379 Volumen⁻¹ Xi -127,8000 -- 103,9630 Yi -102.0630 -- 129.7000 Zi 0,0000 50,0000 Centroides Xi -9,9086 Yi 11.8067 Z: 25,0000 Momentos de inercia Xi 8995450938,0010 Y: 8911286046.8878 Zi 14499790755.0723 Productos de Inercia : + XY+ -114375609.7161 YZ: 603371782,2631 ZX: -506371991.1671 Xi 66,3366 Radio de Giro Y+ 66,0255 Principales momentos de inercia x y z I) 7308170495,7676 along [0,7072 0,7070 0,0000] Ji 7557705789,6009 along [-0,7070 0,7072 0,0000] K: 14014139727.9201 along [0.0000 0.0000 1.0000]

Figura 3.57 Características de la leva

wleva := 50 mm Ancho de la leva

Volumenleva:= 2044167.74 mm 3 Volumen de la leva

Wleva := Volumenleva ρ Peso de la leva

3.2.4.11.2 ANÁLISIS DE LA CATALINA (Eje leva)

w36 := 38 mm Ancho de la catalina

Wcatalina := $\pi \cdot \frac{r36^2}{2} \cdot w36 \cdot \rho$ Peso de la catalina

Wcatalina = 6.1 Kg

3.4.2.11.3 FRECUENCIA NATURAL (Eje leva)

$$\omega n := \sqrt{9.8 \cdot 1000 \cdot \frac{\left(\delta B \cdot Wleva\right) + \left(\delta D \cdot Wcatalina\right)}{\left(\delta B^2 \cdot Wleva\right) + \left(\delta D^2 \cdot Wcatalina\right)}}$$

Comparando la frecuencia de balanceo crítica con la frecuencia forzada:

$$\frac{\omega n}{\eta} = 53.723$$

Se trata de un margen aceptable

3.4.2.11.4 FRECUENCIA TORSIONAL (Eje leva)

$$G := 79.3 \cdot 10^3$$

Modulo de rigidez

$$kt1 := \pi \cdot G \cdot \frac{d1^4}{32 \cdot b}$$

Resorte efectivo Punto B

$$kt1 = 5.17 \times 10^7$$

N mm

$$kt2 := \pi \cdot G \cdot \frac{d3^4}{32 \cdot c}$$

Resorte efectivo Punto C

$$kt2 = 1.243 \times 10^8$$

N mm

La contante efectiva del resorte es igual

$$1/\text{Kefec} = 1/\text{kt}1 + 1/\text{kt}2$$

$$1/\text{Kefec} = (\text{Kt2}+\text{Kt1})/\text{Kt1}*\text{Kt2}$$

kefec=kt1*kt2/(kt1+kt2)

$$kefec := \frac{kt1 \cdot kt2}{(kt1 + kt2)}$$

Constante efectiva del resorte

$$kefec = 3.651 \times 10^7$$
 N mm

3.4.2.11.5 FRECUENCIA CRITICA A TORSIÓN (Eje leva)

Ileva :=
$$\frac{\pi \cdot (260)^4 \cdot \text{wleva} \cdot \rho}{32 \cdot 9.8 \cdot 1000}$$

Inercia de la leva

Ileva =
$$17.842$$

Kg mm s2

Icatalina:=
$$\frac{\pi \cdot (r36 \cdot 2)^4 \cdot w36 \cdot \rho}{32 \cdot 9.8 \cdot 1000}$$

Icatalina = 8.16

Kg.mm.s2

Inercia de la catalina

$$\omega nt := \sqrt{\frac{\text{kefec}}{9.8} \cdot \frac{\text{Ileva} + \text{Icatalina}}{\text{Ileva} \cdot \text{Icatalina}}}$$

$$\omega nt = 815.69 \quad \text{rad/seg}$$

Comparando las frecuencias

$$\frac{\text{ont}}{n} = 259.642$$
 Valor mucho mayor

3.4.3 EJE BIELA (SEGUNDO EJE)

3.4.3.1 INTRODUCCIÓN

Para el calculo de los ejes, se utiliza la siguiente disposición de ejes, en los cuales se

ha dividido en tres ejes principales.

Primer eje.- En este eje se encuentra la leva, la cual realizará un conjunto con el seguidor que permite el estampado

Segundo eje.-En este eje se encuentra la biela , la misma que nos servirá para el desplazamiento del carro

Tercer eje.-Este será el eje el cual transmita la potencia tanto al eje en el cual se encuentra lava, y además al eje en el cual se encuentra la leva

La disposición en la cual serán diseñadas se detalla a continuación en el siguiente Esquema.

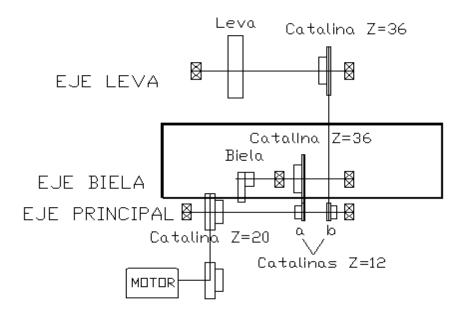


Figura 3.58 Disposición de ejes

3.4.3.2 DATOS INICIALES

Moto Reductor

 $\eta 1 := 30$ Nùmero de revoluciones [rp m] P1 := 1 Potencia màxima del motor [hp]

La disposición y las distancias que serán utilizadas se esquematizan a continuación

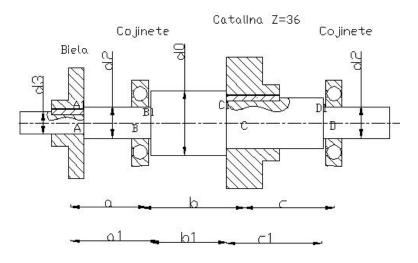


Figura 3.59 Disposición de los elementos del Eje Biela

DISTANCIAS

a1 := 136	mm	Distancia entre el punto A1 a B1
a := 110	mm	Distancia entre el punto A a B
b1 := 52	mm	Distancia entre el punto B1 a C1
b := 96.5	mm	Distancia entre el punto B a C
c1 := 157	mm	Distancia entre el punto C1 a D1
c := 125	mm	Distancia entre el punto C a D

3.4.3.3 ESTÁTICA DEL EJE BIELA

Como primer paso, se calcula el torque que nos proporciona el motoreductor para determinar las fuerzas que actúan en el eje.

3.4.3.3.1 MOTO REDUCTOR

$$\eta 1 := 30$$
 rpm Nùmero de revoluciones [rpm]

$$\eta := 30 \cdot 2 \cdot \frac{\pi}{60}$$

$$\eta = 3.142$$
 rad / seg

$$T := \frac{P1 \cdot 746760}{n}$$
 Torque(hp*746760 N mm/seg)

$$T = 2.377 \times 10^5$$
 N mm

EJE BIELA

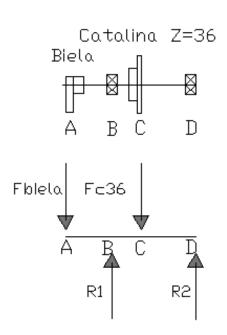


Figura 3.60 Estàtica del Eje Biela

3.4.3.3.2 ANÁLISIS DE LA BIELA

$$Fbiela := \frac{T}{rbiela}$$
 Fuerza neta asociada

$$Fbiela := \frac{T}{rbiela}$$

Fuerza neta asociada

Fbiela =
$$3.607 \times 10^3$$

N

Sentido -x

Fbielax := Fbiela

Fbielay := 0

3.4.3.3.3 ANÁLISIS DE LA CATALINA

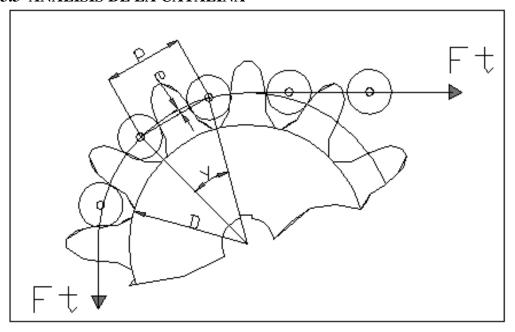


Figura 3.61 Fuerzas tangenciales en la catalina

Las fuerzas tangenciales sobre las catalinas se calcula deacuerdo al par de torsión y los radios respectivos.

$$r36 := \frac{9.020 \cdot 25.4}{2}$$
 mm

Radio de la catalina Z = 36

$$Ft36 := \frac{T}{r36}$$

Fuerza neta asociada

$$Ft36 = 2.075 \times 10^3$$
 N

 $\psi := 15$

Angulo entre el Eje biela y Eje Principal

$$Fc36x := Ft36 \cdot \cos\left(\psi \cdot \frac{\pi}{180}\right)$$

Fuerza de la catalina Z = 36

$$Fc36y := Ft36 \cdot \sin \left(\psi \cdot \frac{\pi}{180} \right)$$

3.4.3.4 CÁLCULO DE REACCIONES (Eje biela)

Reacción en el Punto B R1

Reacción en el punto D R2

Fuerza de la catalina Z = 36 Fc36

Fuerza de la biela Fbiela

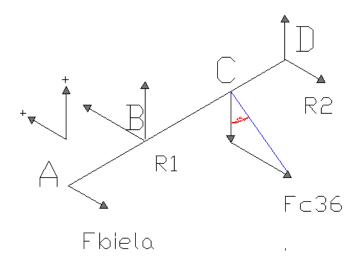


Figura 3.62 Diagrama de cuerpo libre del Eje Biela

$$\Sigma F := 0$$

$$R1 + R2 - Fc36 - Fbiela = 0$$

Ahora se calculan los momentos en el punto D

$$\Sigma MD := 0$$

$$[R1 \cdot (b+c)] - (Fc36 \cdot c) - [Fbiela \cdot (a+b+c)] = 0$$
 Ecuación B

$$b + c = 221.5$$
 mm

$$a + b + c = 331.5$$
 mm

3.4.3.4.1 EVALUACIÓN DE FORMULAS (Eje biela)

ECUACIÓN B

EJE X

De la ecuación B

$$[R1 \cdot (b+c)] - (Fc36 \cdot c) - [Fbiela \cdot (a+b+c)] = 0$$

Ecuación B

$$R1*(b+c) = Fc36*c + Fbiela*(a+b+c)$$

Evaluación en el eje x

$$R1x*(b+c) = Fc36x*c + Fbielax*(a+b+c)$$

Reemplazando valores

$$R1x := \frac{Fc36x \cdot c + Fbielax \cdot (a + b + c)}{b + c}$$

$$R1x = 6.529 \times 10^3$$
 N

ECUACIÓN B

EJE Y

De la ecuación B

$$[R1 \cdot (b+c)] - (Fc36 \cdot c) - [Fbiela \cdot (a+b+c)] = 0$$

$$R1*(b+c) = Fc36*c + Fbiela*(a+b+c)$$

Evaluación en el eje y

$$R1x^*(b+c) = Fc36x * c + Fbielax * (a+b+c)$$

Reemplazando valores

R1y :=
$$\frac{\text{Fc36y} \cdot \text{c} + \text{Fbielay} \cdot (\text{a} + \text{b} + \text{c})}{\text{b} + \text{c}}$$

$$R1y = 303.077$$
 N

ECUACIÓN A

EJE X

De la ecuación A

$$R1 + R2 - Fc36 - Fbiela = 0$$

Aplicando la ecuación en el eje X, tenemos, despejando R

$$R2x = Fc36x + Fbielax - R1x$$

$$R2x := (Fc36x + Fbielax - R1x)$$

$$R2x = -918.076$$
 N

Evaluación en el eje y

$$R1x^*(b+c) = Fc36x * c + Fbielax * (a+b+c)$$

N

Reemplazando valores

$$R1y := \frac{Fc36y \cdot c + Fbielay \cdot (a + b + c)}{b + c}$$

$$R1y = 303.077$$

ECUACIÓN A

EJE X

De la ecuación A

$$R1 + R2 - Fc36 - Fbiela = 0$$

Evaluandoen el eje Y, tenemos, despejando R2y

$$R2y = Fc36y + Fbielay - R1y$$

$$R2y := (Fc36y + Fbielay - R1y)$$

$$R2y = 233.976$$
 N

3.4.3.5 FUNCIÓN DE CORTE

En la siguiente gráfica representa la función de corte

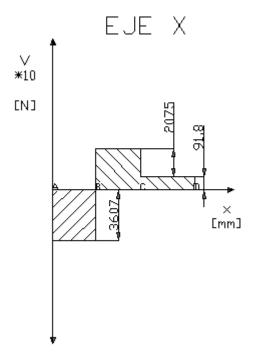


Figura 3.63a Diagrama de Función de Corte Eje X

PUNTO B

$$-\text{Fbielax} + R1x = 2.922 \times 10^3$$

PUNTO C

$$R1x - Fbielax - Fc36x = 918.076$$

PUNTO D

$$R1x - Fbielax - Fc36x - R2x = 1.836 \times 10^{3}$$

3.4.3.6 FUNCIÓN DE MOMENTO

EJE X

$$MAx = 0$$
 N mm

$$Q1x := a \cdot -Fbielax$$

Fbielax = 3.607×10^{3}

 $R1x = 6.529 \times 10^3$

R2x = -918.076

 $Fc36x = 2.004 \times 10^3$

$$Q1x = -3.968 \times 10^{5}$$

 $MBx := MAx + Q1x$
 $MBx = -3.968 \times 10^{5}$

Momento en el punto B

Función de carga Punto B - C

$$Q2x = 2.82 \times 10^5$$

$$MCx := MBx + Q2x$$

 $Q2x := b \cdot (-Fbielax + R1x)$

Momento en el punto C

$$MCx = -1.148 \times 10^5 \qquad N \text{ mm}$$

$$a = 110$$

$$a + b = 206.5$$

$$a + b + c = 331.5$$

$$Q3x := c \cdot (R1x - Fbielax - Fc36x)$$
 Función de carga Punto C - D

N mm

$$Q3x = 1.148 \times 10^5$$

$$MDx := MCx + Q3x$$

Momento en el punto D

$$MDx = 1.455 \times 10^{-11}$$
 N mm

La gráfica del Momento en el eje x es la siguiente

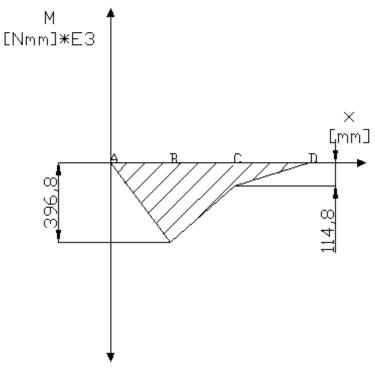


Figura 3.64a Diagrama de Momento xz

La gráfica del Momento en el eje y es la siguiente

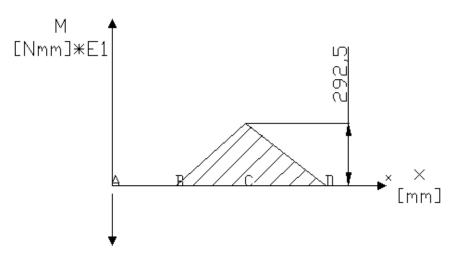


Figura 3.64b Diagrama de Momento Eje yz

MAGNITUD DE MOMENTO

$$MA := \sqrt{(MAx^{2}) + (MAy^{2})}$$

$$MA = 0$$

$$MB := \sqrt{(MBx^{2}) + (MBy^{2})}$$

$$MB = 3.968 \times 10^{5}$$

$$N / mm$$

$$MC := \sqrt{(MCx^2) + (MCy^2)}$$

$$MC = 1.184 \times 10^5 \qquad N / mm2$$

$$M\,D \coloneqq \sqrt{\!\left(M\,D\,x^{\!2}\right) + \left(M\,D\,y^{\!2}\right)}$$

$$MD = 1.455 \times 10^{-11}$$
 N/mm2

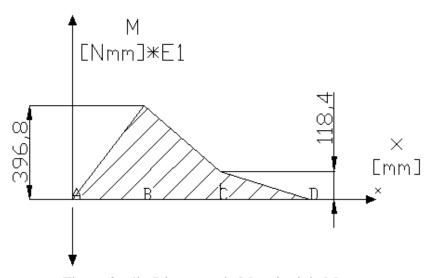


Figura 3.64b Diagrama de Magnitud de Momento

$$S1(x) := 3607.3x$$

$$S2(x) := -2885.6x + 714147$$

$$S3(x) := -947.6x + 313997$$

$$x := 0, .1.. (a + b + c)$$

$$M1(x) := if(x \le a, S1(x), S2(x))$$

$$MX(x) := if(x \le a + b, M1(x), S3(x))$$

Localización de la cuña en A1

$$A1 := a1 - a$$

$$A1 = 26$$

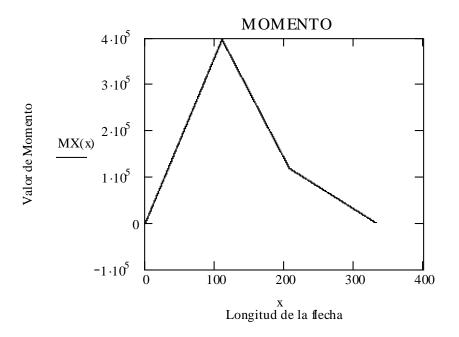


Figura 3.65 Diagrama de momento para punto A1

De acuedo al comando Trace tenemos

$$MA1x := 9.38 \cdot 10^4 \quad N \text{ pulg}$$

3.4.3.7 ANÁLISIS DE LOS DIÁMETROS (Eje biela)

El material a ser utilizado es un acero de transmisión SAE 1018, el mismo que será suministrado por IVAN BHOMAN, el cual posee las siguientes características.

3.4.3.7.1 DATOS DEL MATERIAL

Sy := 483 N / mm2 Esfuerzo a la cedencia

Sut := 566 N/mm2 Resistencia a la tensión

Se1 := $0.5 \cdot \text{Sut}$ Resistencia a la fatiga corregida

3.4.3.7.2 EFECTOS DE LA CARGA

Ccarga := 1 Debido a que la carga es a flexióny torsión

Ctamaño := 0.8 Valor sumido - no se conoce diámetros -

Ctemperatura:= 1 No es elevada la temperatura de trabajo

Cconfiabilidad:= 1 Se otorga un 50% de confiabilidad

Csup erficie:= 0.75 Acabado maquinado Anexo 13

Se := Ccarga · Ctamaño · Ctemperatura Cconfiabilidad Csuperficie Se1

Se = 169.8 N/mm2 Resistencia a la fatiga

3.4.3.7.3 SENSIBILIDAD DE MUESCAS (Eje biela)

rm := 1.52 mm Radio de la muesca - sup uesto -

q := 0.53 Anexo 14

Kt := 2 Factor geométrico de concentración de

esfuerzos estático a flexión - Asumido -

 $Kf := 1 + q \cdot (Kt - 1)$ Factor geométrico de concentración de

Kf = 1.53 esfuerzos dinámico

Kts := 2 Factor geométrico de concentración de

esfuerzos torsional - Asumido-

 $Kfs := 1 + q \cdot (Kts - 1)$ Factor geométrico de concentración de

esfuerzos dinámico torsional

Kfs = 1.53

Kfsm:= Kfs Componente medio del esfuerzo

Se realiza el análisis en el may or momento que se produce en el eje, en nuestro caso el análisis en el punto B

ANÁLISIS EN EL PUNTO B

$$Nf := 1.70$$

Factor de seguridad - asumido -

$$d2A := \frac{\sqrt{(Kf \cdot MB)^2 + \left[0.75 \cdot (Kfs \cdot T)^2\right]}}{Se}$$

$$d2B := \frac{\sqrt{(Kf \cdot MB)^2 + \left[0.75 \cdot (Kfsm \cdot T)^2\right]}}$$

$$d2 := \left[\frac{32 \cdot Nf}{\pi} \cdot (d2A + d2B)\right]^{\left(\frac{1}{3}\right)}$$

$$d2 = 44.924$$
 mm

ANÁLISIS EN EL PUNTO C

Debido a que en el punto C del eje se encuentra la catalina $Z=36\,$, la misma que tiene una cuña para acoplarla a el eje, se debe recalcular el Kt, debido al aumento del concentrador de esfuerzos

- Asumido -

$$Kt := 1.75$$

Concentrador de esfuerzos en el cuñero

$$Kf := 1 + q \cdot (Kt - 1)$$

$$Kf = 1.397$$

$$d1A := \frac{\sqrt{(Kf \cdot MC)^2 + \left[0.75 \cdot (Kfs \cdot T)^2\right]}}{Se}$$

$$d1B := \frac{\sqrt{(Kf \cdot MC)^2 + \left[0.75 \cdot (Kfsm \cdot T)^2\right]}}{Sut \cdot 1000}$$

$$d1 := \left[\frac{32 \cdot Nf}{\pi} \cdot (d1A + d1B)\right]^{\left(\frac{1}{3}\right)}$$

$$d1 = 33.109$$
 mm

MOMENTO EN LA CUÑA X1 (d3)

$$d3A := \frac{\sqrt{(Kf \cdot MA1x)^2 + \left[0.75 \cdot (Kfs \cdot T)^2\right]}}{Se}$$

$$d3B := \frac{\sqrt{(Kf \cdot MA1x)^2 + \left[0.75 \cdot (Kfsm \cdot T)^2\right]}}{Sut}$$

$$d3 := \left[\frac{32 \cdot Nf}{\pi} \cdot (d3A + d3B)\right]^{\left(\frac{1}{3}\right)}$$

$$d3 = 35.629$$
 mm

3.4.3.8 RECALCULO DE LOS DIÁMETROS (Eje biela)

Se procede a recalcular los diámetros debido a que los puntos en los cuales llevan los rodamientos estos deben estar de acuerdo a los diámetros existentes en los catalogos de rodamientoss, y en nuestro caso el manual utilizado es el suministrado por la SKF Casa del Ruliman de Sangolquí.

Los puntos en los cuales se debe realizar el análisis son los puntos B y C y los diámetros respectivos son d2 y d1.

VALORES MÍNIMOS DE LOS DIÁMETROS

Los valores obtenidos son:

d1 = 33.109 mm

d2 = 44.924 mm

d3 = 35.629 mm

Los valores a ser utilizados en la primera interacción son :

d2 := 45	mm	Diámetro modificado	para Rodamiento 45 mm
----------	----	---------------------	-----------------------

d3 := 38 mm Diámetro modificado

d1 := 48 mm Valor necesario para formar un hombro

d0 := 51 mm Valor necesario p ara formar un hombro

3.4.3.8.1 RECALCULO DE LOS EFECTOS DE LA CARGA EN EL PUNTO B (d2)

CcargaB := 1

Debido a que la carga es a flexión y torsión

 $Ctama\~noB := 1.189 \cdot d2^{-0.097}$

CtamañoB = 0.822

CtemperaturaB:= 1

No es elevada la temperatura de trabajo

CconfiabilidadB:= 1

Se otorga un 50% de confiabilidad

Csup erficieB:= $4.51 \cdot \text{Sut}^{-0.265}$

Anexo 13

CsuperficieB= 0.841

SeB := CcargaB · CtamañoB · CtemperaturaB CconfiabilidadB CsuperficieB Se1

SeB = 195.563 N / mm2

Resistencia a la fatiga

3.4.3.8.2 RECALCULO DE LA SENSIBILIDAD DE LA MUESCA EN EL PUNTO B (d2)

rm := 1.52

Rádio de la muesca

qB := 0.75

ANEXO 14

ANÁLISIS EN EL PUNTO B

mm

Debido a que en el punto B del eje se encuentra el rodamiento para acoplarla a el eje, se debe recalcular el Kt, debido al aumento del concentrador de esfuerzos

$$\frac{\text{rm}}{\text{d2}} = 0.034$$

$$\frac{d0}{d2} = 1.133$$

A := 0.95120

b1 := -0.23757

$$KtB := A \cdot \left(\frac{rm}{d2}\right)^{b1}$$

KtB = 2.127

ANEXO 15

 $KfB := 1 + q \cdot (KtB - 1)$

KfB = 1.597

$$A := 0.90337$$

$$b1 := -0.12692$$

$$KtsB := A \cdot \left(\frac{rm}{d2}\right)^{b1}$$

ANEXO 16

$$KtsB = 1.389$$

$$KfsB := 1 + q \cdot (KtsB - 1)$$

KfsB = 1.206

Factor geométrico de concentración de esfuerzos dinámico

KfsmB := KfsB

Componente medio del esfuerzo

NfBa :=
$$\frac{\sqrt{(KfB \cdot MB)^2 + \left[0.75 \cdot (KfsB \cdot T)^2\right]}}{Se}$$

NfBb :=
$$\frac{\sqrt{(KfB \cdot MB)^2 + \left[0.75 \cdot (KfsmB \cdot T)^2\right]}}{Sut}$$

$$NfB := \frac{d2^3 \cdot \frac{\pi}{32}}{(NfBa + NfBb)}$$

$$NfB = 1.717$$

 $SeC := CcargaC \cdot Ctama\~noC \cdot CtemperaturaC \cdot CconfiabilidadC \cdot Csup \, erficieC \cdot Se1$

SeC = 194.343 N/mm2 Resistencia a la fatiga

Debido a que en el punto C del eje se encuentra la catalina, la misma que tiene una cuña para acoplarla al eje, se debe recalcular el Kt, debido al aumento del concentrador de esfuerzos.

$$\frac{\text{rm}}{\text{d1}} = 0.032$$

KtC := 1.85

Concentrador de esfuerzos en el cuñero

ANEXO 16

$$KfC := 1 + q \cdot (KtC - 1)$$

KfC = 1.451

KtsC := 2.40

Concentrador de esfuerzos en el cuñero

ANEXO 16

 $KfsC := 1 + q \cdot (KtsC - 1)$

KfsC = 1.742

Factor geométrico de concentración de esfuerzos dinámicos

$$KfsC = 1.742$$

$$KfsmC := KfsC$$

Componente medio del esfuerzo

NfCa :=
$$\frac{\sqrt{(KfC \cdot MC)^2 + \left[0.75 \cdot (KfsC \cdot T)^2\right]}}{Se}$$

NfCb :=
$$\frac{\sqrt{(KfC \cdot MC)^2 + \left[0.75 \cdot (KfsmC \cdot T)^2\right]}}{Sut}$$

$$NfC := \frac{d1^3 \cdot \frac{\pi}{32}}{(NfCa + NfCb)}$$

$$NfC = 3.567$$

ANÁLIS IS EN EL PUNTO A (X1)

CcargaX1 := 1

Debido a que la carga es a flexión y torsión

Ctamaño $X1 := 1.189 \cdot d3^{-0.097}$

CtamañoX1 = 0.835

CtempX1 := 1

No es elevada la temperatura de trabajo

CconfiabilidadX1:= 1

Se otorga un 50% de confiabilidad

CsuperficieX1:= $4.51 \cdot \text{Sut}^{-0.265}$

Anexo 13

Csup erficieX1 = 0.841

 $SeX1 := CcargaX1 \cdot CtamañoX1 \cdot CtempX1 \cdot CconfiabilidadX1 \cdot CsuperficieX1 \cdot Se1$

SeX1 = 198.797 N / mm2

Resistencia a la fatiga

Debido a que en el punto X1 del eje se encuentra la catalina, la misma que tiene una cuña para acoplarla al eje, se debe recalcular el Kt, debido al aumento del concentrador de esfuerzos.

$$\frac{\text{rm}}{\text{d3}} = 0.04$$

$$KtX1 := 1.7$$

Concentrador de esfuerzos en el cuñero **ANEXO 16**

$$KfX1 := 1 + q \cdot (KtX1 - 1)$$

$$KfX1 = 1.371$$

Concentrador de esfuerzos en el cuñero **ANEXO 16**

$$KtsX1 := 2.30$$

$$KfsX1 := 1 + q \cdot (KtsX1 - 1)$$

Factor geométrico de concentración de esfuerzos dinámicos

$$KfsX1 = 1.689$$

$$KfsmX1 := KfsX1$$

Componente medio del esfuerzo

$$NfX1a := \frac{\sqrt{(KfX1 \cdot MA1x)^{2} + \left[0.75 \cdot (KfsX1 \cdot T)^{2}\right]}}{Se}$$

$$NfX1b := \frac{\sqrt{(KfX1 \cdot MA1x)^{2} + \left[0.75 \cdot (KfsmX1 \cdot T)^{2}\right]}}{Sut \cdot 1000}$$

$$NfX1 := \frac{d3^3 \cdot \frac{\pi}{32}}{(NfX1a + NfX1b)}$$

NfX1 = 2.467

3.4.3.9 CUÑA

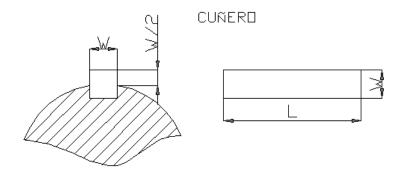


Figura 3.66 Dimensiones de la cuña

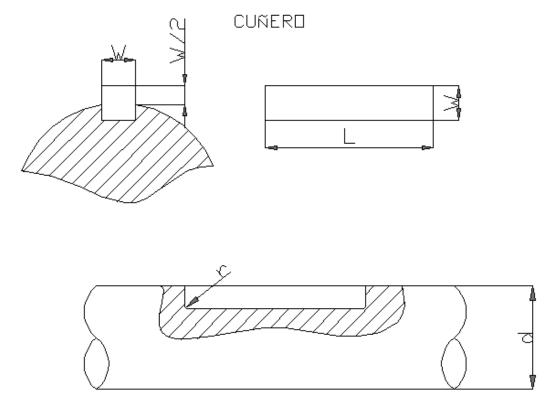


Figura 3.66 Dimensiones de la cuña

Material: Acero de bajo carbono SAE 1010

 $Sy := 303 \qquad N / mm2$

Esfuerzo a la cedencia

Sut := 365 N / mm2

Resistencia a la tensión

PUNTO C

Componentes medios y alternantes de la fuerza sobre el punto C

Fa :=
$$\frac{T}{\left(\frac{d1}{2}\right)}$$

$$Fa = 9.904 \times 10^3 \text{ N}$$

 $W := 13 \qquad mm \qquad \qquad ANEXO 17$

Mediante la teoria de la energia de la distorsion la resistencia al cortante es:

$$Ssy := 0.557 \cdot Sy$$

$$Ssy = 168.771 \text{ N/mm2}$$

$$NcC := 1.50$$

Factor de seguridad - Asumido -

La falla por cortante a lo largo del área cortante W*L = Área corte

$$LC1:=\frac{NcC \cdot Fa}{Ssy \cdot W}$$

LC1 = 6.771

Para resistir el aplastamiento se utiliza la mitad del área

$$LC := \frac{2 \cdot NcC \cdot Fa}{Sy \cdot W}$$

$$LC = 7.543$$
 mm

PUNTO X1

Componentes medios y alternantes de la fuerza sobre el punto X1

$$Fa := \frac{T}{\left(\frac{d3}{2}\right)}$$

$$Fa = 1.251 \times 10^4 \quad N$$

$$W := 10 \quad mm \quad Anexo 17$$

Mediante la teoría de la energía de la distorsión la resistencia al cortante es

La falla por cortante a lo largo $% \left(1\right) =\left(1\right) +\left(1\right) +\left$

$$LX11 \ := \ \frac{NcX1\cdot \ Fa}{Ssy\cdot \ W}$$

$$LX11 = 11.119$$
 mm

Para resistir el aplastamiento se utiliza la mitad del área

$$LX1 := \frac{2 \cdot Fa \cdot NcX1}{Sy \cdot W}$$

$$LX1 = 12.387$$

mm

3.4.3.9.1 COMPARACIÓN DE LOS FACTORES DE SEGURIDAD (Eje biela)

Factores de seguridad en los diámetros

$$NfX1 = 2.467$$

$$NfC = 3.567$$

Factores de seguridad en los cuñeros

$$NcX1 = 1.5$$

$$NcC = 1.5$$

Los factores de seguridad para fallas de cuñas, son inferiores a la de los diámetros, lo que es deseable ya que en caso de sobrecarga las cuñas fallaran, por lo tanto, el diseño es deseable.

3.4.3.10 CALCULO DE LA DEFLEXIONES (Eje bielo)

EJE X

$$EI\frac{d^2\delta}{d^2x} = M = Fbielax - R1(x - (a) + Fc36(x - (a+b)))$$

$$EI\frac{d\delta}{dx} = EI\theta = (1/2)Fbielax^{2} - (1/2)R1(x-a)^{2} + (1/2)Fc36(x-(a+b))^{2} + c1$$

$$EI\delta = (1/6)Fbielax^3 - (1/6)R1(x-a)^3 + (1/6)Fc36(x-(a+b))^3 + c1x + c2$$

$$x := a + b + c$$

Distancia a la cual se realiza el corte

Evaluamos las condiciones de borde

Condición de Borde CB1

Si
$$x = 0$$

 $EI\delta := 0$ En consecuencia

$$C1a + C2 = -$$
 Fbiela * a3

Ecuación 1

En donde

$$K1x := -Fbielax \cdot a^3$$

Condición de Borde CB2

Si
$$x := a + b + c$$

$$\delta := 0$$
 Entonces $EI\delta := 0$

En consecuencia:

$$C1(a+b+c) + C2 = R1(b+c)3 - Fbiela(a+b+c)3 - Fc36c3$$

Ecuación 2

En donde:

$$K2x := \left[\left[R1x \cdot (b+c)^{3} \right] - \left[Fbielax \cdot (a+b+c)^{3} \right] - \left(Fc36x \cdot c^{3} \right) \right]$$

Reemplazando la ecuación 1 en la 2 tenemos:

$$C1x := \frac{K2x - K1x}{(b+c)}$$

$$C2x := K1x - (C1x \cdot a)$$

Momento de Inercia

$$I := \frac{\frac{1}{\frac{\pi d2^4}{64} + \frac{b1}{\frac{\pi d0^4}{64}} + \frac{c1}{\frac{\pi d1^4}{64}} + \frac{1 - (a1 + b1 + c1)}{\frac{\pi d3^4}{64}}}{\frac{\pi d3^4}{64}}$$

$$I = 1.745 \times 10^5$$
 mm 4
 $x := 0, .1.. (392)$

$$\delta 1x(x) := \text{Fbielax} \cdot x^3$$

$$\delta 2x(x) := R1x \cdot (x-a)^3$$

$$\delta 3x(x) := Fc36x \cdot [x - (a+b)]^3$$

$$\delta 1(x) := \delta 1x(x) + [C1x \cdot (x)] + C2x$$

$$\delta 2(x) := \delta 1(x) - \delta 2x(x)$$

$$\delta 3(x) := \delta 2(x) + \delta 3x(x)$$

$$\delta x1(x) := if(x \le a, \delta 1(x), \delta 2(x))$$

$$\delta x2(x) := if[x \le (a+b), \delta x1(x), \delta 3(x)]$$

$$\delta x(x) := if[x \le (a+b+c), \delta x2(x), 0]$$

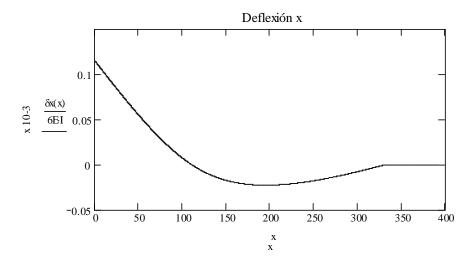


Figura 3.67a Deflexión en el Eje Biela Eje X

EJE Y

Evaluamos las condiciones de borde: Condición de Borde CB1

$$Si$$
 $x := a$

$$EI\delta := 0$$
 En consecuencia

$$C1a + C2 = 0$$
 Ecuación 1

Condición de Borde CB2

Si
$$x := a + b + c$$

$$\delta := 0$$
 Entonces EI $\delta := 0$

En consecuencia:

$$C1(a+b+c) + C2 = R1(b+c)3 - Fc36c3$$

Ecuación 2

En donde:

C1y :=
$$\frac{\left[\left[R1y \cdot (b+c)^{3}\right] - \left(Fc36y \cdot c^{3}\right)\right]}{b+c}$$

Reemplazando la Ecuación 1 en la 2 tenemos:

$$C2y := -a \cdot C1y$$

$$K1y(x) := C1y \cdot (x) + C2y$$

$$C2y := -a \cdot C1y$$

$$K1y(x) := C1y \cdot (x) + C2y$$

$$x := 0, .1.. (a + b + c)$$

$$\delta 1y(x) := 0$$

$$\delta 2y(x) := R1y \cdot (x - a)^3$$

$$\delta 3y(x) := \text{Fc}36y \cdot [x - (a + b)]^3$$

$$\delta y 1(x) := if(x \le a, 0, -\delta 2y(x) + K1y(x))$$

$$\delta y 2(x) := if \left[x \le (a+b), \delta y 1(x), \left(-\delta 2y(x) + K1y(x) \right) + \delta 3y(x) \right]$$

$$\delta y(x) := if \left[x \le (a+b+c), \delta y 2(x), 0 \right]$$

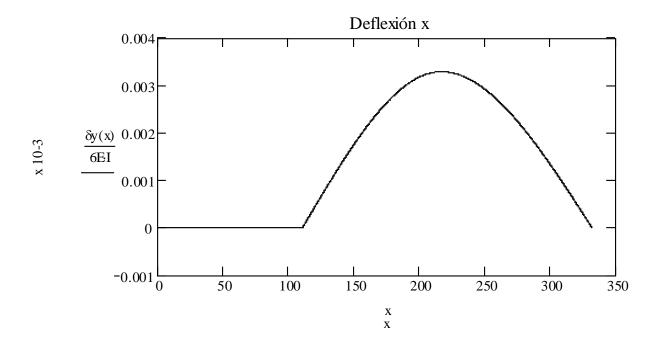


Figura 3.67b Deflexiòn en el Eje Biela Eje Y

3.4.3.11 FRECUENCIAS CRITICAS (Eje biela)

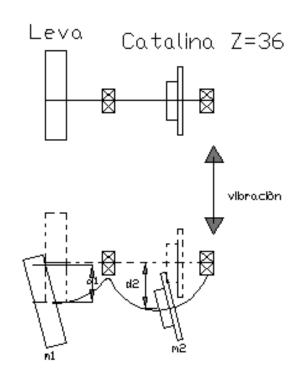


Figura 3.68 Vibraciones del Eje Biela

Las deflexiones en los puntos A y C son:

PUNTO A

Si
$$x := 0$$

$$\delta A := \frac{1}{6E \cdot I} \Big(Fbielax \cdot x^3 + C2x \Big)$$

$$\delta A = 0.114$$
 mm

PUNTO C

Si
$$x := a + b$$

$$\delta C := \frac{-1}{6E \cdot I} \left[Fbielax \cdot x^3 - \left[R1x \cdot (x - a)^3 \right] + (C1x \cdot x) + C2x \right]$$

$$\delta C = 0.022$$
 mm

$$\rho := 7.795 \cdot 10^{-6} \qquad \text{Kg/mm 3} \qquad \quad \text{Densidad del acero}$$

3.4.3.11.1 PESO DE CATALINA Z= 36

Wcatalina :=
$$\pi \cdot \frac{r36^2}{2} \cdot w36 \cdot \rho$$
 Peso de la catalina

3.4.3.11.2 PESO DE LA MANIVELA

$$\omega n := \sqrt{9.8 \cdot 1000 \cdot \frac{\delta A \cdot \text{Wmanivela} + \delta C \cdot \text{Wcatalina}}{\left(\delta A^2 \cdot \text{Wmanivela}\right) + \left(\delta C^2 \cdot \text{Wcatalina}\right)}}$$

$$\omega n = 400.146 \qquad \text{rad/seg}$$

Comparando la frecuencia de balanceo critica con la frecuencia forzada

$$\frac{\omega n}{\eta} = 127.371$$

Se trata de un margen muy comodo

3.4.3.11.3 CALCULO DE LA FRECUENCIA TORSIONAL (Eje biela)

$$G := 79.3 \cdot 10^3$$

Modulo de rigidez

$$kt1 := \pi \cdot G \cdot \frac{d3^4}{32 \cdot a1}$$

Resorte efectivo Punto A

$$kt1 = 1.194 \times 10^8$$
 N mm

$$kt2 := \pi \cdot G \cdot \frac{d1}{32 \cdot c1}$$

Resorte efectivo Punto B

$$kt2 = 2.632 \times 10^8$$

La constante efectiva del resorte es igual.

N mm

$$1/\text{Kefec} = 1/\text{kt}1 + 1/\text{kt}2$$

$$1/\text{Kefec} = (\text{Kt2}+\text{Kt1})/\text{Kt1}*\text{Kt2}$$

kefec=kt1*kt2/(kt1+kt2)

$$kefec := \frac{kt1 \cdot kt2}{(kt1 + kt2)}$$

Constante efectiva del resorte

$$kefec = 8.212 \times 10^7$$
 N mm

3.4.3.11.4 FRECUENCIA CRÍTICA A TORSIÓN

Imanivela:=
$$\frac{\pi \cdot (2 \cdot 65.9)^4 \cdot 30 \cdot \rho}{32 \cdot 9.8 \cdot 1000}$$

Imanivela:= 12.35 Kg.mm. seg2 Inercia de la manivela

Icatalina:=
$$\frac{\pi \cdot (2 \cdot r36)^4 \cdot w36 \cdot \rho}{32 \cdot 9.8 \cdot 1000}$$

$$\omega nt := \sqrt{\frac{\text{kefec}}{9.8} \cdot \frac{\text{Imanivela+ Icatalina}}{\text{Imanivela Icatalina}}}$$

$$\omega nt = 1.304 \times 10^3 \quad rad / seg$$

Comparando las frecuencias

$$\frac{\omega nt}{\eta} = 415.124$$
 Valor mucho may or

Se trata de un margen aceptable.

3.4.4 EJE PRINCIPAL (TERCER EJE)

3.4.4.1 INTRODUCCIÓN

Para el calculo de los ejes, se utiliza la siguiente disposición de ejes, en los cuales se ha dividido en tres ejes principales.

Primer eje.- En este eje se encuentra la leva, la cual realizará un conjunto con el seguidor que permitirá efectuar el estampado.

Segundo eje.-En este eje se encuentra la biela , la misma que nos servirá para el desplazamiento del carro

Tercer eje.-Este será el eje el cual transmita la potencia tanto al eje en el cual se encuentra la leva, y además al eje en el cual se encuentra la leva

La disposición en la cual serán diseñadas se detalla a continuación en el siguiente esquema:

Leva Catallog 7=36

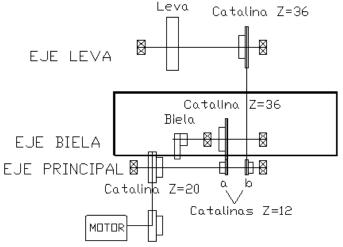


Figura 3.69 Disposición de Eje Principal

3.4.4.2 DATOS INICIALES

Moto Reductor

 $\eta 1 := 90$ Nùmero de revoluciones [rpm] P1 := 1 Potencia màxima del motor [hp]

La disposición y las distancias que se utilizada se esquematizan a continuación

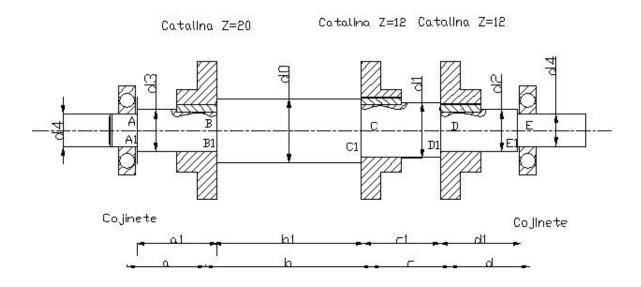


Figura 3.70 Disposición de elementos en Eje Principal

DISTANCIAS

a:= 88.5	mm	Distancia entre el punto A a B
b:= 383	mm	Distancia entre el punto B a C
c := 93	mm	Distancia entre el punto C a D
d:= 61.5	mm	Distancia entre el punto D a E
a1 := 121	mm	Distancia entre el punto A1 a B1
b1 := 328	mm	Distancia entre el punto B1 a C1
c1 := 93	mm	Distancia entre el punto C1 a D1
d1 := 109	mm	Distancia entre el punto D1 a E1

3.4.4.3 ESTÁTICA DEL EJE PRINCIPAL

Como primer paso, se calcula el torque que nos ofrece el motoreductor, para poder determinar las fuerzas que actúan en el eje.

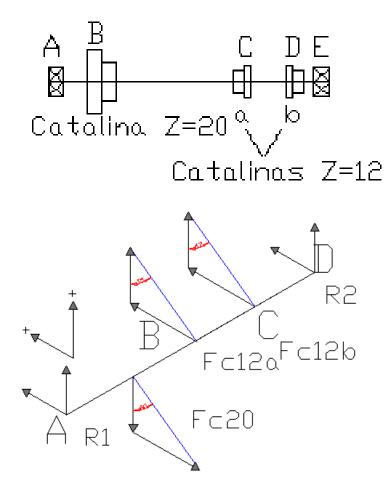


Figura 3.71 Estàtica del Eje Principal

Moto Reductor

$$\eta 1 := 90 \text{ rpm}$$

Nùmero de revoluciones [rpm]

$$\eta := 90 \cdot 2 \cdot \frac{\pi}{60}$$

$$\eta = 9.425$$
 rad / seg

$$T := \frac{P1 \cdot 746760}{n}$$
 Torque((hp*746760 N mm/seg))

$$T = 7.923 \times 10^4$$
 N mm

3.4.4.3.1 ANÁLISIS DE LA CATALINA Z=20

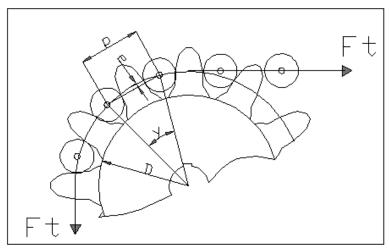


Figura 3.72 Fuerzas tangenciales en la catalina

R20:= 66 mm Radio de la catalina Z=20

Las fuerzas tangenciales sobre las catalinas se determinan de acuerdo al par de torsión y los radios respectivos.

$$\operatorname{Fn20} := \frac{\operatorname{T}}{\operatorname{r20}}$$

Fuerza neta asociada

$$Fn20 = 1.201 \times 10^3$$
 N

$$\alpha := 60$$

Angulo entre el Eje Principal - Motoreductor

$$Fc20x := Fn20 \cdot sin \left(\alpha \cdot \frac{\pi}{180}\right)$$

$$Fc20x = 1.04 \times 10^3 \qquad N$$

Sentido -x

$$Fc20y := Fn20 \cdot cos \left(\alpha \cdot \frac{\pi}{180}\right)$$

$$Fc20y = 600.255$$

N

3.4.4.3.2 ANÁLISIS DE LA CATALINA Z=12

r12 := 41.25

mm

Radio de la catalina Z = 12

$$Fn12 := \frac{T}{r12}$$

Fuerza neta asociada

$$Fn12 = 1.921 \times 10^3$$
 N

$$Fc12 := Fn12$$

$$Fc12 = 1.921 \times 10^3$$

N

$$\beta := 15$$

Angulo entre Eje principal-eje Biela

PRIMERA CATALINA Z = 12

$$Fc12ax := Fc12 \cdot \cos\left(\beta \cdot \frac{\pi}{180}\right)$$

Fuerza de la catalina Z = 1

$$Fc12ax = 1.855 \times 10^3$$
 N

$$Fc12ay := Fc12 \cdot \sin \left(\beta \cdot \frac{\pi}{180} \right)$$

$$Fc12ay = 497.144$$
 N

SEGUNDA CATALINA Z = 12

$$Fc12bx := Fc12 \cdot \cos\left(\beta \cdot \frac{\pi}{180}\right)$$

Fuerza de la catalina Z = 1

$$Fc12bx = 1.855 \times 10^3$$
 N

$$Fc12by := Fc12 \cdot \sin \left(\beta \cdot \frac{\pi}{180} \right)$$

$$Fc12by = 497.144$$
 N

3.4.4.4. CALCULO DE LAS REACCIONES (E je principal)

Procedemos a calcular las fuerzan en Y:

- Reacción en el Punto A
 R1
- Reacción en el Punto E R2
- Fuerza de la catalina Z=20 Fc20
- Fuerza de la catalina Z=12 Fc12a
- Fuerza de la catalina Z=12 Fc36b

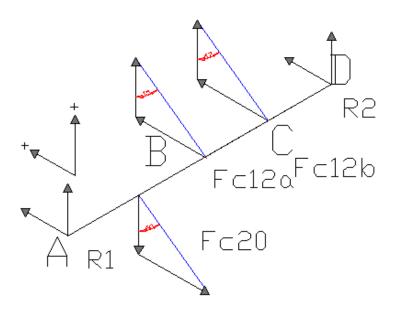


Figura 3.73 Diagrama de cuerp o libre Eje Princip al

$$\Sigma F := 0$$

R1 + R2 - Fc20 + Fc12a + Fc12b = 0

Ecuación A

Cálculos de momentos en el punto A

$$\Sigma MA := 0$$
 Ecuación B
$$[-a \cdot Fc20 + Fc12a \cdot (a+b) + [Fc12b \cdot (a+b+c)]] + R2 \cdot (a+b+c+d) = 0$$

$$a+b=471.5 \quad mm$$

$$a+b+c=564.5 \quad mm$$

3.4.4.4.1 EVALUACIÓN DE FORMULAS (Eje principal)

ECUACIÓN B

a + b + c + d = 626 mm

EJE X

De la ecuación B

$$[-a \cdot Fc20 + Fc12a \cdot (a+b) + [Fc12b \cdot (a+b+c)]] + R2 \cdot (a+b+c+d) = 0$$

$$a Fc20 - Fc12a(a+b) - F12b(a+b+c) = R2(a+b+c+d)$$

Procedemos a evaluar en el eje x

$$a Fc20x - Fc12ax (a+b) - F12bx (a+b+c) = R2 x (a+b+c+d)$$

Reemplazando valores

$$R2x := \frac{\left[\ a \cdot Fc20x - Fc12ax \cdot (a+b) - Fc12bx \cdot (a+b+c) \ \right]}{a+b+c+d}$$

$$R2x = -2.924 \times 10^3$$
 N

ECUACIÓN A

Procedemos a evaluar la segunda ecuación en los dos ejes

EJE X

$$R1 + R2 - Fc20 + Fc12a + Fc12b = 0$$
 Ecuación A

$$R1 = Fc20 - Fc12a - Fc12b - R2$$

Evaluando en el eje x

$$R1x = Fc20x - Fc12ax - Fc12bx - R2x$$

Reemplazando valores

$$R1x := Fc20x - Fc12ax - Fc12bx - R2x$$

$$R1x = 252.5$$
 N

ECUACIÓN B

EJE Y

De la ecuación B

$$[-a \cdot Fc20 + Fc12a \cdot (a+b) + [Fc12b \cdot (a+b+c)]] + R2 \cdot (a+b+c+d) = 0$$

$$a Fc20 - Fc12a (a+b) - F12b (a+b+c) = R2 (a+b+c+d)$$

Procedemos a evaluar en ele Y

$$a Fc20y - Fc12ay (a+b) - F12by (a+b+c) = R2 y (a+b+c+d)$$

Reemplazando valores:

$$R2y := \frac{[\ a \cdot Fc20y - Fc12ay \cdot (a+b) - Fc12by \cdot (a+b+c)\]}{a+b+c+d}$$

$$R2y = -737.889$$
 N

ECUACIÓN A

Procedemos a evaluar la segunda ecuación en los dos ejes

EJE Y

$$R1 + R2 - Fc20 + Fc12a + Fc12b = 0$$
 Ecuación A

$$R1 = Fc20 - Fc12a - Fc12b - R2$$

Evaluando en el eje y

$$R1y = Fc20y - Fc12ay - Fc12by - R2y$$

Reemplazando valores

$$R1y := Fc20y - Fc12ay - Fc12by - R2y$$

$$R1y = 343.856$$
 N

3.4.4.5 FUNCIÓN DE CORTE (Eje principal)

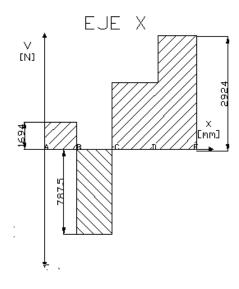


Figura 3.74a Función de corte Eje X

PUNTO B

$$R1x - Fc20x = -787.173$$

R1x = 252.5

PUNTO C

$$Fc20x = 1.04 \times 10^3$$

$$R1x - Fc20x + Fc12ax = 1.068 \times 10^3$$

$$Fc12ax = 1.855 \times 10^3$$

PUNTO D

$$Fc12bx = 1.855 \times 10^3$$

 $R1x - Fc20x + Fc12ax + Fc12bx = 2.924 \times 10^3$

R2x -2.924×10^3

PUNTO E

$$R1x - Fc20x + Fc12ax + Fc12bx + R2x = 0$$

EJE Y

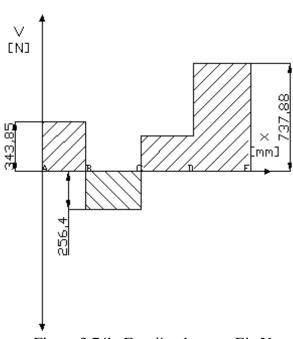


Figura 3.74b Funciòn de corte Eje Y

PUNTO B

$$R1y - Fc20y = -256.399$$

$$R1y = 343.856$$

PUNTO C

$$Fc20y = 600.255$$

$$R1y - Fc20y + Fc12ay = 240.745$$

$$Fc12ay = 497.144$$

$$Fc12by = 497.144$$

$$R1y - Fc20y + Fc12ay + Fc12by = 737.889$$

R2y = -737.889

PUNTO E

$$R1y - Fc20y - Fc12ay - Fc12by + R2y = -1.989 \times 10^3$$

3.4.4.6 FUNCIÓN DE MOMENTO (Eje principal)

EJE X

MAx := 0 N mm

 $Q1x := a \cdot R1x$

Momento en el punto A

 $Q1x = 2.235 \times 10^{-4}$

Función de carga Punto A - B

MBx := MAx + Q1x

Momento en el punto B

 $MBx = 2.235 \times 10^4$ N mm

 $Q2x := b \cdot (R1x - Fc20x)$

Función de carga Punto B - C

 $Q2x = -3.015 \times 10$

MCx := MBx + Q2x

Momento en el punto C

 $MCx = -2.791 \times 10^5$ N mm

 $Q3x := c \cdot [(R1x - Fc20x) + Fc12ax]$

5

Función de carga Punto C - D

 $Q3x = 9.934 \times 10^4$

Momento en el punto D

MDx := MCx + Q3x

 $MDx = -1.798 \times 10^5 \qquad N mm$

$$Q4_X := d \cdot \left[\left[(R1x - Fc20x) + Fc12ax \right] + Fc12bx \right] \quad \text{Función de carga Punto } D \text{ - } E$$

$$Q4x = 1.798 \times 10^5$$

$$MEx := MDx + Q4x$$

Momento en el punto E

$$MEx = 0$$

N mm

La gráfica del Momento en el eje x es la siguiente:

$$MAx = 0$$

$$MBx = 2.235 \times 10^4$$

$$MCx = -2.791 \times 10^5$$

$$MDx = -1.798 \times 10^5$$

$$MEx = 0$$

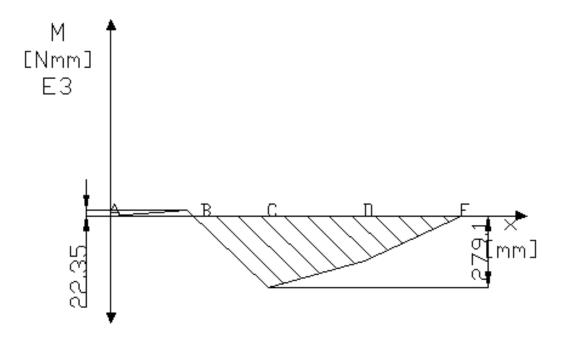


Figura 3.75a Función de Momento Eje X

EJE X

$$MAy = 0$$
 N mm

$$Q1y := a \cdot R1y$$

$$Q1y = 3.043 \times 10^4$$

Momento en el punto A

Función de carga Punto A - B

$$MBy := MAy + Q1y$$

Momento en el punto B

$$MBy = 3.043 \times 10^4$$

N mm

$$Q2y := b \cdot (R1y - Fc20y)$$

Función de carga Punto B - C

$$Q2y = -9.82 \times 10^4$$

$$MCy := MBy + Q2y$$

Momento en el punto C

$$MCy = -6.777 \times 10^4$$
 N mm

$$Q3y := c \cdot [(R1y - Fc20y) + Fc12ay]$$

Función de carga Punto C - I

$$Q3y = 2.239 \times 10^4$$

$$MDy := MCy + Q3y$$

Momento en el punto D

$$MDy = -4.538 \times 10^4$$
 N mm

Q4y :=
$$d \cdot [[(R1y - Fc20y) + Fc12ay] + Fc12by]$$
 Función de carga Punto D - I
O4y = 4.538×10^4

$$MEy := MDy + Q4y$$

Momento en el punto E

$$MEy = 7.276 \times 10^{-12}$$

N mm

La gráfica del Momento en el eje Y es la siguiente

$$MAy = 0$$

$$MBy = 3.043 \times 10^4$$

$$MCy = -6.777 \times 10^4$$

$$MDy = -4.538 \times 10^4$$

$$MEy = 7.276 \times 10^{-12}$$

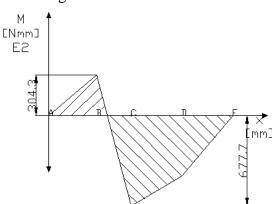


Figura 3.75b Función de Momento Eje Y

MAGNITUD DE MOMENTO

$$MA := \sqrt{(MAx^2) + (MAy^2)}$$
 $MC := \sqrt{(MCx^2) + (MCy^2)}$
 $MA = 0$ $MC = 2.872 \times 10^5$ N

$$MB := \sqrt{(MBx^2) + (MBy^2)}$$
 $MD := \sqrt{(MDx^2) + (MDy^2)}$
 $MB = 3.775 \times 10^4$ N $MD = 1.854 \times 10^5$ N

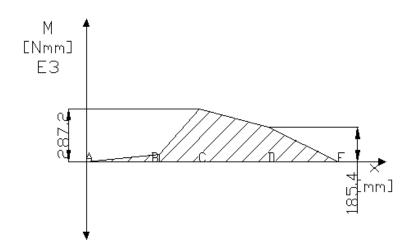


Figura 3.75c Función de momento

3.4.4.7 ANÁLISIS DE LOS DIÁMETROS (Eje principal)

El material ha ser utilizado es un acero de transmisión SAE 1018, el mismo que se encuentra en el mercado a ser suministrado por IVAN BOHMAN, el mismo que tiene las siguientes características

3.4.4.7.1 DATOS DEL MATERIAL

Sy := 483	N / mm2	Estuerzo a la cedencia
Sut := 566	N / mm2	Resistencia a la tensión
Se1 := $0.5 \cdot \text{Sut}$		Resistencia a la fatiga corregida
Se1 = 283	N / mm2	

3.4.4.7.2 EFECTOS DE LA CARGA

Ccarga := 1 Debido a que la carga es a flexión y torsión

Ctamaño := 0.8 Valor asumido - no se conoce diámetros -

Ctemperatura := 1 No es elevada la temperatura de trabajo

Cconfiabilidad:= 1 Se otorga un 50% de confiabilidad

Csuperficie:= 0.75 Acabado Maquinado Anexo 13

Se := Ccarga · Ctamaño · Ctemperatura · Cconfiabilidad Csuperficie Se1

Se = 169.8 N / mm2 Resistencia a la fatiga

3.4.4.7.3 SENSIBILIDAD EN LA MUESCA (Eje principal)

rm:= 1.52 mm Radio de la muesca - supuesto -

q := 0.75 **ANEXO 14**

Kt := 1.75 Factor geométrico de concentración de

esfuerzos estático a flexión - Asumido -

 $Kf := 1 + q \cdot (Kt - 1)$

Factor geométrico de concentración de

Kf = 1.563 esfuerzos dinámico

Kts := 2.5 Factor geométrico de concentración de

esfuerzos torsional a torsiòn - Asumido-

 $Kfs := 1 + q \cdot (Kts - 1)$ Factor geométrico de concentración de

esfuerzos dinámico torsional

Kfs = 2.125

Kfsm:= Kfs Componente medio del esfuerzo

Se realiza el análisis en el mayor momento que se produce en el eje, en nuestro caso el análisis en el punto C

ANÁLISIS EN EL PUNTO C (d1)

$$Nf := 2$$

Factor de seguridad - asumido -

d1A :=
$$\frac{\sqrt{(Kf \cdot MC)^2 + \left[0.75 \cdot (Kfs \cdot T)^2\right]}}{Se}$$

$$d1B := \frac{\sqrt{(Kf \cdot MC)^2 + \left[0.75 \cdot (Kfsm \cdot T)^2\right]}}{Sut}$$

$$d1 := \left[\frac{32 \cdot Nf}{\pi} \cdot (d1A + d1B)\right]^{\left(\frac{1}{3}\right)}$$

$$d1 = 41.908$$
 mm

ANÁLISIS EN EL PUNTO D (d2)

Debido a que en el punto B del eje se encuentra la catalina Z=12 (catalina b), la misma que tiene una cuña para acoplarla al eje, se debe recalcular el Kt, debido al aumento del concentrador de esfuerzos.

$$Kt := 1.75$$

Concentrador de esfuerzos en el cuñero - Asumido -

$$Kf := 1 + q \cdot (Kt - 1)$$

$$Kf = 1.563$$

$$d2A := \frac{\sqrt{(Kf \cdot MD)^2 + \left[0.75 \cdot (Kfs \cdot T)^2\right]}}{Se}$$

$$d2B := \frac{\sqrt{(Kf \cdot MD)^2 + \left[0.75 \cdot (Kfsm \cdot T)^2\right]}}{Sut}$$

$$d2 := \left[\frac{32 \cdot Nf}{\pi} \cdot (d2A + d2B)\right]^{\left(\frac{1}{3}\right)}$$

$$d2 = 36.985$$
 mm

ANÁLISIS EN EL PUNTO B

$$d3A := \frac{\sqrt{(Kf \cdot MB)^2 + \left[0.75 \cdot (Kfs \cdot T)^2\right]}}{Se}$$

$$d3B := \frac{\sqrt{\left(Kf \cdot M B\right)^2 + \left[0.75 \cdot \left(Kfsm \cdot T\right)^2\right]}}{Sut}$$

$$d3 := \left[\frac{32 \cdot Nf}{\pi} \cdot (d3A + d3B)\right]^{\left(\frac{1}{3}\right)}$$

$$d3 = 29.057$$
 mm

3.4.4.8 RECALCULO DE DIÁMETROS (Eje principal)

Se procede a recalcular los diámetros debido a que los puntos en los cuales se lleva rodamientos estos deben estar de acuerdo a los diámetros existentes en los catálogos de rodamientos, y para este caso en particular el manual utilizado es el suministrado por la SKF Casa del Ruliman Sangolquí.

Los puntos en los cuales se debe realizar el análisis son los puntos B y C y los diámetros respectivos son d2 y d3.

VALORES MÍNIMOS DE LOS DIÁMETROS

Los valores obtenidos son:

$$d1 = 41.908$$
 mm

$$d2 = 36.985$$
 mm

$$d3 = 29.057$$
 mm

Los valores a ser utilizados en la primera interacción son :

d2 := 40	mm	Diámetro modificado
d3 := 40	mm	Diámetro modificado
d1 := 44.5	mm	Valor necesario p ara formar un hombro
d0 := 51	mm	Valor necesario para formar un hombro

3.4.4.9 RECALCULO DE LOS EFECTOS DE LA CARGA EN EL PUNTO C (d1)

CcargaC := 1 Debido a que la carga es a flexión y a torsión

 $Ctama\~noC := 1.189 \cdot d1^{-0.097}$

CtamañoC = 0.823

CtemperaturaC:= 1 No es elevada la temperatura de trabajo

CconfiabilidadC:= 1 Se otorga un 50% de confiabilidad

 $Csup\,erficieC := 4.51 \cdot Sut^{-0.265}$

ANEXO 13 Acabado Maquinado

CsuperficieC= 0.841

SeC := CcargaC · CtamañoC · CtemperaturaC · CconfiabilidadC · CsuperficieC · Se1

SeC = 195.775 N/mm2 Resistencia a la fatiga

3.4.4.10 RECALCULO DE LA SENSIBILIDAD DE LAS MUESCAS C (d1)

rm := 1.52 mm Radio de la muesca **ANEXO 14**

qC := 0.75

ANÁLISIS EN EL PUNTO C

Debido a que en el punto B del eje se encuentra la catalina, la misma que tiene una cuña para acoplarla al eje, se debe recalcular el Kt, debido al aumento del concentrador de esfuerzos.

$$\frac{\text{rm}}{\text{d1}} = 0.034$$

KtC := 1.90 Concentrador de esfuerzos en el cuñero a flexión **ANEXO 16**

 $KfC := 1 + q \cdot (KtC - 1)$

KfC = 1.675 Concentrador de esfuerzos en el cuñero a

flexión ANEXO 16

KtsC := 2.4

 $KfsC := 1 + q \cdot (KtsC - 1)$ Factor geométrico de concentración de

esfuerzos dinámicos

KfsC = 2.05

KfsmC := KfsC

Componente medio del esfuerzo

NfCa :=
$$\frac{\sqrt{(KfC \cdot MC)^2 + \left[0.75 \cdot (KfsC \cdot T)^2\right]}}{Se}$$

NfCb :=
$$\frac{\sqrt{(KfC \cdot MC)^2 + \left[0.75 \cdot (KfsmC \cdot T)^2\right]}}{Sut}$$

$$NfC := \frac{d1^3 \cdot \frac{\pi}{32}}{(NfCa + NfCb)}$$

NfC = 2.254

ANÁLIS IS EN EL PUNTO D (d2)

CcargaD := 1 Debido a que la carga es a flexión y a torsión

 $Ctama\~noD := 1.189 \cdot d2^{-0.097}$

CtamañoD = 0.831

CtemperaturaD:= 1 No es elevada la temperatura de trabajo

CconfiabilidadD:= 1 Se otorga un 50% de confiabilidad

CsuperficieD:= 4.51 · Sut^{-0.265} **ANEXO 13** Acabado Maquinado

CsuperficieD= 0.841

SeD := CcargaD · CtamañoD · CtemperaturaD CconfiabilidadD CsuperficieD Se1

SeD = 197.81 N/mm2 Resistencia a la fatiga

Debido a que en el punto D del eje se encuentra la catalina, la misma que posee una cuña para acoplarla al eje, se debe recalcular el Kt, debido al aumento del concentrador de esfuerzos

$$\frac{\text{rm}}{\text{d2}} = 0.038$$

Concentrador de esfuerzos en el cuñero a KtD := 1.6 flexión **ANEXO 16**

$$KfD := 1 + q \cdot (KtD - 1)$$

$$KfD = 1.45$$

$$KtsD := 2.30$$

Concentrador de esfuerzos en el cuñero a flexión **ANEXO 16**

$$KfsD := 1 + q \cdot (KtsD - 1)$$

$$KfsD = 1.975$$

Factor geométrico de concentración de esfuerzos dinámicos

$$KfsmD := KfsD$$

NfDa :=
$$\frac{\sqrt{(KfD \cdot MD)^2 + \left[0.75 \cdot (KfsD \cdot T)^2\right]}}{Se}$$

NfDb :=
$$\frac{\sqrt{(KfD \cdot MD)^2 + \left[0.75 \cdot (KfsmD \cdot T)^2\right]}}{Sut}$$

$$NfD := \frac{d2^3 \cdot \frac{\pi}{32}}{(NfDa + NfDb)}$$

$$NfD = 2.726$$

ANÁLISIS EN EL PUNTO B (d3)

CcargaB := 1 Debido a que la carga es a flexión y a torsión

CtamañoB := $1.189 \cdot d3^{-0.097}$

 $Ctama\tilde{n}oB = 0.831$

No es elevada la temperatura de trabajo

CtemperaturaB:= 1

CconfiabilidadB:= 1 Se otorga un 50% de confiabilidad

CsuperficieB:= 4.51 · Sut^{-0.265} **ANEXO 13** Acabado Maquinado

CsuperficieB= 0.841

SeB := CcargaB · CtamañoB · CtemperaturaB CconfiabilidadB CsuperficieB Se1

SeB = 197.81 N / mm2 Resistencia a la fatiga

Debido a que en el punto D del eje se encuentra la catalina, la misma que tiene una cuña para acoplarla al eje, se debe recalcular el Kt, debido al aumento del concentrador de esfuerzos.

$$\frac{\text{rm}}{\text{d3}} = 0.038$$

$$KtB := 1.6$$

Concentrador de esfuerzos en el cuñero a flexión **ANEXO 16**

$$KfB := 1 + q \cdot (KtB - 1)$$

$$KfB = 1.45$$

$$KtsB := 2.30$$

Concentrador de esfuerzos en el cuñero a flexión **ANEXO 16**

$$KfsB := 1 + q \cdot (KtsB - 1)$$

$$KfsB = 1.975$$

$$KfsmB := KfsB$$

Factor geométrico de concentración de esfuerzos dinámicos

Componente medio del esfuerzo

NfBa :=
$$\frac{\sqrt{(KfB \cdot MB)^2 + \left[0.75 \cdot (KfsB \cdot T)^2\right]}}{Se}$$

NfBb :=
$$\frac{\sqrt{(KfB \cdot MB)^2 + \left[0.75 \cdot (KfsmB \cdot T)^2\right]}}{Sut}$$

$$NfB := \frac{d3^3 \cdot \frac{\pi}{32}}{(NfBa + NfBb)}$$

$$NfB = 5.615$$

3.4.4.11 CUÑA

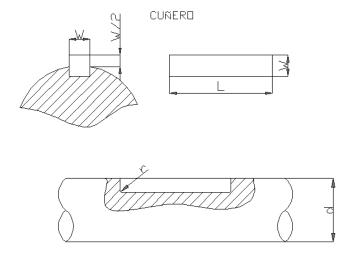


Figura 3.76 Dimensiones de la cuña

Material: Acero de bajo carbono SAE 1010

$$Sy := 303$$

Esfuerzo a la cedencia

$$Sut := 365$$

Resistencia a la tensión

PUNTO C

Componentes medios y alternantes de la fuerza sobre el punto C

$$Fa := \frac{T}{\left(\frac{d1}{2}\right)}$$

$$Fa = 3.561 \times 10^3$$
 N

$$W := 10$$

mm

Ancho de la cuña ANEXO 17

Mediante la teoría de la energía de la distorsión, la resistencia al cortante es:

$$Ssy := 0.557 \cdot Sy$$

$$Ssy = 168.771$$

$$NcC := 1.50$$

N / mm2

Factor de seguridad - Asumido -

La falla por cortante a lo largo del área cortante W*L = Área corte

$$LC1 := \frac{Fa \cdot NcC}{Ssy \cdot W}$$

$$LC1 = 3.165$$

mm

Para resistir el aplastamiento se utiliza la mitad del área

$$LC:= \frac{2 \cdot Fa \cdot NcC}{Sy \cdot W}$$

$$LC1 = 3.165$$

mm

Para resistir el aplastamiento se utiliza la mitad del área

$$LC := \frac{2 \cdot Fa \cdot NcC}{Sy \cdot W}$$

$$LC = 3.526$$

mm

PUNTO D

Componentes medios y alternantes de la fuerza sobre el punto D

$$Fa := \frac{T}{\left(\frac{d2}{2}\right)}$$

$$Fa = 3.962 \times 10^3$$

N

$$W := 10$$

mm

Ancho de la cuña ANEXO 17

$$NcD := 1.5$$

Factor de segurida - Asumido -

La falla por cortante a lo largo del área cortante W*L = Area Corte

$$LD1 := \frac{Fa \cdot NcD}{Ssy \cdot W}$$

$$LD1 = 3.521$$

mm

Para resistir el aplastamiento se utiliza la mitad del área.

$$LD := \frac{2 \cdot Fa \cdot NcD}{Sy \cdot W}$$

$$LD = 3.922 \text{ mm}$$

PUNTO B

Componentes medios y alterantes de la fuerza sobre el punto B

$$Fa := \frac{T}{\left(\frac{d3}{2}\right)}$$

$$Fa = 3.962 \times 10^3$$
 N

$$W := 10$$

mm

Ancho de la cuña ANEXO 17

$$NcB := 1.80$$

Factor de seguridad - Asumido -

La falla por cortante a lo largo del area cortante W*L = Area corte

$$LB1 := \frac{Fa \cdot NcB}{Ssy \cdot W}$$

$$LB1 = 4.225$$
 mm

Para resistir el aplastamiento se utiliza la mitad del area

$$LB := \frac{2 \cdot Fa \cdot NcB}{Sy \cdot W}$$

$$LB = 4.707 \text{ mm}$$

3.4.4.11.1 COMPARACIÓN DE LOS FACTORES DE SEGURIDAD (Eje principal)

Factores de seguridad en los diámetros

$$NfB = 5.615$$

$$NfD = 2.726$$

$$NfC = 2.254$$

Factores de seguridad en los cuñeros

$$NcB = 1.8$$

$$NcD = 1.5$$

$$NcC = 1.5$$

Los factores de seguridad para fallas de cuñas, son inferiores a la de los diámetros, lo que es deseable ya que en caso de sobrecarga las cuñas fallarán, por lo tanto, el diseño es deseable.

3.4.4.12 CALCULO DE DEFLEXIONES (Eje principal)

$$EI\frac{d^2\delta}{d^2x} = M = R1x - Fc20(x - a) + Fc12a(x - (a + b)) + Fc12b(x - (a + b + c))$$

$$EI\frac{d\delta}{dx} = EI\theta = (1/2)R1x^2 - (1/2)Fc20(x-a)^2 + (1/2)Fc12a(x-(a+b))^2 + (1/2)Fc12b(x-(a+b+c))^2 + c1$$

$$EI\delta = (1/6)R1x^{3} - (1/6)Fc20(x-a)^{3} + (1/6)Fc12a(x-a+b)^{3} + (1/6)Fc12b(x-18.3)^{3} + c1x + c2$$

$$x := a + b + c + d$$

Distancia a la cual se realiza el corte

$$a \cdot Fc20 + Fc12a \cdot (a + b) + [Fc12b \cdot (a + b + c)] - [R2 \cdot (a + b + c + d)] = 0$$

Evaluamos las condiciones de borde

Ecuación B

Condición de Borde CB1

Si

$$x := 0$$

$$EI\delta := 0$$

En consecuencia C2 := 0

Condición de Borde CB2

Si

$$x := a + b + c + d$$

$$\theta := 0$$
 Entonces

 $EI\theta := 0$

En consecuencia:

$$C1a := Fc20x \cdot (b + c + d)^3$$

 $C1c := Fc12bx \cdot (d)^3$

$$C1b := Fc12ax \cdot (c + d)^3$$

C1d := $R1x \cdot (a + b + c + d)^3$

$$C1 := \frac{1}{a+b+c+d} \cdot [(C1a-C1b) - C1c - C1d]$$

$$C1 = 1.473 \times 10^8$$

$$E := 207 \cdot 10^3$$

N/mm2

Módulo de elasticidad

$$1 := a + b + c + d$$

mm

Longitud total del eje

$$I := \frac{1}{\frac{a1}{\frac{\pi d3^4}{64} + \frac{b1}{\frac{\pi d0^4}{64}} + \frac{c1}{\frac{\pi d1^4}{64}} + \frac{d1}{\frac{\pi d2^4}{64}}}$$

Momento de Inercia

 $I = 2.245 \times 10^5$ mm 4

Reestableciendo la ecuación de la deflexión tenemos:

$$x := 0, .1.. (a + b + c + d)$$

DEFLEXION EN X

$$\delta 1x(x) := R1x \cdot x^3 \qquad \qquad \delta 3x(x) := Fc12ax \cdot [x - (a + b)]^3$$

$$\delta 2x(x) := Fc20x \cdot (x - a)^3 \qquad \qquad \delta 4x(x) := Fc12bx \cdot [x - (a + b + c)]^3$$

$$\delta 1(x) := \delta 1x(x) + [C1 \cdot (x)]$$

$$\delta 2(x) := \delta 1(x) - \delta 2x(x)$$

$$\delta 3(x) := \delta 2(x) + \delta 3x(x)$$

$$\delta 4(x) := \delta 3(x) + \delta 4x(x)$$

$$\delta x1(x) := if(x \le a, \delta 1(x), \delta 2(x))$$

$$\delta x2(x) := if[x \le (a+b), \delta x1(x), \delta 3(x)]$$

$$\delta x3(x) := if \left[x \le (a+b+c), \delta x2(x), \delta 4(x)\right]$$

$$\delta x(x) := if[x \le (a+b+c+d), \delta x3(x), 0]$$

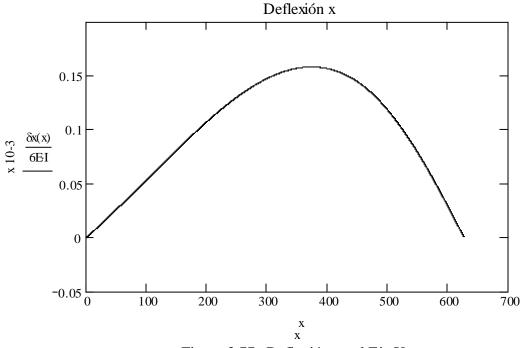


Figura 3.77a Deflexión en el Eje X

DEFLEXION EN Y

$$\delta 1y(x) := R1y \cdot x^3$$

$$\delta 3y(x) := Fc12ay \cdot [x - (a+b)]^3$$

$$\delta 2y(x) := Fc20y \cdot (x-a)^3$$

$$\delta 4y(x) := \text{Fc12by} \cdot [x - (a + b + c)]^3$$

$$\delta 1(x) := \delta 1x(x) + [C1 \cdot (x)]$$

$$\delta y 1(x) := if(x \le a, \delta 1(x), \delta 2(x))$$

$$\delta 2(x) := \delta 1(x) - \delta 2x(x)$$

$$\delta y 2(x) := if \left[x \le (a+b), \delta y 1(x), \delta 3(x) \right]$$

$$\delta 3(x) \coloneqq \delta 2(x) + \delta 3x(x)$$

$$\delta y3(x) := if[x \le (a+b+c), \delta y2(x), \delta 4(x)]$$

$$\delta 4(x) := \delta 3(x) + \delta 4x(x)$$

$$\delta y(x) := if[x \le (a + b + c + d), \delta y 3(x), 0]$$

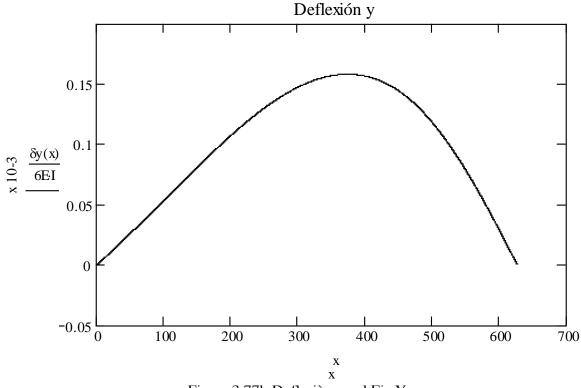


Figura 3.77b Deflexiòn en el Eje Y

MAGNITUD DE LA DEFLEXION

$$\delta\left(x\right):=if\!\!\left[x\leq\left(a+b+c+d\right),\!\sqrt{\!\left(\delta x(x)\right)^{2}+\left(\delta y(x)\right)^{2}},0\right]$$

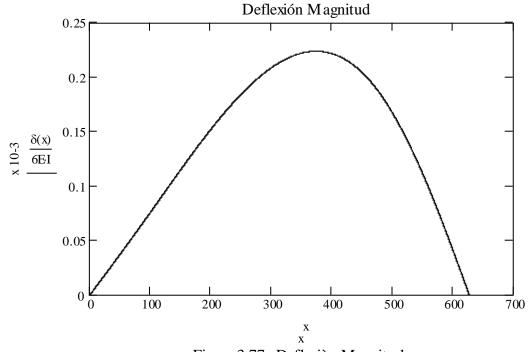


Figura 3.77c Deflexiòn Magnitud

3.4.4.13 FRECUENCIAS CRITICAS (Eje principal)

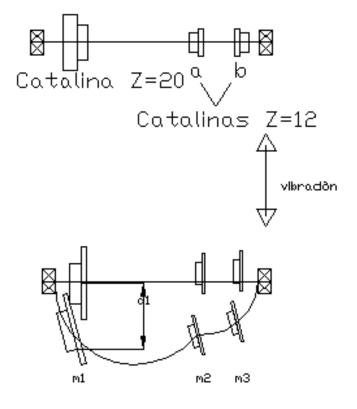


Figura 3.78 frecuencias criticas Eje Principal

La deflexiones en los puntos B, C, y F son:

PUNTO B

Si
$$x := a$$

$$\delta \mathbf{B} \coloneqq \frac{1}{6 \cdot \mathbf{E} \cdot \mathbf{I}} \cdot \delta(\mathbf{x})$$

$$|\delta B| = 0.067$$
 mm

PESO DE LA CATALINA DE Z = 12

$$w12 := 33.35$$
 mm

Ancho de la catalina

$$W12 := \pi \cdot \frac{r12^2}{2} \cdot w12 \cdot \rho$$

Peso de la catalina

$$W12 = 0.695$$
 Kg

3.4.4.13.1 FRECUENCIA NATURAL

$$\omega n := \sqrt{9.8 \cdot 1000 \cdot \frac{\left(\delta B \cdot W20\right) + \left(\delta C \cdot W12\right) + \left(\delta D \cdot W12\right)}{\left(\delta B^2 \cdot W20\right) + \left(\delta C^2 \cdot W12\right) + \left(\delta D^2 \cdot W12\right)}}$$

$$\omega n = 284.896$$

rad / seg

Comparando la frecuencia de balanceo crítica con la frecuencia forzada

$$\frac{\omega n}{n} = 30.228$$

Se trata de un margen muy comodo

3.4.4.13.2 CALCULO DE LA FRECUENCIA TORSIONAL

$$G := 79.3 \cdot 10^3$$

Modulo de rigidez

$$kt1 := \pi \cdot G \cdot \frac{d3^4}{32 \cdot a1}$$

Resorte efectivo Punto B

$$kt1 = 1.647 \times 10^8$$
 Nmm

$$kt2 := \pi \cdot G \cdot \frac{d1^4}{32 \cdot c1}$$

Resorte efectivo Punto C

$$kt2 = 3.283 \times 10^8$$
 Nmm

$$kt3 := \pi \cdot G \cdot \frac{d2^4}{32 \cdot d1}$$

Resorte efectivo Punto D

$$kt3 = 4.479 \times 10^8$$
 Nmm

La constante efectiva del resorte es igual

$$1/\text{Kefec} = 1/\text{kt}1 + 1/\text{kt}2 + 1/\text{kt}3$$

$$1/\text{Kefec} = (\text{Kt}2*\text{kt}3+\text{Kt}1*\text{kt}3+\text{kt}1*\text{kt}2)/\text{Kt}1*\text{Kt}2*\text{kt}3$$

$$kefec := \frac{kt1 \cdot kt2 \cdot kt3}{(kt2 \cdot kt3) + (kt1 \cdot kt3) + (kt1 \cdot kt2)}$$

$$kefec = 8.81 \times 10^{7}$$

Nmm

Constante efectiva del resorte

3.4.4.13.3 FRECUENCIA CRITICA A TORSIÓN

I20 :=
$$\frac{\pi \cdot (2 \cdot r20)^4 \cdot w20 \cdot \rho}{32 \cdot 9.8 \cdot 1000}$$

Inercia de la catalina z = 20

$$I20 := 12.35$$

kg.mm . seg2

I12 :=
$$\frac{\pi \cdot (2 \cdot r12)^4 \cdot w12 \cdot \rho}{32 \cdot 9.8 \cdot 1000}$$

Inercia de la catalina z = 1

$$I12 := 10.85$$
 Kg.mm.seg2

$$\omega nt := \sqrt{\frac{kefec}{9.8} \cdot \frac{I12 + I20 + I12}{I12 \cdot I20 \cdot I12}}$$

$$\omega$$
nt = 458.86

rad / seg

Comparando las frecuencias

$$\frac{\omega nt}{\eta} = 48.687$$

Valor mucho mayor

Se trata de un margen aceptable

3.5 SUBSISTEMA ELÉCTRICO

El sistema de distribución y control eléctrico se lo realizó en conjunto con el Tecnólogo Pablo Melo técnico electricista de CHEMequip industrias cia. Ltda.. por decisión ejecutiva.

Para su elaboración se utilizo los siguientes componentes disponibles en la empresa:

- 1 Regulador de frecuencia SIEMENS XA5721
- 2 porta fusibles Legrand 10 * 38 32A 400V ~
- 1 Breaker Merlin Gerin K32A 400V~
- 1 Contactor SIEMENS Sirius BYU 220V
- 2 Relés Telemecanic RXN 41611
- 1 Potenciometro 0-100 omios
- 1 Pulsante Camsco rojo
- 1 Pulsante Camsco verde
- 1 Pulsante de paro Camsco.

El diagrama eléctrico de conexión se detalla en el plano TRV- 026.

3.6 DISEÑO Y SIMULACIÓN EN COMPUTADORA DE LOS SISTEMAS MECANICOS DE ESTAMPADO

Para la simulación de los sistemas mecánicos se utilizo el paquete computacional "BLENDER 3D", programa de simulación y animación virtual.

3.6.1 IMPORTACION DEL MODELO.

El modelo tridimensional solidó creado en AUTO-CAD 2008 Mechanical fue exportado como archivo DWG cad 2000 para posteriormente ser importado con el programa en cuestión utilizando los "plug in" o links adecuados.

Para pieza del conjunto se le adjudico la densidad equivalente a la del material que será construido, así mismo se disminuyo el coeficiente de rozamiento para los elementos que tendrán lubricación.

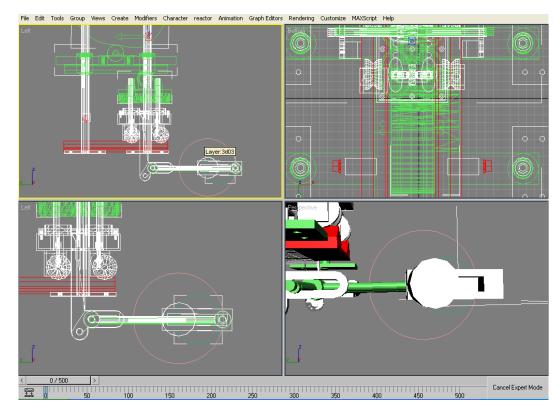


Figura 3.78 Inserción de objetos 3d

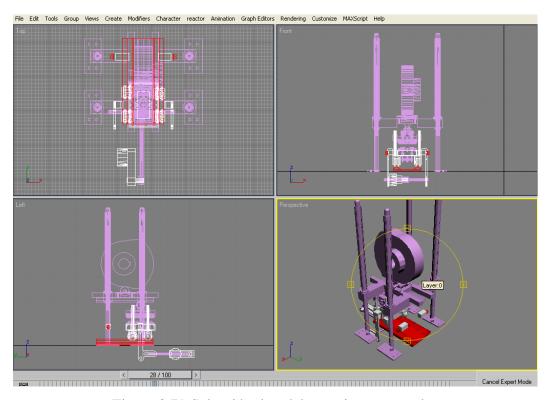


Figura 3.79 Selección de eslabonamientos y anclas

Se asignaron los eslabonamientos y grados de libertad así como las velocidades de los elementos motores (biela manivela y leva).

Comprobado una vez que los elementos se encuentran en las posiciones respectivas, con los enclavamientos y eslabonamientos correspondientes se procedió a compilar mediante el comando RENDER.

El resultado es un archivo de video el cual muestra el comportamiento que se espera del conjunto dado los datos aportados al programa.

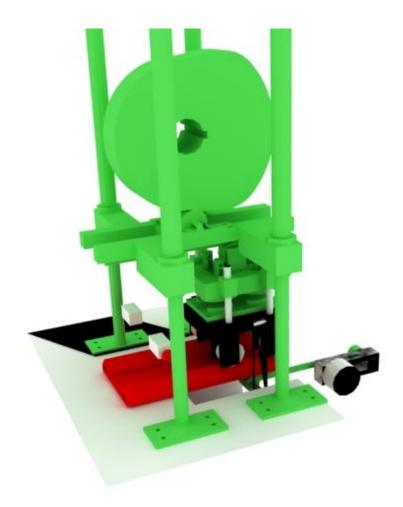


Figura 3.80 Render del modelo 3d

CAPITULO 4. CONSTRUCCIÓN

4.1 LISTA DE MATERIALES

Tabla 4.1 Lista de materiales

ITEM	MATERIAL	CANTIDAD
1	Motoreductor1	1
	HP 90 R.P.M.	
2	Eje transmisión SAE 1018	2
	D= 2pulg L=110 cm (18.5 Kg)	
3	Eje transmisión SAE 1018 D= 48	1
	mm L=70 cm (12 Kg)	
4	Perfil L 50*50*2	2
5	Perfil L 25*25*2	1
6	Chumaceras D=35 UCP	2
7	Chumaceras D=40 UCP	2
8	Chumaceras D=45 UCP	2
9	Catalinas Z=12 N°=60	2
10	Catalinas Z=20 N°=60	2
11	Catalinas Z=36 N°=60	2
12	Tocho Bronce Fosforito	2
	D=150 mm e=30 (0.80 Kg)	
13	Eje de acero inoxidable	1
	A 304 D=10 mm	
	L=6mm (33 Kg)	
14	Barra cuadrara SAE 1010	1
	L=1m (3 Kg)	
15	Eje acero 1045	1
	D= 11 pulg. e= 2 pulg	
16	Pernos, rodelas y tuercas	6
	½ inox	
17	Pernos, rodelas y tuercas	6
	5/16 inox.	

ITEM	MATERIAL	CANTIDAD
18	Rodachines 1 pulgada	5
19	Eje de bronce D=1/2 pulgada	1
20	½ Plancha Ao inox e=6mm	1
21	2 Plancha Ao inox	2
	e=0.7mm	
22	Plancha de teflón-silicon	1
	e=3mm	
23	Interruptores	1
24	Cable sólido 10 AWG	20 m

Tabla 4.1 Lista de materiales (continuación)

4.2. DESCRIPCION DE LOS COMPONENTES DEL EQUIPO

Tabla 4.2 Lista de componentes

COMPONENTE	DESCRIPCION	PLAN	NO DE		
		DETALLE - HOJA			
		DE PROCESOS			
BASTIDOR	Realizado con perfiles L 50*50*2 y	TRV-007			
	25*25*2 según planos.				
		TRV-010			
SISTEMA DE MORDAZAS	Incluye guía superior, guía inferior,	TRV-008	TRP-001		
	acopladores, mordaza superior, mordaza inferior, expulsores	TRV-009	TRP-002		
	superiores, expulsores inferiores, soporte de mordaza inferior, soporte	TRV-011	TRP-003		
	de mordaza superior, rodillo del	TRV-012			
	seguidor, y ejes guías.	TRV-013	TRP-004		
		TRV-014	TRP-005		
		TRV-015	TRP-006		

COMPONENTE	DESCRIPCIÓN	PLAN	NO DE
		DETALL	E - HOJA
		DE PRO	OCESOS
		TRV-016	TRP-007
			TRP-008
			TRP-009
			TRP-010
			TRP-011
			TRP-012
SISTEMA MOTRIZ	Cadenas y catalinas, ejes de	TRV-002	
	transmisión maquinados, rodamientos		Memoria
	y chumaceras.	TRV-003	3.1
	y chanacerus.		3.1
		TRV-004	
BIELA MANIVELA	Biela, manivela, rodamientos y	TDV 005	
BIELA MANIVELA	Biela, manivela, rodamientos y acoples.	TRV-005	
LEVA	Leva vertical y leva de cuña	TRV-006	
MOTOREDUCTOR	1 hp 90 R.P.M.		
	1		

Tabla 4.2 Lista de componentes (continuación)

4.3. REQUERIMIENTOS Y FACILIDADES

4.3.1 Materiales disponibles

Materiales previamente adquiridos y disponibles para la utilización del proyecto.

Tabla 4.3 Lista de materiales disponibles

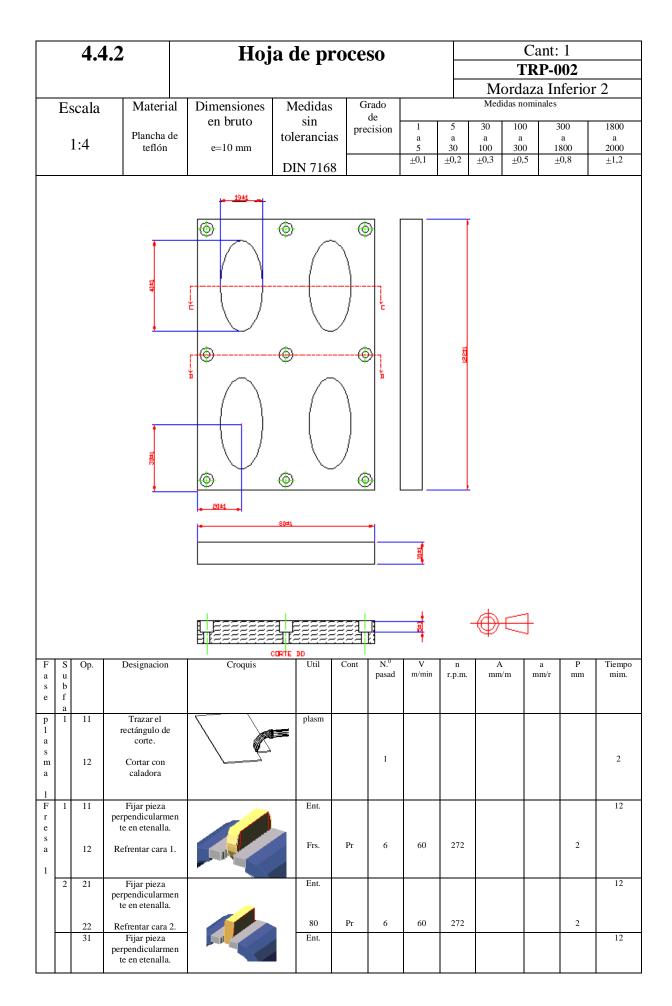
ITEM	MATERIAL	CANTIDAD
1	Motoreductor1	1
	HP 90 R.P.M.	
2	Pernos, rodelas y tuercas	6
	¼ inox	
3	Pernos, rodelas y tuercas	6
	5/16 inox.	
4	Plancha de teflón-silicon	1
	e=3mm	
5	Interruptores	1
6	Cable sólido 10 AWG	20 m

4.3.2 INSTALACIONES DISPONIBLES

Taller metal mecánico CHEMequip industrias cia. Ltda., Inés Gangotena lote 11 y Chillanes vía Amaguaña.

Tabla 4.4 Lista de equipos disponibles

ITEM	MAQUINARIA	CANTIDAD
1	Torno	3
2	Fresadora	1
3	Soldadora SMAW	3
4	Soldadora TIG	1
5	Soldadora MIG	1
6	Equipos varios:	-
	Amadoras	
	Taladros	
	Micro taladros	
	Pulidoras	
	Lijadoras	
	Compresores	
	Herramientas de taller	

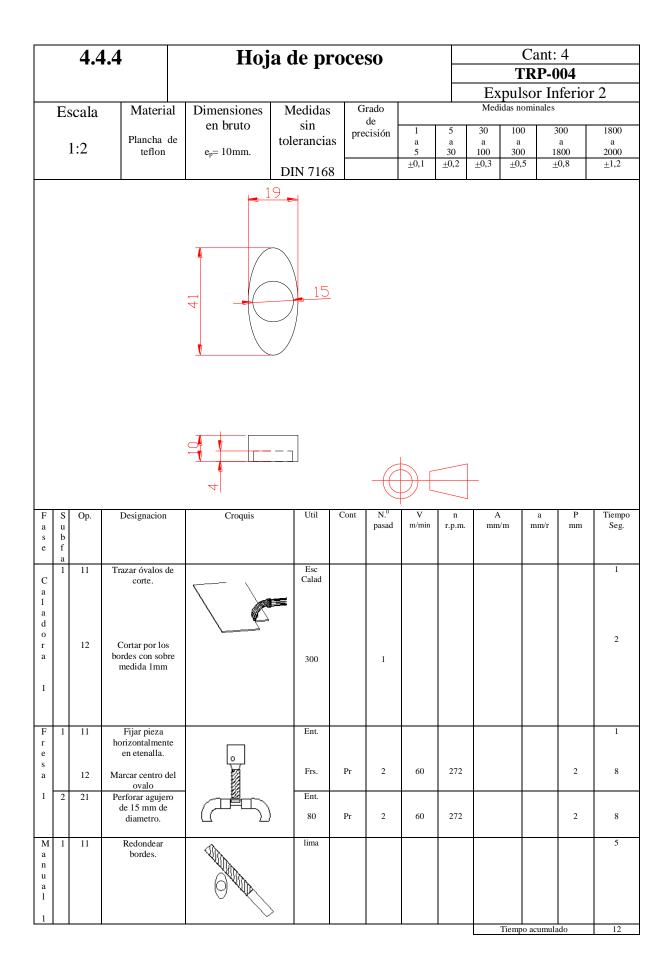

Tabla 4.5 Personal Disponible

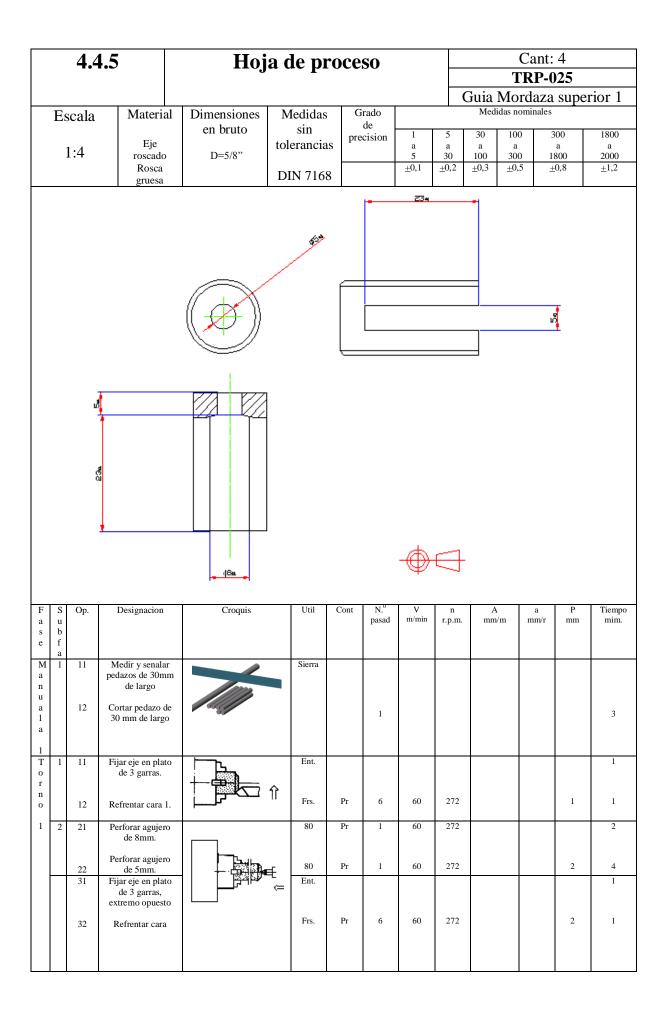
ITEM	MATERIAL	CANTIDAD
1	Tornero	3
2	Soldador	3
3	Fresador	1
4	Ayudantes	4

4.4 HOJAS DE PROCESOS(CONSTRUCCIÓN DEL EQUIPO)

4.4.1		l.1	Hoja de proceso								ant: RP-0			
										Mo			ferio	· 1
	Es	scala	Material	Dimensiones	Medidas	Grad					das nom			
	25	oun		en bruto	sin	de		1	5	30	100	3	600	1800
	1	1:4	Plancha de acero	e=20 mm	tolerancia	s Precis		a 5	a 30	a 100	a 300		a 800	a 2000
			inoxidable		DIN 7168	\mathbf{R}		<u>+</u> 0,1	<u>+</u> 0,2	<u>+</u> 0,3	<u>+</u> 0,5	+	0,8	<u>+</u> 1,2
				<u> </u>	DII 7100	<u></u>					1			
			÷ E	Υ Υ) I	Í								
			40±1	eigs										
			•		-		7.H							
			-	T	T		"							
				234	ı									
			62±1	4	-¢		_				38#I			
]			

						F								
				ф ф	_	-	#							
				30±1			¥							
			+			\dashv								
			20#1											
				20±1	1									
				- 20±1 -				Φ.	1					
			FF CF	2011				- () t	\Rightarrow					
			**************************************	CORTE FI				-						
F	S	Op.	Designacion		Uil		N.º asad	V m/min	n r.p.m.	A mm/	m n	a mm/r	P mm	Tiempo mim.
a s	u b	Op.	Designacion	CORTE FI							m n			
a s e	u b f a			CORTE FI	Util						m n			
a s e	u b f	Op.	Trazar el rectángulo de	CORTE FI							m n			
a s e p 1 a s	u b f a	11	Trazar el rectángulo de corte.	CORTE FI	Util		asad				m n			mim.
a s e p 1 a	u b f a		Trazar el rectángulo de	CORTE FI	Util						m n			
a s e P l a s m a l	u b f a	11	Trazar el rectángulo de corte. Cortar con plasma	CORTE FI	Util		asad				m n			mim.
a s e P l a s m a l F	u b f a	11	Trazar el rectángulo de corte. Cortar con plasma Fijar pieza	CORTE FI Croquis	Util		asad				m n			mim.
a s e P 1 a s m a 1 F r e	u b f a 1	11 12	Trazar el rectángulo de corte. Cortar con plasma	CORTE FI Croquis	Plasm		asad				m n			mim.
p l a s m a l	u b f a 1	11 12	Trazar el rectángulo de corte. Cortar con plasma Fijar pieza perpendicularmen	CORTE FI Croquis	Plasm		asad				m n			mim.
p 1 a s m a 1 F r e s	u b f a 1	11 12	Trazar el rectángulo de corte. Cortar con plasma Fijar pieza perpendicularmen te en etenalla.	CORTE FI Croquis	plasm Ent.	p	asad 1	m/min	r.p.m.		m r		mm	mim.
a s e P 1 a s m a 1 F r e s a	u b f a 1	11 12	Trazar el rectángulo de corte. Cortar con plasma Fijar pieza perpendicularmen te en etenalla. Refrentar cara 1.	CORTE FI Croquis	plasm Ent.	p	asad 1	m/min	r.p.m.		m n		mm	mim.
a s e P 1 a s m a 1 F r e s a	u b f a 1	11 12 11 12	Trazar el rectángulo de corte. Cortar con plasma Fijar pieza perpendicularmen te en etenalla. Refrentar cara 1.	CORTE FI Croquis	Plasm Ent. Frs.	p	asad 1	m/min	r.p.m.		m n		mm	2 12
p l a s m a l F r e s a	u b f a 1	11 12 11 12 21	Trazar el rectángulo de corte. Cortar con plasma Fijar pieza perpendicularmen te en etenalla. Refrentar cara 1. Fijar pieza perpendicularmen te en etenalla. Refrentar cara 2.	CORTE FI Croquis	Plasm Ent. Frs. Ent.	p	asad 1	m/min	r.p.m.		m n		mm	2 12 12
a s e P l a s m a l F r e s a	u b f a 1	11 12 12 21	Trazar el rectángulo de corte. Cortar con plasma Fijar pieza perpendicularmen te en etenalla. Refrentar cara 1. Fijar pieza perpendicularmen te en etenalla.	CORTE FI	Plasm Ent. Frs.	Pr	l l	m/min	r.p.m.		m n		2	2 12

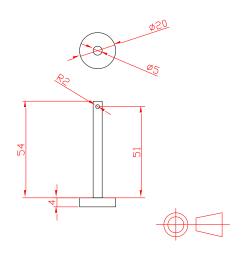

F	S	Op.	Designacion	Croquis	Util	Cont	N.º	V	n	A	a	P	Tiempo
a	u						pasad	m/min	r.p.m.	mm/m	mm/r	mm	mim.
s e	b f												
	a												
	3	32	Refrentar cara 3.		80	Pr Calib.	6	60	272			2	12
	4	41	Fijar pieza perpendicularmen te en etenalla.		Ent.								12
		42	Refrentar cara 2.		80	Pr Calib	6	60	272			2	
F r e	1	11	Ubicar horizontalarmente en la máquina.		Ent.								2
s a 2		12	Fresar 6 agujeros d=3mm		80	Pr Calib.	1/ag.	60	272			2	10
		13	Fresar 4 agujeros d=5mm		80	Pr. Calib.	2	60	272			2	10
	2	21	Ubicar horizontalarmente cara abajo en la máquina.		80	Pr Calib.	6	60	272			2	5
		22	Fresar 4 agujeros d=10mm		80	Pr Calib.	1	60	272			2	10
M a n u a 1	1	11	Pasar machuelo XX en agujeros de 3 mm.			Calib							5
1													
				l						Tiemp	o acumula	ido	104



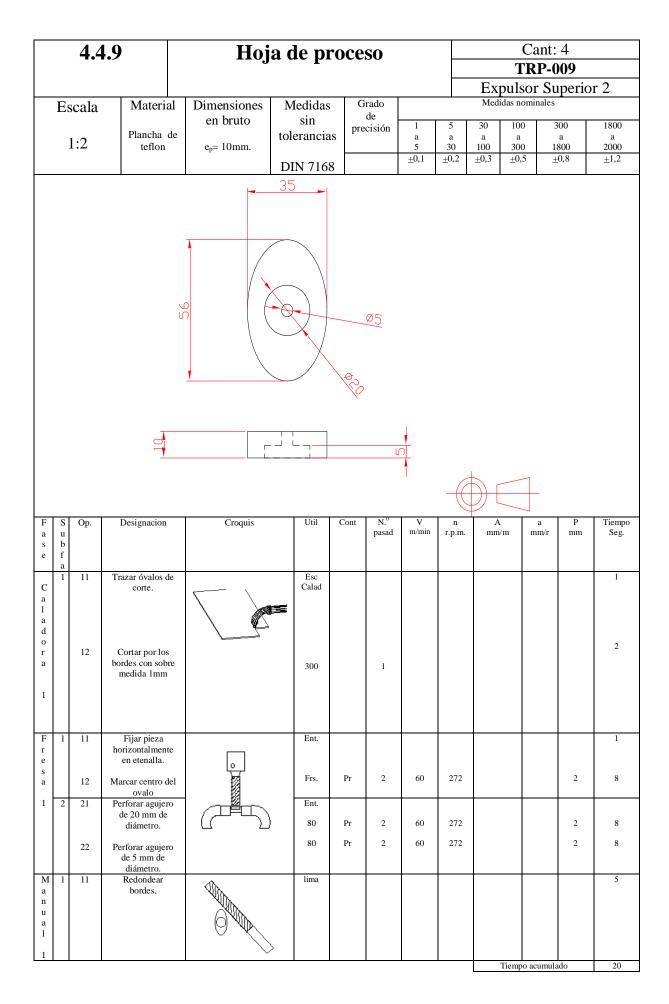
F	S	Op.	Designacion	Croquis	Util	Cont	N. ⁰ pasad	V m/min	n r.p.m.	A mm/m	a mm/r	P mm	Tiempo mim.
a s	u b						pasau	111/111111	1.р.ш.	111111/111	111111/1	111111	1111111.
e	f a												
	3	32	Refrentar cara 3.		80	Pr Calib.	6	60	272			2	12
	4	41	Fijar pieza perpendicularmen te en etenalla.		Ent.								12
		42	Refrentar cara 2.		80	Pr Calib	6	60	272			2	
F r e	1	11	Ubicar horizontalarmente en la máquina.		Ent.								2
s a 2		12	Fresar 9 agujeros d=3mm		80	Pr Calib.	1/ag.	60	272			2	10
2		13	Trazar óvalos			Pr. Calib.							
		14	Fresar 4 óvalos		80		20	60	272			2	65
	2	21	Ubicar horizontalarmente cara abajo en la máquina.		80	Pr Calib.	6	60	272			2	5
		22	Fresar 9 agujeros d=10mm		80	Pr Calib.	1	60	272			2	10
M a n u a 1	1	11	Limar los agujeros de los ovalos	633		Calib							30
1													
										Tiemp	o acumula	ado	184

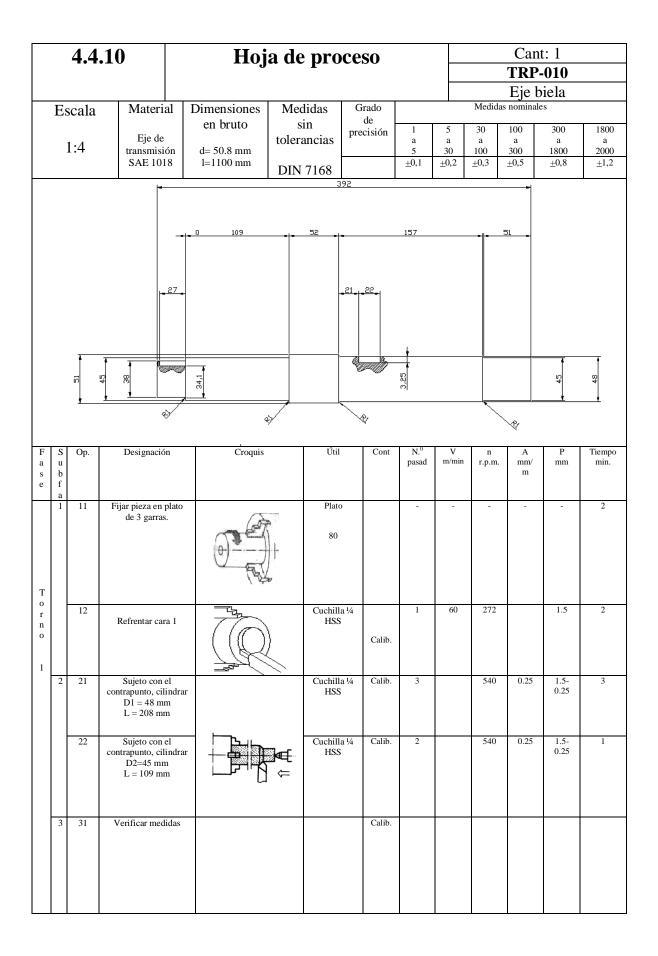
4.4.3				Hoja de proceso						Cant: 4 TRP-003					
	Escala Material			Dimensiones	Medidas	Medidas Grado		Expulsor Inferior 1 Medidas nominales							
Escala 1:2			Eje de acero inoxidable 304	en bruto d= 5/8".	sin tolerancias	s pre	de cisión	1 a 5 <u>+</u> 0,1	5 a 30 ±0,2	30 a 100 <u>+</u> 0,3	100 a 300 <u>±</u> 0,5	3	00 a 800 0,8	1800 a 2000 ±1,2	
	25														
F a s e	S u b f	Op.	Designacion	Croquis	Util	Cont	N. ⁰ pasad	V m/min	n r.p.m.	A		a mm/r	P mm	Tiempo Seg.	
M a n u a 1	1 1	11	Cortar 4 ejes de 60mm		Sierra	Calib								2	
T	1	11	Fijar eje en plato de 3 garras.		Plato									2	
r n o		12	Refrentar cara 1 y		80	Pr.	1	60	272				1,5	1	
1		13 14	Cilindrar D=5 mm L = 55 mm Cilindrar Cunas D=2mm		80	Cuch illa ¼ HSS	5	60	272	80)			5	
	2	21	Limar canales y bordesen ejes		□ 80	Pr	1	60	272				1,5	2	

Tiempo acumulado


F	S	Op.	Designacion	Croquis	Util	Cont	N. ⁰ pasad	V m/min	n r.p.m.	A mm/m	a mm/r	P mm	Tiempo mim.
a s	u b						pusuu		т.р.ш.	1111111111	11111111	111111	1111111.
e	f												
•	a												
F	1	11	Fijar pieza		Ent.								
r			horizontalmente	' 									
e			en etenalla.	l Sis∯sical									
S					80	Pr	12	60	272			1	18
a		12	Fresar canal de	₩	80	Calib.	12	00	212			1	10
1	_		5mm	₩ ←	Т.								
	2	11	Fijar pieza horizontalmente		Ent.								
			en etenalla, lado	m and a second									
			opuesto	munumumumum									
		12	opuesto		80	Pr	12	60	272			1	18
			Fresar canal de			Calib							
			5mm										
				W. July									
										Tiemp	o acumula	ıdo	49

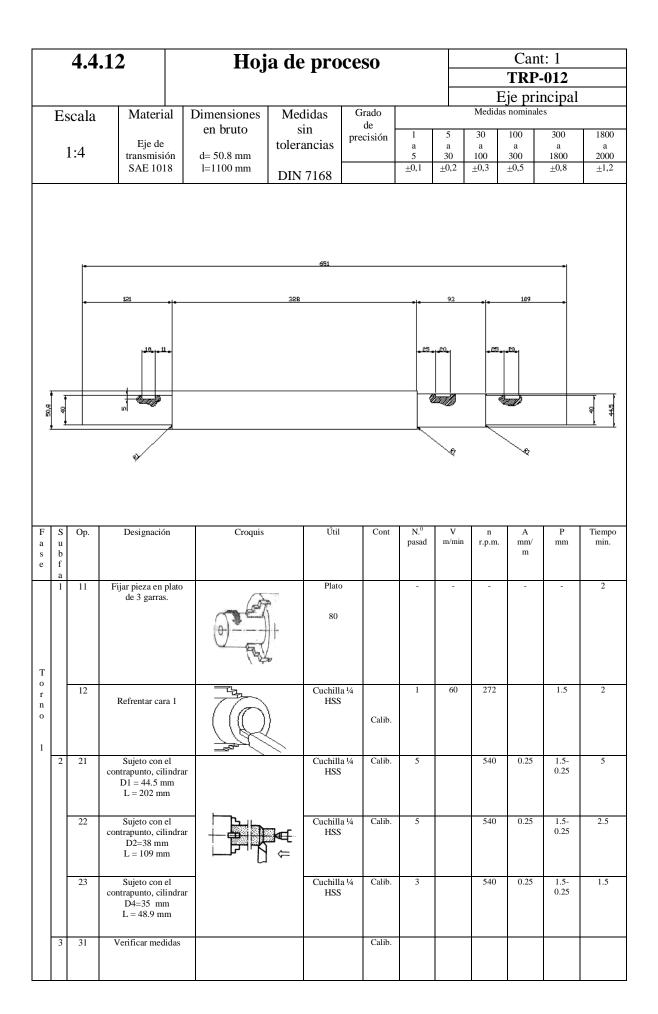
		4.4	4.6	Ној	a de pi	roces	0					ant: RP-0		
	Es	scala	Material	Dimensiones	Medidas	Gra				Med	ordaza idas nom	a Su		r 2
		1:4	Plancha de teflon	en bruto e=9mm	sin tolerancia	de		1 a 5	5 a 30	30 a 100	100 a 300	13	800 a 800	1800 a 2000
					DIN 7168	8		<u>+</u> 0,1	<u>+</u> 0,2	<u>+</u> 0,3	<u>+</u> 0,5	±	0,8	<u>+</u> 1,2
			- 30 - H	80 20 20 20 20			721	9	-			_		
F a s e	S u b f	Op.	Designacion	Croquis	Util	Cont	N.º pasad	V m/min	n r.p.m.	Amm		a mm/r	P mm	Tiempo mim.
p 1 a	a 1	11	Trazar el rectángulo de corte.		plasm									
s m a		12	Cortar con caladora				1							2
F r	1	11	Fijar pieza perpendicularmen		Ent.									1
e s a		12	te en etenalla. Refrentar cara 1.		Frs.	Pr	6	60	272				2	8
	2	21	Fijar pieza perpendicularmen te en etenalla.		Ent.									1
		22	Refrentar cara 2.		80	Pr	6	60	272				2	8
	3	31	Fijar pieza perpendicularmen te en etenalla.		Ent.									1


F a	S u	Op.	Designacion	Croquis	Util	Cont	N. ⁰ pasad	V m/min	n r.p.m.	A mm/m	a mm/r	P mm	Tiempo mim.
s	b												
e	f												
	a 3				80	Pr	6	60	272			2	8
	3	32	Refrentar cara 3.		80	Calib.	Ü	00	272			2	0
	4	41	Fijar pieza perpendicularmen te en etenalla.		Ent.								1
		42	Refrentar cara 2.		80	Pr Calib	6	60	272			2	8
F r e s a	1	11	Ubicar horizontalarmente en la máquina. Fresar 4 agujeros d=10		Ent. 80	Pr Calib.	1/ag.	60	272			2	1
2		13	Fresar canales de 6m	\$. \$	80	Pr. Calib.	5	60	272			2	40
								•	•	Tiemp	o acumula	do	89


	4.4.7			Ној	a de pro	oceso				TR	ant: 4 P-00	7	
				I a					Mo	ordaza das nomi	Sup	erio	r 3
	Es	scala	Material	Dimensiones en bruto	Medidas sin	Grado de							
		1:4	Pletina cuchilla	e=2 mm	tolerancias	precision	1 a 5	5 a 30	30 a 100	100 a 300	300 a 1800	0	1800 a 2000
				a=19 mm	DIN 7168		<u>+</u> 0,1	<u>+</u> 0,2	<u>+</u> 0,3	<u>+</u> 0,5	<u>+</u> 0,8	8	<u>+</u> 1,2
				39	09	_ 19							
								-(
F a s e	S u b f a	Op.	Designacion	Croquis	Util	Cont N. ⁰ pasad	V m/min	n r.p.m.	A mm/		a um/r	P mm	Tiempo mim.
p 1 a s m a	1	11	Ubicar horizontalmente un mesa de corte Cortar con sobre medida de 5 mm pedazos de 158mm.		plasm	1							2
M a n	1	11	Ubicar pletina en molde de acero preparado.	⇒	Ent.								2
u a 1		12	Dar forma mediante golpes consecutivos.		Mrt								10
S u e 1	1	11	Presionar hasta cerrar los extremos.		Ent.								2
d a		12	Soldar la apertura de anillo		80								5
M a n	1	11	Limar cordón de suelda por ambos lados.										8
u a 1		12	Extraer molde	*									1
2	Ш		I				1	1	+ .	Tiempo ac	umulado)	30

4.4.8	3	Hoi	a de pro	ceso				Ca	ant: 4	
		,	P					TR	P-008	
							Ex	pulso	Superi	or 1
Escala	Materi		Medidas	Grado de			Med	idas nomi	nales	
	Fie de		sin tolerancias	precisión	1	5	30	100	300	1800
1:2	Eje de acero		toleralicias		a 5	a 30	100	a 300	a 1800	a 2000
	inoxidab 304	ble	DIN 7168		<u>+</u> 0,1	<u>+</u> 0,2	<u>+</u> 0,3	<u>+</u> 0,5	<u>+</u> 0,8	<u>+</u> 1,2

F	S	Op.	Designacion	Croquis	Util	Cont	N. ⁰	V	n	A	a	P	Tiempo
a	u						pasad	m/min	r.p.m.	mm/m	mm/r	mm	Seg.
S	b												
e	f												
	a												
M	1	11	Cortar 4 ejes de		Sierra	Calib							2
a			60mm										
n													
u													
a				456									
1													
1													
1													
T	1	11	Fijar eje en plato		Plato								2
0	1		de 3 garras.		11110								_
r			de o garrasi										
n		12	Refrentar cara 1 y		80	Pr.	1	60	272			1,5	1
0		12	cara 2										
U			Cai a 2										
1		13	Cilindrar										
1		13	D=5 mm		80	Cuch	5	60	272	80			5
			L = 54mm			illa 1/4							
			L = 34111111			HSS							
		1.4	Cilindrar			1100							
		14	Cunas D=2mm	├─फ "N ⇐									
			Cunas D=2mm	u									
	_	21	*		80	Pr	1	60	272			1.5	2
	2	21	Limar canales y		80	Pr	1	60	212			1,5	2
			bordes en ejes										
M	1	11	Daglings agais :-	hate abid A	Tald.								
	1	11	Realizar agujero		1 aid. 80		1						2
a			de sujeción	58486	80		1						2
n													
u				<u>ं ैं क्रिकें</u>									
a				100 Test									
1				^ B l									
				~									
1													
			l	l	1	l		l	i	Tiom	oo acumula	ndo.	14
										1 ieini	o acumura	เนบ	14



F a	S u	Op.	Designación	Croquis	Útil	Cont	N. ⁰ pasad	V m/min	n r.p.m.	A mm/	P mm	Tiempo min.
s e	b f a									m		
T o r n o	1	11	Fijar pieza en plato de 3 garras.		Plato 80		-	-	-	-	-	2
2		12	Refrentar cara 2		Cuchilla ¼ HSS		1	60	272		1.5	2
						Calib.						
	2	21	Sujeto con el contrapunto, cilindrar D2 = 45 mm L =136 mm	<u> </u>	Cuchilla 1/4 HSS	Calib.	4		540	0.25	1.5- 0.25	2
		22	Sujeto con el contrapunto, cilindrar D3 = 38 mm L = 29 mm		Cuchilla ¼ HSS	Calib.	5		540	0.25	1.5- 0.25	0.8
	3	31	Verificar medidas			Calib						
F r e s	1	11	Colocación de la pieza en el divisor ubicado en la base de la fresadora		Fresadora Divisor Apoyo	Nivel Escu adra		-	-	-	-	8
a 1	2	21	Perforar en sección A 3.25 x 27 mm		Fresa		2	-	272	-	2	1.5
		22	Perforar en sección C 3.25 x 22 mm		Fresa		2	-	272	-	2	1.3
	3	31	Verificar medidas			Calib.						
M a n u a 1	1	11	Redondear bordes, con chaffan de 3mm de radio			Lima Red.						10
1								Tiem	po total uti	lizado		33.6

	4.4.11 Escala Materia				Hoja de proceso						Can:		
			<u> </u>								Eje l		
]	Es	scala	Mater	ial	Dimensiones	Medidas	Grado de			Medidas	nominale	es	
			Eje de	,	en bruto	sin tolerancias	precisión	1 a	5 a	30 a	100 a	300 a	1800 a
]	1:4	transmis	ión	d= 48 mm	tolciancias		5	30	100	300	1800	2000
			SAE 10	18	1=700 mm	DIN 7168		<u>+</u> 0,1	<u>+</u> 0,2	<u>+</u> 0,3	<u>+</u> 0,5	<u>+</u> 0,8	<u>+</u> 1,2
						651						-	
		-	60	139			342			- -	59	51 _	
					<u>- 36</u>	41 -				-19 -	-19 -4		
Ī	<u> </u>												1.
9 1	8					n)							8
	S	Op.	Designaci	ón	Croquis	Úti	Cont	N. ⁰ pasad	V m/min	n r.p.m.	A mm/ m	P mm	Tiem _j min
	b f a										111		
	1	11	Fijar pieza en de 3 garra	plato s.		Plat		-	-	-	-	-	2
Г					O TOU								
	-	12	Dofmonton on	1	777	Cuchil		1	60	272		1.5	2
1			Refrentar ca	га і		HS	Calib.						
	2	21	Sujeto con contrapunto, ci D1 = 38 m	lindrar ım		Cuchil		7		540	0.25	1.5- 0.25	14
			L = 452 m										
		22	Sujeto con contrapunto, ci D2=36.5 n L = 110 m	lindrar ım		Cuchil HS ←		2		540	0.25	1.5- 0.25	1
	ŀ	23	Sujeto con contrapunto, ci D3=35 m	lindrar		Cuchil		2		540	0.25	1.5- 0.25	1
			L = 51 m										
	3	31	Verificar me	didas			Calib.						

F	S	Op.	Designación	Croquis	Útil	Cont	N.º	V	n	A	P	Tiempo
a 1	u b		-	-			pasad	m/min	r.p.m.	mm/ m	mm	min.
S	f									•••		
e T	a 1	11			Plato		-	_	_	_	_	2
0	1	11			Tiuto							-
r n			Fijar pieza en plato		80							
0			de 3 garras.	0								
				The state of the s								
2				1000								
		12	Refrentar cara 2		Cuchilla 1/4 HSS		1	60	272		1.5	2
						Calib.						
						Cario.						
	2	21	Sujeto con el		Cuchilla 1/4	Calib.	9		540	0.25	1.5-	4.5
			contrapunto, cilindrar D3 = 35 mm	├─फ	HSS						0.25	
			L =60 mm									
	2	31	Verificar medidas			G 17						
	3	31	Venncar medidas			Calib						
F	1	11	Colocación de la		Fresadora Divisor	Nivel	-	-	-	-	-	8
r e			pieza en el divisor ubicado en la base de		Apoyo	Escu adra						
s a	2	21	la fresadora Perforar en sección B		F		3	-	272	-	2	5.2
a	2	21	5 x 41 mm	п	Fresa		3	-	212	-	2	5.2
1				₩ <u>₩</u>								
1		22	Perforar en sección C		Fresa		3	-	272	-	2	2.5
			5 x 19 mm									
	3	31	Verificar medidas			Calib.						
M	1	11	Redondear bordes,			Lima						10
a	1	11	con chaflan de 3mm			Red.						10
n u			de radio									
a												
1												
_ 1		1	<u>I</u>		<u>I</u>	I		Tiem	o total uti	ilizado	I	54.2

		_										
F a 1 s	S u b f a	Op.	Designación	Croquis	Útil	Cont	N. ⁰ pasad	V m/min	n r.p.m.	A mm/ m	P mm	Tiempo min.
T o r n o	1	11	Fijar pieza en plato de 3 garras.		Plato 80		-	-	-	-	-	2
		12	Refrentar cara 2	Î	Cuchilla ¼ HSS	Calib.	1	60	272		1.5	2
	2	21	Sujeto con el contrapunto, cilindrar D3 = 38 mm L =121 mm	<u> </u>	Cuchilla ¼ HSS	Calib.	9		540	0.25	1.5- 0.25	4.5
		22	Sujeto con el contrapunto, cilindrar D4 = 35 mm L = 40.5 mm		Cuchilla ¼ HSS	Calib.	3		540	0.25	1.5- 0.25	1.5
	3	31	Verificar medidas			Calib						
F r e s	1	11	Colocación de la pieza en el divisor ubicado en la base de la fresadora		Fresadora Divisor Apoyo	Nivel Escu adra	-	-	-	-	-	8
a 1	2	21	Perforar en sección B 5 x 16 mm		Fresa		3	-	272	-	2	1.8
		22	Perforar en sección C 5 x 20 mm		Fresa		3	-	272	-	2	2.5
		23	Perforar en sección D 5 x 20 mm		Fresa		3	-	272	-	2	2.5
	3	31	Verificar medidas			Calib.						
M a n u a 1	1	11	Redondear bordes, con chaflán de 3mm de radio			Lima Red.						10
1	L		<u>l</u>					Tiem	oo total uti	lizado		47.8

CAPITULO 5

ARRANQUE Y PUESTA A PUNTO

5.1. PRUEBAS

Con la máquina terminada se realiza las primeras pruebas de funcionamiento, para esto se prescindirá de los paneles que cubren las partes motrices a fin de observar el funcionamiento de todos los componentes. Cada una de las pruebas debe contar con el aval del gerente de producción de la empresa.

5.1.1 PRUEBAS MANUALES

El proceso de pruebas consiste en observar el correcto funcionamiento de los mecanismos. El proceso de pruebas como los registros se muestra en el Anexo 18.

5.1.2 PRUEBAS AUTOMATICAS

El proceso de pruebas consiste en observar el correcto funcionamiento de los mecanismos ahora acoplado el moto reductor. El proceso de pruebas como los registros se muestra en el Anexo 19.

5.1.3 PRUEBAS CON MATERIA PRIMA

Una vez que se ha comprobado el correcto funcionamiento de la máquina sola es el momento de comprobarla con la materia prima. En estas pruebas se ve posibles fallas en el diseño, imprevistos, o problemas causados por las propiedades de la materia prima.

El proceso de pruebas como los registros se muestra en el Anexo 20.

5.2 PUESTA A PUNTO Y CALIBRACION

Una vez realizadas las pruebas y los correctivos correspondientes a los defectos o fallas encontradas, llega el momento de calibrar la maquina para su perfecto funcionamiento, esto se realiza ajustando resortes de los expulsores, regulando la longitud ajustable del brazo de biela, o calibrando la elevación de la leva de cuña inferior.

Este tipo de calibración o ajuste fino se modificara a la par que cambie las propiedades de la materia prima, diferente para cada tipo de jabón, y se la realizara mediante el proceso de prueba y error.

El proceso de pruebas así como los parámetros de control se muestra en el Anexo 21.

5.3 ANALISIS DE RESULTADOS

Luego de las pruebas y puesta punto los resultados muestran resultados satisfactorios aceptables para el trabajo en la empresa. Todas las pruebas, correcciones, modificaciones y resultados finales cuentan con el aval de La Dra. Maria Eugenia Estupiñán gerente de producción del área de jabonaría de Química RIANDI Cia. Ltda. al momento de realización de las pruebas.

CAPITULO 6

ANALISIS ECONOMICO FINANCIERO

Para efectuar una selección correcta acerca de un proyecto, hay que contar con una información de los diferentes tipos de costos y sus patrones de comportamiento es vital para una toma de decisiones sea efectiva. De esta forma se podrá determinar la rentabilidad del proyecto y el tiempo de recuperación de la inversión, mediante los indicadores de desempeño económico.

6.1 ANALISIS ECONOMICO

Para determinar el costo total del proyecto, es necesario considerar todos aquellos costos que incurrieron a lo largo del proyecto.

Los elementos de costo de un producto o sus componentes son:

- Costos directos
- Costos indirectos , y se obtiene el Costo total (costos directos + costos indirectos)

6.1.1 COSTOS DIRECTOS

Son aquellos costos en los cuales se pueden asociar a la fabricación de la maquina estampadora y se los puede dividir en

- Costos de materiales
- Costo de uso maquina-herramientas
- Costo de mano de obra.

6.1.1.1 COSTOS DE MATERIALES

Son los principales recursos que se usan en la producción, estos se transforman en bienes terminados con la adición de mano de obra directa y costos indirectos de producción. El costo de materiales puede dividirse en materiales directos e indirectos de la siguiente manera.

6.1.1.1.1 MATERIALES DIRECTOS

Son todos los que pueden identificarse en la fabricación de la maquina estampadora

ITEM	MATERIAL	CANTIDAD	COSTO	COSTO
			UNITARIO	TOTAL
1	Motoreductor1	1	215.40	215.40
	HP 90 R.P.M.			
2	Eje transmisión SAE 1018	2	36.08	72.16
	D= 2pulg L=110 cm (18.5 Kg)			
3	Eje transmisión SAE 1018 D= 48	1	23.40	23.40
	mm L=70 cm (12 Kg)			
4	Perfil L 50*50*2	2	12.14	24.28
5	Perfil L 25*25*2	1	5.17	5.17
6	Chumaceras D=35 UCP	2	11.32	22.64
7	Chumaceras D=40 UCP	2	12.75	38.25
8	Chumaceras D=45 UCP	2	20.55	41.10
9	Catalinas Z=12 N°=60	2	15.12	30.24
10	Catalinas Z=20 N°=60	2	16.98	33.96
11	Catalinas Z=36 N°=60	2	38.00	76.00
12	Tocho Bronce Fosforito	2	21.00	16.80
	D=150 mm e=30 (0.80 Kg)			
13	Eje de acero inoxidable	1	110.55	110.55
	A 304 D=10 mm			
	L=6mm (33 Kg)			
14	Barra cuadrara SAE 1010	1	9.78	9.78
	L=1m (3 Kg)			
15	Eje acero 1045	1	95.12	95.12
	D= 11 pulg. e= 2 pulg			
16	Pernos, rodelas y tuercas	6	0.19	1.14
	½ inox			
17	Pernos, rodelas y tuercas	6	0.21	1.26
	5/16 inox.			
18	Rodachines 1 pulgada	5	3.15	15.75

ITEM	MATERIAL	CANTIDAD	COSTO	COSTO					
			UNITARIO	TOTAL					
19	Eje de bronce D=1/2 pulgada	1	9.78	9.78					
20	½ Plancha Ao inox e=6mm	1	298.60	298.60					
21	2 Plancha Ao inox e=0.7mm	2	40.55	81.11					
22	Plancha de teflón-silicon e=3mm	1	32.15	32.15					
23	Interruptores	1	5.63	5.63					
24	Cable sólido 10 AWG	20 m	0.45	9					
	TOTAL								

Tabla 6.1 Costos Materiales directos

6.1.1.1.2 MATERIALES INDIRECTOS

Son aquellos involucrados en la elaboración de producto, pero no son materiales directos,

ITEM	MATERIAL	CANTIDAD	COSTO	COSTO	
			UNITARIO	TOTAL	
1	Electrodo AGA 6011	2 Kg.	2.95	5.90	
2	Disco Corte	3	3.20	9.60	
3	Disco Desbaste	3	3.75	11.25	
4	Sierra de corte	2	2.50	5.00	
5	Broca cobalto ¼ pulg.	6	4.20	25.20	
6	Broca cobalto ½ pulg.	3	6.70	20.10	
7	Lija Fandelli 240	10	0.35	3.50	
8	8 Pintura Duracolor Verde 2 GAL 13.25				
	107.05				

Tabla 6.2 Costos materiales indirectos

6.1.1.2 COSTO USO MAQUINA-HERRAMIENTA

Son los costos por el uso de la maquinaria que se utilizó, en este rubro se incluye el uso de torno, fresa y soldadora, es decir las herramientas que se manejó para la construcción de la máquina estampadora.

ITEM	ACTIVIDAD	HORAS	COSTO	COSTO
		MÀQUINA	UNITARIO	TOTAL
1	Soldadura			
	Talleres Industrias Químicas Riandi	48	1.50	72.00
2	Fresado	4	4.50	18.00
	Talleres Industrias Chemequip			
3	Torneado			
	Talleres Industrias Químicas Riandi	8	4.50	36.00
4	Cerrajería	20	1.50	30.00
	Talleres Industrias Químicas Riandi			
	TOTAL			156.00

Tabla 6.3 Costo uso Maquina Herramienta

6.1.1.3 COSTO MANO DE OBRA

Es el esfuerzo físico o mental empleados en la fabricación de la máquina estampadora.

ITEM	ACTIVIDAD	HORAS	COSTO	COSTO
		HOMBRE	UNITARIO	TOTAL
1	Diseño – Ingeniería -	70	8.25	577.50
2	Dibujo – Ingeniería -	40	5.50	220.00
3	Soldador, Armador, Cortado	180	3.30	594.00
4	Tornero	100	4.50	450
5	Fresador	50	4.50	225
6	Ayudante de taller	200	1.90	380
	2446.50			

Tabla 6.4 Costos Mano de Obra

6.1.2 COSTOS INDIRECTOS

Son los costos indirectos de fabricación que no pueden identificarse directamente con la máquina estampadora.

ITEM	ACTIVIDAD	UNIDAD	COSTO	COSTO
			UNITARIO	TOTAL
1	Servicios básicos –	110 Horas	2.35	258.50
	Ingeniería -			
2	Transporte	31 Km.	2.50	77.50
3	Combustible	20 GAL	1.98	39.60
4	Alimentación	20	1.50	30
5	Colaboradores	100 HH	1.90	190
6	Imprevistos	1	200	200
	795.60			

Tabla 6.5 Costos Indirectos

6.1.3 COSTOS TOTAL

Es la suma de todos los costos incluidos en la fabricación de la máquina estampadora

COSTOS	Costos materiales directos	1292.53
MATERIALES	Costos materiales indirectos	107.05
	1399.58	

Tabla 6.6 Total Costos Materiales

	Costos Materiales	1399.58
COSTOS	Costos Uso máquina Herramienta	156.00
DIRECTOS	Costos Mano de obra	2446.50
	TOTAL	4002.08

Tabla 6.7 Total Costos Directos

	Costos directos	4002.08
COSTO TOTAL	Costos indirectos	795.60
T	4797.68	
TOTAL DESEMBOLSADO		3870.50

Tabla 6.8 Costo Total

6.2 ANALISIS FINANCIERO

Para determinar la vida útil de la cual dispondrá nuestra máquina, nos basamos en la producción que la misma debe abastecer a Industria Químicas RIANDI, la que en el primer y segundo año tienen estimado realizar una producción de 200 Cajas de producto terminado (jabones cosméticos de 10 gramos), en la que cada caja contiene 1000 jabones.

AÑO	CANTIDAD	PRECIO 1	INGRESO
	CAJAS	USD	ANUAL
1	12000	21.00	252000
2	12000	21.98	263760
3	16000	23.00	368000
4	20000	24.07	481400
5	24000	25.19	604560
	1969720		

Tabla 6.9 Producción mensual

Parar determinar los egresos del proyecto, debemos considerar que nuestra máquina estampadora es un proyecto complementario al que ya posee Industria Químicas RIANDI, motivo por el cual se debe considerar que la materia prima y la mezcla y homogenización realizada en el reactor, son alrededor del 70% del producto.

En cuanto a los gastos directos se consideró un rubro por mano de obra directa, la cual se incrementa por disposición gubernamental en un 4.65%. de acuerdo a la inflación de nuestro país. En lo que tiene que ver a los gastos indirectos se ven inmersos los

¹ El incremento de precio está basado en el aumento inflacionario del país del 4.65%

servicios básicos, en los cuales consta principalmente la electricidad, son alrededor de 100 USD mensuales, o lo que sería 1200 USD anuales. Además como gastos indirectos se consideraron, costo de mano de obra de 160 USD que corresponde al salario de un operador en el sector industrial; costos de mantenimiento alrededor de 30 USD mensuales, considerando el aceite lubricante y repuestos; el rubro de imprevistos por 35 USD, ya que seria el combustible que se usaría en la planta generadora que posee la empresa patrocinante.

AÑOS	1	2	3	4	5
Costos directos					
Materia Prima Directa	0,00	0,00	0,00	0,00	0,00
Mano de obra directa	1.920,00	2.009,28	2.102,71	2.200,49	2.302,81
Costos indirectos					
Materia Prima Indirecta	163.800,00	171.444,00	239.200,00	312.910,00	392.964,00
Mano de obra indirecta	36.400,00	38.092,60	39.863,91	41.717,58	43.657,44
Mantenimiento	360,00	360,00	360,00	360,00	360,00
Transporte y movilización	600,00	600,00	600,00	600,00	600,00
Imprevistos	420,00	420,00	420,00	420,00	420,00
Seguridad e Higiene					
personal	720,00	720,00	720,00	720,00	720,00
Servicios básicos	1.200,00	1.200,00	1.200,00	1.200,00	1.200,00
Seguro	48,00	48,00	48,00	48,00	48,00
TOTAL GASTOS	205.468,00	214.893,88	284.514,62	360.176,07	442.272,26

Tabla 6.10 Egresos del proyecto²

6.2.1 VALOR ACTUAL NETO (VAN)

Determinar el Valor actual neto (VAN), significa traer del futuro al presente cantidades monetarias a su valor equivalente términos formales de evaluación económica, cuando

² Se considera materia prima 0.00 debido a que es un proyecto complementario Para el análisis económico se utilizan índices de desempeño dentro de los cuales tenemos:

se trasladan cantidades del presente al futuro, es decir la cantidad de dinero necesaria invertir el día de hoy a una tasa determinada³, durante un periodo de tiempo determinado

AÑOS	INGRESO EGRESO		FLUJO
	TOTAL	TOTAL	
1	252000	205.468,00	46.532,00
2	263760	214.893,88	48.866,12
3	368000	284.514,62	83.485,38
4	481400	360.176,07	121.223,93
5	604560	442.272,26	162.287,74
	TOTAL		462.395,18

Tabla 6.11 Flujo total

La consideración que el Valor actual neto (VAN), es traer a tiempo presente una inversión, ésta no debe ser cero o ninguna cantidad negativa, lo que significaría que no es un proyecto rentable

³ Se considerará la tasa pasiva (4.65%) y el riesgo país (7.5 %)

			VAN				
AÑOS	FLUJO	i = 10%	i = 12,15%	i = 15%	i = 20%	i = 30%	i = 40%
1	1861,28	-3105,6	-3138,0	-3179,2	-3246,6	-3365,9	-3468,2
2	1954,64	-1405,3	-1500,7	-1620,0	-1811,4	-2137,5	-2404,2
3	3339,42	3507,0	3202,4	2827,0	2236,7	1267,1	508,4
4	4848,96	10572,9	9883,9	9046,0	7755,0	5706,3	4169,2
5	6491,51	19810,2	18516,1	16962,9	14615,9	11012,8	8413,6

Tabla 6.12 Calculo del VAN

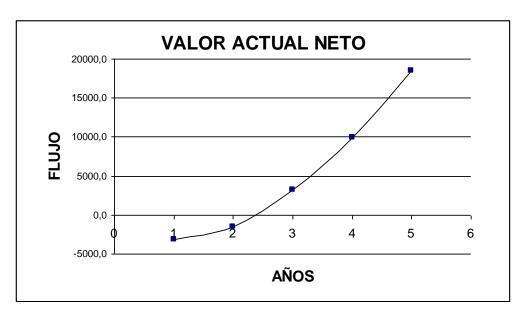


Figura 6.1 Flujo vs. VAN

El proyecto es confiable debido a que es positivo en casi todos los casos, lo cual indica que es un proyecto viable, debido a la utilidad que esta representaría en caso de ser construida.

Con estos datos se procede al siguiente paso que es el cálculo del TIR (Tasa interna de retorno).

6.2.2 TASA INTERNA DE RETORNO (TIR)

Es la tasa de descuento que equipará el valor presente de las entradas de efectivo con la inversión inicial del proyecto. El cálculo del TIR no es tarea fácil por lo que es mejor hacerlo con un paquete informativo financiero o una calculadora financiera

-4797,68	Inversión inicial
-3138,046	VAN 1er año
-1500,73	VAN 2do año
3202,4031	VAN 3er año
9883,89	VAN 4to año
18516,065	VAN 5to año
37%	TIR ⁴

Tabla 6.12 Calculo del VAN

6.2.3 CALCULO DE LA DEPRECIACIÓN DE LA MÀQUINA ESTAMPADORA

VALOR DE LA MÀQUINA	4797,68	USD
VIDA ÙTIL (n)	5	años
VALOR DE SALVAMENTO		
(2/n)%	20	%

Tabla 6.13 Depreciación Simple

AÑOS	VALOR	DEPRECIACIÓN	VALOR FINAL
1	4797,68	959,54	3838,14
2	3838,14	767,63	3070,52
AÑOS	VALOR	DEPRECIACIÓN	VALOR FINAL
3	3070,52	614,10	2456,41
4	2456,41	491,28	1965,13
5	1965,13	393,03	1572,10
VAL	OR FINAL A	APROXIMADO	1572,10

Tabla 6.13 Depreciación Simple

La depreciación compuesta con la formula

Depreciacion = 645.11

$$Depreciaciòn = \frac{(Valor_de:màquina) - (Valor_final_aproximado)}{n}$$

$$Depreciaciòn = \frac{4797.68 - 1572.10}{5}$$

AÑOS	VALOR	DEPRECIACIÓN	VALOR FINAL
1	4797,68	645,11	4152,57
2	4152,57	645,11	3507,46
3	3507,46	645,11	2862,35
4	2862,35	645,11	2217,24
5	2217,24	645,11	1572,13
VALOR FINAL APROXIMADO		1572,13	

Tabla 6.14 Depreciación compuesta

⁴ Formula obtenido del paquete informático EXCEL de Microsoft

CAPITULO 7

CONCLUSIONES Y RECOMENDACIONES

7.1 CONCLUSIONES

7.1.1. CONCLUSION GENERAL

- Se diseñó y construyó una máquina que estampa jabones de 10 gr. Ovalados, de alimentación continua manual.
- En el proceso se involucró el uso de los conocimientos adquiridos referentes al uso de mecanismos, proceso de manufactura y cálculo de resistencia en los materiales.

7.1.2. CONCLUSIONES ESPECIFICAS

- Se realizó un análisis de las situaciones y equipos de la empresa relacionados al proyecto.
- Se realizó un diseño de un sistema mecánico que permite troquelar y estampar jabones de 10 y 12 gramos.
- Se construyó una máquina que troquela y estampa jabones de 10 y 12 gramos.
- Se entregó manuales de usuarios y de funcionamiento así como el respaldo teórico que respalda el diseño.
- Las pruebas realizadas contaron con el aval de los directivos de la empresa.
- La máquina estampadora alcanzo una producción experimental de 720 jabones en una hora.

7.2 RECOMENDACIONES

- Se recomienda para un mejor funcionamiento y duración seguir los parámetros de limpieza y mantenimiento indicados en el manual de usuario.
- Se recomienda a nuestra empresa patrocinante realizar proyectos complementarios al nuestro como puede:
- O Una máquina empacadora.
- O Una máquina alimentadora de materia reprocesada.

- OUn sistema de alimentación automático.
- OUn sistema de control eléctrico independiente y único para la máquina proyecto.

BIBLIOGRAFIA

- DIBUJO DE INGENIERIA y Tecnología Grafica. Tomo I
- DIBUJO DE INGENIERIA y Tecnología Grafica. Tomo II
- DIBUJO DE INGENIERIA y Tecnología Grafica. Tomo III
- DIBUJO DE INGENIERIA y Tecnología Grafica. Tomo VI
- CATALOGO DE ACEROS IBCA 2006
- CATALOGO DE TRANSMISION DE POTENCIA INTERMEC 2007 On line.
- DISEÑO DE MAQUINAS, Robert L. Norton, Prentice hall, Mexico 1999.
- TEORIA DE MAQUINAS Y MECANISMOS ASISTIDA CON COMPUTADORA, Ing. Fernando Olmedo, Editorial Politécnica, Sta Clara valle de los chillos. 2003
- MAQUINAS PRONTUARIO, Nicolás Larburu Arrizabalaga, PARANINFO s.a., 1990
- SOLUCIONES PRACTICAS PARA EL INGENIERO MECANICO. J. Edgard Pope, McGraw-Hill, Mexico,200