CAPITULO I

1. ANTECEDENTES

La infraestructura vial que actualmente existe en el país, es producto de un lento mejoramiento de las antiguas rutas incásicas y coloniales de difícil y complicada orografía en la sierra, pantanosa y ondulada en la Costa y Oriente, surgiendo en su inicio con construcciones de tipo manual con normas de diseño y trazado muy primarios, para luego dar paso a los actuales sistemas de tecnología moderna, que implica uso intensivo de equipo adecuado.

En un principio y como necesidad de comunicación y desarrollo los caminos correspondían a trochas de hasta 1 m. de ancho que comunicaban los caminos de montaña para unir las diferentes comunidades o intercambiar productos, evitando los valles para tener una situación más ventajosa y segura. Los corredores longitudinales se unían con vías transversales que conectaban los valles costeros y selvas amazónicas con el camino real de los Andes.

Tabla 1.1 Ruta, distancia y recorrido de los Chasquis

Ruta	Distancia. (Km.) Tiempo de recorrido por los Chasq				
Quito-Cuzco	2.000	Cinco días.			
Quito-Lima	1.500	Tres días por el camino de la costa.			
Cuzco-Lima	ima 300 Dos días.				
Cuzco-Puno	1.000	Tres días.			

^(*) Tomado de Caminos del Ecuador- José A. Salvador U.

El continuo trajín de la conquista y el desarrollo comercial hacían necesarios mejores caminos y puentes para caballos y mulas. En la época de La Colonia para vencer el obstáculo de la selva y la montaña al paso del hombre había que aventurarse en peripecias heroicas como referencia el viaje regular, antes de que el ferrocarril uniera la selva y la montaña, significaba "once días de angustia, trepando sobre el lomo, erizado de horror de las cuestas, subiendo las pendientes resbalosas de lodo de muerte, agarrándose con el casco del mular a las laderas inclinadas y cruzando, sobre puntos débiles, abismos envueltos en niebla y espanto". (Leopoldo Benítez V.)

Fig. 1.1 Camino de Herradura en el Oriente

La tierra ecuatorial rechazaba al hombre. No sólo por la dificultad de llegar hasta ella, sino por la dificultad de penetrarla. Selvas extensas obstan el paso de las cabalgaduras. Ríos grandes y anchos cortaban los senderos. Grandes pantanos les oponían trampas peligrosas. Y luego, para llegar a las mesetas templadas, había que subir los peldaños de una cordillera áspera y fragosa, demasiado alta e inaccesible.

Según historiadores y como años cruciales en el desarrollo de los caminos del Ecuador se pueden mencionar:

1.555: El gobierno de España instruía al Virrey Marqués de Cañete que por las inmoderadas cargas que llevan los indios, se abran caminos y puentes; construyéndose caminos de herradura.

1.743: En este año los americanos han construido caminos con trocitos de palo de seis o siete palmos de longitud y del espesor conveniente, y se denominan EMPALIZADAS.

1.929: En este período, cabe destacar que, mientras se daba relativo interés a las obras de construcción, que eran controladas por las "Juntas de Caminos" (conformado por los hijos mas ilustres de cada localidad o provincia), no había interés en labores de mantenimiento, que inclusive se suspendieron en aproximadamente 17 años, desde 1908 a 1925.

(*) Tomado de Caminos del Ecuador- José A. Salvador U.

Pero en el gobierno del Dr. Córdova, en consideración a que la vía Quito - Riobamba se encontraba intransitable, se procedió a celebrar un contrato de trabajo de reparación, obra que fue financiada a través de una Contribución voluntaria de 20 centavos para cada litro de gas carbónico, que se embarcare en el ferrocarril por la estación de Machachi, impuesto que producía mensualmente alrededor de 300 sucres, a lo que había de agregar el aporte de 6.000 sucres que se obligó al gobierno a contribuir para las reparaciones y que posteriormente estas obras se prolongaron hasta Guamote, esta contribución anteriormente enunciada, podría constituirse en el primer impuesto destinado al mantenimiento vial en el País

Fig. 1.2 Manabitas recorrían la carretera en carros desarmables sobre caminos, selvas o mulas

(*) Tomado de Caminos del Ecuador- José A. Salvador U.

1.942: Se conforma la sociedad de Ingenieros y arquitectos del Ecuador

Fig. 1.3 Edificio de la sociedad de Ingenieros y Arquitectos

1.962: Aunque no se hace referencia a la primera vía en ser asfaltada en el país, en este año ya se indica en el registro de la red vial del país:

Tabla 1.2 Red vial del Ecuador según registros de 1962.

RED VIAL DEL PAIS EN KM. TOTAL	14.384
Carreteras Asfaltadas	857
Carreteras Afirmadas	8.130
Carreteras de Verano	5.397

1.967: El Colegio de Ingenieros Civiles de Pichincha inicia sus servicios a la comunidad El 7 de marzo de 1967. Anteriormente los ingenieros, pertenecían a la Sociedad de Ingenieros y Arquitectos del Ecuador desde 1.942. Hasta este año la red vial total del país corresponde a 22.537 Km.

(*) Tomado de Caminos del Ecuador-José A. Salvador U.

1.973: Con el propósito de establecer una sistematización, ordenamiento y uniformidad de criterios en materia de estudios y diseños de carreteras para la red fundamental, secundaria y vecinal del país y de orientar adecuadamente el programa de inversiones, se establecen las "Normas para el Diseño de Carreteras" y el "Manual de Diseño de Carreteras".

En resumen a continuación se muestran las tablas correspondientes a la evolución histórica de la Red Vial del Ecuador así como la Red Vial del país, registrada hasta el año 2006 y desglosada por provincias.

Tabla 1.3 Evolución Histórica de la Red Vial del Ecuador (1929-2006)

Año	Trar	nsitables todo el A	Caminos	Total		
Ano	Asfaltada	Afirmada	Total	de Verano	Iotai	
1929*			1,781	3,312	5,093	
1930**			2,240	3,578	5,818	
1955**			6,436	5,527	11,963	
1962**	857	8,130	8,987	5,397	14,384	
1963**			8,820	7,221	16,041	
1970**	2,862	9,150	11,012	11,680	22,692	
1972**	3,420	7,106	10,526	12,012	22,538	
1976**	3,784	10,483	14,267	13,915	28,182	
1978**	4,432	12,767	17,199	16,677	33,876	
1980**	5,961	12,200	18,161	16,478	34,639	
1982**	5,535	13,806	19,341	16,276	35,617	
1992***	6,040	21,045	27,085	16,033	43,118	
1996****	5,738	25,530	31,268	11,981	43,248	
1997****	5,686	25,530	31,216	11,981	43,197	
1998****	5,686	25,530	31,216	11,981	43,197	
1999****	5,686	25,530	31,216	11,981	43,197	
2000****	5,686	25,530	31,216	11,981	43,197	
2001****	5,686	25,530	31,216	11,981	43,197	
2006****					43,670	

^(*)Tomado de las Estadísticas de Transporte en el Ecuador 2007- MTOP

Tabla 1.4: Red Estatal del Ecuador en el año 2006

Red Estatal, Provincial y Cantonal, según provincias

-en kilómetros

Provincias		TOTAL			
Provincias	Estatal	Provincial	Cantonal	PROVINCIAL	
AZUAY	484.22	546.35	1,337.35	2,367.92	
BOLIVAR	146.09	566.23	933.17	1,645.49	
CAÑAR	230.63	163.73	887.05	1,281.41	
CARCHI	184.36	392.93	803.46	1,380.75	
COTOPAXI	209.09	725.98	1,113.16	2,048.23	
CHIMBORAZO	463.01	604.19	1,353.32	2,420.52	
EL ORO	400.94	345.26	1,103.17	1,849.37	
ESMERALDAS	492.24	776.57	737.00	2,005.81	
GUAYAS	983.78	717.19	2,765.94	4,466.91	
IMBABURA	159.59	486.16	686.86	1,332.61	
LOJA	757.97	779.94	1,845.22	3,383.13	
LOS RIOS	321.15	941.00	1,249.63	2,511.78	
MANABI	1,046.15	2,254.32	2,589.94	5,890.41	
MORONA SANTIAGO	534.55	126.37	118.92	779.84	
NAPO	290.81	468.71	550.14	1,309.66	
PASTAZA	139.27	264.01	125.40	528.68	
PICHINCHA	738.70	1,501.02	2,181.93	4,421.65	
TUNGURAGUA	212.29	354.07	1,366.24	1,932.60	
ZAMORA CHINCHIPE	231.58	100.68	378.84	711.10	
GALAPAGOS	38.00	83.05	61.30	182.35	
SUCUMBIOS	460.71	278.85	351.51	1,091.07	
ORELLANA	128.43	0.00	0.00	128.43	
TOTAL NACIONAL	8,653.56	12,476.61	22,539.55	43,669.72	

(*)Tomado de las Estadísticas de Transporte en el Ecuador 2007- MTOP

Resumen de la Red Estatal por provincias según longitudes y tipo de superficie

- en kilómetros -

Dic.-2006

	Longitud por tipo de superficie							
Provincia	Hormigón	Carpeta Asfática	Tratamiento Superficial	Material granular	Empedrado	Tierra	Adoquín	Total Provincia
AZUAY		323.01	92.73	68.47				484.21
BOLIVAR		56.55	55.79	33.74				146.08
CAÑAR	0.73	153.47	25.34	51.08				230.62
CARCHI		87.95		96.41				184.36
COTOPAXI	1.17	70.80	95.81	41.31				209.09
CHIMBORAZO		261.66	71.22	99.84		30.29		463.01
EL ORO		211.25	114.86	74.83				400.94
ESMERALDAS		453.65		38.59				492.24
GUAYAS	1.16	941.41		41.21				983.78
IMBABURA		82.80	66.04	10.75				159.59
LOJA	1.60	62.75	504.25	189.38				757.98
LOS RIOS	17.84	291.23	7.28	4.8				321.15
MANABI		895.87	132.10	18.18				1046.15
MORONA SANTIAGO				534.55				534.55
NAPO		11.98	129.77	149.06				290.81
PASTAZA		29.63		109.64				139.27
PICHINCHA		702.60		36.10				738.70
TUNGURAGUA		191.01		21.28				212.29
ZAMORA CHINCHIPE		30.87	19.50	181.21				231.58
GALAPAGOS			38.00					38.00
SUCUMBIOS		172.45	19.61	268.66				460.72
ORELLANA			44.51	83.93				128.44
TOTAL	22.50	5,030.94	1,416.81	2,153.02	0.00	30.29	0.00	8,653.56

NOTAS: Datos sujetos a revisión

FUENTE: MTOP, Subproceso de Planificación Institucional.

ELABORACION: MTOP, Proceso Asesor de Planificacion-Estadística

2. INTRODUCCIÓN

En la actualidad existen numerosas metodologías para el diseño de la estructura del pavimento, el mismo que puede definirse de este modo: "Estructura que aporta una superficie adecuada para operar un vehículo a una velocidad determinada en forma cómoda y segura en cualquier circunstancia" (Yang, 1972); o bien, como lo plantea Celestino Ruiz: "Una estructura y como tal capaz de absorber, como energía elástica potencial, el trabajo de deformación impuesto por la carga circulante durante la vida útil" (Ruiz, 1964)

El diseño del pavimento consiste en establecer una estructura para una duración determinada bajo ciertas solicitaciones de tránsito las mismas que producirán fatiga hasta llevarla a la falla.

Para el diseño se debe seguir un procedimiento o método donde intervienen de forma explícita o implícita los siguientes elementos:

Materiales

La identificación y selección de materiales corresponde a la fase inicial del proceso de diseño. El instrumento para la realización de este paso son las normas relativas a los materiales. Estas normas son conservadoras y si los materiales las cumplen existe una alta probabilidad de que la estructura del pavimento presente un buen comportamiento, especialmente si las normas han sido desarrolladas bajo experiencia regional.

Espesores

En la mayoría de los métodos de diseño, la determinación de los espesores de las capas de la estructura depende de dos factores: La Resistencia de la Subrasante y Tránsito. Aparentemente, es una operación elemental fijar los espesores, pero la dificultad se origina en la decisión sobre el valor de resistencia a utilizar y como determinar el tránsito incluyendo su variación en el tiempo.

Con relación a la resistencia de la subrasante, cada método de diseño fija el ensayo o alternativas de ensayo, pero el diseñador debe establecer, para cada tipo de suelo, la cantidad de ensayos a realizar y el criterio para evaluar los datos.

Construcción

Los requisitos de construcción se establecen mediante especificaciones adecuadas al método de diseño. El diseñador es el responsable de establecer el ensayo y el valor de control del mismo. Las especificaciones deben además considerar la posibilidad de realizar inspección y control.

Para la inspección existen dos formas: De procedimiento y de producto o resultado final. Hablar sobre las especificaciones de procedimiento es

establecer requisitos mínimos para el equipo, la operación y los resultados, exigiendo una inspección de campo adecuada.

Las especificaciones de producto final detallan los resultados finales en forma minuciosa y dejan al constructor la responsabilidad de lograr tales resultados además de exigir una extensa actividad de ensayos de campo.

Existe otro tipo de especificaciones de carácter intermedio que pueden denominarse como de control y certificación de calidad las cuales exigen una cuidadosa identificación de ensayos, procedimientos de muestreo y requisitos para aceptación o rechazo.

Costos

Para el diseñador el factor económico, es un parámetro importante para la selección de materiales, espesores, métodos de construcción y necesidades de drenaje, ya que siempre está enfrentado a la selección de entre diferentes opciones.

Mantenimiento

Existe la necesidad de programar acciones en el tiempo para garantizar que el pavimento cumpla con la duración especificada. Esto se puede lograr con la construcción de sobre carpetas en un tiempo determinado para recuperar el pavimento.

El concepto de construcción por etapas forma parte de este elemento y su aplicación exitosa exige una cuidadosa planeación económica para disponer de los fondos necesarios en el momento determinado.

Vida de Diseño o Período de Diseño.

Es importante hacer distinción entre la vida de diseño del pavimento que corresponde al periodo de análisis y el periodo de comportamiento del pavimento que es el tiempo transcurrido desde que se da al servicio hasta que alcanza un nivel de servicio inadecuado.

En resumen dentro del contexto del diseño de pavimentos, estas estructuras que utilizan las características de los materiales de las distintas capas del pavimento, con los espesores determinados, con un índice de servicio aceptable y durante la vida de servicio estimada, obtenemos estructuras de pavimentos eficaces, técnicamente viables y con presupuestos adecuados para su ejecución.

3. OBJETIVO

Analizar los parámetros de diseño de pavimento flexible que intervienen dentro de su estructura, logrando sistematizar el procedimiento de diseño aplicado a un caso real dando una solución técnica-económica para su construcción.