

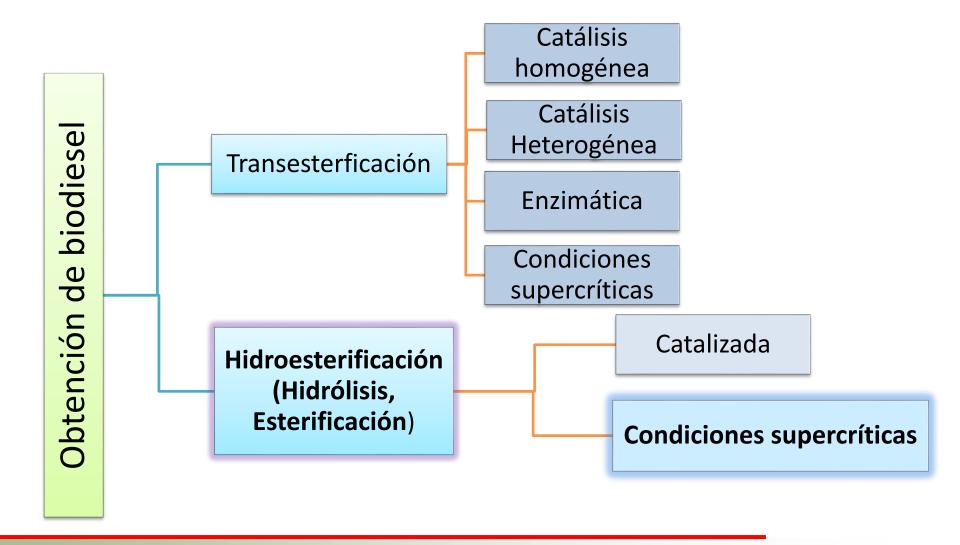
UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE-L

CARRERA DE INGENIERÍA PETROQUÍMICA

REDUCCIÓN DEL CONTENIDO DE ÁCIDOS GRASOS LIBRES, MEDIANTE ADSORCIÓN CON TIERRA DE DIATOMEAS, EN EL BIODIESEL PRODUCIDO POR LA HIDROESTERIFICACIÓN EN CONDICIONES SUPERCRÍTICAS A PARTIR DE ACEITE USADO DE COCINA

AUTOR: CAISA CHASIPANTA, WILLAM JEFERSON

DIRECTOR: ING.DE LA TORRE OLVERA, GUIDO DE LA TORRE



INTRODUCCIÓN	
OBJETIVOS	
METODOLOGÍA	
ANÁLISIS DE RESULTADOS	
CONCLUSIONES Y RECOMENDACIONES	

INTRODUCCIÓN	
OBJETIVOS	
METODOLOGÍA	
ANÁLISIS DE RESULTADOS	
CONCLUSIONES Y RECOMENDACIONES	

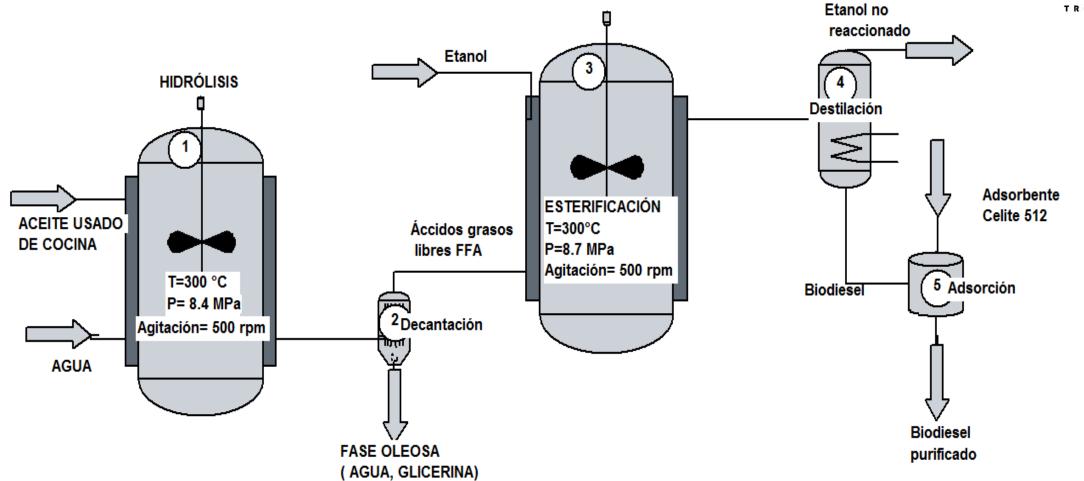
OBJETIVOS

OBJETIVO GENERAL

 Reducir el contenido de ácidos grasos libres, mediante adsorción con tierra de diatomeas, en el biodiesel producido a partir de la hidroesterificación en condiciones supercríticas para el cumplimiento del valor normado

OBJETIVOS ESPECÍFICOS

- Determinar las principales propiedades del aceite usado de cocina.
- Preparar biodiesel mediante la hidroesterificación del aceite usado de cocina con agua subcrítica y etanol supercrítico.
- Determinar el número de acidez del biodiesel mediante el método de ensayo ASTM D664, establecido en la noma técnica ecuatoriana (Instituto Ecuatoriano de Normalización, 2009).
- Determinar las condiciones óptimas de temperatura y tiempo de adsorción, para reducir el número de acidez dentro de las normas establecidas
- Determinar las propiedades más relevantes del biodiesel purificado a las mejores condiciones de adsorción como densidad, viscosidad, corrosión en lámina de cobre, número de acidez, establecidos en la norma técnica ecuatoriana (Instituto Ecuatoriano de Normalización, 2009).



INTRODUCCIÓN	
OBJETIVOS	
METODOLOGÍA	
ANÁLISIS DE RESULTADOS	
CONCLUSIONES Y RECOMENDACIONES	

METODOLOGÍA

HIDRÓLISIS Y DECANTACIÓN

REACCIÓN

SEPARACION DE FASES

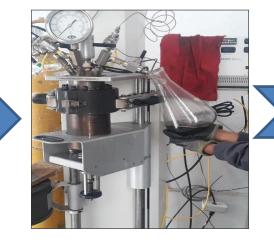
- Ácidos grasos libres
- Agua con glicerol

$$C_3H_5(OOCR)_3$$
 + H_2O \longrightarrow $C_3H_5(OH) \cdot (OOCR)_2$ + RCOOH Triglicérido Agua Diglicérido Ácido graso

$$C_3H_5(OH) \cdot (OOCR)_2 + H_2O \longrightarrow C_3H_5(OH)_2 \cdot (OOCR)_1 + RCOOH$$
 Diglicérido Agua Monoglicérido Ácido graso

$$C_3H_5(OH)_2$$
 . $(OOCR)_1$ + H_2O \longrightarrow $C_3H_5(OH)_3$ + RCOOH Monoglicérido Agua Glicerina Ácido graso

Fuente: (dos Santos, Hatanaka, de Oliveira, & Flumignan, 2017).




ESTERIFICACIÓN Y DESTILACIÓN

Ácidos grasos libres y etanol

Reacción y toma de muestra

Destilación atmosférica

RCOOH + ROH
$$\stackrel{\longrightarrow}{\longleftarrow}$$
 R-COO-R + H₂O
Ácido graso Alcohol Éster Agua

Fuente: (Micic et al., 2016)

Presión = 0,1 bar **Concentración másica del adsorbente =** 5 %

Temperatura (°C)	Tiempo (minutos)
	30
60	60
60	90
	120
	30
70	60
70	90
	120
	30
90	60
80	90
	120

PROCESO PARA LA ADSORCIÓN DE ACIDOS GRASOS LIBRES

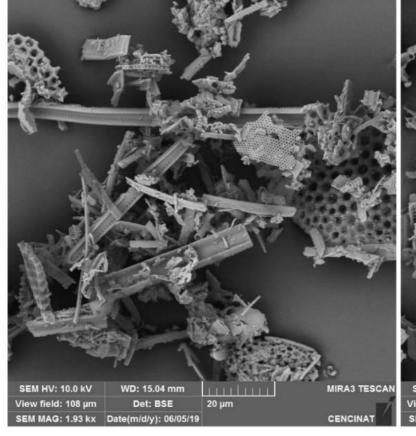
TIERRA DE DIATOMEAS

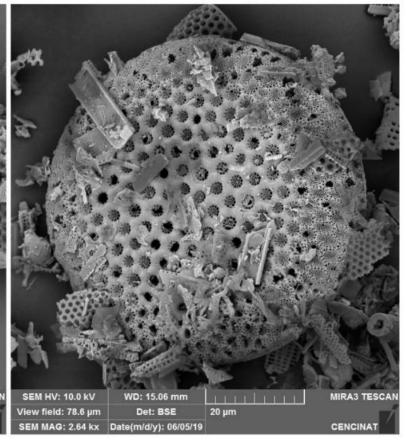
BIODIESEL

ADSORCIÓN

SEPARACIÓN AL VACIO

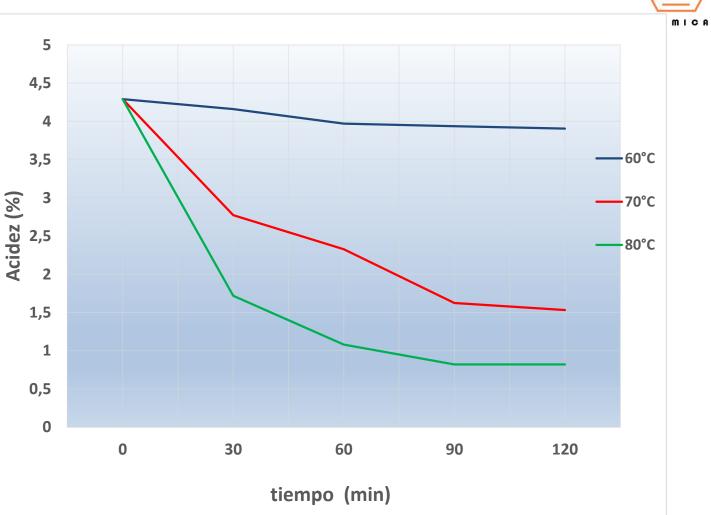
INTRODUCCIÓN	
OBJETIVOS	
METODOLOGÍA	
ANÁLISIS DE RESULTADOS	
CONCLUSIONES Y RECOMENDACIONES	



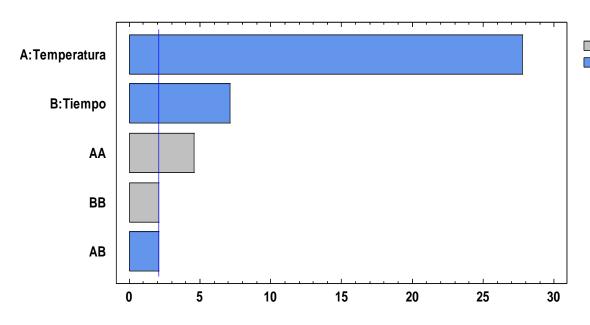

Parámetros	Valor	Unidad	Método de ensayo
Índice de acidez	2,43	mg KOH/g	ASTM D 664
Viscosidad	38,42	mm^2/s	ASTM D 445
Densidad	919,64	kg/m^3	NTE INEN 0035:2012
Índice de saponificación	198,17	mg KOH/g	NTE INEN-ISO 3657:2013
Peso molecular promedio	852,26	g/mol	-

PROPIEDADES DEL ADSORBENTE TIERRA DE DIATOMEAS (Celite 512 medium)

Parámetros	Especificación
Color	Beige tenue
Densidad Húmeda	317g/l
Permeabilidad	0,4 Darcy
Composición	SiO2 (91,5%)



PETROQUIMICA


Bloque	Temperatura (°C)	Tiempo (min)	Acidez (%)	Capacidad (%)
-		30	4,161	2,462
	60	60	3,97	6,1
	60	90	3,937	6,725
		120	3,906	7,319
		30	2,773	28,908
1	70	60	2,328	37,377
1	70	90	1,624	50,787
		120	1,532	52,543
		30	1,719	48,992
	80	60	1,08	61,151
	80	90	0,82	66,107
		120	0,82	66,175
	60	30	4,126	3,118
		60	3,975	6,003
	00	90	3,922	7,03
		120	3,889	7,636
		30	2,934	25,833
2	70	60	2,483	34,422
2	70	90	1,666	49,991
		120	1,587	51,494
		30	1,549	52,225
	80	60	1,043	61,86
	δU	90	0,802	66,446
		120	0,8	66,796

,	~			,
VNIVIICIC DEI	DICENIO	EXPERIMENTAL		$D \subset I \subset M$
ANALISIS DLL	DISLING	LAFLINIVILINIAL	LIN LA AUSU	NCION

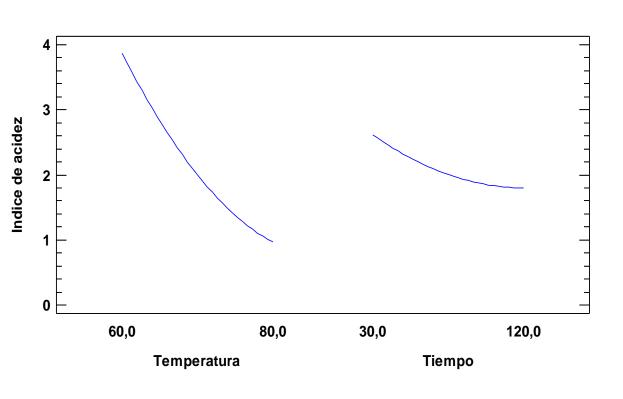
Fuente	Suma de Cuadrados	GI	Cuadrado Medio	Razón-F	Valor-P
A:Temperatura	33,8026	1	33,8026	771,01	0,0000
B:Tiempo	2,21436	1	2,21436	50,51	0,0000
AA	0,92463	1	0,92463	21,09	0,0003
АВ	0,189346	1	0,189346	4,32	0,0532
ВВ	0,191352	1	0,191352	4,36	0,0520
Bloques	0,0004950	1	0,00049504	0,01	0,9166
Error total	0,745318	17	0,0438422		
Total (corr.)	38,0681	23			

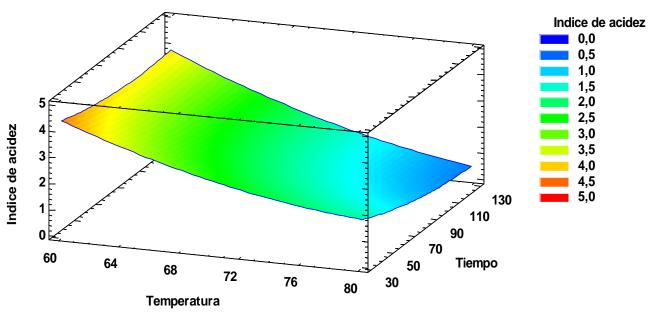
R-cuadrada = 98,0421 %

R-cuadrada (ajustada por g.l.)= 97,3511 %

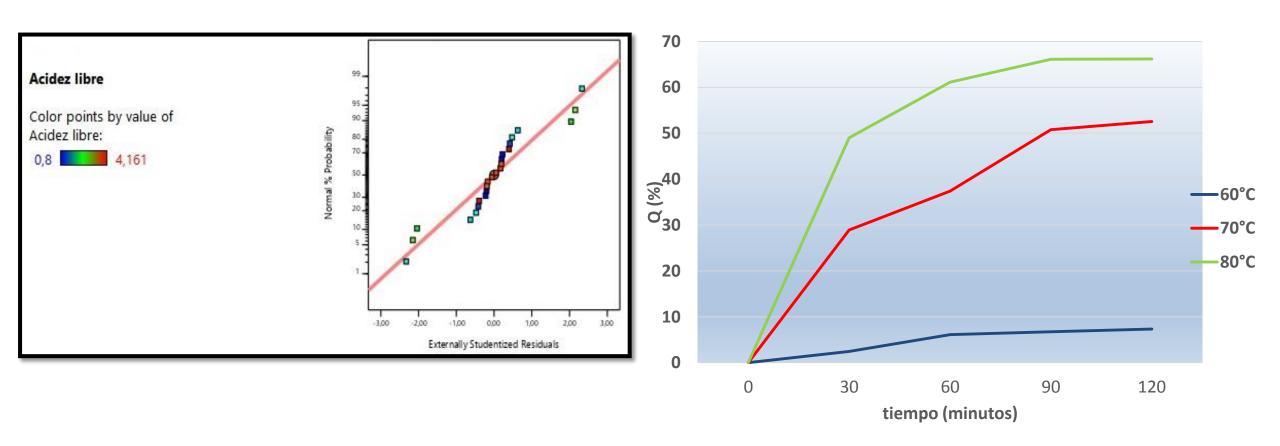
Acidez(%)

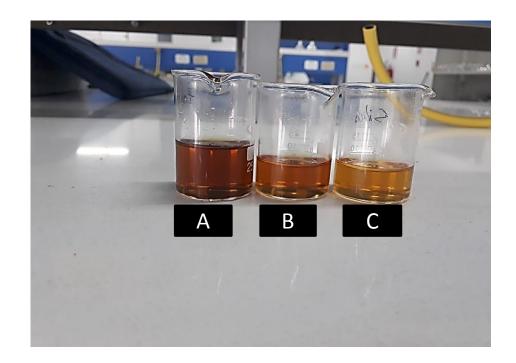
 $= 32,1157 - 0,70395 * T - 0,00123472 * t + 0,00416375 * T^{2}$


 $-0.000324333 * T * t + 0.000099213 * t^2$


ESPE

PETROQUIMICA

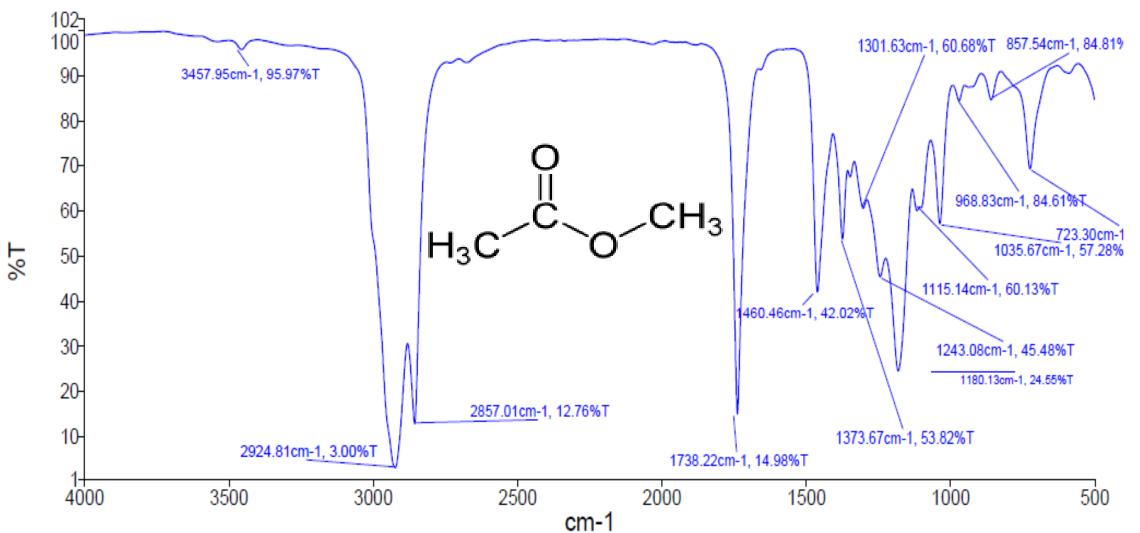




E S P E

- A) T=60°C, t=120 min
- B) T=70°C, t=120 min
- C) T=80°C, t= 90 min

DETERMINACION DE LAS PRINCIPALES PROPIEADES DEL BIODIESEL


Biodiesel antes de la adsorción (BT1)							
Parámetros	Unidad	valor	Mínimo	Máximo			
Densidad a 15°C	kg/m^3	878,55	860	900			
Viscosidad cinemática a 40°C	mm^2/s	5,27	3,5	5			
Número de acidez	mmg KOH/g	8,33	-	0,5			
Corrosión en lámina de cobre	Clasifica ción	1A	-	3			

Biodiesel después de la adsorción (BT2)							
Parámetros Unidad valor Mínimo Máxim							
Densidad a 15°C	kg/m³	877,50	860	900			
Viscosidad cinemática	mm^2/s						
a 40°C		4,91	3,5	5			
Número de acidez	mmg KOH/g	1,62	-	0,5			
Corrosión en lámina							
de cobre	Clasificación	1A	-	3			

E S P E

Espectroscopía de transmisión de infrarrojo con transformada de Fourier (FTIR) del BT2

Grupo funcional	Frecuencia (cm^{-1})	Tipo de vibración
O-H alcohol	3458	Estiramiento
	2924	Estiramiento asimétrico
Metilo y metilenos(CH3,	2857	Estiramiento simétrico
CH2)	1460	Deformación asimétrica de tijera
	1373	Deformación simétrica
	C=H,CH2 722	Flexión del alquenos y
C=H,CH2		vibraciones tipo rock del metileno
C=O	1738	Estiramiento
C-C-O	1180 ,1035	Estiramiento asimétrico

INTRODUCCIÓN	
OBJETIVOS	
METODOLOGÍA	
ANÁLISIS DE RESULTADOS	
CONCLUSIONES Y RECOMENDACIONES	

CONCLUSIONES

- El grado de reutilización del aceite de cocina modificó sus propiedades mayormente en el índice de acidez y la viscosidad, sin embargo se pudo observar un pequeño cambio con respecto a la densidad e índice de saponificación, por otro lado todas las propiedades mencionadas se encuentra en el rango de estudios similares.
- El índice de acidez del aceite usado de cocina fue superior al valor recomendado para la transesterficación catalítica básica, mientras que en condiciones supercríticas no tuvo ningún efecto negativo.
- En el biodiesel BT1 no se encontró impurezas de glicerina debido a la separación de los mismos a la salida de la reacción de hidrólisis. Esto evitó el uso de grandes cantidades de agua como es el caso de la transesterficación homogénea básica. Por otro lado presentó un contenido considerable de ácidos grasos libres debido a la reacción incompleta en la esterificación.
- Los ácidos grasos libres puros se caracterizan por una elevada viscosidad. Un porcentaje considerable de estos en el biodiesel BT1 alteraron esta propiedad superando el valor establecido en la norma NTE INEN 2482:2009. El alto contenido de ácidos grasos libres y la viscosidad en el biodiesel originan problemas en el sistema de inyección debido a la formación de depósitos y una mala combustión.

CONCLUSIONES

- la adsorción de ácidos grasos libres en el biodiesel BT1 se realizó con tierra de diatomeas, las mejores condiciones fueron a 80°C durante 90 minutos para disminuir la acidez del biodiesel a 0,8 % con una capacidad de adsorción de 66,8 %. El efecto de la temperatura fue el más significativo ya que a 60 °C y a un tiempo de 120 minutos se obtuvo una acidez de 3,9 % y una capacidad de adsorción de 7,32 %.
- La adsorción con tierra de diatomeas se considera como una purificación alternativa amigable con el medio ambiente por lo tanto la disposición final al entorno, no tiene un efecto nocivo y esto evitaría costos de tratamiento para su disposición final.
- La viscosidad del biodiesel BT2 se encuentra en el rango establecido por la norma NTE INEN 2482:2009, producto de la efectividad de la adsorción y se puede concluir que al disminuir el contenido de ácidos grasos libres también se reduce la viscosidad.
- Todas las propiedades del biodiesel BT2 cumplen con la normativa NTE INEN 2482:2009, sin embargo pese a las mejores condiciones de adsorción con tierra de diatomeas el índice de acidez del BT2 supera el rango en mínima cantidad.

RECOMENDACIONES

- En el proceso de obtención del biodiesel en condiciones supercríticos se recomienda filtrar bien el aceite usado de cocina puesto que poseen pequeñas partículas sólidas y pueden perjudicar la reacción.
- Realizar pruebas de regeneración del adsorbente con un solvente adecuado, y determinar la capacidad de adsorción, se puede emplear metanol a temperaturas superiores a 120 °C.
- Se recomienda manipular otras variables en la adsorción de ácidos graso libres, como concentración del adsorbente y presión, además incrementar la temperatura de adsorción hasta alcanzar la temperatura óptima, tomar en consideración que altas temperaturas pueden provocar la desorción (proceso inverso).
- Realizar otros métodos de purificación como la neutralización con una base fuerte, destilación al vacío etc.
- Se recomienda investigar otros adsorbentes porosos como; la sílica, porulite, amberlite entre otros y ver la capacidad de adsorción.
- Realizar un análisis económico completo del proceso integrado, para conocer el costo/beneficio para la implementación a escala industrial.

GRACIAS