

UNIVERSIDAD DE LAS FUERZAS ARMADAS – ESPE

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA MECATRÓNICA

Tema:

"DISEÑO Y CONSTRUCC<mark>IÓN DE UN PROTO</mark>TIPO DE EXOESQUELETO ROBÓTICO DE CADERA USANDO MATERIALES INTELIGENTES PARA PERSONAS CON MOTRICIDAD LIMITADA"

Autores:

ROMERO MEDINA ,JAKEYN XIOMARA TACO GUANOTASIG, MARCO ANTONIO

Director: ING. ARTEAGA LÓPEZ, OSCAR BLADIMIR

Introducción

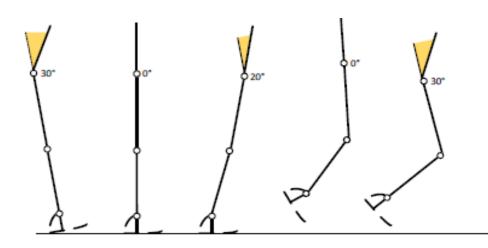
Exoesqueleto

Antecedentes

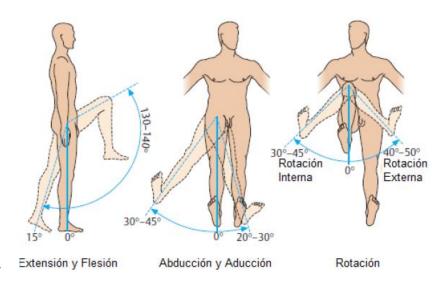
Clasificación

Objetivos

GENERAL


• Diseñar y construir un prototipo de exoesqueleto robótico de cadera usando materiales inteligentes para personas con motricidad limitada.

ESPECÍFICOS


- Investigar sobre trabajos o prototipos existentes
- Diseñar y analizar un prototipo de exoesqueleto robótico de cadera funcional para el usuario
- Desarrollar el sistema de control
- Construir un prototipo de exoesqueleto funcional
- Realizar pruebas de funcionamiento

Biomecánica de cadera en la marcha

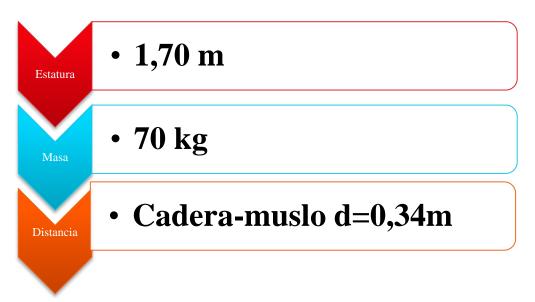
Movimientos

Antropometría

	Hombres – Medias (cm)							
N.	Medidas.Antropométricas	Mestizos	Indígenas	Afroecuatorianos				
1	Altura Normal	172,4	163,3	177,6				
2	Grosor del muslo	13,20	13,08	15,29				
3	Longitud Glúteo – Rodilla	57,11	55,17	58,38				
4	Longitud Codo a Codo posición sentado	44,70	44,84	49,85				
5	Ancho de caderas posición sentado	35,62	37,89	40,63				
6	Longitud Hombro – Codo	36,32	37,10	38,99				
7	Longitud Codo – Mano	46,08	45,00	47,76				

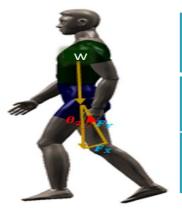
Peso Segmentos humanos

SEGMENTO	MASA	CG	Punto proximal	Punto distal	
Cabeza y cuello	7.3%	46.40%	Vertex	gonion medio	
Tronco	50.7%	38.03%	hueco supraesternal	cadera media	
Brazo	2.6%	51.30%	Acromion	Radiale	
Antebrazo	1.6%	38.96%	Radial	art. Muñeca	
Mano	0.7%	82.00%	art. Muñeca	estiloides 3°dedo	
Muslo	10.3%	37.19%	art. Cadera	Tibiale	
Pantorrilla	4.3%	37.05%	Tibiale	art. Tobillo	
Pie	1.5%	44.90%	Talón	dedo 1º	

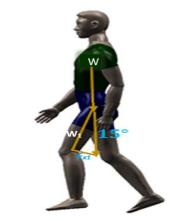

Longitud

SEGMENTO	% ESTATURA
Mano	10.8%
Tórax	28.8%
Brazo	18.6%
Antebrazo	14.6%
Pelvis	4.5%
Muslo	20.0%
Pantorrilla y pie	28.5%

Parámetros De Diseño



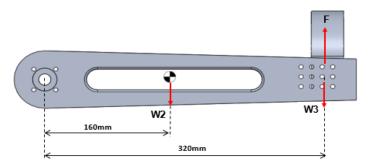
Casos de análisis

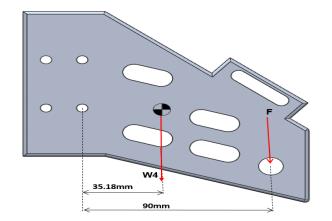

Torque	$\tau = 79,14Nm$
Teórico	
Torque	$\tau_{req} = 94,97 \ Nm$
requerido	
Potencia	$P_{req} = 37,29 watts$
Requerida	

Torque Teórico	$\tau = 40,97Nm$
Torque requerido	$\tau_{req} = 49,16 \ Nm$
Potencia Requerida	$P_{req} = 10,29 \ watts$

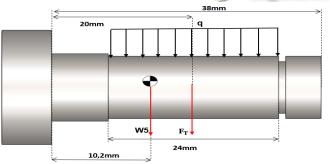
W = 465,58 N

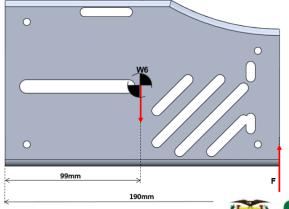
Torque	$\tau = 9,7Nm$
Teórico	
Torque	$ au_{req} = 11,67 \ Nm$
requerido	
Potencia	$P_{req} = 2,44 watts$
Requerida	


Selección Material



Propiedades	Aluminio 6061- T6	Acero AISI 1020	Plástico Ácido poliláctico (PLA)	
Densidad [g/cm³]	2,71	7,96	1,26 25 Buena 55	
Dureza [HB]	120	140		
Maquinabilidad	Excelente	No se maquina con facilidad.		
Módulo de elasticidad [GPa]	70	207		
Tensión de fluencia [MPa]	260	296	65	
Tensión de tracción [Mpa]	290	393	70	




Análisis de cargas

Selección de Motor

	Características	Maxon motor EC 60 Flat (brushless)	Harmonic Drive Actuator FHA-14C	Brushless DC Motor Nema23 57BLF03
	Potencia	100 W	100 W	188 W
(ón	Tensión nominal	24 V	24 V	24 V
al al	Velocidad nominal	3740 rpm	30 rpm	300 rpm
Datos de tensión nominal	Torque	0.289 Nm	0.180 Nm	0,066Nm
nor d	Máx. eficiencia	86 %	80 %	80 %
	Velocidad máxima	6000 rpm	60 rpm	400 rpm
	Corriente nominal	5,47 A	12,3 A	12 A
	Máx temperatura de bobinado	+125 °C	+40 °C	+50 °C
Datos Térmicos	Temperatura ambiente	-40+100 °C	-20+60 °C	-20+50 °C
S	Peso	0.470 kg	1.300 kg	1.24 kg
cánico	Longitud	43 mm	78 mm	101 mm
Datos mecánicos	Diámetro	68 mm	74 mm	57 mm
Da	Número de par de polos	7	5	8

$$T_{req1} = 94,97Nm$$

 $P_{req1} = 37,29 Watts$
 $\omega_1 = 3,75 rpm$

Selección de Reductor

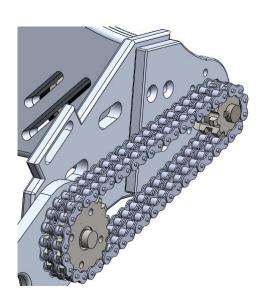
Características	REDUCTOR PLANETARIO GP 52B MAXON
Relación de reducción	353:1
Peso y tamaño	0,92 kg
Velocidad de entada máxima	6000 rpm
Torque de salida máximo	500 Nm
Torque en continuo máximo	200 Nm
Rendimiento	68%

$$P_{reali} > P_{req1}$$

58,48 *watts* > 37,29 *Watts*

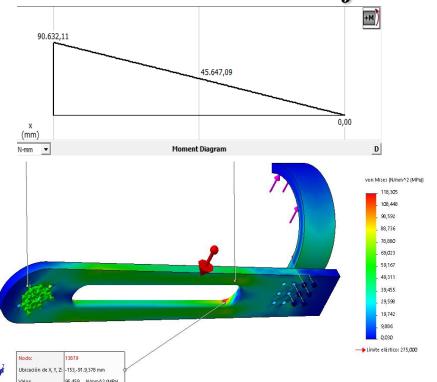
$$T_{real i} > T_{req 1}$$

 $59,65 \, Nm < 94,97 \, Nm$


$$w_{reali} \approx w_{reg1}$$

 $6,19 \ rpm > 3,75 \ rpm$

Selección de Mecanismo de transmisión



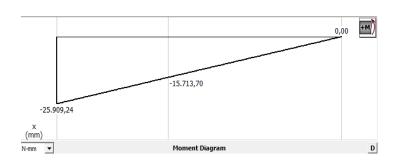
- Una cadena RS-35 a doble hilera
- Un piñón conductor de 11 dientes
- Un piñón conducido de 18 dientes

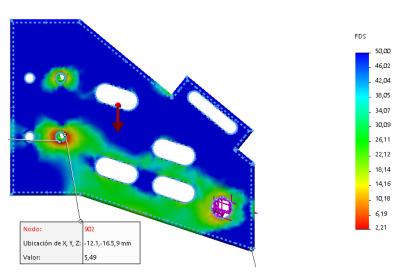
Diseño Estructura

Sujeción Lateral

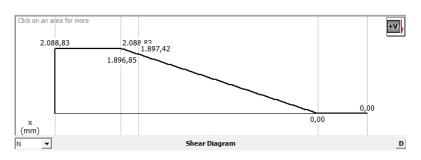
$$\sigma_1 = \frac{M_{\text{max } 1}}{S}$$

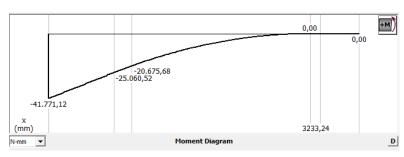
$$\tau_{T1} = \frac{T_{req\ 1}}{\alpha * h * b^2}$$

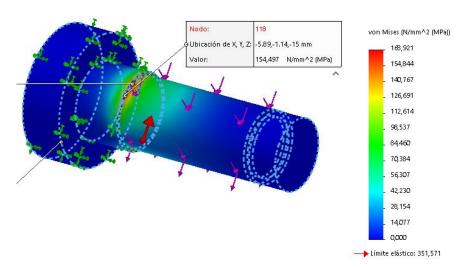

$$\sigma_{eq\ 1} = \sqrt{\sigma_1^2 + (3\tau_{T1}^2)}$$


$$n_1 = \frac{Sy}{\sigma_{eq\ 1}}$$

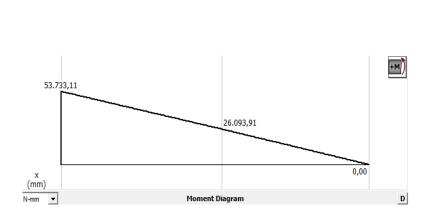
Lateral Cadera

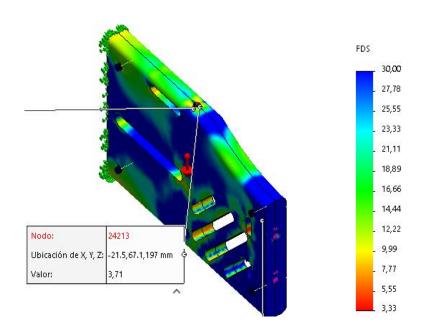




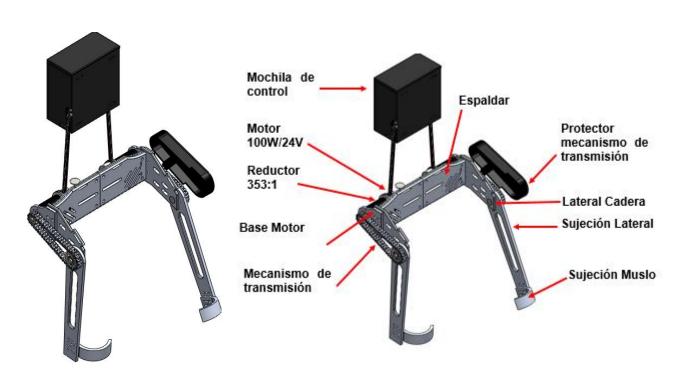


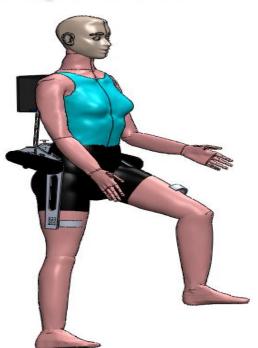
Eje Conector



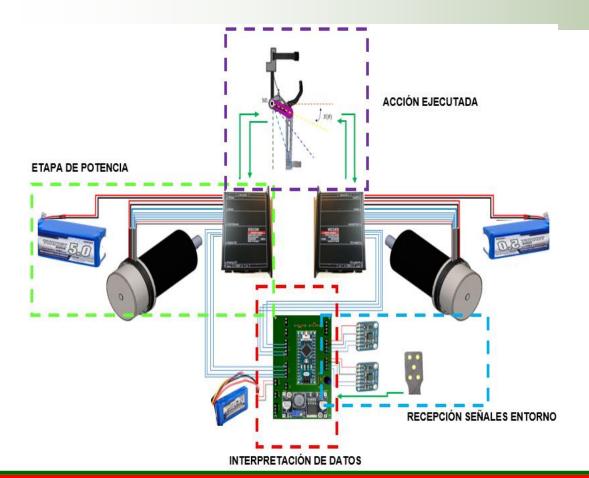


Espaldar

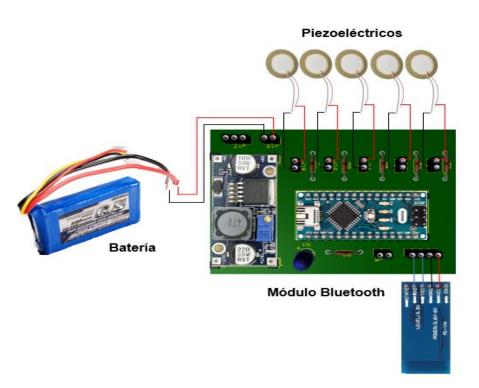




Diseño Final


Diseño Electrónico

Datos Técnicos	Escon 50/5
Tensión nominal de trabajo	1050Vcc
Intensidad de salida	5ª/15ª
Máx. grado de eficacia	95%
Frecuencia de modulación por duración de pulso (PWM)	53,6 kHz
Tensión de alimentación de sensor Hall	+5 VCC
Temperatura de funcionamiento	-30+45°C



Emisor

Construcción e Implementación

Ensamblaje

Exoesqueleto Final

Pruebas y Resultados

En Vacío

ESTADOS DE EJECUCIÓN	INTERVALO- ÁNGULO (grados)	REPETICIONES	ÁNGULO (grados)	
		1 82		
T TOWA NITE A D	0.00	2	84	
LEVANTAR	0-90	3	83	
		4	82	
		PROMEDIO	83	
		1	102	
CAMINAD	75 105	2	103	
CAMINAR	75-105	3 103		
		4	102	
		PROMEDIO	103	
		1	16	
CENTELL	00.0	2	18	
SENTAR	90-0	3	19	
		4	21	
		PROMEDIO	18	

Adulto Mayor

Sin Exoesqueleto

Con Exoesqueleto

REPETICION ES	TIEMPO LEVANTAR (s)	TIEMPO CAMINAR (s)	TIEMPO SENTAR (s)	TIEMPO TOTAL CICLO (s)	REPETICION ES	TIEMPO LEVANTA R (s)	TIEMP O CAMIN A (s)	TIEMPO SENTAR (s)	TIEMPO TOTAL CICLO (s)
1	3,91	27,98	3,5	35,39			(3)		
2	3,87	27,52	3,41	34,80	1	3,98	30,43	3,75	38,16
3	4,55	29,59	3,72	37,86	2	3,87	31,33	3,65	38,85
4	4,1	27,24	3,82	35,16	3	3,72	26,59	3,58	33,89
5	4,26	31,18	3,56	39,00	4	3,65	26,73	3,52	33,9
6	4,17	27,91	3,2	35,28	5	3,63	26,94	3,61	34,18
7	5,19	29,87	3,92	38,98	6				
8	4,87	28,98	3,57	37,42	7	3,88	31,1	3,49	38,47
9	4,79	29,88	3,95	38,62	8	3,61	26,58	3,48	33,67
10	3,98	30,33	3,89	38,20	9	3,54	27,87	3,56	34,97
PROMEDIO						3,57	26,87	3,59	34,03
TROMEDIO					10	3,53	26,73	3,61	33,87
	4,37	29,05	3,65	37,07	PROMEDIO	3,70	28,12	3,58	35,40

Conclusiones

- Se diseñó un prototipo de exoesqueleto que permite otorga la fuerza necesaria a las personas con motricidad limitada para permitir realizar la actividad de locomoción cuyo límite de peso es de 70kg, dicha estructura se diseñó en base a datos antropométricos de la población promedio de Ecuatorianos para permitir que la estructura se adapta al usuario.
- Mediante el análisis de elementos finitos realizados en el software se demuestra que dicho diseño es funcional y confiable para el usuario ya que tiene un factor de seguridad mayor a 2 que hace que el mismo sea seguro.
- El exoesqueleto diseñado permite realizar los movimientos necesarios para que el usuario realice el proceso de locomoción de manera normal, dentro del mismo se comprueba el grado de libertad flexión-extensión.

Conclusiones

- La aplicación del material inteligente en este caso piezoeléctrico permite que el usuario mediante su tacto dependiendo de la fuerza de presión decida el nivel de velocidad a la que desee realizar la acción de caminar entregándole seguridad en su actividad.
- Mediante los datos tabulados se obtiene una precisión de 93% en la función de levantar, de 98% al momento de iniciar la locomoción y de 82% en la función de sentar, lo cual permite determinar que dicho prototipo cumple con los valores de rango establecidos en cada movimiento.

Recomendaciones

- Se recomienda investigar otros tipos de materiales que permitan que el exoesqueleto sea más liviano pero que presente igual o mayor resistencia a las fallas, que el material seleccionado en el presente proyecto.
- Para autonomía del usuario se recomienda implementar un control que accione el prototipo mediante señales eléctricas generadas por el propio usuario en una determinada parte del cuerpo.
- Implementar nuevos grados de libertad para permitir que el usuario tenga mayor movilidad al momento de desplazarse.
- Se recomienda implementar un indicador de nivel de carga de la batería que alimenta el exoesqueleto de cadera para poder conocer en momento en el cual la misma llegue a 22,2V.

GRACIAS & Ingenter's Restriction

