

UNIVERSIDAD DE LAS FUERZAS ARMADAS-ESPE

CARRERA DE INGENIERÍA PETROQUÍMICA

OBTENCIÓN Y CARACTERIZACIÓN DE PRECURSORES DE CATALIZADORES A PARTIR DE SOLUCIONES A BASE DE La, Al, Fe Y Ni PROCEDENTES DE CATALIZADORES AGOTADOS.

AUTOR: MAZA BELTRÁN, ALEX PATRICIO

DIRECTORA: ING. DONOSO QUIMBITA, CATERINE ISABEL MSc.

INTRODUCCIÓN

METODOLOGÍA

ANÁLISIS DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

Introducción

En la industria de refinación de petróleo se emplea una gran variedad de catalizadores para los diferentes procesos químicos como reformación catalítica, craqueo catalítico, hidro-tratamiento, hidro-desulfuración, entre otros.

Los catalizadores a menudo requieren reemplazo después de 2 o 3 años de operación

Se generan aproximadamente 400000 toneladas de catalizadores agotados anualmente a nivel mundial (Aung & Ting, 2005).

• En la Refinería Esmeraldas se desechan 480 toneladas de catalizador agotado al año aproximadamente (Sánchez, 2017)

Figura 1. Refinería

Esmeraldas

Los catalizadores agotados de la Refinería Esmeraldas son confinados en contenedores y sacos a la intemperie.

Posible contaminación por lixiviación debido a escorrentías o impermeabilización en el suelo.

Tabla 1.Composición química de catalizador agotado

Elemento	Contenido %
Si	23.56
Al	20.55
La	3.08
Ti	1.10
Fe	0.66
V	0.17
Nb	0.16
Ca	0.10
Ni	0.09
Mg	0.09
S	0.01

El gran aumento de desechos de catalizadores agotados sin un tratamiento adecuado, ha llevado a realizar investigaciones para disminuir el impacto ambiental.

Procesos para la recuperación de tierras raras a partir de catalizadores agotados:

- Hidrometalúrgico
- Pirometalúrgico

Hidrometalúrgico

Ácido 2-etilhexil fosfórico (D2EHPA) o el mono-2-etilhexil éster del ácido 2-etilhexil fosfórico (HEH(EHP)) (Xu et al., 1992) y ácido oxálico en exceso, con una relación molar mayor a 1.5 (Chi & Xu, 1999).

- Por tanto, el presente trabajo aportará a una disposición adecuada de los lixiviados procedentes de catalizadores agotados, mediante la obtención de sólidos utilizados como precursores de catalizadores.
- Contribuyendo así a la reducción de pasivos ambientales y a la generación de una propuesta de gestión más adecuada y compatible con las políticas ambientales.

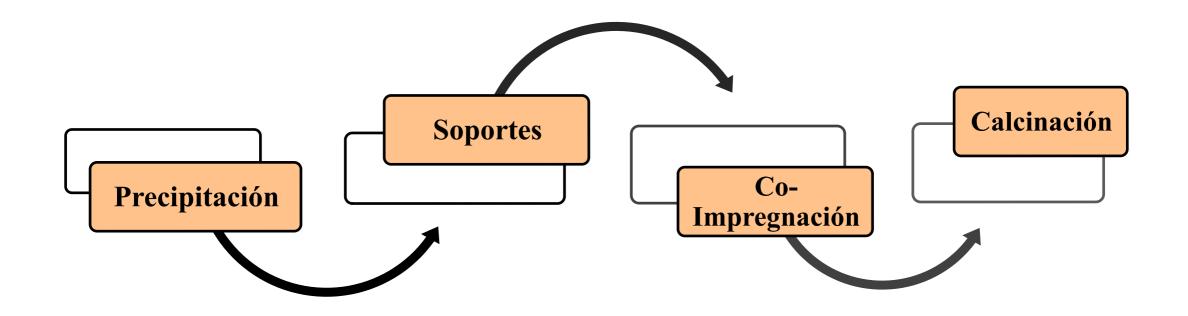
Objetivos

Objetivo General

Obtener y caracterizar precursores de catalizadores a partir de soluciones con contenido de Fe, Ni, La y Al.

Objetivo Específicos

- Preparar los soportes de óxido de lantano y alúmina.
- Impregnar níquel y hierro de la solución remanente sobre el soporte de alúmina modificado con lantano.
- Determinar el tamaño de partícula y morfología de los precursores de catalizadores de Fe-Ni soportados en La₂O₃-Al₂O₃ mediante la técnica analítica de Microscopía Electrónica de Barrido (MEB).
- Determinar el número de especies reducidas de los precursores de catalizadores Fe-Ni soportados en La₂O₃-Al₂O₃ mediante la técnica analítica de Reducción a Temperatura Programada (TPR).
- Determinar la estructura de los precursores de catalizadores Fe-Ni soportados en La₂O₃-Al₂O₃ con Difracción de Rayos X (XRD).


INTRODUCCIÓN

METODOLOGÍA

ANÁLISIS DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

Lixiviado con alto contenido de La, Al y trazas de Fe y Ni.

V = 500 M

$$T = 21^{\circ}C$$

Figura 2. 500mL de lixiviado

Precipitación

Relación molar

ácido oxálico: lixiviado de lantano

1:1.8

17.5 g ácido oxálico (99.5%)

Figura 3. ácido oxálico

Precipitación

Ajuste del pH Alcanzar un pH = 2.5 Hidróxido de Sodio (NaOH) 4 M

Figura 4. hidróxido de sodio

Figura 5. hidróxido de sodio

Figura 6. hidróxido de sodio

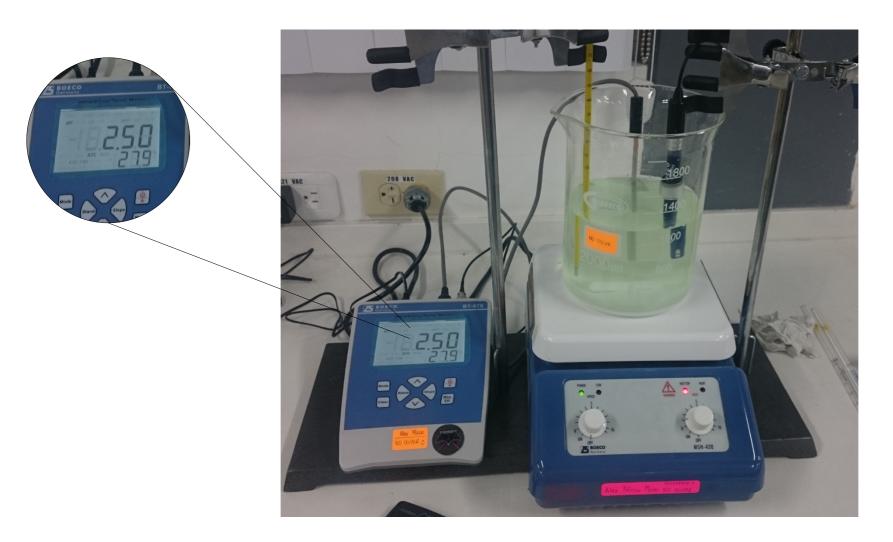


Figura 7. Lixiviado a pH 2.50 y temperatura

Figura 9. hidróxido de sodio

Filtración del sólido precipitado 24 horas

Figura 10. Sólido precipitado

Sólido obtenido después de filtración y secado -blanquecino

Tratamiento térmico

Figura 11. Rampa de calcinación

Figura 12. Temperatura de la mufla

Figura 13. Temperatura de la mufla

400 °C 20



Figura 14. Temperatura de la mufla 800 °C

Figura 15. sólido obtenido a 800 °C

Figura 16. Co-Impregnación

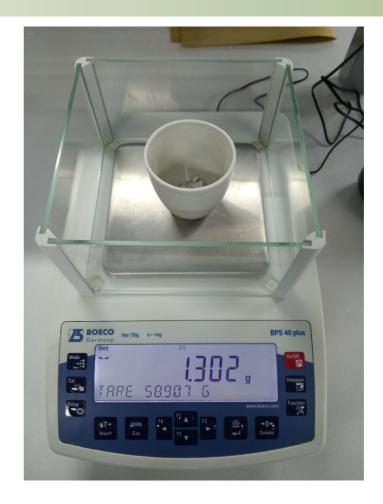


Figura 17. Precursor de catalizador

INNOVACIÓN PARA LA EXCELENCIA

INTRODUCCIÓN

METODOLOGÍA

ANÁLISIS DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

Reducción a Temperatura Programada

Picos Principales a: 486 °C y 694 °C

Consumo de hidrógeno total por gramo de catalizador.

 $110.2202 \text{ cm}^3/\text{g}.$

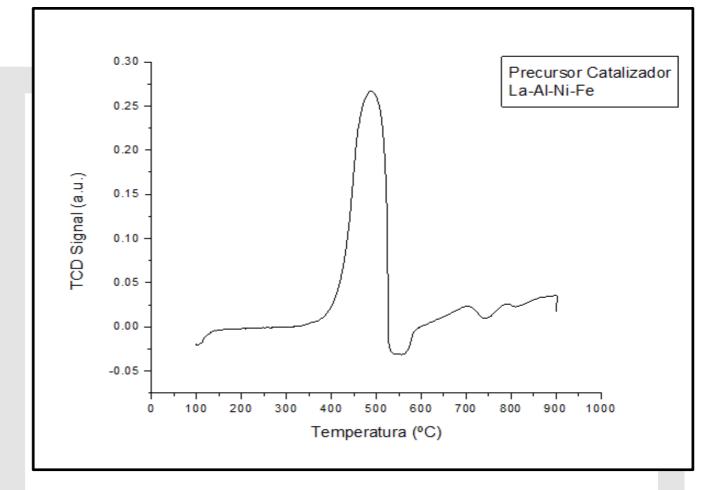


Figura 18. Perfil de reducción del sólido calcinado a 800 °C.

A 480 °C

$$H_2 + 2LaNiO_3$$
 $La_2Ni_2O_5 + H_2O$ [1]
 $2H_2 + La_2Ni_2O_5$ $La_2O_3 + 2H_2O + 2Ni$ [2]
Fuente: (Lugo,2012)

A 682°C a 860 °C

$$\alpha$$
-Fe₂O₃ + 3H₂ 2Fe + H₂O [3]
Fuente: (Cotillo,2017)

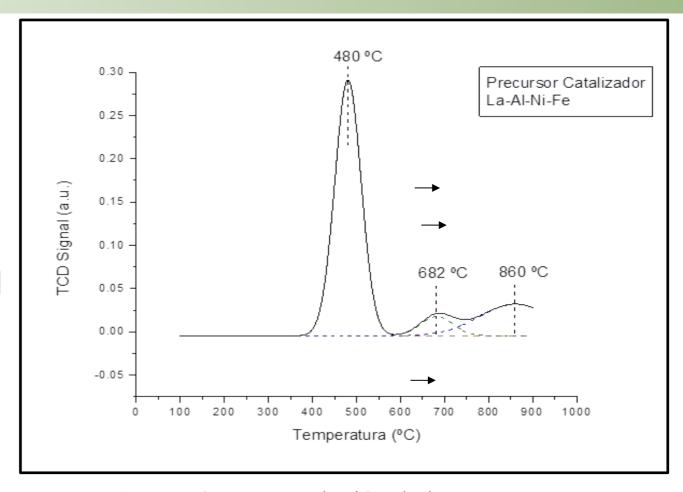


Figura 19. Deconvolución de la curva

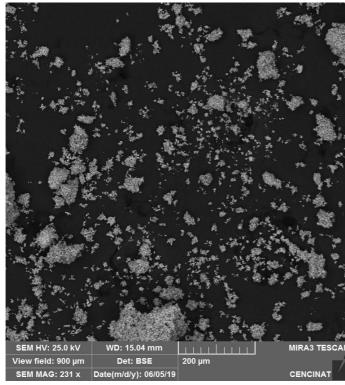
Tabla 1. Resultados de reducción a temperatura programada

Pico #	Temperatura °C	Consumo de H ₂ (cm ³ /g)	Contribución (%)	Cantidad de especies reducidas (mmol H ₂ /g)
1	486	76.95	69.8149	3.4331
2	694	7.2	6.53239	0.3212
3	860	26.04	23.6255	1.1617

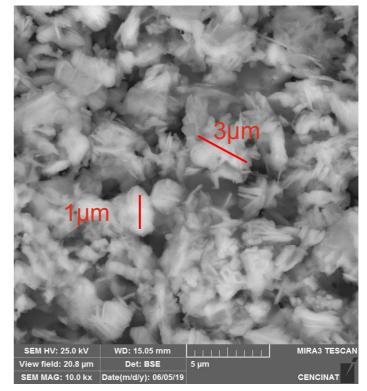
Tabla 3.Catalizadores comerciales de Ni y Fe

Muestras	Composición x=Ni/(Ni+Fe) por EDS*	Masa de muestra (mg)	Temperatura (°C)	Volumen de H ₂ -exp. (mL-STP/g)	Volumen de H2-teo. (mL-STP/g)
NiO	Óxido puro	74,2	364	282,9	299,8
$Ni_{0.9}Fe_{0.1}O_4$	0,91	51,7	412	311,6	-
$Ni_{0.8}Fe_{0.2}O_4$	0,82	51,1	433	308,1	-
$Ni_{0.5}Fe_{0.5}O_4$	0,52	63,2	445	224,6	-
					46,7 (Fe ₃ O ₄)
α -Fe ₂ O ₃	Óxido puro	51,0	716	302,5	140,3 (FeO)
					420,8 (Fe)

Fuente: (Cotillo, 2017)


Tabla 4.Catalizadores comerciales de Ni,, Mg y La

Ca	taliza	dor	Temperatura máxima de los picos (°C)		
Ni	Mg	La	Pico 1	Pico 2	Pico 3
19	8	73	349,22	589,33	727,33
18	27	55	334,88	578,44	784,11
19	32	49	327,11	570,33	784,11
19	53	28	372,77	602,77	


Fuente: (Lugo, 2012)

Microscopía Electrónica de Barrido

Figura 20. Micrografía MEB del sólido precipitado con amplificación de 231 X

Figura 21. Micrografías MEB del sólido precipitado con amplificación de 10.0 kX

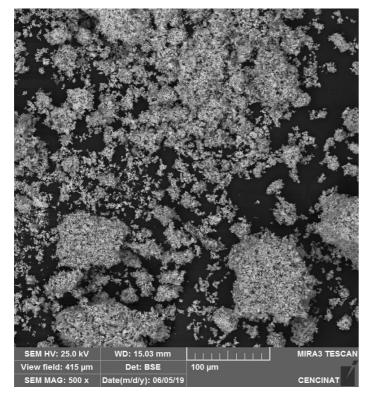


Figura 22. Micrografía después de la calcinación a 800 °C a 500X

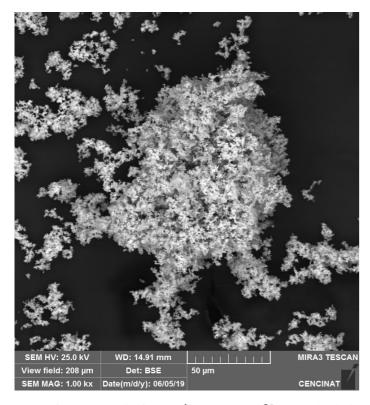
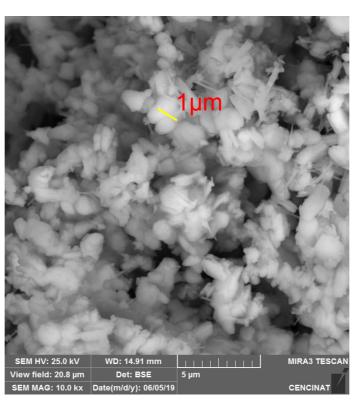




Figura 23. Micrografía después de la calcinación a 800 °C a 10.00 kX

Figura 24. Micrografía a 1.00 kX después de TPR

Figura 25. Micrografía a 10.0 kX después de TPR

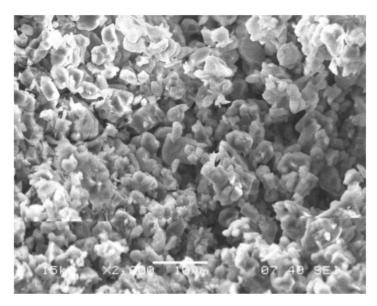


Figura 26. óxido de lantano

Fuente: Singh, 2005

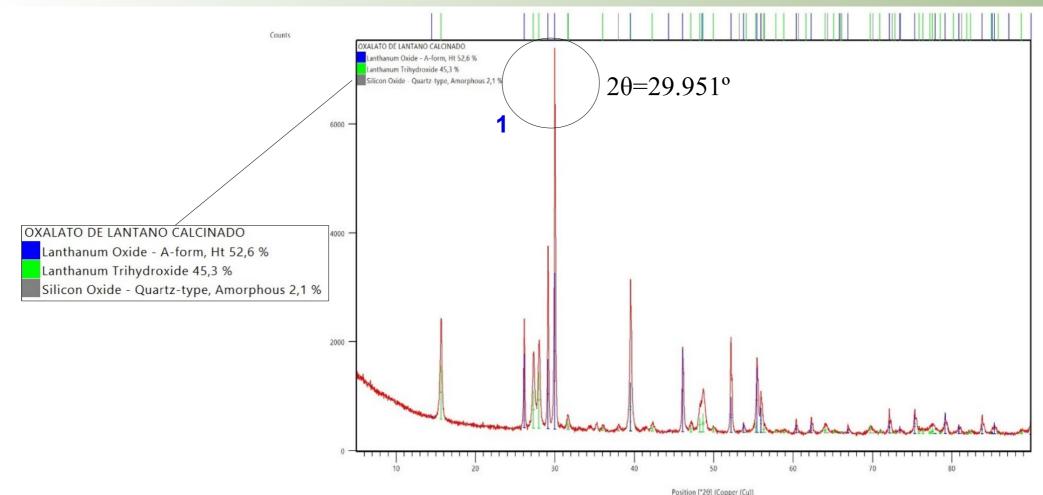


Figura 27. Espectro óxido de Lantano

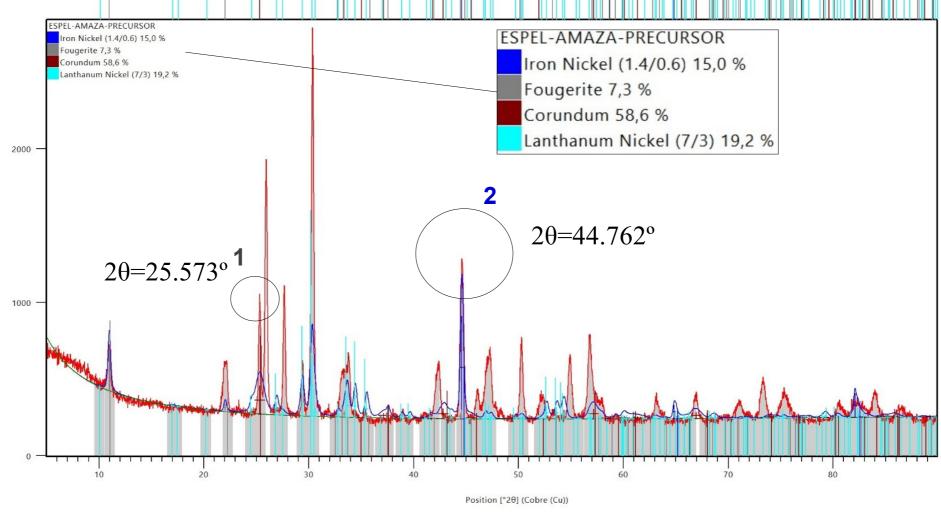


Figura 28. Espectro sólido después de la co-impregnación

INTRODUCCIÓN

METODOLOGÍA

ANÁLISIS DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

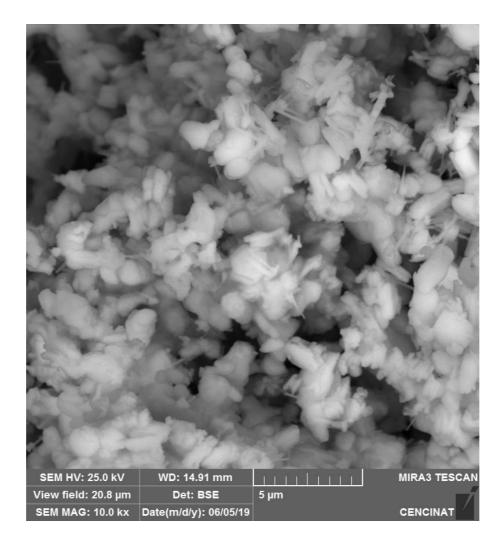
Conclusiones

Mediante las técnicas de caracterización se comprueba que los precursores de catalizadores contienen La, Al, Fe y Ni.

- Se obtuvo sólidos a partir de la precipitación de las soluciones de lixiviados a base de La, Fe, Al y Ni, mediante la metodología descrita en el capítulo 3, que pueden ser usados como precursores de catalizadores, debido a que el consumo de H2 en los sólidos obtenidos se asemejan a catalizadores comerciales de Ni soportados en La-Alúmina.
- Con el análisis físico-químico realizado por absorción atómica se comprobó que la solución remanente de lixiviado contenía Fe y Ni, que luego fueron usados como especies para co-impregnación en el soporte de lantano.

Conclusiones

- La técnica analítica de reducción a temperatura programada permitió observar las especies reducidas de acuerdo al consumo de hidrógeno en los picos están en el rango entre 700 °C y 800 °C, lo que evidencia una alta interacción entre el soporte de alúmina y óxidos de níquel. La reducción del óxido mixto niquelato de lantano (LaNiO3) es a 486 °C debido a la baja interacción con el soporte de La2O3.
- Mediante el análisis con Microscopía Electrónica de Barrido se observó el cambio de forma en las partículas de los precursores de catalizadores debido a la aplicación de temperatura en la calcinación y después de la co-impregnación, el precursor final presentó una forma irregular, con granos semiesféricos y aglomerados y con un tamaño de partícula comprendido en el rango de 1 μm y 150 μm debido a la co-impregnación con el Fe y Ni y además por la adición de la temperatura, y el tiempo de calcinación a 450 °C.


Recomendacione

S

- Realizar la co-impregnación con soluciones de Fe y Ni en diferentes concentraciones, con el fin de obtener una mayor fase activa.
- Evaluar el precursor de catalizador en alguna reacción química para realizar la evaluación catalítica y cinética.
- Efectuar la precipitación del oxalato de lantano con el ácido oxálico en diferente relación molar o con otro agente precipitador.
- Realizar la experimentación de la precipitación controlada con otro valor de pH dentro del rango de 1.00 y 2.5.
- Realizar el análisis de reducción a temperatura programada a 1000 °C y con diferente alimentación de H2 en argón.

Gracias!

