

Diseño del aliviadero de emergencia en la zona de la cascada Montana – Provincia de Napo

Martínez Lascano, Daniela Fernanda y Solano Cajamarca, Bryan Josue

Departamento de Ciencias de la Tierra y de la Construcción

Carrera de Ingeniería Civil

Trabajo de titulación, previo a la obtención del título de Ingeniero Civil

Ing. Bonifaz García, Hugo Fabián Mgs.

[Urkund] 6% de similitud - hfbonifaz@espe.edu.ec

report@analysis.urkund.com

31 ago. 2020 22.50

Documento(s) entregado(s) por: https://despe.edu.ec Documento(s) recibido(s) el: 01/09/2020 5:49:00 Informe generado el 01/09/2020 5:50:39 por el servicio de análisis documental de Urkund.

Mensaje del depositante:

Documento: TESIS_SOLANO_MARTINEZ.pdf [D78432633]

[IMPORTANTE! El análisis contine 2 warning(s).

Alrededor de 6% de este documento se compone de texto más o menossimilar al contenido de 30 fuente(s) considerada(s) como la(s) más pertinente(s).La más larga sección comportando similitudes, contiene 115 palabras y tiene un índice de similitud de 75% con su principal fuente.

TENER EN CUENTA que el Indice de similitud presentado arriba, no indica en ningún momento la presencia demostrada de plagio o de falta de rigor en el documento.

Puede haber buenas y legitimas razones para que partes del documento analizado se encuentren en las fuentes identificadas.

Es al corrector mismo de determinar la presencia cierta de plagio o falta de rigor averiguando e interpretando el análisis, las fuentes y el documento

Haga clic para acceder al análisis:

https://secure.urkund.com/view/75114918-194127-997823

Haga clic para descargar el documento entregado:

https://sacure.urkund.com/archive/download/78432633-818376-192488

UN PROBLEMA CON UN DOCUMENTO?

Un documento duplicado?

Un análisis llevando metadatas?

Un análisis inaccesible?

- -> Escribir a nuestro equipo soporte para que la incidencia este resuelta lo antes posible.
- -> Informar el equipo de la referencia de cada documento implicado [DXXXXXXX].

Contactos de nuestro equipo scporte:

support@urkund.com / +46 8 738 52 10

Buenos éxitos para sus estudiantes y suerte para usted.

El equipo Urkund

Ing. Bonifaz García Hugo Fabián, Mgs.

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y DE LA CONSTRUCCIÓN CARRERA DE INGENIERÍA CIVIL

CERTIFICACIÓN

Certifico que el trabajo de titulación, "Diseño del aliviadero de emergencia en la zona de la cascada Montana – Provincia de Napo" fue realizado por los señores Martínez Lascano, Daniela Fernanda y Solano Cajamarca, Bryan Josue el cual ha sido revisado y analizado en su totalidad por la herramienta de verificación de similitud de contenido; por lo tanto cumple con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de Fuerzas Armadas ESPE, razón por la cual me permito acreditar y autorizar para que lo sustente públicamente.

Sangolquí, 03 de septiembre del 2020

Firma

Ing. Bonifaz García Hugo Fabián, Mgs.

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y DE LA CONSTRUCCIÓN CARRERA DE INGENIERÍA CIVIL

RESPONSABILIDAD DE AUTORÍA

Nosotros, Martínez Lascano, Daniela Fernanda y Solano Cajamarca, Bryan Josue, con cedulas de ciudadanía nº 1003712278 y 2100298831, declaramos que el contenido, ideas y criterios del trabajo de titulación: Diseño del aliviadero de emergencia en la zona de la cascada Montana – Provincia de Napo, es de nuestra autoría y responsabilidad, cumpliendo con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, respetando los derechos intelectuales de terceros y referenciando las citas bibliográficas.

Sangolquí, 03 de septiembre del 2020

Firma

Firma

Martínez Lascano, Daniela Fernanda

C.C: 1003712278

Solano Cajamarca, Bryan Josue

DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y DE LA CONSTRUCCIÓN CARRERA DE INGENIERÍA CIVIL

AUTORIZACIÓN DE PUBLICACIÓN

Nosotros, Martínez Lascano, Daniela Fernanda y Solano Cajamarca, Bryan Josue, con cedulas de ciudadanía nº 1003712278 y 2100298831, autorizamos a la Universidad de Fuerzas Armadas ESPE publicar el trabajo de titulación: Título: Diseño del aliviadero de emergencia en la zona de la cascada Montana – Provincia de Napo en el Repositorio Institucional, cuyo contenido, ideas y criterios son de nuestra responsabilidad.

Sangolquí, 03 de septiembre del 2020

Firma

Firma

Martínez Lascano, Daniela Fernanda

C.C: 1003712278

Solano Cajamarca, Bryan Josue

Dedicatoria

"Con orgullo, me es gratificante, dedicar este proyecto de investigación a las personas que más admiro. Primero a mis padres, por sus años de dedicación formando la persona que soy, ya que todos los logros que he alcanzado fueron gracias a su amor incondicional, su esfuerzo, confianza en mí y a su duro trabajo.

Finalmente, a mi hermano, quien siempre parece saber cuándo lo necesito. Por estar conmigo siempre y por enseñarme el verdadero significado de las palabras: valentía y perseverancia."

Martínez Lascano, Daniela Fernanda

7

Dedicatoria

"Dedico este proyecto de investigación, primeramente, a Dios y a la Virgen, por

haberme quiado con su sabiduría y amor para culminar una de mis metas propuestas. A

mis padres, en especial a mi madre Sara Cajamarca que me ha apoyado

incondicionalmente a lo largo de mi vida personal y formación profesional, brindándome

su amor y cariño en los momentos difíciles y compartiendo mis alegrías en mis triunfos.

A mi familia y amigos que me han impulsado de una u otra manera a salir

adelante y no tener temor alguno en cumplir mis sueños.

A Katherine Betancourth quien ha estado a mi lado apoyándome y alentándome

en este ciclo importante de mi vida.

Al Ingenieros Hugo Bonifaz. Mgs y al Ingeniero Washington Sandoval. PhD, por

haberme brindado sus valiosos conocimientos y guiado en el desarrollo del presente

proyecto de investigación"

Solano Cajamarca, Bryan Josue

Agradecimiento

"Agradezco a Dios, sin él no podría haber conseguido este nuevo logro en mi vida, a mis padres por brindarme su apoyo y ejemplo. A nuestro tutor el Ing. Hugo Bonifaz Mgs. por brindarnos su apoyo a partir del inicio de nuestro proyecto, además de facilitarnos los equipos para los diferentes ensayos. Al Ing. Washington Sandoval PhD quien brindó su tiempo y conocimientos para el desarrollo de este proyecto. A todos mis seres queridos y amigos que hicieron de esta etapa universitaria una aventura. También agradezco a la Universidad de las Fuerzas Armadas ESPE y a todos los docentes que ayudaron a la realización de este proyecto."

Martínez Lascano, Daniela Fernanda

Agradecimiento

"En primer lugar agradezco a Dios y a la Virgen que pese a los obstáculos que tuve en esta etapa de mi vida no supieron desampararme cuando más los necesitaba. A mi madre Sara Cajamarca por haberme otorgado durante estos 25 años cada momento de su vida, ensañándome sus valores y principios que han sido la principal fortaleza que me ha ayudado a seguir adelante, forjándome como un buen ser humano, y su amor infinito de madre el cual es mi luz para levantarme en cada caída sin desmayar a cada paso que doy en este duro peldaño llamado vida.

A mi familia y amigos por mostrarme el camino que a pesar de mis desaciertos me han pulido como persona con su paciencia y amor, a cada uno de ellos les agradezco eternamente.

A Katherine Betancourth por su compañía valiosa, que ante los momentos más duros ha estado con su apoyo ilimitado y sin dudar.

Al Ingeniero Hugo Bonifaz. Mgs, por su gran apoyo y respaldo, que, sin sus equipos, hubiera sido muy difícil llevar a cabo el proyecto de investigación y al Ingeniero Washington Sandoval. PhD, por su valioso aporte con su conocimientos, observaciones y correcciones para mejorar este proyecto de investigación

A la Ingeniera Maribel Aldás.Mgs, que puso su confianza en nosotros para llevar a cabo este proyecto de investigación, pese a las condiciones que se presentaba en estos tiempos de pandemia.

Finalmente, a la Universidad de las Fuerzas Armadas ESPE, que junto con sus docentes me han otorgado sus conocimientos y valores para formarme como profesional"

Solano Cajamarca, Bryan Josue

Índice de contenidos

Dedicatoria	6
Dedicatoria	7
Agradecimiento	8
Agradecimiento	9
Capítulo I	29
Introducción	29
Planteamiento del problema	29
Formulación del problema	29
Antecedentes	30
Justificación e importancia	32
Objetivos	33
Objetivo General	33
Objetivos Específicos	33
Hipótesis	34
Variables de Investigación	34
Variables Independientes	34
Variables Dependientes	34
Metodología de desarrollo del proyecto	34

Capítulo II	36
Marco teórico	36
Antecedentes	36
Erosión regresiva	37
Procesamiento de datos hidrológicos	39
Información Hidrológica	39
Método probabilístico	40
Caudal Medio	41
Caudal mínimo y caudal ecológico	42
Aliviadero	43
Definición de aliviadero	43
Tipos de aliviadero	43
Componentes de aliviadero	44
Diseño del aliviadero	45
Canal de entrada	45
Estructura de control	47
Selección del tipo de vertedero	48
Canal de descarga	48
Aireación natural en canales	49
Obra de disipación de energía	49
Canal de salida	50
Diseño del Deflector tipo Esquí	50
Muros de Ala	53
Diseño de presa vertedora en suelos	54
Diseño del perfil del vertedero	55

Conjugación de aguas	57
Diseño de tablestacas y muros de corte	e57
Método de Chugaev para la subpresión	ı 58
Losa de zampeado rígido	60
Transporte de sedimentos	61
Definición y conceptos	61
Sedimentos en suspensión	61
Concentración de sedimentos volumétr	icos62
Capítulo III	63
Marco Geológico	63
Geología Regional	63
Costa	64
Sierra	66
Cordillera Occidental	66
Valle Interandino	67
Cordillera Real	67
Oriente	69
Cuenca Oriental	69
Zona Subandina	70
Geología Local	71
Litología	71
Estratigrafía de la Zona de Estudio	72
Cordillera Real	73
Cuenca Oriental	74
Formaciones	77

Marco hidrológico	80
Análisis de agua	81
Ubicación de toma de muestras	81
Preparación de muestreo	81
Toma de muestras	82
Muestreo de agua	82
Procedimiento para obtener la cantidad de sedimentos por litro de agua	82
Cálculo de concentración de sedimentos volumétricos	86
Resultados del ensayo	89
Gravedad específica de los sedimentos	89
Procedimiento para el ensayo de gravedad especifica de los sedimentos	89
Cálculo de gravedad específica de los sedimentos	92
Resultados del ensayo de gravedad específica de los sedimentos	98
Estudio de Estratigrafía de los suelos y roca subyacente en el área de estudio	98
Sísmica de Refracción	99
Alcance del estudio	. 100
Ubicación y longitud de los sondeos sísmicos	. 101
Procedimiento de toma de registros sísmicos	. 104
Procesamiento de los registros de campo	. 105
Resultados del estudio sísmico de refracción	. 109
Ensayo NAKAMURA	. 110
Alcance del estudio	. 111
Ubicación de ensayos "NAKAMURA"	. 111
Metodología y procesamiento de datos del ensayo "NAKAMURA"	. 113
Resultados de ensayo "NAKAMURA"	. 115
Levantamiento Topográfico	. 115

Generalidades del dron	115
Uso del dron en topografía	116
Características de PHANTOM 4 RTK	117
Sistema de posicionamiento a nivel céntrico	118
Topografía del área de estudio	118
Reconocimiento de la zona	119
Toma de datos	119
Procesamiento de datos	121
Resultados preliminares	123
Capítulo IV	125
Caudales de Diseño	125
Cálculo de caudales para las obras hidráulicas	126
Canal de construcción	130
Diseño de canal en el periodo de construcción con el programa H-canales	132
Diseño del deflector	133
Profundidad de socavación	138
Altura de los muros laterales	140
Radio de empalme	141
Diseño del aliviadero	141
Canal de entrada	141
Velocidad de acercamiento	142
Cálculo de tirante crítico y tirante normal	143
Disipación de energía	145

	Área hidráulica	145
	Perímetro mojado	145
	Radio hidráulico	145
	Pendiente crítica	145
	Diseño en H-CANALES	146
	Cálculo de la curva de remanso	151
	Radio de curvatura entre las rápidas	157
	Deflector tipo Esquí	159
	Deflector eje izquierdo	159
	Altura de los muros laterales	163
	Profundidad de socavación	164
	Radio de empalme	164
	Deflector eje central	165
	Altura de los muros laterales	169
	Profundidad de socavación	170
	Radio de empalme	171
	Deflector eje derecho	171
	Altura de los muros laterales	176
	Profundidad de socavación	176
	Radio de empalme	177
	Muros de ala	177
D	icaño do la proca vortadora	170
ט	iseño de la presa vertedora	
	Datos preliminares para el diseño de la presa vertedora	
	Cálculo de altura de la ola	180
	Características de la presa vertedora	182

Vertedero tipo Creager	185
Radio de curvatura	186
Calcular el coeficiente de velocidad	187
Cálculo del tirante contraído	188
Muros laterales de la presa vertedora	189
Calculo de la losa de zampeado	189
Esbeltez de la presa vertedora	190
Fuerzas de la presa vertedora	191
Cálculo de fuerza subpresión en la presa vertedora	193
Cálculo de la presión del azolve en la presa vertedora	196
Cálculo de presión por impacto de una ola	197
Cálculo de fuerzas sísmicas en la presa vertedora	199
Cálculo de coeficientes de estabilidad: seguridad al deslizamiento	201
Esfuerzos en la sección vertedora	202
Análisis de costos	209
Conclusiones	217
Recomendaciones	219
Referencias bibliográficas	220
Anexos	229

Índice de tablas

Tabla 1: Velocidades permitidas según el material	47
Tabla 2: Toma de muestras	82
Tabla 3: Resultados de muestras de agua	89
Tabla 4: Gravedad específica muestra 1	93
Tabla 5: Gravedad específica muestra 2	94
Tabla 6: Gravedad específica muestra 3	95
Tabla 7: Gravedad específica muestra 4	96
Tabla 8: Gravedad específica muestra 5	96
Tabla 9: Gravedad específica muestra 6	97
Tabla 10: Gravedad especifica de los sedimentos	98
Tabla 11: Ubicación de los geófonos en la línea 1	102
Tabla 12: Ubicación de los geófonos en la línea 2	103
Tabla 13: Ubicación de los geófonos en la línea 3	104
Tabla 14: Descripción del análisis de los distintos lugares a realizarse el estudio	108
Tabla 15: Resumen de resultados de velocidades de onda "Vs30"	109
Tabla 16: Resultados del ensayo "NAKAMURA"	115
Tabla 17: Periodos de retorno y caudales del Río Coca	125
Tabla 18: Datos de aliviadero y vertedero	127
Tabla 19: Cálculo de Caudal total de canal y vertedero	128
Tabla 20: Datos para el diseño del canal en el periodo de construcción	131
Tabla 21: Resultados obtenidos del programa H-Canales para el canal de	
construcción	133
Tabla 22: Datos iniciales del diseño	134
Tabla 23: Cálculos de velocidad y tirante crítico	135
Tabla 24: Tabla de resumen de para el cálculo de L	136

Tabla 25: Tabla de datos	136
Tabla 26: Coordenadas de la partícula	136
Tabla 27: Tabla de resumen	138
Tabla 28: Profundidad de socavación	139
Tabla 29: Altura de muros laterales	140
Tabla 30: Radio de empalme	141
Tabla 31: Datos para el diseño del canal de acercamiento	142
Tabla 32: Resultados del programa H canales, para el canal de entrada	144
Tabla 33: Distancias de X y Y tomadas de AutoCAD, para el eje central	146
Tabla 34: Distancias de X y Y tomadas de AutoCAD, para el eje izquierdo	148
Tabla 35: Distancias de X y Y tomadas de AutoCAD, para el eje derecho	150
Tabla 36: Datos para el cálculo de la curca de remanso del eje central	151
Tabla 37: Tabla de resultados obtenidos en el programa H-Canales, eje central	153
Tabla 38: Datos para el cálculo de la curca de remanso del eje derecho	153
Tabla 39: Tabla de resultados obtenidos en el programa H-Canales, eje izquierdo.	155
Tabla 40: Datos para el cálculo de la curca de remanso del eje derecho	156
Tabla 41: Tabla de resultados obtenidos en el programa H-Canales, eje izquierdo.	157
Tabla 42: Tabla de resumen de radios de curvatura, eje central	158
Tabla 43: Tabla de resumen de radios de curvatura, eje izquierdo	158
Tabla 44: Tabla de resumen de radios de curvatura, eje derecho	158
Tabla 45: Datos para el diseño del canal de acercamiento, eje izquierdo	159
Tabla 46: Datos iniciales, eje izquierdo	159
Tabla 47: Cálculos de velocidad, y tirante crítico, eje izquierdo	159
Tabla 48: Tabla de resumen de para el cálculo de L, eje izquierdo	160
Tabla 49: Tabla de datos, eje izquierdo	160
Tabla 50: Coordenadas de las partículas, eie izquierdo	161

Tabla 51: Altura de los muros laterales	163
Tabla 52: Tabla de resumen	164
Tabla 53: Profundidad de socavación	164
Tabla 54: Resumen de radios de empalme	164
Tabla 55: Datos para el diseño del canal de acercamiento, eje central	165
Tabla 56: Datos iniciales, eje central	165
Tabla 57: Cálculos de velocidad, y tirante crítico, eje central	165
Tabla 58: Tabla de resumen de para el cálculo de L, eje central	166
Tabla 59: Tabla de datos, eje central	166
Tabla 60: Coordenadas de las partículas, eje central	167
Tabla 61: Altura de los muros laterales	170
Tabla 62: Tabla de resumen	170
Tabla 63: Profundidad de socavación	170
Tabla 64: Radio de empalme	171
Tabla 65: Datos para el diseño del canal de acercamiento, eje derecho	171
Tabla 66: Datos iniciales, eje derecho	171
Tabla 67: Cálculos de velocidad, y tirante crítico, eje derecho	171
Tabla 68: Tabla de resumen de para el cálculo de L, eje derecho	172
T. I. 60 T. I. J. J. C. S. J. J.	
Tabla 69: Tabla de datos eje derecho	173
Tabla 69: Tabla de datos eje derecho Tabla 70: Coordenadas de las partículas, eje derecho	
	173
Tabla 70: Coordenadas de las partículas, eje derecho	173 176
Tabla 70: Coordenadas de las partículas, eje derecho Tabla 71: Altura de muros laterales	173 176 176
Tabla 70: Coordenadas de las partículas, eje derecho Tabla 71: Altura de muros laterales Tabla 72: Tabla de resumen	173 176 176 176
Tabla 70: Coordenadas de las partículas, eje derecho Tabla 71: Altura de muros laterales Tabla 72: Tabla de resumen Tabla 73: Profundidad de socavación	173 176 176 176

Tabla 77: Características de los materiales	180
Tabla 78: Tabla de resumen de altura de la ola	182
Tabla 79: Tabla de resumen de características de la presa vertedora	184
Tabla 80: Coordenadas del vertedero Creager	185
Tabla 81: Resumen de datos para el diseño de la presa vertedora	186
Tabla 82: Resumen de cálculos	187
Tabla 83: Cálculo de coeficiente de velocidad	187
Tabla 84: Cálculo del tirante contraído	188
Tabla 85: Cálculo de muros laterales de la sección vertedora	189
Tabla 86: Cálculo de losa de zampeado	190
Tabla 87: Relación de esbeltez	191
Tabla 88: Fuerzas de presión por cada unidad de ancho	192
Tabla 89: Peso propio de la sección vertedora	193
Tabla 90: Coeficientes de filtración de varios suelos	194
Tabla 91: Gradientes críticos de acuerdo con el suelo	194
Tabla 92: Resumen de datos preliminares para el cálculo de subpresión	195
Tabla 93: Resumen por tramos de cálculo de subpresión por el método de Chuga	aev 196
Tabla 94: Cálculo de fuerza de subpresión	196
Tabla 95: Cálculo de presión de azolve	196
Tabla 96: Determinación de valores K _{P y} K _M	198
Tabla 97: álculo de fuerzas sísmicas	200
Tabla 98: Combinación de fuerzas en situaciones normales N21 y en situaciones	;
accidentales A23	201
Tabla 99: Tabla de resumen de fuerzas aplicadas en el vertedero	204
Tabla 100: Combinación de fuerzas en situaciones normales N21	204
Tabla 101: Tabla de resultados de combinación de fuerzas N21	205

Tabla 102: Combinación de fuerzas en situaciones accidentales A23	206
Tabla 103: Tabla de resultados de combinación de fuerzas A23	207
Tabla 104: Tabla de resumen de esfuerzos verticales, horizontales y de corte de	la
presa vertedora en condiciones normales	208
Tabla 105: Volumen total del canal de construcción	211
Tabla 106: Análisis de precios del canal de construcción	211
Tabla 107: Volumen total del muro	212
Tabla 108: Análisis de precios del muro	212
Tabla 109: Volumen total del aliviadero	213
Tabla 110: Análisis de precios del aliviadero	214
Tabla 111: Volumen total de la presa vertedora	215
Tabla 112: Análisis de precios de la presa vertedora	215
Tabla 113: Resumen de costos	216
Índice de Figuras	
Figura 1: Erosión regresiva del rio Coca	38
Figura 2: Curva de duración de caudales empírica y teórica	41
Figura 3: Esquema para el cálculo del deflector tipo esquí	51
Figura 4. Perfil de los muros de ala	53
Figura 5: Esquema de perfil longitudinal de una presa vertedora en suelo	55
Figura 6: Modificación del perfil del vertedero. 1) Perfil original; 3) Perfil con	
condiciones adicionales	56
Figura 7: Coeficientes de pérdida bajo un contorno subterráneo	59
Figura 8: Esquema geomorfológico y geológico del Ecuador	64
Figura 9: Posición de los bloques técnicos de la Costa Ecuatoriana	65

Figura	10:	Mapa geológico simplificado de las rocas pre-cretácicas de la Cordillera	
		Real y de la zona Subandina	68
Figura	11:	Mapa tectónico de la Cuenca Oriente	70
Figura	12:	Mapa geológico de la Cuenca hidrográfica del rio Coca	72
Figura	13:	Divisiones de la Cordillera Real. IF=Ingapirca, BF=Falla Baños,	
		LF= Falla Llanganates, CF= Cosanga-Mendez	73
Figura	14:	División del salado	74
Figura	15:	Columna tectono-estratigráfica, y eventos geodinámicos que controlaron	
		el desarrollo de la Cuenca Oriente y de sus petrolíferos	76
Figura	16:	Formaciones, miembros y siclos sedimentarios del Cretácico de la	
		cuenca Oriente, y sus relaciones con la curva eustática	78
Figura	17:	Lugar de toma de muestras de agua, foto tomada el 19-06-2020	81
Figura	18:	Peso de envase más muestra de agua	83
Figura	19:	Peso de la tara	84
Figura	20:	Peso de envase de recolección de muestra vacío	84
Figura	21:	Muestras en el horno a 100°C	85
Figura	22:	Peso de sedimentos	85
Figura	23:	Peso del sedimento	90
Figura	24:	Peso del picnómetro vacío	90
Figura	25:	Peso del picnómetro con agua destilada	91
Figura	26:	Toma de temperatura del agua destilada	91
Figura	27:	Sedimentos en el picnómetro	92
Figura	28:	Peso del picnómetro más sedimentos y agua oxigenada	92
Figura	29:	Tabla de peso específico del agua, factor K y J	93
Figura	30:	Ensavo de Sísmica de Refracción	99

Figura 31: Ubicación de las líneas s	sísmicas en Terreno del "Margen Izquierdo del	
Río Coca Km 106" Línea	a 1, 18 – 06 – 20201	01
Figura 32: Ubicación de las líneas s	sísmicas en Terreno del "Margen Izquierdo del	
Río Coca Km 105" Línea	a 2, 19 – 06 – 20201	02
Figura 33: Ubicación de las líneas s	sísmicas en Terreno del "Margen Izquierdo del	
Río Coca Km 105" Línea	a 3, 19 – 06 – 20201	03
Figura 34: Colocación de equipo "G	SEOMETRICS", foto tomada 19-06-20201	04
Figura 35: Geometría del sistema o	le análisis de la línea 1 en el Margen Izquierdo	
del Río Coca Km 106, L	ínea 11	05
Figura 36: Perfil de Cizalla del Març	gen Izquierdo del Río Coca Km 106, Línea 1 1	06
Figura 37: Geometría del sistema o	e análisis de la línea 2 en el Margen Izquierdo	
del Río Coca Km 105, L	ínea 21	06
Figura 38: Perfil de Cizalla del Març	gen Izquierdo del Río Coca Km 105, Línea 2 1	07
	•	
Figura 39: Geometría del sistema d	e análisis de la línea 3 en el Margen Izquierdo	
	le análisis de la línea 3 en el Margen Izquierdo ínea 31	07
del Río Coca Km 105, L	•	
del Río Coca Km 105, L Figura 40: Perfil de Cizalla del Marg	ínea 310	08
del Río Coca Km 105, L Figura 40: Perfil de Cizalla del Marg Figura 41: Modos de vibración del s	ínea 310 gen Izquierdo del Río Coca Km 105, Línea 3 10	08 11
del Río Coca Km 105, L Figura 40: Perfil de Cizalla del Marg Figura 41: Modos de vibración del s Figura 42: Ensayo de NAKAMURA	ínea 310 gen Izquierdo del Río Coca Km 105, Línea 3 10 suelo1	08 11 12
del Río Coca Km 105, L Figura 40: Perfil de Cizalla del Marg Figura 41: Modos de vibración del s Figura 42: Ensayo de NAKAMURA Figura 43: Ensayo de NAKAMURA	ínea 3	08 11 12 12
del Río Coca Km 105, L Figura 40: Perfil de Cizalla del Marg Figura 41: Modos de vibración del s Figura 42: Ensayo de NAKAMURA Figura 43: Ensayo de NAKAMURA Figura 44: Colocación del equipo "S	ínea 3	08 11 12 12
del Río Coca Km 105, L Figura 40: Perfil de Cizalla del Marg Figura 41: Modos de vibración del s Figura 42: Ensayo de NAKAMURA Figura 43: Ensayo de NAKAMURA Figura 44: Colocación del equipo "S Figura 45: Resultados radio espect	ínea 3	08 11 12 12
del Río Coca Km 105, L Figura 40: Perfil de Cizalla del Marg Figura 41: Modos de vibración del s Figura 42: Ensayo de NAKAMURA Figura 43: Ensayo de NAKAMURA Figura 44: Colocación del equipo "S Figura 45: Resultados radio espect Lago Agrio	ínea 3	08 11 12 12
del Río Coca Km 105, L Figura 40: Perfil de Cizalla del Marg Figura 41: Modos de vibración del s Figura 42: Ensayo de NAKAMURA Figura 43: Ensayo de NAKAMURA Figura 44: Colocación del equipo "S Figura 45: Resultados radio espect Lago Agrio	ínea 3	08 11 12 12 13
del Río Coca Km 105, L Figura 40: Perfil de Cizalla del Marg Figura 41: Modos de vibración del s Figura 42: Ensayo de NAKAMURA Figura 43: Ensayo de NAKAMURA Figura 44: Colocación del equipo "S Figura 45: Resultados radio espect Lago Agrio	ínea 3	08 11 12 13 14

Figura 49:	Mojón del INHAMI, foto tomada el 14-06-2020:	119
Figura 50:	Posicionamiento de estación móvil, foto tomada el 20-06-2020	120
Figura 51:	Archivo ".exif"	121
Figura 52:	Coordenadas de las fotos en el programa Pix4Dmapper	122
Figura 53:	Foto cargada en el programa Pix4Dmapper.	122
Figura 54:	Nube de puntos, puntos de control y de paso	123
Figura 55:	Ortofoto de la zona de estudio visualizada con el programa "ArcScene"	124
Figura 56:	Gráfica de periodo de retorno vs caudales	126
Figura 57:	Esquema de la entrada del canal de construcción	131
Figura 58:	Cálculo del tirante critico en H-canales	132
Figura 59:	Cálculo de curva de remanso	133
Figura 60:	Esquema del tirante contraído	134
Figura 61:	Esquema de longitud de trayectoria de la partícula	135
Figura 62:	Gráfico de la trayectoria de la partícula	138
Figura 63:	Detalle del muro	140
Figura 64:	Esquema de canal de entrada del aliviadero	142
Figura 65:	Área transversal aguas arriba del aliviadero	143
Figura 66:	Cálculo del canal de entrada en el programa H canales	144
Figura 67:	Rápida	145
Figura 68:	Longitudes para determinar pendiente del tramo 2 - Eje Central	147
Figura 69:	Cálculo del tirante normal del eje central	147
Figura 70:	Cálculo del tirante normal tramo 2 en el programa H-Canales, eje central	148
Figura 71:	Cálculo del tirante normal del eje izquierdo	149
Figura 72:	Cálculo del tirante normal tramo 2 en el programa H-Canales, eje	
	izquierdo	149
Figura 73	Cálculo del tirante normal del eje derecho	150

Figura '	74:	Cálculo del tirante normal tramo 2 en el programa H-Canales, eje	
		derecho	151
Figura	75:	Longitudes de tramo 1 y tramo 2 – Eje Central	152
Figura	76:	Cálculo en el programa H-Canales de la curva de remanso tramo 1, eje	
		central	152
Figura ¹	77:	Cálculo en el programa H-Canales de la curva de remanso tramo 2, eje	
		central	153
Figura [•]	78:	Longitudes de tramo 1 y tramo 2 - Eje Izquierdo	154
Figura [•]	79:	Cálculo en el programa H-Canales de la curva de remanso tramo 1, eje	
		izquierdo	154
Figura	80:	Cálculo en el programa H-Canales de la curva de remanso tramo 2, eje	
		izquierdo	155
Figura	81:	Longitudes de tramo 1 y tramo 2 - Eje Derecho	156
Figura	82:	Cálculo en el programa H-Canales de la curva de remanso tramo 1, eje	
		derecho	156
Figura	83:	Cálculo en el programa H-Canales de la curva de remanso tramo 2, eje	
		derecho	157
Figura	84:	Esquema del deflector tipo esquí – Eje Izquierdo	160
Figura	85:	Gráfica de la trayectoria del deflector tipo Esquí, eje izquierdo	163
Figura	86:	Esquema del deflector tipo esquí – Eje Izquierdo	166
Figura	87:	Gráfica de la trayectoria del deflector tipo Esquí, eje central	169
Figura	88:	Esquema del deflector tipo esquí – Eje Izquierdo	172
Figura	89:	Gráfica de la trayectoria del deflector tipo Esquí, eje derecho	175
Figura	90:	Detalle del muro de Ala del Eje Derecho	178
Figura	91:	Esquema de la presa vertedora	180
Figura	92-	Determinación de la longitud Fetch en Google Farth	181

Figura 93: Dimensionamiento de la cimentación	183
Figura 94: Coeficientes de seguridad	184
Figura 95: Perfil Creager y superficie libre	186
Figura 96: Altura y base del vertedero	190
Figura 97: Área de la sección vertedora	192
Figura 98: Estrato activo en el proceso de filtración	193
Figura 99: Diagrama de presiones por impacto de la ola	197
Figura 100: Datos de presión por impacto de una ola	197
Figura 101: Nomograma para coeficientes K _P Y K _M	198
Figura 102: Condiciones de deslizamiento de una presa	201
Figura 103: Principales fuerzas que actúan sobre una presa	203
Figura 104: Características físicas de la presa vertedora obtenida del software	
AutoCAD	203
Figura 105: Análisis de precios unitarios del hormigón simple f"c=210 kg/cm²	210
Figura 106: Análisis de precios unitarios del hormigón simple f"c=380 kg/cm²	210
Figura 107: Análisis de precios unitarios de movimiento de tierras	210

Resumen

El repentino colapso de la cascada San Rafael, el pasado 02 de febrero del 2020, ubicada entre las provincias de Napo y Sucumbíos en Ecuador, causó un fenómeno conocido como erosión regresiva que se extendió en dirección aguas arriba del río Coca. La zona cascada Montana fue la más afectada, donde el 07 de abril del 2020 se causaron daños considerables como las rupturas de las tuberías de Oleoducto de Crudos Pesados (OCP) y en el Sistema de Oleoducto Transecuatoriano (SOTE); la vía Quito-Lago Agrio, en los kilómetros 106 y 108, y grandes tramos de deslizamientos de tierra, dificultando el tránsito y transporte terrestre entre las regiones Sierra y Oriente.

El presente proyecto de investigación contiene el diseño de un conjunto de obras hidráulicas, como solución a la problemática de erosión regresiva. Como medida de mitigación se plantea la construcción de un canal para el período de construcción, un aliviadero lateral de descarga y disipación de energía permanente y una presa vertedora; diseñados y calculados para detener la erosión regresiva. Todas las obras propuestas tienen como objetivo primordial el precautelar la seguridad de los habitantes del sector y sus viviendas, la integridad de la infraestructura petrolera, vial y especialmente de la central Hidroeléctrica Coca Codo Sinclair (CCS).

Palabras claves:

- EROSIÓN REGRESIVA
- EROSIÓN RÍO COCA
- OBRAS HIDRÁULICAS PARA EROSIÓN REGRESIVA

Abstract

Last February 02,2020; the San Rafael waterfall located between Napo and Sucumbios province in Ecuador, collapsed causing a phenomenon called regressive erosion. This phenomenon spread upriver in Coca River. Montana's zone was the most affected and April 07,2020 the event damaged Heavy Crude Oil pipelines; Trans Ecuadorian pipeline system and Quito Lago Agrio road, between the 106 to 108 kilometer. This damages affected people near to the zone and the vehicular traffic between the Andes and Oriente.

This document contains the investigation, design and theoric solution to this problem.

The document proposes the construction of a lateral spillway and one pillway dam, the complete design, calculus and budgets are specified too. The main objective is to protect the safety of the inhabitants of the sector, homes, oil infrastructure and the Coca Codo Sinclair hydroelectric plant.

Keywords:

- REGRESSIVE EROSION
- RIO COCA EROSION
- HYDRAULICS WORST TO REGRESSIVE EROSION

Capítulo I

Introducción

Planteamiento del problema

El proceso de erosión regresiva en la zona de confluencia del río Montana con el río Coca, originada por el colapso de la cascada San Rafael el 02 de febrero del 2020, misma que está ubicada en el límite de las provincias de Napo y Sucumbíos, provocó la ruptura de las tuberías de Oleoducto de Crudos Pesados (OCP) y el Sistema de Oleoducto Transecuatoriano (SOTE) el 07 de abril del 2020, afectó al puente sobre el río Montana ubicado en el kilómetro 106 de la vía Quito – Lago Agrio y además, el pasado 22 de Agosto del 2020 se reportó la pérdida de la calzada de entre 60 a 80 metros de longitud, en el tramo del kilómetro 108 de la misma vía (UNIVERSO, 2020).

Ante la posibilidad de que el proceso de erosión regresiva continúe avanzando aguas arriba del rio Coca y llegue a la obra de toma de la central hidroeléctrica Coca Codo Sinclair (CCS), se ha planteado el presente proyecto de titulación con el fin de presentar una posible solución al problema de la erosión regresiva y por consiguiente no afecte al abastecimiento de energía eléctrica del país, causando daños significativos a nivel energético, ambiental y económico en el Ecuador.

Formulación del problema

Como consecuencias de colapso que sufrió la cascada San Rafael y la aparición del proceso de erosión regresiva aguas arriba de la misma, en la zona de la cascada Montana, entre el Km 67 al Km 70 de la vía El Chaco – Lago Agrio, en el límite de las provincias de Napo y Sucumbíos, existe la posibilidad de que el fenómeno de erosión alcance las obras de captación del proyecto Coca Codo Sinclair (CCS) y por

consiguiente, se requiere diseñar obras hidráulicas de protección en el cauce del río

Coca que permita eliminar, de manera urgente, el desplazamiento de esta erosión hacia
el sector de aguas arriba.

Antecedentes

La cascada San Rafael ubicada en la reserva ecológica Cayambe - Coca, en Ecuador, era de uno de los más importantes atractivos turísticos entre las provincias de Napo y Sucumbíos. Sus 150 metros de caída por 14 metros de ancho, sufrió un colapso debido a un proceso de erosión hídrica, según las primeras investigaciones realizadas, exponiendo la necesidad de estudios previos a ejecutar grandes obras de infraestructura en la proximidad de zonas naturales que sean vulnerables (Ágora, 2020).

Las aguas del río Coca se desplazan rápidamente carcomiendo los taludes y su propio cauce en la zona del volcán El Reventador (entre las provincias de Napo y Sucumbíos). Este comportamiento, denominado erosión regresiva, amenaza con destruir viviendas y parte de la infraestructura petrolera, vial e hidroeléctrica, valuado en miles de millones de dólares, ubicados en el sector, como son las tuberías de Oleoducto de Crudos Pesados (OCP), Sistema de Oleoducto Transecuatoriano (SOTE) y puede afectar la operación de la hidroeléctrica Coca Codo Sinclair (CCS), con las consecuentes pérdidas económicas (Basantes, 2020).

El colapso de la cascada San Rafael se evidenció el 2 de febrero del 2020 en lo que era el hermoso salto de agua. Siendo ese día la desaparición de esta caída, debido a que el agua se abrió paso por debajo de flujo volcánico (lava) la cual era una barrera natural que formaba la cascada. Esta lava tiene su origen en las erupciones del volcán Reventador, la cual represó el río Coca (Sevilla, 2020).

La desaparición de la cascada causo la perdida de uno de los focos turísticos por excelencia en el límite de las provincias de Napo y Sucumbíos, alimentando todo tipo de teorías sobre las posibles causas del fenómeno. Así, dos meses después, el 7 de abril del 2020, la fuerza de la erosión causó deslizamientos en los flancos del río que provocaron el rompimiento de tres tuberías del oleoducto transecuatoriano, causando la paralización del bombeo de crudo y una afectación ambiental importante. Al inicio del desarrollo de nuestro proyecto de titulación, el problema se encontraba en la confluencia del río Montana con el río Coca, a unos 2000 metros aguas arriba del problema inicial, en la antigua cascada (EFE, 2020).

A la segunda semana de junio de 2020, la erosión regresiva en el río Montana, puso nuevamente en riesgo la Vía Quito- Lago Agrio y el puente que cruza el río Montana, en el kilómetro 105. Se evidencia de igual forma que la mesa de la vía ha fallado ya que las grietas longitudinales tanto en eje como en borde ya a nivel de rasante de vía (CALZADA), la estructura vial y las capas debajo de la subrasante; ya no tienen sostenimiento debido a que el talud de relleno (el que da al río Montana), está movida por erosión hídrica. Las grietas pueden seguir incrementándose, luego se deslizarán y el puente puede colapsar (Pacheco, 2020).

El 22 de agosto del 2020, se reportó la pérdida de un tramo de calzada de aproximadamente 60 a 80 metros de longitud en el kilómetro 108 de la vía Quito - Lago Agrio como consecuencia de la erosión regresiva que continua avanzando hacia aguas arriba del problema inicial en la cascada San Rafael. (Pacheco, 2020)

Con tomas de dron realizadas el 25 de mayo del 2020 se ha verificado cómo un nuevo salto de agua de al menos 60 metros genera un socavón que apenas está

separado por 25 metros de la carretera Lago Agrio-Quito (en el tramo de los kilómetros 67 al 70). Paralelos a la carretera también corren los oleoductos. (Sandoval P., 2020)

Justificación e importancia

Para estabilizar la erosión regresiva, en el sitio actual de la cascada del Río Montana, se han planteado un conjunto de obras de protección, entre las cuales se destaca la construcción de un gran aliviadero con canal de pendiente pronunciada en la margen derecha del cauce y una presa vertedora de excedentes en el cauce actual de río.

En este caso, la construcción de aliviaderos son de gran importancia, no solo por su principal función de dar salida a las aguas del Río Coca, sino porque se convertirá en un canal permanente de evacuación de los caudales que se tiene en este cauce y permitirá el azolvamiento, juntamente con la presa vertedora, de la zona de aguas arriba de donde están diseñadas estas obras y así restablecer las pendientes anteriores del cauce y evitar que la erosión regresiva continúe afectando a la zona.

La importancia que tienen los aliviaderos de emergencia se deriva del hecho que disminuyen el riesgo que el volumen de agua, originado por una crecida, se vierta sobre la presa y produzca una falla grave para la seguridad de ésta, especialmente si está construida de materiales sueltos (Sandoval W., 2019).

Un aliviadero emergente se lo utiliza en condiciones inusuales, como el "mal funcionamiento de los desagües de servicio o durante inundaciones muy grandes y remotas u otras condiciones de emergencia" (USBR, 2014). En general se trata de

estructuras menos robustas o resistentes que, inclusive, están diseñadas para erosionarse con el paso de una descarga. En nuestro caso, el nombre de emergencia se lo da por la necesidad inmediata de ser construido para detener, lo antes posible, la erosión regresiva que pone en riesgo, como se mencionó anteriormente, las vidas e infraestructura del sector (Sandoval W., 2019).

La presa vertedora asentada en suelos se compone de dos partes: el perfil superior o externo y el perfil interior o subterráneo, considerando que el flujo de agua se desplaza bordeando estos dos perfiles, la obra requiere de varios elementos hidráulico – estructurales ubicados antes y después de la obra de control, como: una protección del cauce antes del vertedero, a la que se denomina delantal, y otra protección posterior al vertedero llamado zampeado o losa de aguas abajo (Sandoval W., 2019).

Objetivos

Objetivo General

 Diseñar un conjunto de obras hidráulicas de emergencia que permitan disminuir el riesgo de avance de la erosión regresiva del río Coca hacia aguas arriba de la zona de la cascada Montana, Provincia de Napo, y de esta manera proteger las obras de infraestructura y población ubicada en la margen izquierda del mencionado sector.

Objetivos Específicos

- Obtener la topografía de la zona de estudio.
- Realizar líneas sísmicas y determinar los estratos del suelo.

- Determinar las condiciones geológicas naturales de la margen derecha del sitio actual de la erosión.
- Establecer los caudales de diseño en base a la información hidrológica disponible.
- Diseñar el conjunto de obras hidráulicas que se requieran para limitar el desplazamiento de la erosión regresiva.

Hipótesis

El diseño del aliviadero emergente permitirá detener y reducir el riesgo de la erosión regresiva aguas arriba de la confluencia del río Montana con el río Coca.

Variables de Investigación

Variables Independientes

- Topografía y geología de la zona
- Datos hidrológicos de diseño

Variables Dependientes

Dimensiones de las obras hidráulicas

Metodología de desarrollo del proyecto

Para el presente proyecto de investigación se utilizará un enfoque cuantitativo dado que las variables a estudiar corresponden a caudal, estudio geológico, estudios de suelos y rocas, topografía a detalle de la zona, hidrología para la sección establecida, clasificación del riesgo entre otros los cuales son susceptibles a mediciones y análisis

estadísticos. Las condiciones del estudio llevan a considerar un tipo de investigación aplicada descriptiva que pretende realizar el diseño de varias obras hidráulicas emergencia para evitar la continuidad de la erosión regresiva en los alrededores del Río Montana.

Para diseñar las mencionadas obras de emergencia es necesario un levantamiento topográfico de la zona el cual se lo realizó mediante el uso de un GPS de precisión y un dron topográfico debido al difícil acceso.

Para el diseño es indispensable conocer el tipo de suelo en el cual se asentará el aliviadero, para lo cual se efectuaron líneas sísmicas utilizando los equipos de Geometrics, cuyos resultados se procesaron mediante los programas de Seismager de los que se usan Surface, WaveEq, Pickwin y GeoPlot, con la obtención de datos se analizaron los resultados con ayuda de la Normativa Ecuatoriana de la Construcción NEC-15, con el fin de obtener las diferentes velocidades de ondas Vs30 de corte con las cuales se puede definir el tipo de perfil sísmico del suelo según NEC 2015.

Para el diseño de las obras hidráulicas se utilizó la información disponible en las diferentes instituciones del Estado, incluida CELEC con los datos de los caudales registrados en la operación del Proyecto Coca Coco Sinclair y las normativas que constan en el libro "Diseño de Obras Hidrotécnicas" (Sandoval W., 2019)

Capítulo II

Marco teórico

Antecedentes

En la zona de estudio coexisten diversos procesos geodinámicos tanto de origen natural como: vulcanismo, tectonismo, sismicidad, fenómenos de remoción de masa, etc., como de origen antrópico debido a la presencia de la Central Hidroeléctrica Coca Codo Sinclair (CHCCS) y el transporte del petróleo a través del Sistema de Oleoducto Transecuatoriano (SOTE) y Oleoducto de Crudos Pesados (OCP). En particular los procesos desencadenados por la presencia de estas obras, generan varias alteraciones en las variables que controlan la geomorfología fluvial del río Coca y son de gran importancia en el plano económico y científico del país, por los retos que representan al ser obras que alteran las condiciones normales de los procesos fluvio - morfológicos (Báez, 2018).

Siendo uno de sus procesos la erosión regresiva, que se dio a partir del pasado 2 de febrero del 2020, fecha en la cual colapsó la cascada San Rafael. Este fenómeno ha avanzado con gran velocidad siendo un peligro para las infraestructuras cercanas a los márgenes del Río Coca, donde a la segunda semana de junio de 2020, la erosión regresiva ha llegado a la altura del río Montana, poniendo en riesgo la Vía Quito- Lago Agrio y causando la desaparición de aproximadamente 60 a 80 metros de calzada en el kilómetro 108 de la misma vía el 22 de agosto del 2020. Sí este proceso continúa, amenaza con destruir un complejo de infraestructura petrolera, vial e hidroeléctrica (Pacheco, 2020). Por lo que se procede con el diseño de un aliviadero emergente.

La función de un aliviadero es la de derivar, transportar y restituir al río en la debida condición los caudales en exceso que puedan existir, pues siempre es posible que sobrevenga una crecida mayor que la máxima considerada. Esta incertidumbre se resuelve en la práctica dimensionando el aliviadero para una crecida de muy baja probabilidad razonable (Comité Nacional Español de Grandes Presas, 2018).

Erosión regresiva

(Cuéllar, Julián, Carrillo, Ibáñez, Sandoval, & Osorio, 2014), explican que el término "erosión remontante" o "regresiva" describe el proceso de expansión de una cuenca hidrográfica, relacionado con el progreso gradual hacia la cabecera de la cuenca, mediante la incisión fluvial en la parte alta de los ríos como consecuencia directa de la caída del nivel base por causas climáticas y/o tectónicas. Como es el caso del río Coca el cual presenta una erosión regresiva con avance a gran velocidad en las márgenes de la cuenca, siendo un proceso rápido.

La erosión terrestre es el resultado de la acción combinada de varios factores, como la temperatura, la atmósfera, el agua, el viento, la gravedad, la vida vegetal y animal. La remoción de materiales por la acción de estos agentes externos conduce al desgaste de rocas, relieve y suelo. A diferencia de la meteorización, la erosión implica necesariamente un transporte, pues al quitar o desprender fragmentos de la roca, éstos son transportados a mayor o menor distancia, proceso que contribuye a la denudación del relieve, al continuo desgaste que tiende a atenuar las diferencias de altitud y a suavizar las irregularidades topográficas en la superficie terrestre (Cuéllar, Julián, Carrillo, Ibáñez, Sandoval, & Osorio, 2014).

Según (Terneus, 2020), indica que la erosión regresiva es cuando la hidrodinámica de un río es tan fuerte que puede carcomer las orillas y taludes aledaños a su cauce, cambiando el trayecto original del río. De acuerdo a estudios de hidrodinámica de ríos, este es un fenómeno natural que ocurre con frecuencia en gran parte de ríos caudalosos y forma parte de la dinámica natural de los cuerpos de agua; sin embargo, en el caso particular del presente proyecto de investigación en el Río Coca, existe un añadido y es el haberse alterado la pendiente del lecho del río conformada por la cascada de San Rafael, aumentando su capacidad de arrastre al su flujo, lo que provoca un debilitamiento y resquebrajamiento de los lechos de agua, dejándolos mucho más susceptibles a ser acarreados por el agua, en épocas de intensas lluvias y explosiones súbitas de caudal.

Figura 1:

Erosión regresiva del rio Coca

Procesamiento de datos hidrológicos

En todo proyecto hidrotécnico se requiere información hidrológica de la cuenca, o zona en la que se prevé realizar la obra. En el Ecuador, como en algunos países de Latinoamérica esta información no siempre existe o está disponible y, en la mayoría de los casos, sólo se tienen datos de precipitaciones. Esta particularidad hace que los proyectos se diseñen, en muy pocos casos, con información completa y, en un buen número, con datos incompletos o con ninguno (Sandoval W., 2019).

En el Ecuador la red de estaciones hidrológicas y meteorológicas es operada por el Instituto Nacional de Meteorología e Hidrología (INAMHI), para generar datos sobre precipitaciones y algunos parámetros climáticos. Generalmente, la información hidrométrica es muy escasa e incompleta, las series de caudales no son lo suficientemente extensas como para ser utilizadas en los proyectos hidráulicos (Sandoval W., 2019).

Según (Sandoval W., 2019), para fines de diseño, los datos hidrométricos se los debe separar en tres series: Caudales Máximos Anuales, Caudales Medios Mensuales y Caudales Mínimos Diarios. La primera serie servirá para determinar caudales máximos de diseño de las obras de excedencia (aliviaderos) y desvío; la segunda para determinar volúmenes disponibles de agua (oferta) en proyectos de riego y electrificación, y, la tercera, para proyectos de agua potable, caudales ecológicos y servicios de mantenimiento.

Información Hidrológica

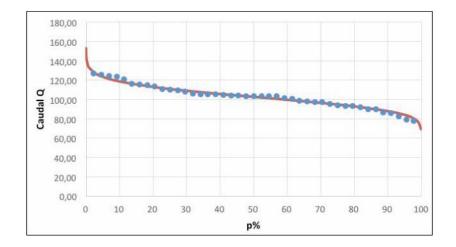
En el caso de disponer de información hidrológica e hidrométrica los parámetros característicos de la cuenca para este proyecto de investigación se los determina

mediante los métodos descritos en el libro de Diseño de Obras Hidrotécnicas de (Sandoval W., 2019), que se fundamentan en el balance hídrico y la estadística; por ejemplo, los presentados en (Fattorelli & Fernández, 2011).

A continuación, se presenta el procedimiento matemático basado en el libro de Diseño de Obras Hidrotécnicas, para procesar los datos hidrométricos, el mismo que será la base teórica fundamental en el desarrollo del presente proyecto de titulación.

Método probabilístico

En vista que el Ecuador se encuentra influenciado por el Fenómeno El Niño (ENOS), se requiere disponer, por lo menos, de una serie de caudales de 25 años, para que se pueda incorporar dos o tres años de aguas altas. Estadísticamente es recomendable utilizar series de hasta 100 años con el fin de garantizar que los indicadores hidrológicos sean los correctos (Sandoval W., 2019).


Con los datos disponibles se requiere elaborar una curva de duración de caudales, como el que se muestra en la figura 2.2. Para elaborar la misma se debe partir de una serie de N caudales diarios de una cuenca. Con el apoyo de una hoja electrónica se ordenarán en una columna los caudales del mayor al menor. A cada valor de caudal se le asignará un ordinal n, desde el 1 hasta el valor de N (Sandoval W., 2019).

Según (Sandoval W. , 2019), la probabilidad de que se presente este caudal empírico, en porcentaje, es:

$$p\% = \frac{n_i}{N+1}100$$

Figura 2:

Curva de duración de caudales empírica y teórica

Nota. El gráfico representa la curva de duración de caudales. Tomada de *Diseño de Obras Hidrotécnicas* (p. 36), por Sandoval, 2019.

Caudal Medio

Según (Sandoval W. , 2019), el caudal medio en una cueca, expresado en m^3/s , es igual a:

$$Q_0 = \frac{31,71 * C \bar{P}A}{10^6}$$

Donde:

 \mathcal{Q}_0 - es el Caudal Medio Anual

P - es el promedio de precipitaciones anuales de la cuenca (mm),

A - es el área de la cuenca en km^2 .

C – es el coeficiente de escorrentía medio anual.

Para determinar el caudal medio de una cuenca es necesario conocer el coeficiente de escorrentía, se lo puede realizar mediante varios métodos descritos en (Sandoval & Aguilera, 2014).

Caudal mínimo y caudal ecológico

El caudal mínimo de una cuenca se lo utiliza, generalmente, como referencia para determinar el caudal ecológico, (Sandoval W., 2019). Cuando no se dispone de información, (Sandoval & Aguilera, 2014), recomiendan considerarlo igual a:

$$Q_{min} = a_e \frac{\bar{P}A}{10^6} = Q_{eco}$$

 a_e – Es un coeficiente entre 1,0 a 2,5

Este valor corresponde a las condiciones hídricas mínimas de una cuenca, en vista de lo cual, es factible tomar este valor como caudal ecológico, con el fin de determinar las características particulares sobre la necesidad de agua de los componentes de la flora, fauna, paisaje, recreación u otros que se consideren en un proyecto (Sandoval & Aguilera, 2014).

Cuando se dispone de datos hidrométricos existen otros métodos para determinar el caudal ecológico y están resumidos en (Sandoval, Carrera, Masabanda, & Arce, 2016), como el método Hidráulico de Tennant (1976) o de Montana, que considera como caudal ecológico el valor del 10% del caudal medio, asumiéndose que, para los cauces naturales analizados por Tennant, este valor satisface un 60% de los parámetros hidráulicos del flujo, tales como el área, perímetro mojado y tirante de agua (Sandoval W., 2019).

$$Q_e = 0.1 Q_{medio}$$

Aliviadero

Definición de aliviadero

Los aliviaderos son estructuras hidráulicas que forman parte fundamental de una presa, cuya función principal es evacuar excedentes de agua provenientes de grandes crecidas, los cuales pueden ser menores o iguales a los máximos probables evaluados para el proyecto; asegurando la integridad física de la presa y logrando que el caudal de agua sobrante se restituya al cauce (Sandoval W., 2019).

Tipos de aliviadero

Según (Medina, 1992), no existe una clasificación estricta para determinar el tipo de aliviadero sino depende del criterio que se escoja. La clasificación más utilizada es según el tipo de estructura de control.

- Tipo lamina vertiente
- Tipo caída libre
- Tipo abanico
- Tipo canal lateral
- Tipo embudo o vertical
- Tipo alcantarilla
- Tipo sifón
- Tipo rápido disipador

Según el (USBR, 2014), los aliviaderos, por su frecuencia de uso, se les clasifican en tres tipos:

- Aliviadero de servicio
- Aliviadero auxiliar
- Aliviadero emergente

Componentes de aliviadero

(Barnola & García, 2004), señalan los siguientes componentes:

- Canal de aproximación: es el canal que permite que el flujo alcance la estructura de control, teniendo en cuenta que las velocidades máximas deben mantenerse lo más bajas posibles, usualmente son del orden de los 0,5 m/s, con el fin de minimizar pérdidas, evitar erosión de los canales y garantizar que las aguas lleguen a la estructura de control con un flujo lo más uniforme posible.
- Estructura de control: su principal función es controlar las aguas, estableciendo la forma de la curva de gastos y fijando el nivel de alivio.
- Estructura de conducción: permite transportar las aguas de la estructura de control
 que se encuentran en los niveles superiores del embalse hacia el cauce del río o
 quebrada que recibirá las aguas aliviadas. Esta conducción se puede hacer
 mediante canales, uno de ellos de poca pendiente y otro de alta pendiente
 denominado rápida, o a través de conductos cerrados.
- Estructura de disipación: esta estructura se encarga de impedir que el exceso de energía cinética generada por la caída del agua cause socavaciones que pongan en peligro las obras de embalse o erosionen el río o quebrada que recibe el agua.
- Canal de descarga: es el canal de conexión utilizado en las situaciones donde la estructura disipadora se encuentra alejada del río o quebrada receptora.

Diseño del aliviadero

(Sandoval W., 2019), indica que para el diseño de un aliviadero se requiere disponer de la siguiente información:

- Estudio hidrológico de caudales y crecidas.
- Estudio del tránsito de avenidas por el embalse (laminación de caudales de crecida).
- Estudio geológico de la sección de cierre y, en algunos casos, de otras secciones del embalse.
- Estudios de suelos y rocas de la sección en la que se ubicará el aliviadero.
- Topografía de detalle de la zona de emplazamiento del aliviadero.
- Curva característica Caudal vs Cota.
- Clasificación de riesgo de la presa.
- Otros, en concordancia con los requerimientos específicos del proyecto.

Canal de entrada

(Sandoval W., 2019), explica que el canal de ingreso se encarga de conducir el agua hasta una estructura de control, en tal forma que el flujo sea gradual, sin que se formen zonas muertas o de turbulencias. El canal puede tener cierta curvatura, pero el paso del flujo hacia la obra de control debe ser siempre perpendicular.

El radio de curvatura que se establece es de por lo menos cinco veces al ancho de la solera del canal, dependiendo del tipo de material de la zona. La sección puede ser de forma rectangular o trapecial tomando en consideración las condiciones hidráulicas, técnicas y económicas (Sandoval W., 2019).

Se considera que el nivel de la plantilla o solera del canal debe estar ubicado bajo la cresta del vertedero, en por lo menos un 20% de la carga máxima (Sandoval W., 2019).

$$P_1 \geq 0.2 H_{max}$$

La velocidad dentro del canal no puede ser superior a la velocidad de erosión del material, se lo determina con la siguiente formula,

$$V_0 \le V_{ne} = 3.6 (hd_m)^{0.25}$$

Donde:

 V_0 : velocidad de entrada al canal

 V_{ne} : velocidad no erosiva

h: profundidad de flujo

 d_m : diámetro de las partículas

En el caso de un canal revestido con hormigón, $V_0=5\,m/s$, el espesor de este revestimiento se diseña entre 0,10 y 0,20 m; sin embargo, en los casos de alta concentración de sedimentos y materiales flotantes se puede incrementar el revestimiento (Sandoval W. , 2019).

Para el caso del borde libre del canal depende de la revancha de la presa, si se trata de canales con revestimiento no es necesario que este llegue a la altura máxima.

$$b_l = 0.1\sqrt[3]{Q}$$

Tabla 1:

Velocidades permitidas según el material

MATERIAL	VELOCIDAD MEDIA (m/s)
Suelo arenoso muy suelto	0,30 - 0,45
Arena gruesa o suelo arenoso suelto	0,45 - 0,60
Suelo arenoso promedio	0,60 - 0,75
Suelo franco arenoso	0,75 - 0,83
Suelo franco de aluvión o ceniza volcánica	0,83 - 0,90
Suelo franco pesado o franco arcilloso	0,90 - 1,20
Suelo arcilloso	1,20 - 1,50
Conglomerado, cascajo cementado, piza- rra blanda, hard pan, roca sedimentaria blanda	1,80 - 2,40
Roca dura o mampostería	3,00 - 4,50
Concreto	4,50 - 6,00

Nota. En la siguiente tabla se establece las velocidades permitidas según el material. Tomada de Diseño de Obras Hidrotécnicas (p. 287), por W. Sandoval, 2019.

Para los canales revestidos se recomienda bl = h/6; en ambos casos, el borde libre tiene que ser de por lo menos 10 cm. Se recomienda que la pendiente sea horizontal y la longitud lo más corta posible. En algunos casos, la solera se la construye en contra pendiente, con el fin de que el agua regrese al embalse cuando desciende el nivel del agua (Sandoval W. , 2019).

Estructura de control

Como estructura de control se utilizan vertederos fijos o móviles u otras estructuras que permiten regular el paso del flujo. En presas pequeñas o en las que se encuentran alejadas de los centros poblados no son recomendables los vertederos controlados por compuertas, en vista de que requieren, indefectiblemente, de

actividades de operación y mantenimiento continuo. Esta recomendación se refuerza en el Ecuador, en vista de la experiencia con las obras construidas y los escasos recursos que se asignan para el mantenimiento, excepto en las obras de generación eléctrica (Sandoval W., 2019).

$$Q = k_H k_S m L \sqrt{2g} H_0^{3/2}$$

Selección del tipo de vertedero

Para la selección del tipo de vertedero el (USBR, 2014) considera que se deben tomar en cuenta los siguientes aspectos:

- Tipo de presa.
- Condiciones topográficas, geológicas y climáticas del sitio.
- Parámetros hidrológicos (caudales a descargar).
- Condiciones sísmicas.
- Método de desvío de los caudales durante el período de construcción.
- Condiciones de seguridad.
- Facilidad de operación.
- Condiciones económicas satisfactorias.

Canal de descarga

Por condiciones topográficas y de diseño hidráulico se puede requerir de más de una pendiente, o de un canal de pendiente variable, en el que se pueden presentar pendientes suaves y pronunciadas, se debe tomar en cuenta que los flujos se dividen en subcríticos y supercríticos; los primeros se presentan en canales con pendientes suaves $(i < i_{cr})$ y los segundos, cuando la pendiente es pronunciada $(i_s > i_{cr})$. Otra

forma de distinguirles es a través del número de Froude (Fr); si Fr < 1 el flujo es subcrítico y si Fr > 1, supercrítico. (Sandoval W. , 2019)

En cualquiera de los dos casos, el cálculo hidráulico consiste en determinar la curva de remanso y la posibilidad de que se presente el resalto hidráulico antes del cambio de pendiente en el canal (Sandoval W., 2019).

Aireación natural en canales

Según (Sandoval W., 2019) cuando el flujo se acelera en la rápida se desarrolla la capa límite en un tramo relativamente corto, que produce un fenómeno de auto-aireación, que origina una masa de agua y aire, que hace que se incremente la profundidad del flujo respecto a la del flujo no aireado.

El flujo inicia el proceso de aireación se determina con la siguiente ecuación:

$$V_{cra} = 0.089 \frac{R^{1/6}}{n} \sqrt{1 - i_s^2}$$

Donde:

is: pendiente de la solera de la rápida

Según el mismo autor, la profundidad del flujo de la mezcla agua aire, para flujos con Fr > 5, es igual a:

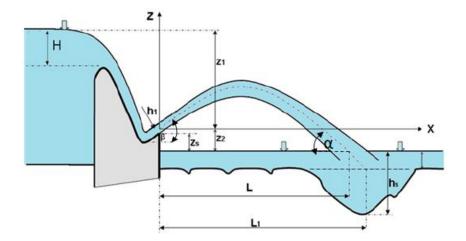
$$h_a = h \left(1 + 0.12 \sqrt{F_r^2 - 25} \right)$$

Obra de disipación de energía

Los disipadores de energía son las estructuras encargadas de disipar la energía cinética que adquiere el flujo en su descenso desde niveles de agua altos,

embalses por ejemplo, hasta niveles inferiores, el cauce del rio para el mismo ejemplo, es decir disminuir las altas velocidades del mismo con el objetivo que no ocurran situaciones no deseadas aguas abajo de las distintas obras en que estos se utilizan como son: aliviaderos, estructuras de caídas, salidas de obras de tomas, salidas de alcantarilla, canales, etc (Pardo Gómez, Lobaina Fernandéz, & Martí Díaz, 2017).

Canal de salida


Según (Sandoval W., 2019), para que el flujo pueda retornar a su cauce normal se requiere de un canal que se desarrolle desde el cuenco disipador hasta el río. Este canal se lo diseña de tal forma que, su profundidad corresponda al tirante normal, con un acho igual o ligeramente menor al que tenía el cauce antes de que se construya de la obra.

Diseño del Deflector tipo Esquí

(Sandoval W., 2019), señala que, para el caso de cimentaciones en roca, lo más recomendable resulta que la conjugación de aguas se la haga mediante un deflector tipo esquí. Esto permite ahorrarse la construcción de un estanque disipador, que es mucho más caro comparado con el deflector propuesto. En teoría, el chorro que se desprende del esquí, véase en la Figura 3.

Figura 3:

Esquema para el cálculo del deflector tipo esquí

Nota. El gráfico representa el esquema de un deflector tipo esquí. Tomada de *Diseño de Obras Hidrotécnicas* (p. 104), por W. Sandoval, 2019.

Para realizar el cálculo se requiere conocer la velocidad del flujo en el deflector v_1 , que se la determina en función del tirante contraído h1=hc y el ángulo β que tiene un valor comprendido entre 25° y 30°. (Sandoval W. , 2019).

$$L = k_a \frac{{v_1}^2}{g} \cos \beta \left(\sin \beta + \sqrt{\sin^2 \beta - \frac{2gz_2}{{v_1}^2}} \right)$$

Siendo:

$$z_2 = -(z_s + h_1 * \cos(\beta / 2))$$

 k_a = coeficiente de aireación del flujo

Para determinar la profundidad de la socavación producida por el chorro h_s , Figura 3. (Sandoval W. , 2019), propone las ecuaciones de Veronese y de Martins, respectivamente:

$$h_s = 1.9 * Z^{0.225} * q^{0.54}$$

$$h_s = 2.3 * Z^{0.1} * q^{0.6}$$

Donde:

Z = es la diferencia de niveles entre aguas arriba y aguas abajo.

 $q = \text{es el caudal unitario } (m^3/s)/m.$

$$q = \frac{Q}{h} (m^3/seg)/m$$

Para dimensionar el pozo se socavación se toma en cuenta la recomendación de (CNEGP-CICCP, 1997), citado por (Sandoval W. , 2019), relacionada con la profundidad máxima de fluctuación de la presión por la caída de un chorro, en sentido vertical, se tendría que, hs $máx \leq 0,45Z$. Este valor debería disminuir cuando el ángulo de ingreso del flujo (chorro) al agua es inferior a 90°, tanto como por la aireación del flujo antes de su ingreso al nivel de aguas abajo, que no se la considera en este caso:

$$h_{s max} = 0.45 k_{\alpha} Z$$

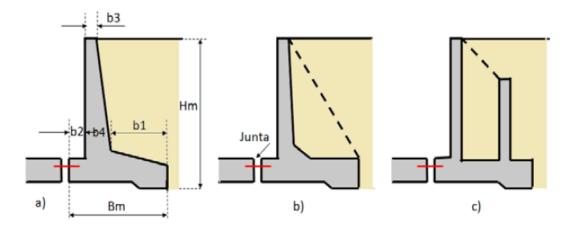
Donde:

 k_{α} = es el coeficiente de reducción relacionado con el ángulo de ingreso del flujo a la superficie libre de aguas abajo. Si se utiliza la ecuación de Mijaliov (1971) se tiene que,

$$k_{\alpha} = \sin \alpha + \frac{\cos \alpha}{3}$$

El ángulo α de ingreso del flujo en el nivel de aguas abajo según Slisskiy (1986) es,

$$\tan \alpha = \sqrt{(\tan \beta)^2 - \frac{2gZ_2}{v_1^2(\cos \beta)^2}}$$


Muros de Ala

(Sandoval W., 2019), indica que los muros de ala es la estructura que empata la presa vertedora con los estribos del cauce, o con el dique o presa de materiales sueltos, se la conoce como muro de ala. El diseño de esta obra se lo realiza de tal manera que el flujo se encauce hacia el vertedero en forma gradual sin que se produzcan discontinuidades, turbulencias, zonas muertas, ni mayores contracciones.

Por ser una estructura de hormigón armado, la parte interior del muro se la diseña de la misma forma que los muros de contención, utilizados en otros tipos de obra, como se muestra en la figura 2.4. (Sandoval W., 2019)

Figura 4.

Perfil de los muros de ala

Nota. El gráfico representa los perfiles de muros de ala. Tomado de Estructuras Hidráulicas. Diseño y Cálculo, por Kirienko, 1987.

De acuerdo con (Kirienko, 1987), en los muros de contención o de ala, se aplican las siguientes relaciones:

$$Bm = (0.5 a 0.9) Hm$$

b2 = (0.25 a 0.30) Bm

 $b4 = (0,1 \ a \ 0,2) \ Hm$

b3 = (0.4 a 0.5) b4

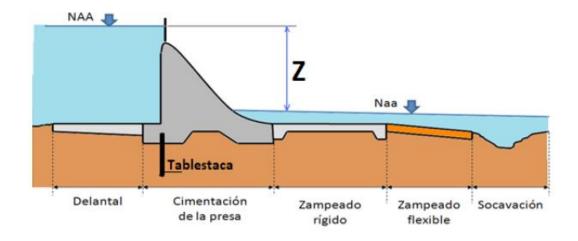
b1 = Bm - b2 - b4

Diseño de presa vertedora en suelos

El diseño de una presa vertedora asentada en suelos está compuesta por dos partes: (Sandoval W., 2019)

- Perfil superior o externo
- Perfil interior o subterráneo

Considerando que el flujo de agua siempre se desplaza bordeando estos dos perfiles, con estos elementos establecidos da como resultado que el perfil geométrico longitudinal de estas presas sea diferente al de las cimentadas en rocas (Sandoval W., 2019).

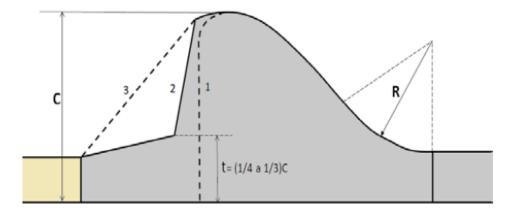

Con el fin de garantizar un diseño seguro, un costo racional y sin que el medio ambiente resulte afectado se diseña la longitud del labio vertedor, considerando que existen limitaciones con el caudal unitario que se puede descargar, sin que produzca daños agua abajo del vertedero (Sandoval W., 2019).

Para una prese vertedora de suelos se requiere de varios elementos hidráulico – estructurales ubicados antes y después de la obra de control, como: una protección del

cauce antes del vertedero denominada delantal y otra obra después del vertedero llamada zampeada o losa de aguas abajo (Sandoval W., 2019).

Figura 5:

Esquema de perfil longitudinal de una presa vertedora en suelo


Nota. El gráfico representa las componentes de una presa vertedora de suelos. Tomado de Diseño de Obras Hidrotécnicas (p. 139), por W. Sandoval, 2019.

Diseño del perfil del vertedero

El espesor recomendado para la base del vertedero.

Figura 6:

Modificación del perfil del vertedero. 1) Perfil original; 3) Perfil con condiciones adicionales

Nota. El gráfico representa el dimensionamiento de una cimentación en una presa vertedora de suelos. Tomado de *Diseño de Obras Hidrotécnicas* (p. 143), por W. Sandoval, 2019.

$$t = \left(\frac{1}{4} \ a \ \frac{1}{3}\right) C$$

El análisis de estabilidad permitirá establecer las dimensiones definitivas.

Según Kerienko en (Sandoval W., 2019) en forma preliminar, depende del tipo de suelo y la diferencia de niveles Zmáx.

- Suelos construidos por gravas gruesas y medias b = (2.0 a 2.25) Zmáx
- Suelos constituidos por arenas gruesas y finas b = (2.25 a 2.5) Zmáx
- Suelos constituidos por limos b = (2.5 a 2.75) Zmáx
- Suelos constituidos por arcillas b = (2.75 a 3.0) Zmáx

Para el cálculo del radio de curvatura se puede emplear las ecuaciones (3.45), (3.46), (3.47) y (3.48) del libro de "Diseño de Obras Hidrotécnicas" (Sandoval W., 2019).

Conjugación de aguas

Con el fin de disminuir la magnitud de las obras de disipación de energía aguas abajo del vertedero, se realiza la conjugación del flujo supercrítico que cae por el vertedero logrando que este empate con el flujo tranquilo bajo el vertedero (Sandoval W., 2019).

Según (Sandoval W., 2019), La norma SP 40.13330.2012 (2012) recomienda, para presas en suelos, los siguientes sistemas de disipación de energía en la conjugación de aguas:

- Muro (umbral), se ubica al final de estanque disipador
- Colchón de aguas tipo pozo
- Muros dentados
- Serie de dados y bloques disipadores
- Combinación de los anteriores

Diseño de tablestacas y muros de corte

Para disminuir la subpresión bajo la presa se diseña muros verticales para cortar o alargar la trayectoria del flujo, pueden diseñarse trablestacas metálicas, cuando la profundidad que se requiere es menor de 25 m; la longitud de las tablestacas es, generalmente, de 6 a 12 m, con un ancho de 0,60 m y un espesor recomendable de 6 a 8 mm (Sandoval W., 2019).

Al momento de que se requiera alcanzar profundidades mayores se diseñan también pilotes prefabricados de hormigón armado.

Método de Chugaev para la subpresión

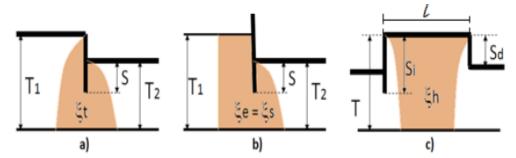
Con este método se puede determinar los siguientes problemas: la subpresión en cualquier punto del flujo subterráneo, gradientes máximo de paso y la resistencia de del suelo a la fuerza de filtración (Sandoval W., 2019).

Según (Sandoval W., 2019), para continuar con el cálculo, se esquematiza el perfil real subterráneo de la presa en tres elementos básicos:

- Entrada y salida del flujo
- Flujo horizontal
- Pérdidas en los componentes verticales como dientes o tablestacas.

Las pérdidas de presión se las calcula de manera separada para cada elemento, utilizando las siguientes ecuaciones:

$$h_i = \zeta_1 \frac{Z}{\sum \zeta_I}$$


El caudal unitario que pasa bajo la estructura

$$q = k_f \frac{Z}{\sum \zeta_I}$$

Los coeficientes de pérdidas se los determina con:

Figura 7:

Coeficientes de pérdida bajo un contorno subterráneo

Nota. El gráfico representa coeficientes de pérdida. Tomado de *Diseño de Obras Hidrotécnicas* (p. 158), por W. Sandoval, 2019.

a) Coeficiente de pérdida con tablaestaca

$$\zeta_t = \frac{T_1 - T_2}{T_1} + 1.5 \frac{s}{T_2} + \frac{0.5 \frac{s}{T_2}}{1 - 0.75 \frac{s}{T_2}}$$

En caso de no existir tablaestaca y se diseña un escalón

$$\zeta_t = \frac{T_1 - T_2}{T_1}$$

Se aplica en casos en los que se cumple con la condición 0≤s/t2≤0,8

b) Coeficiente de pérdida con condición de entrada o salida de un contorno

$$\zeta_e = \zeta_s = 0.44 + \zeta_t$$

c) Coeficiente de pérdida para tramo horizontal de contorno

$$\zeta_h = \frac{l - 0.5(S_i + S_d)}{t}$$

Según (Sandoval W., 2019), la gradiente de salida del flujo se lo determina con la siguiente ecuación.

$$J_{sal} = \frac{1}{\alpha T_1} \frac{Z}{\Sigma \zeta_i}$$

Donde:

$$\alpha = 1.1 \sqrt{sen\left[\frac{\pi}{2}\left(\frac{S}{T_1} - \frac{T_2}{T_1} + 1\right)\right]}$$

Losa de zampeado rígido

Este elemento hidráulico soporta la carga dinámica del resalto hidráulico y es el lugar en donde se disipa la energía cinética del flujo se lo construye de hormigón de alta resistencia. La longitud de la losa de zampeado es aproximadamente igual al resalto de agua o colchón de aguas, el espesor aproximado es de $t_z=(0.08\ a\ 0.10)L_z$ (Sandoval W. , 2019).

Donde:

L_z = longitud del zampeado

Para calcular el espesor de la losa de zampeado se lo calcula con la ecuación propuesta por Dombrovskiy citada por (Sandoval W., 2019)

$$t_z = 0.15 v_1 \sqrt{h_1}$$

Donde:

v₁ = velocidad del flujo en el ingreso al colchón de aguas

h₁ = tirante del flujo en el ingreso al colchón de aguas

Transporte de sedimentos

Definición y conceptos

Según (Maza Alvarez & García Flores), se entiende por sedimentos a todas las partículas de suelo y roca de la cuenca que son arrastradas por una corriente. Debido a su comportamiento al ser transportados, el sedimento se clasifica en dos grupos definidos: el de lavado y de fondo.

La diferencia principal en el comportamiento entre el material de fondo y el de lavado consiste en que el transporte de fondo depende de las características hidráulicas de la corriente y características físicas del material; por tanto, si dos ríos tienen tramos semejantes y con idéntico material de fondo, transportan las mismas cantidades de material de fondo bajo condiciones hidráulicas parecidas (Maza Álvarez & García Flores).

Se da el nombre de sedimentos a las partículas procedentes de rocas o suelos que son acarreadas por las aguas y por los vientos. Todos estos materiales, posteriormente de cierto acarreo, finalmente son depositados a lo largo de los propios cauces, en lagos o lagunas, en el mar y en las partes bajas de la cuenca, principalmente en la planicie (Bonilla, 2014)

Sedimentos en suspensión

(Bonilla, 2014), señala que las propiedades de un sedimento en suspensión son delineadas, con el volumen de vacíos ∀v igual al volumen del agua ∀w.

Concentración de sedimentos volumétricos

(Bonilla, 2014), la concentración de sedimento volumétrico Cv es definida como el volumen de sólidos $\forall s$ sobre el volumen total $\forall t$. Cuando los vacíos están completamente rellenados con agua, volumen de vacíos igual a volumen de agua $\forall v = \forall w$, obtenemos:

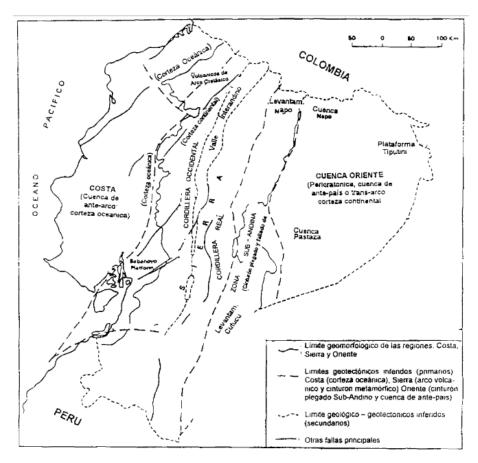
$$C_v = \frac{\forall_s}{\forall_s + \forall_w}$$

La unidad de medición más común para la concentración de sedimentos es miligramos por litro, el cual describe la relación de la maza de partículas de sedimento al volumen de la mezcla agua-sedimento. Otras unidades incluyen kilogramos por metro cubico (1 mg/l=1 g/m³), la concentración de sedimentos volumétricos Cv, la concentración en partes de 10⁶ (ppm) Cppm, y la concentración por peso Cw. Podemos demostrar las siguientes formulas (Bonilla, 2014).

$$C_w = \frac{peso \ de \ sedimento}{peso \ total}$$

Capítulo III

Marco Geológico


Geología Regional

El estado soberano del Ecuador está localizado en el noroccidente de Sudamérica, donde, la formación de la Cordillera de los Andes y todas las Zonas de Deformación aledañas son el resultado de la convergencia de placas tectónicas, proceso en el que se da la subducción de la placa de Nazca bajo la placa Sudamericana a una velocidad de 60 – 70 mm/año respecto a América del Sur (Nocquet, y otros, 2014).

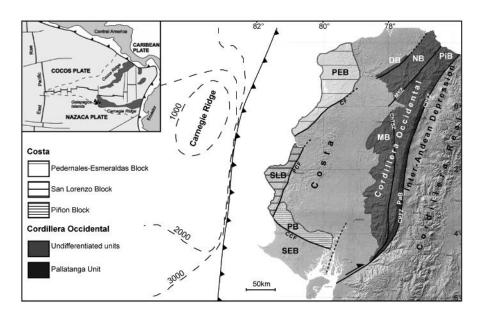
La cual se encuentra dividido tectónicamente en 5 unidades morfotectónicas: la Costa, la Cordillera Occidental, el Valle Interandino, la Cordillera Real y la Cuenca Oriente, véase en la siguiente Figura 8.

Figura 8:

Esquema geomorfológico y geológico del Ecuador

Nota. El gráfico representa la formación geomorfológica y geológica del Ecuador. Tomado de Los terremotos del Ecuador del 5 de marzo de 1987, por M. Hall, 2000, Corporación Editora Nacional.

Costa


La región costanera ecuatoriana se extiende al oeste de los Andes, su anchura mayor de 180 Km a la latitud de Guayaquil, se reduce a 100 Km al norte de Santo Domingo, y a una franja de 20 a 40 Km en el sur. Se inicia en el piedemonte andino costanero, y continúa con el abanico de esparcimiento y llanuras de divagación de los ríos Pachijal, Caoni y Blanco, seguido de la cordillera costera de dominio estructural, en

la que se impone el valle epigenético del río Esmeraldas (Ministerio de Transporte y Obras Públicas, 2013).

Comprende principalmente un basamento alóctono, el cual está representado por la Fm Piñon y rocas sedimentarias posteriores del grupo Cayo, (Benitez, 1995). Sobre el basamento se encuentran las formaciones de arco de isla de San Lorenzo y las Orquídeas, suprayacente a estas formaciones existe una secuencia volcanoclástica correspondiente a la Fm Cayo como se observa en la Figura 9 (Luieux, Heller, Spikings, Winkler, & Vallejo, 2005).

Figura 9:

Posición de los bloques técnicos de la Costa Ecuatoriana

Nota .Ubicación de bloques tectónicos en la costa ecuatoriana. Tomado de *Cretaceous block* rotations in the coastal forearc of Ecuador: paleomagnetic, chronstratigraphic evidences, and implications for the origin and accretion of the blocks, por Luieux, Heller, Spikings, Winkler, & Vallejo, 2005.

Sierra

La sierra está limitada al Oeste por una zona de sutura (falla Jubones), la misma que marca el límite oriental de la Costa y al Este por el cinturón de fallas y pliegues de tras – arco de la provincia oriental, como se muestra en la Figura 8. La Sierra corre a lo largo del país, aunque tiene solo 150 km de ancho, siendo mucho más delgada que el resto de los Andes (Hall M., 2000).

Cordillera Occidental

La zona se encuentra formada por bloques alóctonos de origen oceánico acrecionados al margen de la placa Sudamericana en el Cretácico tardío-Paleógeno (Feininger, 1987); (Aspden & Litherland, 1992); (Spikings, et al., 2001). Estos bloques están constituidos por un basamento de origen oceánico de edad Cretácico Tardío, seguido por secuencias turbidíticas y secuencias basalto – andesíticas de arco de isla que van del Cretácico Tardío al Eoceno (Vallejo C., 2007).

El bloque Pallatanga (Cretácico Superior) se localiza a lo largo del margen oriental de la Cordillera Occidental, está suturado al margen continental por la falla Calacalí-Pujilí-Pallatanga con una orientación aproximada de Norte-Sur (N-S), se considera la prolongación Sur del bloque Cauca (Aspden & Litherland, 1992) de la falla Patía en Colombia. Esta zona deformada limita los terrenos continentales de los oceánicos (Hughes & Pilatasig, 2002) (Vallejo, Wikler, Spikings, Luzieux, Friedrich, & Bussy, 2009).

El bloque de la formación Macuchi consiste de una gruesa secuencia de depósitos volcanoclásticos andesiticos y lavas en forma de almohadilla. Esta formación

está recubierta por sedimentos marinos y volcanoclásticos del Paleoceno al Eoceno (Hall M., 2000).

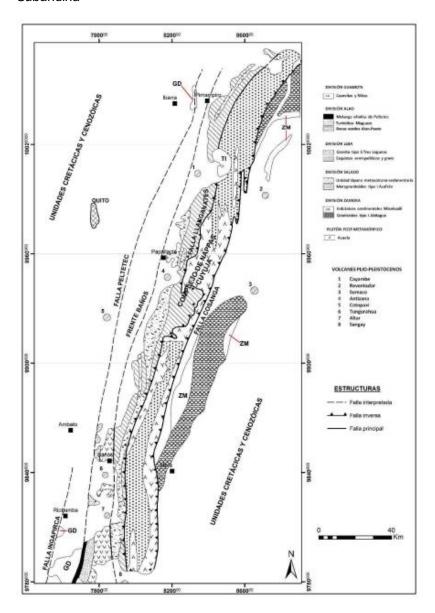
Valle Interandino

El valle Interandino es una depresión topográfica orientada noreste-suroeste (NE-SO) acoge un conjunto de cuencas sedimentarias producto de la reordenación a gran escala que se produjo a final del Mioceno durante la formación de la cordillera de los Andes. Cada cuenca sedimentaria se llenó por depósitos continentales ya sea abanicos aluviales o lacustre y / o volcánica fluvial (Winkler, Villagómez, Spikings, Abegglen, Tobler, & Egüez, 2005).

Estos valles altos (2.500 a 3.000 metros de elevación) están rellenados con sedimentos y depósitos piroclásticos del Cuaternario. El más importante de estos depósitos volcánicos está constituido de ceniza y es conocido como "cangahua" (Hall M. , 2000).

Cordillera Real

La cordillera Real es una franja en dirección Norte – Sur que se encuentra limitada al Este por la Zona Subandina, al Oeste por el Valle Interandino y al Sur por los grabens de Cariamanga y Huancabamba (Aspend & Litherland, 1992).


La geología de la Cordillera Real tiene como soporte principal los estudios realizados durante la Misión Británica en el Proyecto Cordillera Real (1986-1994), los mismos que establecieron cinco divisiones litotectónicas, constituidas por cinturones metamórficos informales como son Guamote, Alao, Loja, Salado y Zamora, separados

por límites estructurales representados por los sistemas de fallas regionales Peltetec, Frente Baños, Falla Llanganates y Falla Cosanga Méndez (Figura 10) (Yánez, 2016).

Figura 10:

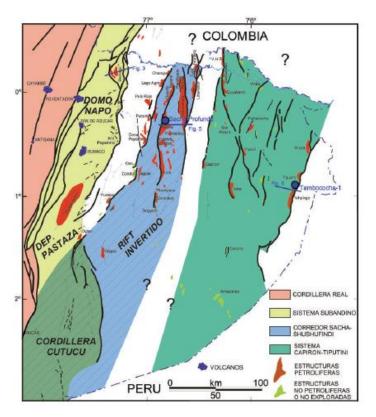
Mapa geológico simplificado de las rocas pre-cretácicas de la Cordillera Real y de la zona

Subandina

Nota: Mapa geológico. Tomado de *The geology and Mesozoic collisional history of the Cordillera* Real, Ecuador (p.205), por J. Asped, M. Litherland, 1992.

Oriente

El Oriente consiste de dos zonas estructurales y provincias fisiográficas distintas: la cuenca oriental y la zona Subandina. Fisiográficamente, la zona Subandina consiste de colinas de piedemonte que alcanzan elevaciones de hasta 2.000 metros. Los ríos con drenaje hacia el Este han cortado profundamente a estas colinas de piedemonte. El clima varía desde tropical en zonas orientales hasta subtropical en las zonas más altas del Oeste. Las precipitaciones son altas en toda la región, como consecuencia, las tasas de meteorización son generalmente altas (Hall M., 2000).


Cuenca Oriental

La cuenca oriente (o Amazónica) está ubicada al Este de la zona Subandina. Se trata de una región levemente ondulada que posee una historia tectónica más estable que la zona Subandina. La estratigrafía de las dos zonas es similar (Hall M., 2000).

Según (Báez, 2018), la Cuenca Oriente se desarrolla como resultado de esfuerzos transpresivos del Cretácico tardío, los que provocan la emersión de la Cordillera Real y la formación de la cuenca de ante-país de trasarco propiamente dicha. Su deformación y la estructuración de sus campos petrolíferos resultan de la inversión tectónica de antiguas fallas normales ligadas a un sistema de rift de edad triásico - jurásico.

Figura 11:

Mapa tectónico de la Cuenca Oriente

Nota. El gráfico representa el mapa tectónico de Cuenca Oriente. Tomado de *La Cuenca Oriente: Geología y petróleo,* por P. Baby, R. Barragán, M. Rivadeneira, 2015.

Zona Subandina

Ubicada al lado oriental de la cordillera Real en las estribaciones de la cordillera de los Andes, es la zona de transición entre la Cordillera Real y la Cuenca Oriente, presenta una actividad tectónica muy relevante reflejada en zonas muy deformadas, alta actividad sísmica y volcánica (Hall M., 1977).

(Rivadeneira, Dávila, Christophoul, & Baby, 1999), explica que la Zona
Subandina se divide de Norte a Sur en tres zonas morfológicas: el Levantamiento del
Napo, la Depresión del Pastaza y la Cordillera Cutucú. Está conformada por

formaciones sedimentarias que van desde el Jurásico hasta el Neógeno, la base de esta zona está conformada principalmente por la formación Misahuallí y Santiago.

Geología Local

Litología

El área en el cual se desarrollará el diseño del aliviadero emergente y sus áreas de influencia, constituyen parte de la Zona Subandina Oriental Ecuatoriana, en un área de transición entre la Cordillera Real y la planicie Amazónica. Está se encuentra constituida por una potente serie de rocas sedimentarias marino-continentales, la misma que es caracterizada por presentar una geodinámica activa, controlada por tres factores: actividad sísmica, tectónica y actividad volcánica (Baby, Barragán, & Rivadeneira, 2015).

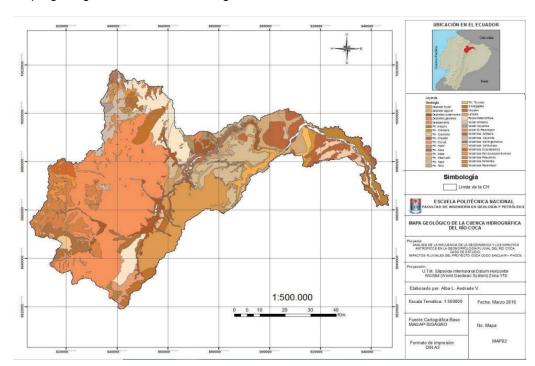


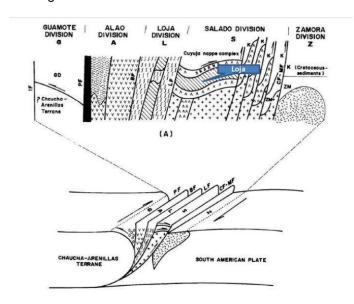
Figura 12:

Mapa geológico de la Cuenca hidrográfica del rio Coca

Nota. El gráfico representa la cuenca hidrográfica del río Coca. Tomado de Análisis de la influencia de la geodinámica y los impactos antrópicos en la geomorfología fluvial del río Coca.

Caso de estudio: impactos fluviales del proyecto Coca Codo Sinclair – PHCCS, por A. Andrade, 2016.

Estratigrafía de la Zona de Estudio


Lo que respecta a la zona de estudio se encuentran dos tipos de ambientes geodinámicos muy distintos, en los que se puede decir que al occidente se tiene la Codillera Real y al oriente la Cuenca Oriente, a partir de esta división se desglosará la estratigrafía por ambiente geodinámico. Además, se encuentran depósitos cuaternarios del tipo: fluvio - lacustre, aluvial, coluvial, glaciar.

Cordillera Real

Según (Aspend & Litherland, 1992), desde el Oeste hacia el Este la Cordillera Real tiene los siguientes terrenos: Guamote (Continental), Alao-Paute (Arco de Islas), Loja (Continental), Salado (Arco de Islas) y Zamora (Continental). Las fallas que dividen a estos terrenos respectivamente son: Peltetec, Baños, Llanganates y Cosanga. Por otra parte (Mégard & Lebrat, 1986) indican que la falla de Pujilí-Cauca de edad Cretácico Tardío- Terciario Temprano, marca la unión entre el margen paleocontinental de América del Sur con el arco de islas que posteriormente representará a la Cordillera Occidental. Esto se puede mostrar en la siguiente figura.

Figura 13:

Divisiones de la Cordillera Real. IF=Ingapirca, BF=Falla Baños, LF= Falla Llanganates, CF=
Cosanga-Mendez

Nota. El gráfico representa la cuenca hidrográfica del río Coca. Tomado de Análisis de la influencia de la geodinámica y los impactos antrópicos en la geomorfología fluvial del río Coca.

Caso de estudio: impactos fluviales del proyecto Coca Codo Sinclair – PHCCS, por A. Andrade, 2016.

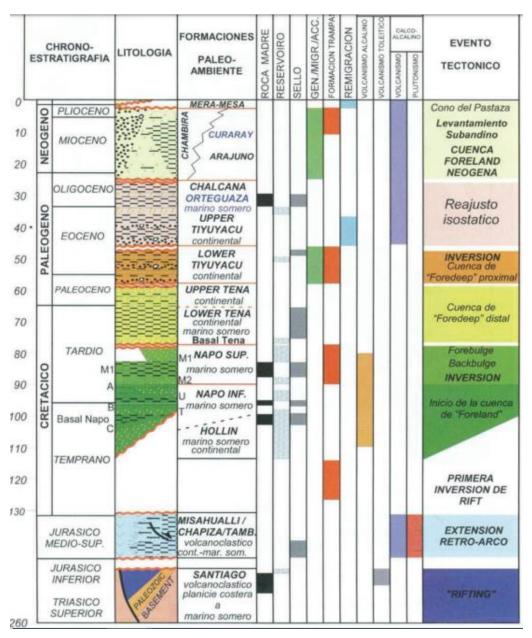
Fm. Cuyuja (jurásico - cretácico inferior). - Esta formación aparece al Occidente de la zona de estudio, las rocas que conforman cada formación pertenecen a la división Salado (ver Figura 14), La formación Cuyuja se encuentra en una zona de compresión entre la unidad Upano y Cerro Hermoso. (Aspend & Litherland, 1992)

Figura 14:

División del salado

Nota. El gráfico representa las formaciones del sector del Río Salado. Tomado de *The metamorphic belts of Ecuador,* por M. Litherland, J. Aspen, R. Jemielit, 1994, British Geological Survey.

Cuenca Oriental


La Cuenca Oriente tuvo varias etapas de sedimentación las cuales se indican en la Figura 15, en el cual se muestra la columna tectono-estratigráfica de la Cuenca

Oriente. En esta gráfica se representan los eventos geodinámicos más importantes para la evolución y formación de la cuenca sedimentaria. (Andrade, 2016)

Figura 15:

Columna tectono-estratigráfica, y eventos geodinámicos que controlaron el desarrollo de la

Cuenca Oriente y de sus petrolíferos

Nota. El gráfico representa los eventos geodinámicos. Tomado de Análisis de la influencia de la geodinámica y los impactos antrópicos en la geomorfología fluvial del río Coca. Caso de estudio: impactos fluviales del proyecto Coca Codo Sinclair – PHCCS, por A. Andrade, 2016.

Formaciones

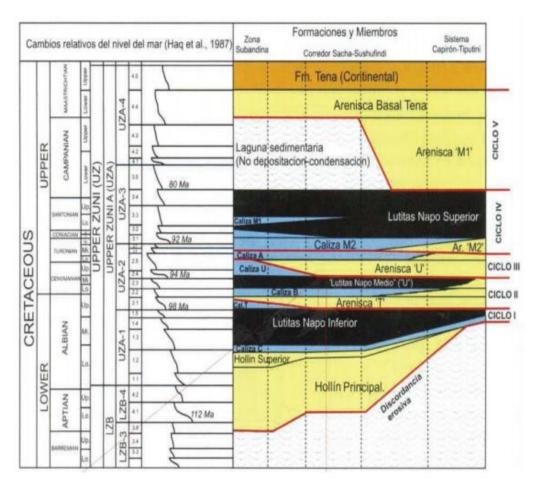
Jurásico – Cretácico

Inferior División Amazónica (Triásico). - Esta División aflora en el sector Subandino de la Amazonia, aquí definida por la Unidad Misahuallí, la que aflora en la parte inferior y a lo largo del cañón del río Coca. Basados en evidencias paleontológicas, la edad de la Unidad Misahuallí es probablemente Cretácico Inferior, pero cerca del límite Jurásico – Cretácico. (Hall & Calle, 1982)

Cretácico

Formación Hollín - Kh (Cretácico Inferior: Albiense-Aptiano). - Esta Formación aflora a lo largo del cañón del río Coca (Mullo, 2012).

Los datos obtenidos principalmente de pozos petroleros, el espesor de la formación está entre 80 y 250 m. De acuerdo a dataciones pelinológicas se establece que la base pertenece al Alpiano y su secuencia avanza hasta el Albiano Inferior.


Formación Napo – Kn (Cretácico: Albiano Inferior-Senoniano) (Mullo, 2012).

Según (Tschopp, 1953), basándose en ciertos estratos calcáreos bien definidos ha realizado tres divisiones dentro de la formación:

- Napo Inferior
- Napo Medio
- Napo Superior

Figura 16:

Formaciones, miembros y siclos sedimentarios del Cretácico de la cuenca Oriente, y sus relaciones con la curva eustática

Nota. El gráfico representa las formaciones geológicas. Tomando de *Chronology of sea levels* since the *Triassic*, por B. Haq, J.Hardenbol, P. Vail,1987.

Paleoceno

Formación Tena – Kt (Cretácico Superior-Paleoceno Inferior). - Esta formación aflora en los sectores altos del cañón del río Coca (Mullo, 2012).

La existencia de fósiles son escasos que no han permitido una datación exacta, y se le ha asignado una edad cretácico Superior (Maestrinchense) al Paleoceno (Mullo, 2012).

Pleistoceno – Holoceno

Volcánicos del Reventador – Pleistoceno-Holoceno). - Aflora en varios sitios hacia la margen izquierda del río Coca y corresponde a avalanchas de escombros del palio-Reventador (Mullo, 2012).

Existe una unidad identificada como una inter-estratificación de lahares, lavas y aglomerados volcánicos que serían productos de los eventos más recientes de la actividad volcánica del Complejo Reventador, estos últimos ocurridos hace 19 000 años que originó el represamiento del río Coca y la formación de una laguna donde se depositaron las capas de limo que se encuentran entre los ríos Salado y Malo (Mullo, 2012).

Depósitos Superficiales (Holoceno)

Depósitos Coluviales - (Holoceno). - Son depósitos de pendientes o coluviales constituidos por un material heterogéneo como arcillas, limos con presencia de rodados decimétricos. Estos normalmente son de espesor limitado sin estratificación (Mullo, 2012).

Depósitos y Terrazas Aluviales - (Holoceno). - Corresponden a potentes depósitos aluviales y terrazas aluviales que se localizan en el valle del río Coca, constituidos principalmente por cantos rodados mal seleccionados de diverso origen y

de poco espesor en matriz areno limosa y areno arcillosa, mal seleccionados (Mullo, 2012).

Las terrazas del río Coca son en varios niveles, generalmente separadas por desniveles muy abruptos y de altitudes mayores a los 10 metros (Mullo, 2012).

Marco hidrológico

La cuenca del Río Coca, que a su vez forma parte de la cuenca alta del Río Napo, está situada al nor-oriente del Ecuador en la vertiente Atlántica de la cordillera de los Andes; en la transición de la Sierra hacia la Amazonía. El Río Coca se forma de la unión del Río Quijos y el Río Salado, a partir de su confluencia el Río Coca describe una curva denominada Codo Sinclair que tiene un desnivel de 620 metros; en este tramo también se localizaba la ex-Cascada de San Rafael con una altura de 150 metros (Horna, 2016).

El área de la cuenca abarca 5283,74 km². El punto más alto es el volcán Cayambe con una altitud de 5790 msnm, y llega a una altitud de 260 msnm en el punto más bajo, que es la estación hidrológica del INAMHI Coca en San Sebastián (H1134), dicha estación es además el punto de cierre de la cuenca. Dentro de la cuenca se localizan también los volcanes Anti sana (5704 msnm), El Reventador (3562 msnm) y otras elevaciones menores (Horna, 2016).

Análisis de agua

Ubicación de toma de muestras

Para el posterior análisis de las muestras de agua del río Coca fueron tomadas seis muestras de agua en las siguientes coordenadas: Latitud: -0.123225, Longitud: -77.601227; a la altura del kilómetro 106 de la vía Lago Agrio-Quito en la parroquia de El Chaco, provincia de Napo, Ecuador.

Figura 17:

Lugar de toma de muestras de agua, foto tomada el 19-06-2020

Preparación de muestreo

- El punto de muestreo debe ser un lugar accesible
- Coordinación para el transporte y recolección de las muestras de agua
- Preparación de los envases, estos deben estar secos y limpios
- Preparación del equipo de muestreo (mascarilla, cámara fotográfica, GPS)

Toma de muestras

Proceso de toma de muestras:

- Llenar el recipiente de muestreo.
- La toma de muestras se la realiza sumergiendo el envase en sentido contrario al flujo del río.
- Registrar el punto de recolección utilizando GPS.
- Caracterizar el sitio de muestreo con evidencias fotográficas.
- Es necesario preservar las muestras tomadas a 4°C.

Muestreo de agua

En la tabla a continuación se detalla las muestras tomadas

Tabla 2:Toma de muestras

Número de muestra	Fecha de recolección	Hora de recolección
1	17/06/2020	14:20
2	18/06/2020	16:34
3	19/06/2020	14:41
4	20/06/2020	13:50
5	21/06/2020	12:18
6	22/06/2020	11:15

Procedimiento para obtener la cantidad de sedimentos por litro de agua

Para obtener el peso de los sedimentos que contiene cada muestra de agua se debe realizar el siguiente proceso:

Materiales

- Muestras de agua
- Balanza
- Taras
- Horno

Procedimiento

• Pesar el envase junto con las muestras de agua

Figura 18:

Peso de envase más muestra de agua

• Pesar las taras o recipientes en los que se vaya a colocar la muestra de agua

Figura 19:
Peso de la tara

- Verter el contenido de agua en una tara
- Pesar los envases vacíos

Figura 20:

Peso de envase de recolección de muestra vacío

 Colocar la tara que contiene la muestra de agua en el horno a 100°C durante aproximadamente 24 horas, o hasta que se haya evaporado el agua por completo.

Figura 21:

Muestras en el horno a 100°C

• Pesar las taras que contienen los sedimentos

Figura 22:
Peso de sedimentos

Cálculo de concentración de sedimentos volumétricos

Muestra 1

Peso de envase vacío = 27,89 g

Peso del envase + muestra = 1225,63 g

Peso de la muestra = 1225,63 g - 27,89 g = 1197,74 g

$$1197,74 \ g \times \frac{1 \ l}{1000 \ g} = 1,19774 \ l$$

Peso de sedimento = 0,22 g

$$0.22 \ g \times \frac{1000 \ mg}{1 \ g} = 220 \ mg$$

Calcular

$$C_w = \frac{peso \ de \ sedimento}{peso \ total}$$

$$C_w = \frac{220 \ mg}{1.19774 \ l} = 183,679 \ mg/l$$

Muestra 2

Peso de envase vacío = 28,51 g

Peso del envase + muestra = 1193,36 g

Peso de la muestra = 1193,36 g - 28,51 g = 1164,85 g

$$1164,85 \ g \times \frac{1 \ l}{1000 \ g} = 1,16485 \ l$$

Peso de sedimento = 0,15 g

$$0.15 \ g \times \frac{1000 \ mg}{1 \ g} = 150 \ mg$$

Calcular

$$C_w = \frac{150 \ mg}{1,16485 \ l} = 128,77 \ mg/l$$

Peso de envase vacío = 27,81 g

Peso del envase + muestra = 1144,24 g

Peso de la muestra = 1144,24 g - 27,81 g = 1116,43 g

$$1116,43 \ g \times \frac{1 \ l}{1000 \ g} = 1,11643 \ l$$

Peso de sedimento = 0,87 g

$$0.87 \ g \times \frac{1000 \ mg}{1 \ g} = 870 \ mg$$

Calcular

$$C_w = \frac{870 \ mg}{1.11643 \ l} = 779,269 \ mg/l$$

Muestra 4

Peso de envase vacío = 28,36 g

Peso del envase + muestra = 1211,46 g

Peso de la muestra = 1211,46 g - 28,36 g = 1183,1 g

$$1183,1 \ g \times \frac{1 \ l}{1000 \ g} = 1,11831 \ l$$

Peso de sedimento = 1,79 g

$$1,79 \ g \times \frac{1000 \ mg}{1 \ g} = 1790 \ mg$$

Calcular

$$C_w = \frac{1790 \ mg}{1,11831 \ l} = 1600,629 \ mg/l$$

Peso de envase vacío = 27,97 g

Peso del envase + muestra = 1241,22 g

Peso de la muestra = 1241,22 g - 27,97 g = 1213,25 g

$$1213,25 \ g \times \frac{1 \ l}{1000 \ g} = 1,21325 \ l$$

Peso de sedimento = 2,91 g

$$2,91 \ g \times \frac{1000 \ mg}{1 \ g} = 2910 \ mg$$

Calcular

$$C_w = \frac{2910 \ mg}{1,21325 \ l} = 2398,516 \ mg/l$$

Muestra 6

Peso de envase vacío = 27,70 g

Peso del envase + muestra = 1130,86 g

Peso de la muestra = 1130,86 g - 27,70 g = 1103,16 g

$$1103,16 \ g \times \frac{1 \ l}{1000 \ g} = 1,10316 \ l$$

Peso de sedimento = 0,45 g

$$0.45 \ g \times \frac{1000 \ mg}{1 \ g} = 450 \ mg$$

Calcular

$$C_w = \frac{450 \ mg}{1,10316 \ l} = 407,919 \ mg/l$$

Resultados del ensayo

Tabla 3:Resultados de muestras de agua

Cantidad de sedimentos (mg/l)
128,77
128,77
779,269
1600,629
2398,516
407,919

 $C_w \ promedio = 907,31 \ mg/l$

Gravedad específica de los sedimentos

Procedimiento para el ensayo de gravedad especifica de los sedimentos

Para obtener la gravedad específica de los sedimentos de las muestras tomadas en el río Coca se utilizó la norma ASTM D4892.

Se utilizó la cantidad de sedimentos que se obtuvo en el ensayo de cantidad de sedimentos por litro de agua.

Materiales

Sedimentos (muestra seca)

- Termómetro
- Picnómetro
- Balanza

Procedimiento

 Pesar las taras que contienen los sedimentos después de que el agua se haya evaporado completamente.

Figura 23:
Peso del sedimento

• Pesar el picnómetro vacío

Figura 24:

Peso del picnómetro vacío

• Pesar el picnómetro con agua destilada

Figura 25:
Peso del picnómetro con agua destilada

 Tomar la temperatura del agua destilada, para cada una de las muestras es necesario tomar la temperatura

Figura 26:

Toma de temperatura del agua destilada

Introducir los sedimentos en el picnómetro

Figura 27:
Sedimentos en el picnómetro

Pesar el picnómetro que contiene el sedimento junto con el agua destilada

Figura 28:
Peso del picnómetro más sedimentos y agua oxigenada

Cálculo de gravedad específica de los sedimentos

Para proceder con el cálculo de la gravedad específica de los sedimentos se escoge los valores de peso específico de agua a la temperatura del ensayo (J) y coeficiente de temperatura (K) de la Figura 3.29.

Figura 29:

Tabla de peso específico del agua, factor K y J

TABLA DEL PESO ESPECIFICO DEL AGUA Y DEL FACTOR "K"		
10	0,99973	1,002
11	0,99963	1,001
12	0,99953	1,001
13	0,99941	1,001
14	0,99927	1,001
15	0,99913	1,001
16	0,99897	1,001
17	0,99880	1,001
18	0,99862	1,000
19	0,99843	1,000
20	0,99823	1,000
21	0,99802	1,000
22	0,99780	1,000
23	0,99757	0,999
24	0,99733	0,999
25	0,99708	0,999
26	0,99681	0,999
27	0,99654	0,998
28	0,99626	0,998
29	0,99598	0,998
30	0,99568	0,997

Tabla 4:Gravedad específica muestra 1

	PROCESO	UNIDAD	CANTIDAD
A	PESO DEL PICNÓMETRO + MUESTRA SECA	(g)	19,02
В	PESO DEL PICNÓMETRO + MUESTRA SECA + AGUA DESTILADA	(g)	68,82
С	PESO DEL PICNÓMETRO	(g)	18,80
D	PESO DEL PICNÓMETRO + AGUA DESTILADA	(g)	68,74
E = A - C	PESO DE LA MUESTRA SECA	(g)	0,22
F = D - C	VOLUMEN DEL FRASCO	(cm³)	49,94

	PROCESO	UNIDAD	CANTIDAD
G = B - A	VOLUMEN DEL FRASCO -	(cm³)	49,80
0-5 /	VOLUMEN DE LOS GRANOS DE LA	(0111)	40,00
	MUESTRA		
0		(2)	0.44
H = F - G	VOLUMEN DE LOS GRANOS DE LA	(cm³)	0,14
	MUESTRA		
I= E / H	PESO ESPECÍFICO DEL SUELO	(g/cm³)	1,571
		(5 /	,
	PESO ESPECÍFICO DE AGUA A LA	(a/am3)	0.000
J		(g/cm³)	0,999
	TEMPERATURA DE ENSAYO		
	TEMPERATURA DE ENSAYO	°C	19,400
L=I/J	GRAVEDAD ESPECÍFICA DEL SUELO A		1,573
L=1/J			1,573
	TEMPERATURA DE ENSAYO		
K	COEFICIENTE DE TEMPERATURA K (T	ABLA)	1,000
M=L*K	GRAVEDAD ESPECÍFICA DEL SUELO A	20°℃	1,573
IVI-L IX	GRAVEDAD EGI EGII ICA DEL GOLLO A	20 0	1,373

Tabla 5:

Gravedad específica muestra 2

	PROCESO	UNIDAD	CANTIDAD
A	PESO DEL PICNÓMETRO + MUESTRA SECA	(g)	18,95
В	PESO DEL PICNÓMETRO + MUESTRA SECA + AGUA	(g)	68,82
С	DESTILADA PESO DEL PICNÓMETRO	(g)	18,80
D	PESO DEL PICNÓMETRO + AGUA DESTILADA	(g)	68,74
E = A - C	PESO DE LA MUESTRA SECA	(g)	0,15
F = D - C	VOLUMEN DEL FRASCO	(cm³)	49,94
G = B - A	VOLUMEN DEL FRASCO - VOLUMEN DE LOS GRANOS DE LA MUESTRA	(cm³)	49,87
H = F - G	VOLUMEN DE LOS GRANOS DE LA MUESTRA	(cm ³)	0,07
I= E / H	PESO ESPECÍFICO DEL SUELO	(g/cm³)	2,143
J	PESO ESPECÍFICO DE AGUA A LA TEMPERATURA DE ENSAYO	(g/cm³)	0,998

	PROCESO	UNIDAD	CANTIDAD
	TEMPERATURA DE ENSAYO	°C	19,700
L=I/J	GRAVEDAD ESPECÍFICA DEL SUELO A TEMPERATURA DE ENSAYO		2,147
K	COEFICIENTE DE TEMPERATURA K (TA	ABLA)	1,000
M=L*K	GRAVEDAD ESPECÍFICA DEL SUELO A	20°C	2,147

Muestra 3

Tabla 6:Gravedad específica muestra 3

	PROCESO	UNIDAD	CANTIDAD
А	PESO DEL PICNÓMETRO + MUESTRA SECA	(g)	19,67
В	PESO DEL PICNÓMETRO + MUESTRA SECA + AGUA	(g)	69,28
С	DESTILADA PESO DEL PICNÓMETRO	(g)	18,80
D	PESO DEL PICNÓMETRO + AGUA DESTILADA	(g)	68,74
E = A - C	PESO DE LA MUESTRA SECA	(g)	0,87
F = D - C	VOLUMEN DEL FRASCO	(cm³)	49,94
G = B - A	VOLUMEN DEL FRASCO - VOLUMEN DE LOS GRANOS DE LA MUESTRA	(cm³)	49,61
H = F - G	VOLUMEN DE LOS GRANOS DE LA MUESTRA	(cm³)	0,33
I= E / H	PESO ESPECÍFICO DEL SUELO	(g/cm³)	2,636
J	PESO ESPECÍFICO DE AGUA A LA TEMPERATURA DE ENSAYO	(g/cm³)	0,998
	TEMPERATURA DE ENSAYO	°C	19,700
L=I/J	GRAVEDAD ESPECÍFICA DEL SUELO A TEMPERATURA DE ENSAYO		2,642
K	COEFICIENTE DE TEMPERATURA K (T	ABLA)	1,000
M=L*K	GRAVEDAD ESPECÍFICA DEL SUELO A	20°C	2,642

Tabla 7:Gravedad específica muestra 4

	PROCESO	UNIDAD	CANTIDAD
A	PESO DEL PICNÓMETRO + MUESTRA SECA	(g)	20,59
В	PESO DEL PICNÓMETRO + MUESTRA SECA + AGUA	(g)	69,76
С	DESTILADA PESO DEL PICNÓMETRO	(g)	18,80
D	PESO DEL PICNÓMETRO + AGUA DESTILADA	(g)	68,74
E = A - C	PESO DE LA MUESTRA SECA	(g)	1,79
F = D - C	VOLUMEN DEL FRASCO	(cm ³)	49,94
G = B - A	VOLUMEN DEL FRASCO - VOLUMEN DE LOS GRANOS DE LA MUESTRA	(cm ³)	49,17
H = F - G	VOLUMEN DE LOS GRANOS DE LA MUESTRA	(cm ³)	0,77
I= E / H	PESO ESPECÍFICO DEL SUELO	(g/cm³)	2,325
J	PESO ESPECÍFICO DE AGUA A LA TEMPERATURA DE ENSAYO	(g/cm³)	0,998
	TEMPERATURA DE ENSAYO	°C	19,400
L=I/J	GRAVEDAD ESPECÍFICA DEL SUELO A TEMPERATURA DE ENSAYO	1	2,328
K	COEFICIENTE DE TEMPERATURA K	TABLA)	1,000
M=L*K	GRAVEDAD ESPECÍFICA DEL SUELO	A 20°C	2,328

Muestra 5

Tabla 8:

Gravedad específica muestra 5

	PROCESO	UNIDAD	CANTIDAD
Α	PESO DEL PICNÓMETRO + MUESTRA SECA	(g)	21,71

	PROCESO	UNIDAD	CANTIDAD
В	PESO DEL PICNÓMETRO + MUESTRA SECA + AGUA DESTILADA	(g)	70,38
С	PESO DEL PICNÓMETRO	(g)	18,80
D	PESO DEL PICNÓMETRO + AGUA DESTILADA	(g)	68,74
E = A - C	PESO DE LA MUESTRA SECA	(g)	2,91
F = D - C	VOLUMEN DEL FRASCO	(cm ³)	49,94
G = B - A	VOLUMEN DEL FRASCO - VOLUMEN DE LOS GRANOS DE LA MUESTRA	(cm³)	48,67
H = F - G	VOLUMEN DE LOS GRANOS DE LA MUESTRA	(cm³)	1,27
I= E / H	PESO ESPECÍFICO DEL SUELO	(g/cm³)	2,291
J	PESO ESPECÍFICO DE AGUA A LA TEMPERATURA DE ENSAYO	(g/cm³)	0,998
	TEMPERATURA DE ENSAYO	°C	19,300
L=I/J	GRAVEDAD ESPECÍFICA DEL SUELO A TEMPERATURA DE ENSAYO		2,295
K	COEFICIENTE DE TEMPERATURA K (1	ΓABLA)	1,000
M=L*K	GRAVEDAD ESPECÍFICA DEL SUELO A	A 20°C	2,295

Tabla 9:
Gravedad específica muestra 6

	PROCESO	UNIDAD	CANTIDAD
А	PESO DEL PICNÓMETRO + MUESTRA SECA	(g)	19,25
В	PESO DEL PICNÓMETRO + MUESTRA SECA + AGUA DESTILADA	(g)	69,05
С	PESO DEL PICNÓMETRO	(g)	18,80
D	PESO DEL PICNÓMETRO + AGUA DESTILADA	(g)	68,74
E = A - C	PESO DE LA MUESTRA SECA	(g)	0,45

	PROCESO	UNIDAD	CANTIDAD
F = D - C	VOLUMEN DEL FRASCO	(cm³)	49,94
G = B - A	VOLUMEN DEL FRASCO -	(cm³)	49,80
	VOLUMEN DE LOS GRANOS DE LA		
	MUESTRA		
H = F - G	VOLUMEN DE LOS GRANOS DE LA	(cm³)	0,14
	MUESTRA		
I = E / H	PESO ESPECÍFICO DEL SUELO	(g/cm³)	3,214
J	PESO ESPECÍFICO DE AGUA A LA	(g/cm³)	0,998
	TEMPERATURA DE ENSAYO	,	
	TEMPERATURA DE ENSAYO	°C	19,300
			,
L=I/J	GRAVEDAD ESPECÍFICA DEL SUELO A		3,219
	TEMPERATURA DE ENSAYO		-, -
K	COEFICIENTE DE TEMPERATURA K (T	ARLA)	1,000
	332. IS.EITTE DE TEIM EIGTION (1		1,000
M=L*K	GRAVEDAD ESPECÍFICA DEL SUELO A	20°C	3,219
W-L K	CHAVEDAD ESI ESII IOA DEL SOLLO A	20 0	3,213

Resultados del ensayo de gravedad específica de los sedimentos

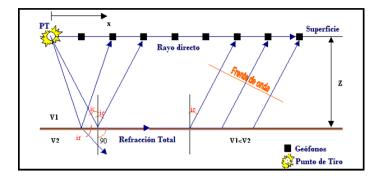
Tabla 10:

Gravedad especifica de los sedimentos

Muestra	Gravedad específica		
1	1,573		
2	2,147		
3	2,642		
4	2,328		
5	2,295		
6	3,219		

Estudio de Estratigrafía de los suelos y roca subyacente en el área de estudio

Para la obtención de la estratigrafía del suelo, se realiza los ensayos de *Sísmica* de refracción y Nakamura, los mismos que están descritos a continuación, cuya


finalidad es la determinación de variaciones en la velocidad de onda de corte (Vs) según la profundidad del estrato y también el estudio de la vibración del suelo, que presentan las zonas de la cascada Montana.

Sísmica de Refracción

El método sísmico de prospección del subsuelo se basa en la medida de los tiempos de llegada de las ondas tipo P y S generadas en el terreno por una fuente de energía mecánica adecuada (martillo manual, generador de impactos, etc.), que se transmiten desde un punto determinado, hasta otro distante en el que se instalan los sensores correspondientes (geófonos) conectados al sismógrafo registrador (Geónica, S. A, 2019).

Figura 30:

Ensayo de Sísmica de Refracción

Nota. El gráfico representa el esquema del ensayo sísmico. Tomando de *Geónica, S. A,* por Geónica, S. A, 2019.

Debido a que la velocidad de propagación de las ondas sísmicas en el terreno es distinta para cada tipo de material, la técnica de Prospección por Refracción permite

determinar la profundidad e inclinación de las distintas capas que se superponen (Geónica, S. A, 2019).

Así mismo, los Sismógrafos permiten realizar la medida de la velocidad de propagación de las ondas en el terreno, de cuyo valor se pueden deducir una serie de características tales como el módulo de elasticidad de la formación, la escarificabilidad (en inglés ripability) de las rocas, el grado de compactación o asentamiento de los terrenos, así como otras varias propiedades de interés para la Ingeniería Civil (Geónica, S. A, 2019).

Mediante las técnicas de Reflexión es posible también determinar las características del subsuelo, midiendo los tiempos de retorno de las ondas generadas en superficie y reflejadas por las discontinuidades del terreno (Geónica, S. A, 2019).

Con los registros obtenidos en el ensayo de campo y con ayuda del programa PICK WIN se obtuvieron las primeras llegadas y las DROMOCRONAS para cada línea sísmica estudiada. Las DROMOCRONAS fueron analizadas con el método TIEMPO-INVERSIÓN con ayuda del programa PLOTREFA y luego de obtenido el primer modelo invertido se procedió a obtener la TOMOGRAFÍA estratigráfica del sector en función de las velocidades de onda Vp, los parámetros elásticos del subsuelo. (Geónica, S. A, 2019). Los mismos se describen paso a paso en el ANEXO 1.

Alcance del estudio

El presente estudio se ha elaborado debido a los requerimientos presentados en el presente proyecto de titulación, en el que realizó sondeos de exploración geofísica de Sísmica de Refracción según lo recomendado en la norma ASTM D5777-00, donde se

calculan los perfiles que determinen la profundidad de cizalla hasta los 30 m de seguridad Vs30.

Ubicación y longitud de los sondeos sísmicos

Se seleccionan los sitios más adecuados con la extensión necesaria para realizar cada línea sísmica, como se aprecia a continuación:

 TERRENO: "MARGEN IZQUIERDO DEL RÍO COCA KM 106" LÍNEA 1 DE 27,5 m.

El sitio más adecuado para la línea sísmica es

Figura 31:

Ubicación de las líneas sísmicas en Terreno del "Margen Izquierdo del Río Coca Km 106" Línea

1, 18 – 06 – 2020

Ubicación: CANTÓN EL CHACO - PROVINCIA DE NAPO - ECUADOR

Tabla 11:

Ubicación de los geófonos en la línea 1

Punto del geófono 1	Punto del geófono 12		
Norte: 9986315,9	Norte: 9986289,7		
Este: 210477,8	Este: 210489,6		
Zona: 18	Zona: 18		
Sistema de coordenadas: UTM	Sistema de coordenadas: UTM		

 TERRENO DEL "MARGEN IZQUIERDO DEL RÍO COCA KM 105" LÍNEA 2 DE 33,0 m.

El sitio más adecuado para la línea sísmica es

Figura 32:

Ubicación de las líneas sísmicas en Terreno del "Margen Izquierdo del Río Coca Km 105" Línea

2, 19 – 06 – 2020

Ubicación: CANTÓN EL CHACO - PROVINCIA DE NAPO - ECUADOR

Tabla 12:Ubicación de los geófonos en la línea 2

Punto del geófono 1	Punto del geófono 12		
Norte: 9986872	Norte: 9986848		
Este: 211107	Este: 211133		
Zona: 18	Zona: 18		
Sistema de coordenadas: UTM	Sistema de coordenadas: UTM		

 TERRENO DEL "MARGEN IZQUIERDO DEL RÍO COCA KM 105" LÍNEA 3 DE 27,5 m.

El sitio más adecuado para la línea sísmica es:

Figura 33:

Ubicación de las líneas sísmicas en Terreno del "Margen Izquierdo del Río Coca Km 105" Línea 3, 19 – 06 – 2020

Ubicación: CANTÓN EL CHACO - PROVINCIA DE NAPO - ECUADOR

Tabla 13:Ubicación de los geófonos en la línea 3

Punto del geófono 1	Punto del geófono 12	
Norte: 9986804	Norte: 9986824	
Este: 211074	Este: 211092	
Zona: 18	Zona: 18	
Sistema de coordenadas: UTM	Sistema de coordenadas: UTM	

Procedimiento de toma de registros sísmicos

Una vez extendida la línea sísmica, el procedimiento a utilizar es el descrito por el método multicanal de ondas superficiales (MASW). Este procedimiento consiste en registrar las ondas superficiales generadas por el golpeo en el terreno, para luego extraerse la curva de dispersión del modo fundamental y los modos superiores en caso de presentarse, finalmente se invierte esta curva en una sección vertical de cizalla, esto es posible debido a que las ondas superficiales toman alrededor del 70% de la energía sísmica total (Geónica, S. A, 2019).

Figura 34:

Colocación de equipo "GEOMETRICS", foto tomada 19-06-2020

Procesamiento de los registros de campo

Los registros de campo de la señal sísmica fueron analizados con ayuda de los programas computacionales "PICKWIN", para el análisis y ubicación de la geometría y disparos del estudio. Y "WaveEq (Surface Wave Analysis)" para la inversión "VELOCIDAD DE FASE FRECUENCIA 2D", el "MODELO DE VELOCIDADES DE ONDA Vs", el "PERFIL DE CIZALLA", y el valor "Vs30", esto se lo puede apreciar a detalle en el ANEXO 1 del presente proyecto de titulación.

• Línea 1

Figura 35:

Geometría del sistema de análisis de la línea 1 en el Margen Izquierdo del Río Coca Km 106,

Línea 1

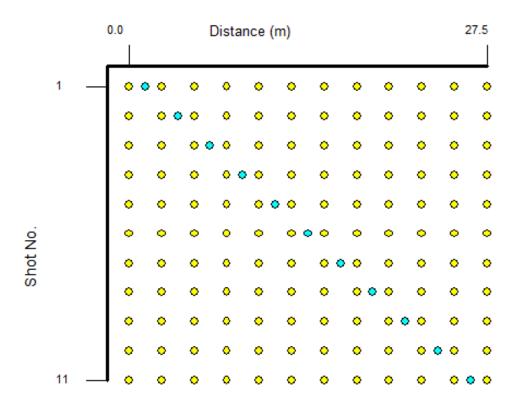
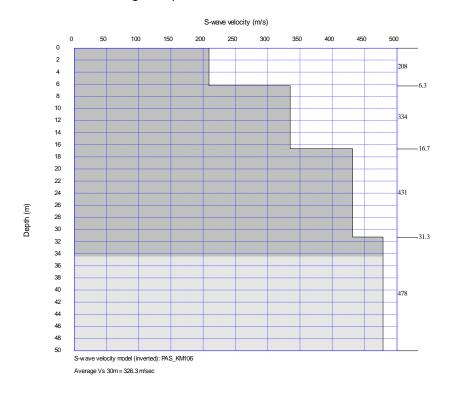



Figura 36:

Perfil de Cizalla del Margen Izquierdo del Río Coca Km 106, Línea 1

• Línea 2

Figura 37:

Geometría del sistema de análisis de la línea 2 en el Margen Izquierdo del Río Coca Km 105,

Línea 2

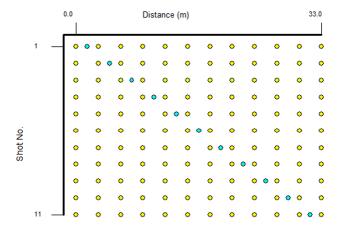
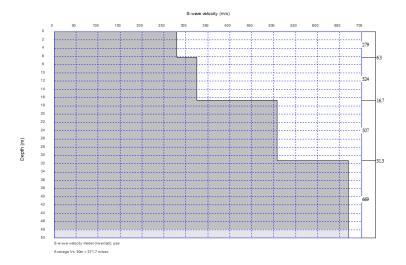



Figura 38:

Perfil de Cizalla del Margen Izquierdo del Río Coca Km 105, Línea 2

• Línea 3

Figura 39:

Geometría del sistema de análisis de la línea 3 en el Margen Izquierdo del Río Coca Km 105,

Línea 3

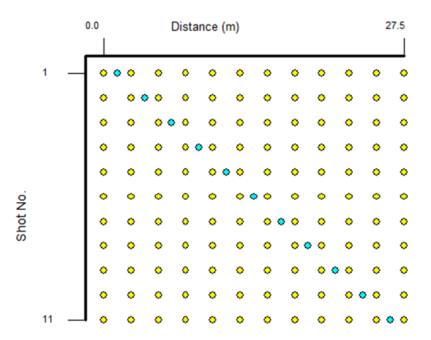
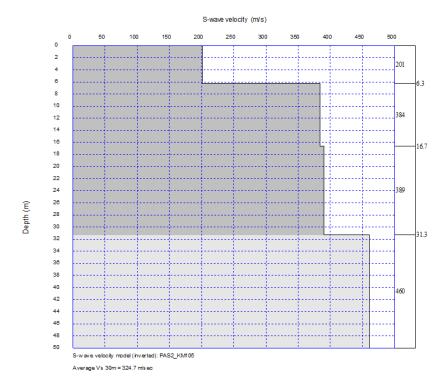



Figura 40:

Perfil de Cizalla del Margen Izquierdo del Río Coca Km 105, Línea 3

En la Tabla 14 se presenta el tipo de análisis realizado para cada línea sísmica proyectada:

Tabla 14:

Descripción del análisis de los distintos lugares a realizarse el estudio

CARACTERÍSTICAS				ANÁLISIS		
Sitio	Línea	Config.	No.	Longitud (M)	Vs	No.
	Sísmica		Canales			Registros
Terreno del	Ls1	Lineal	12,0	27,5	Activo	11
"Margen						
Izquierdo del						
Río Coca Km	Ls2	Lineal	12,0	27,5	Pasivo	20
106" Línea 1						

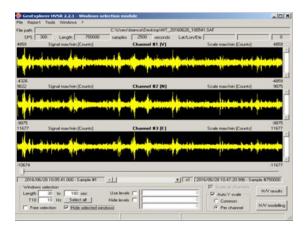
Sitio	Línea Sísmica	Config.	No. Canales	Longitud (M)	Vs	No. Registros
Terreno del "Margen	Ls3	Lineal	12,0	33,0	Activo	11
Izquierdo del Río Coca Km	Ls4	Lineal	12,0	33,0	Pasivo	20
105" Línea 2			,-			
Terreno del	Ls5	Lineal	12,0	27,5	Activo	11
"Margen						
Izquierdo del			40.0	07.5	ъ.	00
Río Coca Km	Ls6	Lineal	12,0	27,5	Pasivo	20
105" Línea 3						

Resultados del estudio sísmico de refracción

En la siguiente tabla 3.4, se sintetiza las velocidades de corte. Se obtuvo V_{s30} por el método activo y pasivo, como resultado final se combina los dos métodos, donde se obtiene la V_{s30} con la que se procede a la clasificación de suelo según la norma NEC-15:

Tabla 15: Resumen de resultados de velocidades de onda " V_{s30} "

SITIO	LÍNEA SÍSMICA	MÉTODO	VS (m/s)	CLASIFICACIÓN DE PERFIL SÍSMICO DE SUELO
Terreno del	Ls1	ACTIVO	267.1	D
"Margen Izquierdo	Ls2	PASIVO	326.6	
del Río Coca Km		COMBINADO	326.3	
106" Línea 1				


SITIO	LÍNEA SÍSMICA	MÉTODO	VS (m/s)	CLASIFICACIÓN DE PERFIL SÍSMICO DE SUELO
Terreno del	Ls3	ACTIVO	328.9	С
"Margen Izquierdo	Ls4	PASIVO	372.5	
del Río Coca Km		COMBINADO	371.7	
105" Línea 2				
Terreno del	Ls5	ACTIVO	321.9	D
"Margen Izquierdo	Ls6	PASIVO	366.6	
del Río Coca Km		COMBINADO	324.7	
105" Línea 3				

Ensayo NAKAMURA

El ensayo "NAKAMURA" utiliza el método HVSR (también conocida como H/V por "horizontal-to-vertical" o método de Nakamura) utiliza un sismómetro (velocímetro) triaxial de banda ancha para grabar el ruido sísmico ambiental. Es considerada una técnica "pasiva" porque no requiere una fuente sísmica artificial, como explosivos o golpes de martillo. La relación HVSR mide las componentes vertical y horizontal del ruido sísmico inducido por el viento, oleaje, y actividades antropogénicas (Geoseismic, 2017).

Figura 41:

Modos de vibración del suelo.

Alcance del estudio

El siguiente estudio consiste en la determinación de los períodos de vibración en el suelo del margen izquierdo del Río Coca, a la altura del Km 105 y Km 106 de la vía Quito – Lago Agrio, en el cual para determinar los períodos fundamentales se utilizó el sismógrafo marca "SARA".

Ubicación de ensayos "NAKAMURA"

Primer punto de período elástico (NAKAMURA), margen izquierdo del Río
 Coca, Km 106 Vía Quito - Lago Agrio 18-06-2020

Norte: 9986306,5

Este: 210487,3

Zona: 18

Sistema de coordenadas: UTM

Figura 42:

Ensayo de NAKAMURA, primer punto de período elástico.

Segundo punto de período elástico (NAKAMURA), margen izquierdo del Río
 Coca, Zona del SOCAVÓN, Km 105 Vía Quito - Lago Agrio 19-06-2020

Norte: 9986971,9

Este: 210834

Zona: 18

Sistema de coordenadas: UTM

Figura 43:

Ensayo de NAKAMURA, segundo punto de período elástico.

Metodología y procesamiento de datos del ensayo "NAKAMURA"

La metodología del ensayo consiste en la colocación del equipo "SARA" en el área de estudio, el mismo que debe estar conectado a una computadora portátil por medio de un cable de transmisión datos a una distancia de 20 metros, la cual delimitará el radio en el que no debe existir interferencia durante 10 minutos mientras culmine el ensayo (Solano, Martínez, Del Pino, & Dávila, 2018).

Figura 44:

Colocación del equipo "SARA", 19-06-2020

Una vez recopilado los datos, su posterior análisis se lo realizó con la ayuda del software GeoExplorer HVSR 2.2.3 que está desarrollado en el ANEXO 2 y ANEXO 3 del presente proyecto de titulación, donde las mediciones mostradas permite identificar los modos de vibración del suelo además de identificar la frecuencia fundamental (f_0) de esta vibración. Sabiendo que en general hay una relación simple entre f_0 , el espesor de la parte más suave de la tierra (es decir, la porción del material que recubre la camarock) y la velocidad media (Vs) de las ondas sísmicas en el subsuelo (obtenido por ejemplo a partir de los métodos de ondas superficiales), a través de las medidas HVSR se puede estimar al espesor de esta capa (Geoseismic, 2017).

Figura 45:

Resultados radio espectral H/V versus frecuencia, Km 105 vía Quito - Lago Agrio

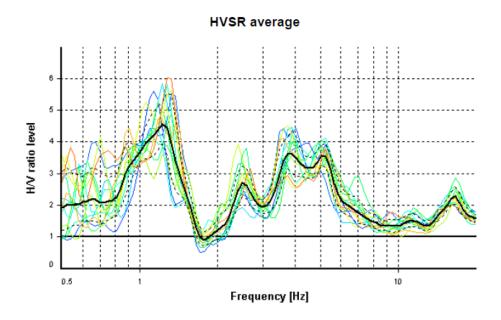
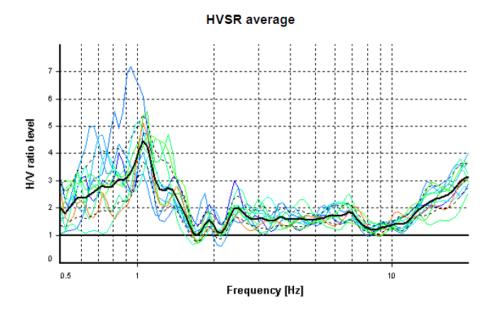



Figura 46:

Resultados radio espectral H/V versus frecuencia, Km 106 vía Quito - Lago Agrio

Resultados de ensayo "NAKAMURA"

En la siguiente Tabla 16, se presentan los períodos fundamentales de la zona de estudio:

Tabla 16:Resultados del ensayo "NAKAMURA"

		ANÁLI	SIS
SITIO	ENSAYO	FRECUENCIA (Hz)	PERIODO (Seg)
Margen izquierdo del Río Coca, Km 106 Vía Quito - Lago Agrio	NAKAMURA 1	1,053	0,9497
Margen izquierdo del Río Coca, Km 105 Vía Quito - Lago Agrio	NAKAMURA 2	1,223	0,8177

Levantamiento Topográfico

El levantamiento topográfico se realizó con el "Dron PHANTOM 4 RTK", de alta precisión con fotos georeferenciadas, tomadas por el mismo, esto se logra debido a que posee un GPS incorporado que le ayuda tener menos margen de error.

Generalidades del dron

Su nombre original Unmanned Aerial Vehicle (UAV) o Unmanned Aerial System (UAS) y adaptado al lenguaje español como dron, en sus iniciaos estos dispositivos fueron diseñados para uso militar, ya que permiten hacer misiones de vuelo sin tripulantes guiados a control remoto desde tierra sin sacrificar la seguridad de un piloto, este sistema se ha utilizado en varios conflictos bélicos para hacer ataques muy silenciosos y rápidos con misiles, bombas, rastreadores y otros sistemas de espionaje para infiltración de tropa o lanzamiento de artillería, también se usa para hacer vuelos de reconocimiento en zonas hostiles, con presencia de tóxicos, contaminantes, peligro

biológico, seguimiento de vehículos en tierra agua y aire, también para control de fronteras (Puerta Colorado, 2015).

Según (Puerta Colorado, 2015), en el ámbito de la observación de tierras los UVA tienen múltiples aplicaciones dentro de la topografía y la ingeniería civil como son:

- Internet: distribución de señal gratuita de internet
- Cartografía: realización de ortofotomapas y de modelos de elevaciones del terreno de alta resolución
- Agricultura: gestión de cultivos
- Cine y deportes extremos
- Servicios forestales: seguimiento de las áreas boscosas, control de incendios
- Geología
- Hidrología
- Topografía
- Medio ambiente: estado de la atmósfera
- Control de obras y evaluación de su impacto
- Seguimiento de la planificación urbanística
- Gestión del patrimonio
- Seguridad y control fronterizo
- GIS en topografía

Uso del dron en topografía

Según (Puerta Colorado, 2015), menciona que los levantamientos topográficos convencionales demandan mayores costos de recursos y tiempo en comparación con la

topografía aérea realizada con DRON, constituyéndose así en una alternativa considerable al momento de realizar trabajos que cubran grandes extensiones de terreno o de topografía accidentada que dificulte el acceso de personal, con un ahorro significativo de recursos.

Características de PHANTOM 4 RTK

DJI ha repensado su tecnología de drones desde cero, revolucionando sus sistemas para lograr un nuevo estándar para la precisión del dron: para ofrecer a los clientes Phantom 4 RTK datos con precisión de centímetro y al mismo tiempo requerir menos puntos de control en tierra (Dji, 2020).

Figura 47:

Dron PHANTON 4 RTK

Nota. El gráfico representa el modelo del dron PHANTON 4 RTK. Tomando de *Dji Store*, por Dji, 2020.

Figura 48:

Características PHANTOM 4 RTK

Nota. El gráfico representa características del dron PHANTON 4 RTK. Tomando de *Dji Store,* por Dji, 2020.

"La nueva aplicación de DJI GS RTK y control remoto con pantalla incorporada al equipo, que ofrece a los usuarios un esquema de control simplificado para misiones de topografía y otros escenarios de adquisición de datos. La aplicación GS RTK permitiendo a los pilotos controlar de forma inteligente y fácil su Phantom 4 RTK, con múltiples métodos de planificación, que incluyen fotogrametría (2D y 3D), vuelo de punto de referencia, conocimiento del terreno, segmentación de bloques y más" (Dji, 2020).

Sistema de posicionamiento a nivel céntrico

Proporciona datos de posicionamiento en tiempo real de nivel centimétrico para una precisión absoluta mejorada en los metadatos de la imagen. Además de la seguridad de vuelo óptima y la recopilación precisa de datos (Dji, 2020).

Topografía del área de estudio

El día 20 de junio del 2020, se realizó el levantamiento topográfico de la zona de estudio, que consiste en varias fases que se describen a continuación.

Reconocimiento de la zona

En una primera instancia se realiza el reconocimiento de la zona de estudio en la zona de la cascada Montana, ubicada en el km 105 de la Vía Quito – Lago Agrio, donde se buscó puntos que sean foto-identificables, es decir, puntos en los que desde la vista área del Dron sean fáciles de detectar y obtener coordenadas de los mismos, véase la Figura 49, los que servirán para el procesamiento matemático y digital.

Figura 49:

Mojón del INHAMI, foto tomada el 14-06-2020:

Toma de datos

Se realiza la generación del vuelo a una altura de 220 m de altura, para el presente proyecto se realizó 2 vuelos, permitiendo obtener las fotos georreferenciadas gracias a las estaciones móviles, como se ve en la figura 50, estas proporcionan en tiempo real al dron los datos diferenciales y forma una solución topográfica o adquiera coordenadas de manera precisa su ubicación. Cada una de las fotos se guarda con un fichero ".exif", en el cual aparecen las coordenadas del centro de la imagen donde fue tomada en el espacio aéreo figura 51, esta fotografía tiene con una precisión de

posicionamiento horizontal de 1 cm + 1 ppm, una precisión de posicionamiento vertical de 1.5 + 1 ppm y una precisión horizontal absoluta de 5 cm.

Al final de las fotos tomadas por medio del dron presenta una serie de ficheros, usualmente son 4, donde su fichero clave es "Rinex.obs", el cual es un fichero de observaciones de un GPS de precisión.

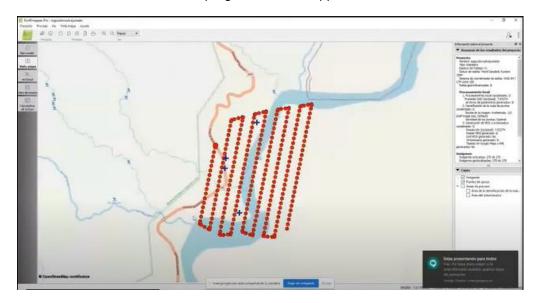
Figura 50:

Posicionamiento de estación móvil, foto tomada el 20-06-2020

Figura 51:

Archivo ".exif"

Nota. El gráfico representa el modelo ".exif". Tomando de Levantamiento Cascada San Rafael, por Izar Sinde, 2020.


Procesamiento de datos

Una vez descargados los datos del dron anteriormente mencionados, estos se procesan mediante el software libre "RTKLIB", en el cual se definen las siguientes configuraciones: en el Rover los datos del dron, también se ubican los datos de observación de la estación móvil donde se encuentra el GPS y los datos de navegación que son las coordenadas del satélite. Una vez seteado el programa y cargado la información, se ejecuta, de este se obtiene las fotos con coordenadas relativas de respecto de la base de mayor precisión.

Ya procesadas las fotos, estás se cargan al programa "Pix4Dmapper" con las coordenadas precisas también llamado soluciones fijas, ver figura 52 y figura 53.

Figura 52:

Coordenadas de las fotos en el programa Pix4Dmapper.

Nota. El gráfico representa las coordenadas de la zona de estudio del proyecto de investigación.

Tomando de Levantamiento Cascada San Rafael, por Izar Sinde, 2020.

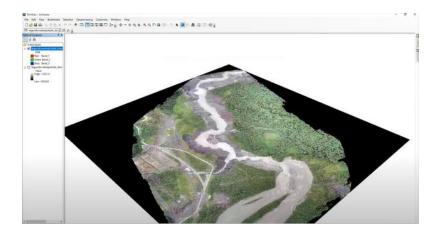
Foto cargada en el programa Pix4Dmapper.

Nota. El gráfico representa las fotos georreferenciadas. Tomando de *Levantamiento Cascada San Rafael*, por Izar Sinde, 2020.

Las fotos cargadas al programa se ejecutan para la obtención de la nube de puntos, junto con los puntos de control y de paso para que el modelo se ajuste de mejor manera, ver Figura 54.

Figura 54:

Nube de puntos, puntos de control y de paso.


Nota. El gráfico representa la nube de puntos de la zona de estudio del proyecto de investigación. Tomando de Levantamiento Cascada San Rafael, por Izar Sinde, 2020.

Resultados preliminares

Posterior al procesamiento de las fotos se obtiene la ortofoto la cual se puede apreciar con la ayuda del programa "ArcScene" el mosaico de la zona de estudio, ver Figura 55. Con este resultado se presenta el modelo digital de superficies, este es un ráster en el cual cada punto almacena el valor de su altura y así obtener las curvas de nivel necesarias para el diseño del aliviadero emergente.

Figura 55:

Ortofoto de la zona de estudio visualizada con el programa "ArcScene"

Nota. El gráfico representa la ortofoto de la zona de estudio del proyecto de investigación.

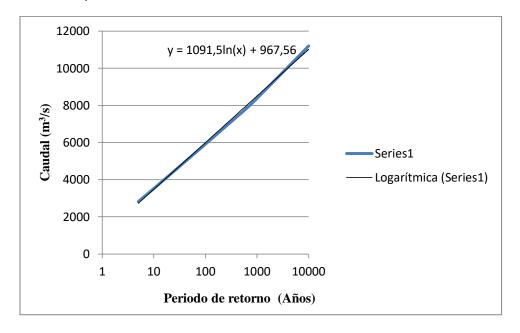
Tomando de Levantamiento Cascada San Rafael, por Izar Sinde, 2020.

Capítulo IV

Caudales de Diseño

De acuerdo con los datos de caudales establecidos para el Proyecto CCS, disponibles en (Luzuriaga Hermida & Amaya Zhingre, 2014), los caudales máximos con diferentes periodos de retorno como son 5, 20, 500, 1000 y 10000 años, presentando son, tabla 4.1.

Tabla 17:Periodos de retorno y caudales del Río Coca


PERIODO DE RETORNO (AÑOS)	CAUDAL (m³/s)
5	2820
20	4240
500	7600
1000	8380
10000	11200

Nota. En la siguiente tabla se establece los caudales según su periodo de retorno. Tomada de Simulación numérica del flujo de sedimentos en el desarenador del proyecto Hidroeléctrico Coca Codo Sinclair, por M. Luzuriaga, D. Amaya, 2019.

Como se desconoce el caudal para ese periodo de retorno específico se procede a obtenerlo mediante una curva de caudales vs años con su respectiva ecuación, utilizando el programa Microsoft Excel, como se presenta en la Figura 56.

Figura 56:

Gráfica de periodo de retorno vs caudales

Mediante la ecuación $y=1094,5 \ln x+957,56$, siendo x el número de años se remplaza por el periodo de retorno que se requiera para el diseño de las diferentes obras hidráulicas.

Cálculo de caudales para las obras hidráulicas

• Cálculo del canal de construcción

Para el diseño del canal de construcción se trabajará con un periodo de retorno de un año.

$$y = 1091,5 \ln x + 957,56$$

$$x = 1$$

$$y = 1091,5 \ln(1) + 957,56$$

$$y = 957,56 \text{ } m^3/\text{s}$$

Habiendo encontrado el valor del caudal para un periodo de retorno de un año se tomó el valor de 957.00 m³/s para el diseño.

Aliviadero

Para el diseño del aliviadero se trabajará con un periodo de retorno de veinte años

$$y = 1091,5 \ln x + 957,56$$
$$x = 20$$
$$y = 1091,5 \ln(20) + 957,56$$
$$y = 4237,40 \text{ } m^3/\text{s}$$

Habiendo encontrado el valor del caudal para un periodo de retorno de veinte años de 4237,40 m³/s, se tomó el valor de 4240,00 m³/s para el diseño.

• Presa vertedora

Para el cálculo de caudal de la presa vertedora se realizó a partir de la altura determinada con el caudal del aliviadero, los cuales incrementan hasta llegar a un $Q_{m\acute{a}x}$ aproximado de un periodo de retorno de mil años.

Tabla 18:

Datos de aliviadero y vertedero

Datos	Cantidad	Unidades
Q	4240,00	m³/s
b _c (canal)	100,00	m
b _v (vertedero)	40,00	m
m (canal)	0,49	
S	2,60	m
g	9,8	m/s ²

$$H = \left(\frac{4240,00}{100 * 0.49 * \sqrt{2 * 9.8}}\right)^{2/3} = 7,25 m$$

Se asume una altura H = 7.00 m

Caudal del aliviadero

$$Q_c = 100 * 0.49 * \sqrt{2 * 9.8} * 7.05^{\frac{3}{2}} = 4060.74 \text{ m}^3/\text{s}$$

 Para el cálculo del caudal del vertedero se toma la diferencia de altura del incremento de H menos la altura establecida H=7,00 m, puesto que el canal trasporta un caudal máximo de 4240 m³/s y los excedentes pasarán al vertedero.

$$Q_v = 40 * 0.49 * \sqrt{2 * 9.8} * (7.5 - 7.0)^{\frac{3}{2}} = 0.970 \text{ m}^3/\text{s}$$

Caudal total

$$Q_t = 4060,74 + 0,97 = 4061,734 \, m^3/s$$

A continuación, en la Tabla 19 se detalla los caudales para las diferentes alturas que van incrementando en 5 cm, con los que se realizará el diseño de las diferentes obras hidráulicas, tomando en cuenta las alturas máximas para los caudales presentados en la Tabla 17.

Tabla 19:

Cálculo de Caudal total de canal y vertedero

H (m)	Q _c (m³/s)	m (vertedero)	$Q_v (m^3/s)$	$Q_t = Q_c + Q_v$
7	4240	0,49	0	4240
7,05	4060,8	0,49	0,9	4061,7
7,1	4104,0	0,49	2,7	4106,8
7,15	4147,5	0,49	5,0	4152,5
7,2	4191, 1	0,49	7,8	4198,8
7,25	4234,8	0,49	10,88	4245,6

H (m)	Q _c (m ³ /s)	m (vertedero)	Q _v (m ³ /s)	$Q_t = Q_c + Q_v$
7,3	4278,7	0,49	14,3	4292,9
7,35	4322,7	0,49	18,0	4340,7
7,4	4366, 9	0,49	22,0	4388,8
7,45	4411,2	0,49	26,2	4437,4
7,5	4455,7	0,49	30, 7	4486,4
7,55	4500,3	0,49	35,4	4535,7
7,6	4545,1	0,49	40,3	4585,4
7,65	4590,0	0,49	45,5	4635,5
7,7	4635,1	0,49	50,8	4685,9
7,75	4680,3	0,49	56,4	4736,7
7,8	4725,7	0,49	62,1	4787,8
7,85	4771,2	0,49	68,0	4839,2
7,9	4816,9	0,49	74,1	4891,0
7,95	4862,7	0,49	80,3	4943,0
8	4908,6	0,49	86,8	4995,4
8,05	4954,7	0,49	93,4	5048,1
8,1	5000,9	0,49	100,1	5101,0
8,15	5047,3	0,49	107,0	5154,3
8,2	5093,8	0,49	114,1	5207,9
8,25	5140,5	0,49	121,3	5261,8
8,3	5187,3	0,49	128,6	5315,9
8,35	5234,2	0,49	136,1	5370,4
8,4	5281,3	0,49	143,7	5425,1
8,45	5328,6	0,49	151,5	5480,1
8,5	5375,9	0,49	159,4	5535,3
8,55	5423,4	0,49	167,4	5590,9
8,6	5471,1	0,49	175,6	5646,7
8,65	5518,8	0,49	183,9	5702,8
8,7	5566,8	0,49	192,3	5759,1
8,75	5614,8	0,49	200,9	5815,7
8,8	5663,0	0,49	209,6	5872,6
8,85	5711,6	0,49	218,3	5929,7
8,9	5759,8	0,49	227,3	5987,1
8,91	5769,5	0,49	229,1	5998,6
9	5857,2	0,49	245,4	6102,6
9,05	5906,0	0,49	254,7	6160,7
9,1	5955,1	0,49	264,1	6219,1
9,15	6004,2	0,49	273,6	6277,8
9,2	6053,5	0,49	283,2	6336,6
9,25	6102,9	0,49	292,9	6395,8
9,3	6152,5	0,49	302,7	6455,1
9,35	6202,1	0,49	312,6	6514,7
9,4	6251,9	0,49	322,6	6574,6
9,45	6302,0	0,49	332,8	6634,7

H (m)	Q _c (m ³ /s)	m (vertedero)	Q _v (m ³ /s)	$Q_t = Q_c + Q_v$
9,5	6352,0	0,49	343	6695,0
9,55	6402,2	0,49	353,3	6755,5
9,6	6452,5	0,49	363,8	6816,3
9,65	6503,0	0,49	374,3	6877,3
9,7	6553,6	0,49	385,0	6938,6
9,75	6604,4	0,49	395,7	7000,1
9,8	6655,2	0,49	406,6	7061,8
9,85	6706,2	0,49	417,5	7123,7
9,9	6757,3	0,49	428,5	7185,9
9,95	6808,6	0,49	439,7	7248,3
10	6860	0,49	450, 9	7310, 9
10,05	6911,5	0,49	462,2	7373,7
10,1	6963,2	0,49	473,6	7436,8
10,15	7014,9	0,49	485,1	7500,0
10,2	7066,8	0,49	496,7	7563,5
10,25	7118,9	0,49	508,4	7627,3
10,3	7171,0	0,49	520,2	7691,2
10,35	7223,3	0,49	532,0	7755,3
10,4	7275,7	0,49	544,0	7819,7
10,45	7328,2	0,49	556,0	7884,3
10,5	7380,9	0,49	568,2	7949,1
10,54	7423,1	0,49	577,9	8001,0

Habiendo encontrado el valor del caudal aproximado de 8001,04 m³/s de la Tabla 19, se tomó el valor de 8002,00 m³/s para el diseño.

$$Q_t = 8002,00 \ m^3/s$$

Canal de construcción

Para el diseño del canal de construcción se tomó el caudal para un periodo de retorno para un año es 957,00 m³/s.

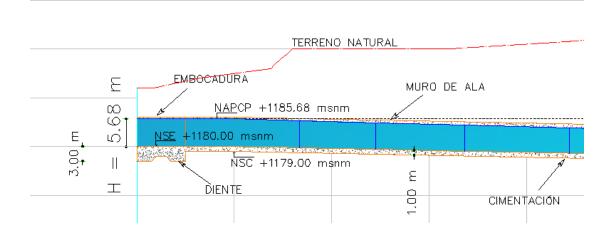
El Nivel de aguas que se desvía al Canal del Período de Construcción se lo determina según lo que indica el tirante crítico:

$$h_{cr} = 5,68 m$$

Nivel de aguas del Canal de Período de Construcción (NACPC)

= Nivel solera de entrada (NSE) + hcr

Nivel de aguas del Canal de Período de Construcción (NACPC) = 1180,00 + 5,68= $1185,68 \, msnm$

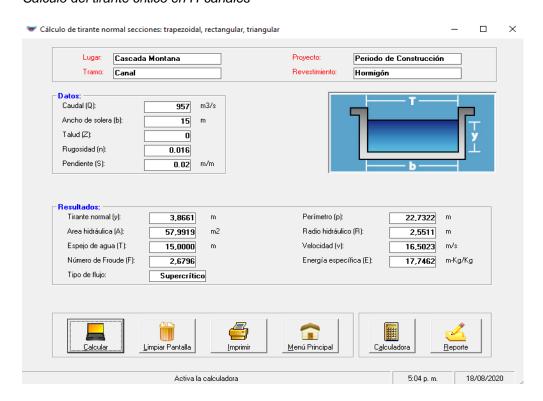

Tabla 20:

Datos para el diseño del canal en el periodo de construcción

DATOS PARA EL DISEÑO DEL CANAL DE CONSTRUCCIÓ	N
Nivel de Aguas del Canal de Periodo de Construcción (NACPC) (msnm)	1185,68
Nivel de Solera de entrada (NSE) (msnm)	1180
Nivel de la Solera del Cauce (NSC) (msnm) (periodo de construcción)	1179
Nivel de Aguas Abajo del Cauce (NAAC) (msnm)	1136
Caudal periodo de retorno 1 año Q (m³/s)	957
H(m) = NAME - NAMO	5,68
b (m)	15

Figura 57:

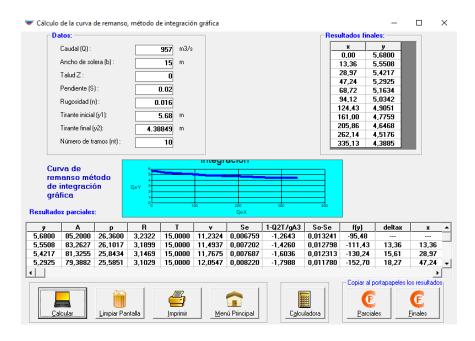
Esquema de la entrada del canal de construcción



Diseño de canal en el periodo de construcción con el programa H-canales

Con la ayuda del programa H-canales se procede al cálculo de la altura de descarga de agua con el cual se va a trabajar para el diseño de la geometría y deflector del canal de construcción.

Figura 58:


Cálculo del tirante critico en H-canales

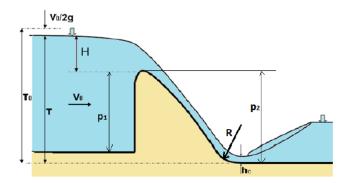
Cálculo de la curva de remanso

Figura 59:

Cálculo de curva de remanso

Tabla 21:Resultados obtenidos del programa H-Canales para el canal de construcción

RESULTADOS			
Tirante Normal h _o (m)	3,866		
Tirante critico h _{cr} (m)	5,68		
Longitud del canal de construcción (AutoCAD) (m)	335,13		
h ₁ (m)	5,68		
h ₂ (m)	4,388		
h=y	4,388		


Diseño del deflector

El tirante contraído h_c será utilizado para el diseño del deflector es la altura final de la curva de remanso que proporciona el programa H-canales.

$$h_2 = 4,388 \ m$$

Figura 60:

Esquema del tirante contraído

Datos:

$$P_2 = NSE - NAAC$$

$$P_2 = 1180 - 1136 = 44,00 \, m$$

Tabla 22:

Datos iniciales del diseño

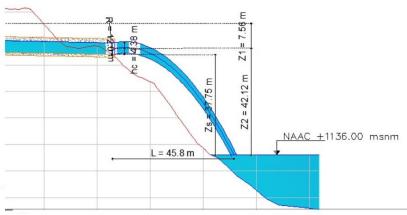
	DATOS INIC	CIALES
Q(x) (m ³ /s)	957,000	caudal de descarga
H _d (m)	4,388	altura de descarga
P ₂ (m)	44	ŭ

$$T = 44,00 + 4,388 = 48,388 m$$
 $957,00$

$$V_o = \frac{957,00}{1244,38} = 0,769 \, m/s$$

$$T_o = 4,388 + 44,00 + \frac{0,769^2}{2 * 9.8} = 48,419 m$$

Tabla 23:


Cálculos de velocidad y tirante crítico

CÁLCULOS		
T (m)	T=H+P	48,388
Vo (m/s)	$V_o = Q/A$	0,769
To (m)	$H+P_2+v^2/2g$	48,419

Cálculo de longitud de trayectoria de la partícula

Figura 61:

Esquema de longitud de trayectoria de la partícula

$$V = \frac{957,00}{15*4,388} = 14,538 \, m/s$$

$$Z_2 = -\left(37,75 + 4,388 * \frac{\cos(10^\circ)}{2}\right) = -42,12 \, m$$

$$Z_1 = 1184,00 - 1136,00 + (-42,12) = 7,558 \, m$$

$$F_r = \frac{16,502}{\sqrt{9,8*3,866}} = 2,216$$

$$F_r^2 = (2,68)^2 = 4,909$$

$$L = k_a * \frac{14,538^2}{9,8} * \cos(10^\circ) * \left(sen(10^\circ) + \sqrt{sen^2(10^\circ) - \frac{2*9,8*(-42,12)}{14,538^2}}\right) = 45,80 \, m$$

Tabla 24:

Tabla de resumen de para el cálculo de L

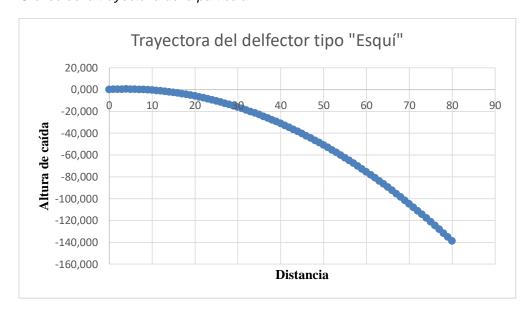
V (m/s)	14,538	
Z ₂ (m)	-42,122	
Z ₁ (m)	7,558	
\mathbf{F}_{r}	2,216	
F_r^2	4,909	
\mathbf{K}_{a}	1,000	
L (m)	45,802	

Tabla 25:

Tabla de datos

Zs (AutoCAD)	37,750	m
В	10,000	grados
V	14,538	m/s

$$z = xtan(10^\circ) - \frac{g * x^2}{2 * 14,538 * \cos(10^\circ)^2}$$


Tabla 26:

Coordenadas de la partícula

TRAYECTORIA		
X	Z	
0	0,000	
1	0,152	
2	0,257	
3	0,314	
4	0,323	
5	0,284	
6	0,197	
7	0,063	
8	-0,119	
9	-0,349	
10	-0,627	
11	-0,953	
12	-1,326	
13	-1,748	

	TRAYECTORIA		
X	Z		
14	-2,217		
15	-2,734		
16	-3,298		
17	-3,911		
18	-4,571		
19	-5,279		
20	-6,035		
21	-6,839		
22	-7,691		
23	-8,590		
24	-9,537		
25	-10,532		
26	-11,575		
27	-12,666		
28	-13,804		
29	-14,990		
30	-16,224		
31	-17,506		
32	-18,836		
33	-20,213		
34	-21,639		
35	-23,112		
36	-24,633		
37	-26,201		
38	-27,818		
39	-29,482		
40	-31,194		
41	-32,954		
42	-34,762		
43	-36,618		
44 45	-38,521		
<i>4</i> 5	-40,472		
46	-42,471		

Figura 62:
Gráfico de la trayectoria de la partícula

Profundidad de socavación

$$q = \frac{957,00}{15} = 63,80 \text{ m}^3/\text{s}$$

$$Z = 1185,68 - 1136,00 = 49,68 \text{ m}$$

$$Z_o = 44 + 4,388 + 42,12 + \frac{14,538^2}{2*9,8} = 101,28 \text{ m}$$

$$k_a = sen(63,26^\circ) + \frac{\cos(63,26^\circ)}{3} = 0,95$$

Tabla 27:Tabla de resumen

q (m³/s)	63,800
Z (m)	49,68
$Z_{o}(m)$	101,28
α (grados)	63,26
k _a	0,95

Cálculo de profundidad de socavación

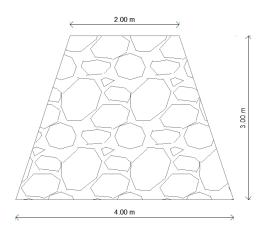
$$h_{s1} = 1.9 * 49,68^{0.225} * 63,80^{0.54} = 43,15 m$$

 $h_{s} = 2.3 * 49,68^{0.1} * 63,80^{0.6} = 41,14 m$
 $h_{s max} = 0.45(0.95) * 49,68 = 21,24 m$

Tabla 28:Profundidad de socavación

Profundidad de socavación	
h _{s1} (m)	43,15
h _{s2} (m)	41,14
h _{s máx} (m)	21,24

Se toma el valor de 21,24 m como valor de diseño, considerando que el tiempo de socavación es menor a un año el valor real será mucho menor al determinado.


• Muro para colchón de aguas

Para disminuir la socavación debido a la fuerza del agua generada por el canal en el periodo de construcción se implementa hacia aguas abajo un dique que formará un colchón de aguas natural durante la construcción del aliviadero emergente.

Su función es cerrar el cauce a la altura del canal de entrada del periodo de construcción, los detalles geométricos del dique se muestran a continuación en la Figura 63.

Figura 63:

Detalle del muro

Altura de los muros laterales

Para la altura del muro lateral se requiere calcular la altura del borde libre con la ecuación (3.59 y 3.60) (Sandoval W., 2019)

$$b_1 = 0.61 + 0.04 * 14.538 * 4.388^{\frac{1}{3}} = 1.65 m$$

Altura del muro = 1.65 m + 4.388 = 5.95 m

 $b_2 = 0.2 * 957^{0.24} = 1.038 m$

Altura del muro = 1.038 m + 4.388 = 5.43 m

Con los valores obtenidos la altura de los muros laterales se asume 6,00 m.

Tabla 29:

Altura de muros laterales

Altura de los muros laterales		
bl ₁ (m)	1,56	
Altura de muro (m)	5,95	
bl ₂ (m)	1,04	
Altura de muro (m)	5,43	
Altura de muro asumida (m)	6	

Para la altura de embocadura se tomó la altura de los muros laterales asumidos

Radio de empalme

$$R = 5 * 4,388 = 21,94 m$$

$$R = 1,27 * \left(\frac{44,00}{4.388}\right)^{0,4} = 3,19 m$$

Tabla 30:

Radio de empalme

Radio de empalme		
R (m)	21,94	
R (m)	3,19	
R promedio (m)	12,56	
Radio asumido (m)	12,00	

Diseño del aliviadero

Canal de entrada

Tomando en cuenta los estudios de suelos realizados en campo, se asume que la erosión actualmente ha llegado al estrato que corresponde a roca blanda en la cota 1159 msnm que se encuentra a 17,00 m de profundidad respecto a la cota 1176,00 msnm que se obtuvo de los estudios topográficos.

El nivel de la solera de entrada se estima en la cota 1176,00 msnm con la finalidad de que se recupere el nivel de la solera del cauce, antes de que ocurriera el fenómeno de erosión regresiva mediante el arrastre de sedimentos aluviales.

El Nivel de aguas del proyecto se lo determina con la carga inicial de agua que está calculada en la Tabla 19.

Nivel de aguas del proyecto (NAP) = Nivel solera de entrada (NSE) + H

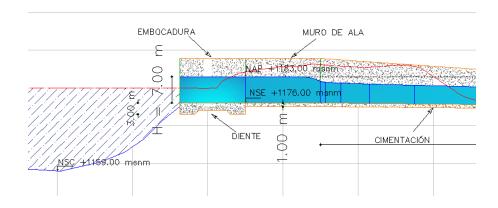

Nivel de aguas del proyecto (NAP) = 1176,00 + 7,0 = 1183,00 msnm

Tabla 31:Datos para el diseño del canal de acercamiento

DATOS PARA EL DISEÑO DEL CANAL DE ACERCAMIENTO		
Nivel de Aguas del Proyecto NAP (msnm)	1183,00	
Nivel de Solera de entrada (NSE) (msnm)	1176	
Nivel de la Solera del Cauce (NSC) (msnm) (fondo del río)	1159	
Caudal Q _X (m ³ /s)	4240	
H (m) = NAME - NAMO	7,00	
b (m)	100	

Figura 64:

Esquema de canal de entrada del aliviadero

Velocidad de acercamiento

Para la velocidad de acercamiento, el área de la sección transversal del cauce se lo determinó con la ayuda del software AutoCAD.

Figura 65:

Área transversal aguas arriba del aliviadero

$$A = 1244,38 m^2$$

Con el área tomada del software AutoCAD se procede a calcular la velocidad de acercamiento.

$$h = 7.0 + 2.40 = 9.40 m$$

$$v_o = \frac{4240,00 \ m^3/s}{1244,38 \ m^2} = 3,41 \ m/s$$

La velocidad de acercamiento debe ser $\leq 5.0~m/s$ ya que esa es la velocidad de erosión de la roca.

$$v_{erosion\,roca} = 5,00\ m/s$$

Cálculo de tirante crítico y tirante normal

Se procede al cálculo del tirante crítico el cual indica la profundidad inicial de la rápida:

$$h_{cr} = \sqrt[3]{\frac{\propto * Q^2}{g * b^2}}$$

$$h_{cr} = \sqrt[3]{\frac{1 * 4240^2}{9.8 * 100^2}} = 5,68 m$$

El cálculo del tirante normal se lo realizó con el programa H-canales como se observa a continuación.

Figura 66:

Cálculo del canal de entrada en el programa H canales

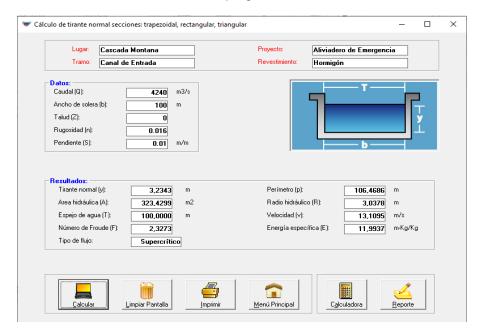


 Tabla 32:

 Resultados del programa H canales, para el canal de entrada

RESULTADOS	
Tirante Normal (h _o) (m)	3,234
Área Hidráulica (m²)	323,43
Espejo de agua (m)	100,00
Número de Froude	2,327
Tipo de flujo	Supercrítico

Disipación de energía

Figura 67:

Rápida

Área hidráulica

$$A_{cr} = 100 \times 5,68 = 568,01 \ m^2$$

Perímetro mojado

$$X_{cr} = 100 + 2 \times 5,68 = 111,36 \, m$$

Radio hidráulico

$$R_{cr} = \frac{568,01 \, m^2}{111,36 \, m} = 5,10 \, m$$

Pendiente crítica

Coeficiente de Chezzy

n = 0.016 Coeficiente de Rugosidad

$$C = \frac{1}{0,014} \times 5,10^{1/6} = 93,72$$

$$i_{cr} = \frac{4240,00^2}{568,01^2 \times 93,72^2 \times 5,10} = 0.00124 < 0.01$$

Tipo de flujo

$$V = \frac{4240,00}{100 * 4,15} = 10,22 \, m/s$$

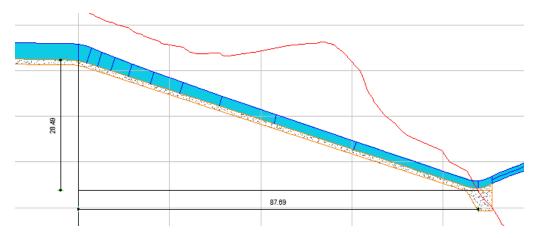
Regimen supercrítico

Diseño en H-CANALES

Para el cálculo del tramo uno se definió una pendiente del 1% y para el tramo 2 de la rápida se consideró según la pendiente del eje derecho puesto que es tiene mayor longitud en comparación con eje central y el eje izquierdo, se lo determinó con la ayuda del software de AutoCAD:

$$i_s = 0.324$$

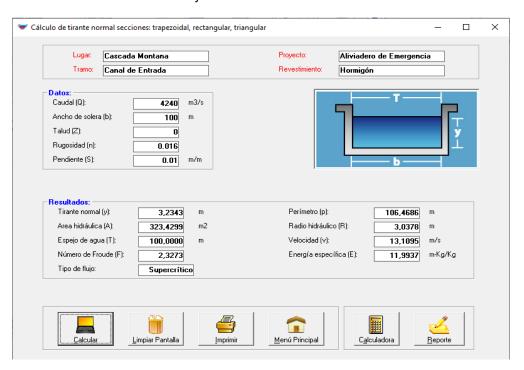
• Eje central


Tabla 33:

Distancias de X y Y tomadas de AutoCAD, para el eje central

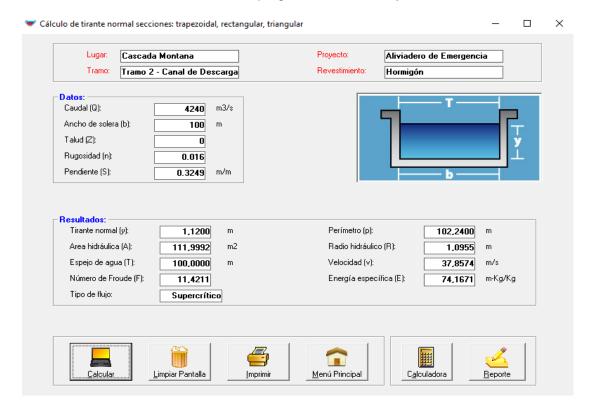
Pendiente del tramo 2			
avadiente -	distancia y autocad	Distancia Y (m):	28,69
$gradiente = \frac{1}{d}$	distancia x autocad	Distancia X (m):	87,69
		Gradiente (i _s):	0,324

Figura 68:


Longitudes para determinar pendiente del tramo 2 - Eje Central

Cálculo del tirante normal tramo 1

Figura 69:


Cálculo del tirante normal del eje central

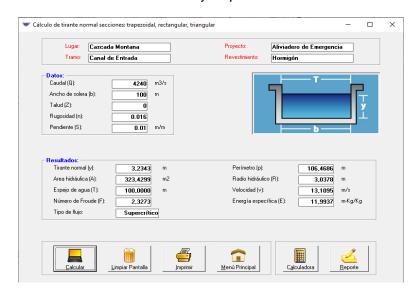
Cálculo del tirante normal tramo 2

Figura 70:

Cálculo del tirante normal tramo 2 en el programa H-Canales, eje central

• Eje izquierdo

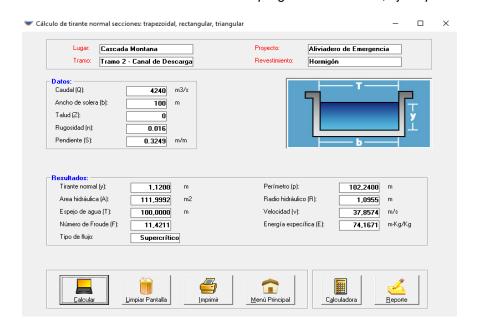
Tabla 34:


Distancias de X y Y tomadas de AutoCAD, para el eje izquierdo

Pendiente del tramo 2			
aradianta – distancia y autocad	Distancia Y (m):	24,293	
$gradiente = \frac{atstancta y autocad}{distancia x autocad}$	Distancia X (m):	74,773	
	Gradiente (i _s):	0,325	

Cálculo del tirante normal tramo 1

Figura 71:


Cálculo del tirante normal del eje izquierdo

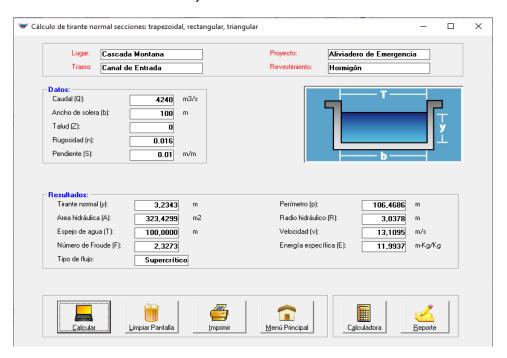
Cálculo de tirante normal tramo 2

Figura 72:

Cálculo del tirante normal tramo 2 en el programa H-Canales, eje izquierdo

• Eje derecho

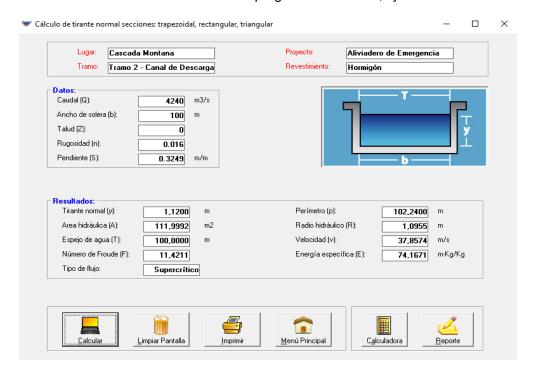
Tabla 35:


Distancias de X y Y tomadas de AutoCAD, para el eje derecho

Pendiente del tramo			
$gradiente = \frac{distancia\ y\ autocad}{distancia}$	Distancia Y (m):	41,8	
$\frac{gradiente}{distancia x autocad}$	Distancia X (m):	128,67	
	Gradiente (i _s):	0,3249	

Cálculo del tirante normal del tramo 1

Figura 73:


Cálculo del tirante normal del eje derecho

Cálculo de tirante del tramo 2

Figura 74:

Cálculo del tirante normal tramo 2 en el programa H-Canales, eje derecho

Una vez establecido los tirantes en los tres ejes se calcula las curvas de remanso de cada uno, los cuales diferirán según la longitud de los mismos.

Cálculo de la curva de remanso

• Eje central

Tabla 36:

Datos para el cálculo de la curca de remanso del eje central

Para tramo 1de la rápida		Para tramo 2 rápida	
Tirante inicial (h₁=hc)	5,680	Tirante inicial (h ₁ =h _c)	3,68
Distancia en x (m):	370,02	Distancia en x (m):	92,20

Figura 75:

Longitudes de tramo 1 y tramo 2 – Eje Central

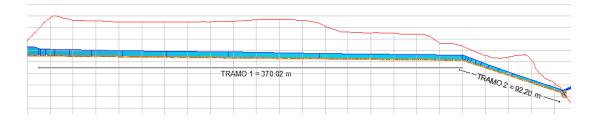


Figura 76:

Cálculo en el programa H-Canales de la curva de remanso tramo 1, eje central

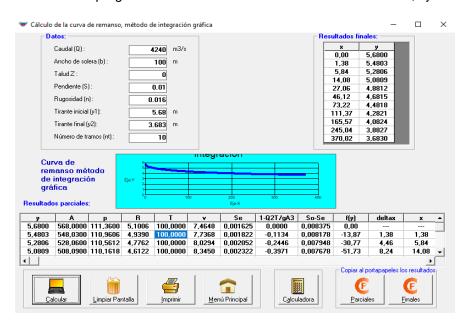


Figura 77:

Cálculo en el programa H-Canales de la curva de remanso tramo 2, eje central

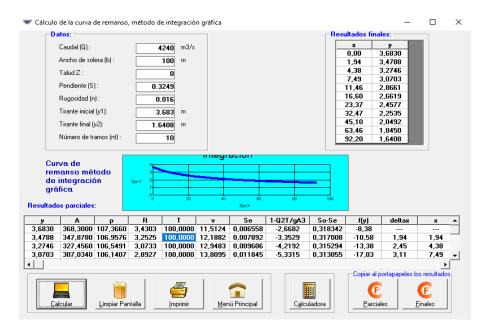


Tabla 37:

Tabla de resultados obtenidos en el programa H-Canales, eje central

RESULTADOS TRAMO 1		RESULTADOS TRAMO 2	
Tirante Normal h _o (m)	3,234	Tirante Normal h _o (m)	1,12
Tirante critico h _{cr} (m)	5,68	Tirante critico h _{cr} (m)	5,68
Longitud del tramo (L) (m) h_1 (m)	371,00 5,6801	Longitud del tramo (L) (m) h_1 (m	93,00 3,683
$h_{h_{\overline{\overline{2}}}(h_1)}$	3,683	h_2 (m)	1,641
2 ()	3,683	h = y	1,641

• Eje izquierdo

Tabla 38:

Datos para el cálculo de la curca de remanso del eje derecho

Para tramo 1 de la rápida		Para tramo 2 rápida	
Tirante inicial (h₁=hc)	5,680	Tirante inicial (h ₁ =h _c)	3,749
Distancia en x (m):	320,54	Distancia en x (m):	78,62

Figura 78:

Longitudes de tramo 1 y tramo 2 - Eje Izquierdo

Figura 79:

Cálculo en el programa H-Canales de la curva de remanso tramo 1, eje izquierdo

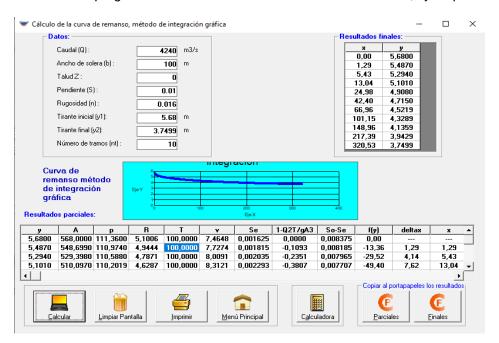


Figura 80:

Cálculo en el programa H-Canales de la curva de remanso tramo 2, eje izquierdo

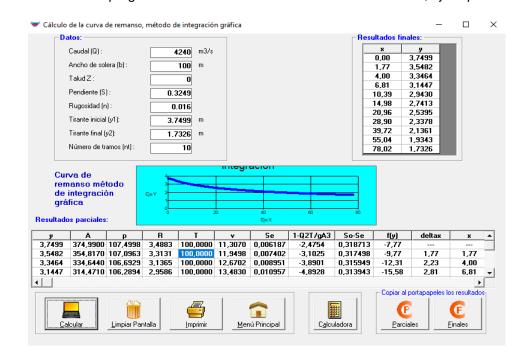
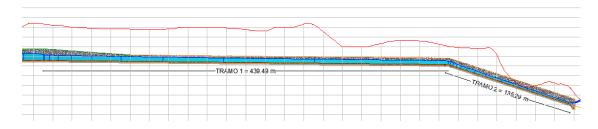


Tabla 39:

Tabla de resultados obtenidos en el programa H-Canales, eje izquierdo

RESULTADOS TRAMO 1		RESULTADOS TRAMO 2	
Tirante Normal h _o (m)	3,234	Tirante Normal h _o (m)	1,12
Tirante critico h _{cr} (m)	5,68	Tirante critico h _{cr} (m)	5,68
Longitud del tramo (L) (m)	320,54	Longitud del tramo (L) (m)	79,00
h_1 (m)	5,680	h_1 (m)	3,749
$h_2(m)$	3,749	$h_2(m)$	1,639
h = y	3,749	h = y	1,639

Eje derecho


Tabla 40:

Datos para el cálculo de la curca de remanso del eje derecho

Para tramo 1de la rápida		Para tramo 2 rápida	
Tirante inicial (h ₁ =h _c)	5,680	Tirante inicial (h₁=hc)	3,607
Distancia en x (m):	439,49	Distancia en x (m):	135,29

Figura 81:

Longitudes de tramo 1 y tramo 2 - Eje Derecho

Cálculo de la curva de remanso del tramo 1

Figura 82:

Cálculo en el programa H-Canales de la curva de remanso tramo 1, eje derecho

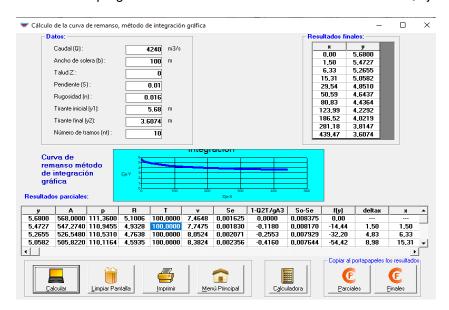


Figura 83:

Cálculo en el programa H-Canales de la curva de remanso tramo 2, eje derecho

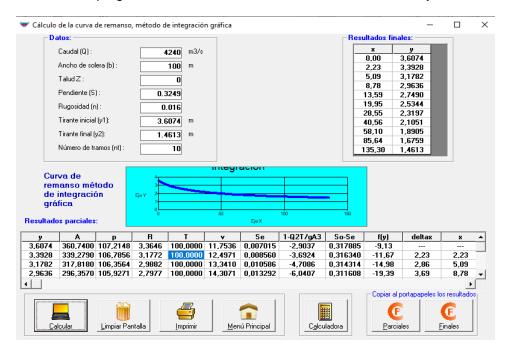


 Tabla 41:

 Tabla de resultados obtenidos en el programa H-Canales, eje izquierdo

RESULTADOS TRA	MO 1	RESULTADOS TRAMO 2	
Tirante Normal h _o (m)	3,234	Tirante Normal h _o (m)	1,12
Tirante critico h _{cr} (m)	5,68	Tirante critico h _{cr} (m)	5,68
Longitud del tramo (L) (m)	440,00	Longitud del tramo (L) (m)	136,00
$h_1(m)$	5,680	h_1 (m)	3,607
h = y	3,607	$h_2(m)$	1,461
h_2 (m)	3,607	h = y	1,461

Radio de curvatura entre las rápidas

El canal de pendiente suave se empata gradualmente con otro de pendiente pronunciada (rápida) con un radio de curvatura que evite que el flujo se desprenda de la solera, el cual se calcula a continuación: (Sandoval W., 2019)

$$R \ge 5 \times h_c$$

• Eje central

$$R = 5 * 3,683 = 18,41 m$$

Tabla 42:Tabla de resumen de radios de curvatura, eje central

Radio de curvatura			
R calculado (m)	18,4150	18,50 m	
R diseño (m)	18,50		

• Eje izquierdo

$$R = 5 * 3,7499 = 18,74 m$$

Tabla 43:Tabla de resumen de radios de curvatura, eje izquierdo

Radio de curvatura				
R calculado (m)	18,749	18,80 m		
R diseño (m)	18,80			

• Eje derecho

$$R = 5 * 3,6074 m$$

Tabla 44:Tabla de resumen de radios de curvatura, eje derecho

Radio de curvatura				
R calculado (m)	18,037	18,10 m		
R diseño (m)	18,10			

Para el diseño se toma en cuenta el mayor radio de curvatura de entre los tres ejes, por lo que se asumió un R=20,00 m.

Deflector tipo Esquí

Deflector eje izquierdo

Tabla 45:

Datos para el diseño del canal de acercamiento, eje izquierdo

DATOS PARA EL DISEÑO DEL CANAL DE ACERCAMIENTO		
Nivel de Aguas del Proyecto NAP (msnm)	1183,00	
Nivel de Solera de entrada (NSE) (msnm)	1176	
Nivel de la Solera del Cauce (NSC) (msnm) (fondo del río)	1159	
Nivel de Aguas Abajo del Cauce (NAAC) (msnm)	1112	
Caudal Q (m³/s)	4240	
H (m) = NAME - NAMO	7,00	
b (m)	100	

Tabla 46:

Datos iniciales, eje izquierdo

DATOS INICIALES		CIALES
Q(x) (m ³ /s)	4240,000	caudal de descarga
H _d (m)	5,680	altura de descarga
P ₂ (m)	54,00	

Tabla 47:

Cálculos de velocidad, y tirante crítico, eje izquierdo

CÁLCULOS		
T (m)	T=H+P	59,680
V _o (m/s)	V _o =Q/bT	3,407
$T_o(m)$	$H+P_2+v^2/2g$	60,272
h _{cr} (m)	$\sqrt[3]{Q^2/g*b^2}$	5,68

Figura 84:

Esquema del deflector tipo esquí – Eje Izquierdo

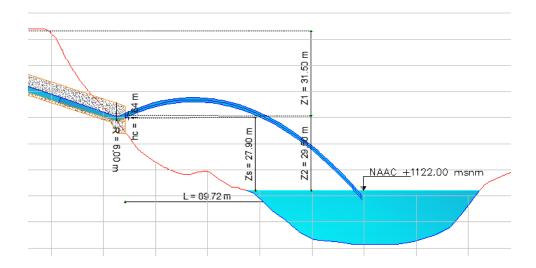


Tabla 48:

Tabla de resumen de para el cálculo de L, eje izquierdo

V (m/s)	25,866
Z ₂ (m)	-29,500
Z ₁ (m)	31,500
F _r	6,450
F_r^2	41,607
\mathbf{K}_{a}	1,000
L (m)	89,271

Tabla 49:

Tabla de datos, eje izquierdo

Z_{s}	27,900	m
β	25,000	grados
V	25,866	m/s

La trayectoria del eje izquierdo de la partícula se la describe con la siguiente ecuación:

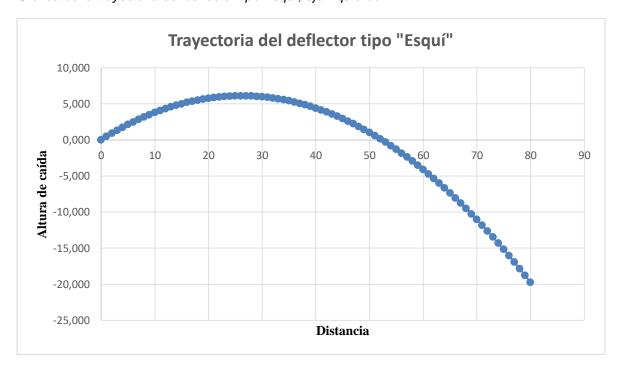

$$z = x * \tan(25,00^\circ) - \frac{9,8 * x^2}{2 * 25,866^2 * \cos(25,00^\circ)^2}$$

Tabla 50:Coordenadas de las partículas, eje izquierdo

TRAYECTORIA		
X	Z	
0	0,000	
1	0,457	
2	0,897	
3	1,319	
4	1,723	
5	2,109	
6	2,477	
7	2,827	
8	3,160	
9	3,475	
10	3,771	
11	4,051	
12	4,312	
13	4,555	
14	4,781	
15	4,988	
16	5,178	
17	5,350	
18	5,505	
19	5,641	
20	5,760	
21	5,860	
22	5,943	
23	6,008	
24 25	6,056	
25 26	6,085 6,097	
20 27	6,090	
28	6,066	
29	6,024	
30	5,965	
31	5,887	
32	5,792	
33	5,678	
34	5,547	
35	5,398	
36	5,232	
37	5,047	
38	4,845	

TRAYECTORIA		
X	Z	
39	4,625	
40	4,386	
41	4,131	
42	3,857	
43	3,565	
44	3,256	
<i>4</i> 5	2,929	
46	2,584	
47	2,221	
48	1,840	
49	1,441	
50	1,025	
<i>51</i>	0,591	
52	0,139	
53	-0,331	
54 	-0,819	
<i>5</i> 5	-1,324	
<i>5</i> 6	-1,848	
57	-2,389	
58	-2,948	
59	-3,525	
60	-4,120	
61	-4,732	
62	-5,363	
63	-6,011	
64	-6,677	
65	-7,361	
66 07	-8,062	
67	-8,782	
68	-9,519	
69 7 0	-10,275	
70 71	-11,048	
71 70	-11,838	
72 72	-12,647	
73	-13,474	
74 75	-14,318	
75 76	-15,180	
76 77	-16,060	
77 70	-16,958	
78 70	-17,874 19,907	
79	-18,807	
80	-19,759	

Figura 85:
Gráfica de la trayectoria del deflector tipo Esquí, eje izquierdo

Altura de los muros laterales

Para la altura del muro lateral se requiere calcular la altura del borde libre con la ecuación (3.59 y 3.60) (Sandoval W. , 2019)

Tabla 51:Altura de los muros laterales

Altura de los muros laterale	es
bl ₁ (m)	1,829
Altura de muro (m)	1,829
bl ₂ (m)	1,484
Altura de muro (m)	1,484
Altura de muro asumida	2,00
(m)	

Profundidad de socavación

$$q = \frac{4240,00}{100,00} = 42,40 \ m^3/s$$

$$Z = NAP - NAAC$$

Tabla 52:

Tabla de resumen

q (m³/s)	42,400
Z (m)	61,00
$Z_{o}(m)$	123,281
α (grados)	45,591
k_a	0,857

Tabla 53:

Profundidad de socavación

Profundidad de socavación	
h _{s1} (m)	36,243
h_{s2} (m)	32,861
$h_{s m\acute{a}x}(m)$	23,518

Radio de empalme

Tabla 54:

Resumen de radios de empalme

Radio de empalme	
R (m)	8,196
R (m)	3,126
R promedio	5,661
(m)	

Deflector eje central

Tabla 55:

Datos para el diseño del canal de acercamiento, eje central

DATOS PARA EL DISEÑO DEL CANAL DE ACERCAMIENTO		
Nivel de Aguas del Proyecto NAP (msnm)	1183,00	
Nivel de Solera de entrada (NSE) (msnm)	1176	
Nivel de la Solera del Cauce (NSC) (msnm) (fondo del río)	1159	
Nivel de Aguas Abajo del Cauce (NAAC) (msnm)	1120	
Caudal Q (m ³ /s)	4240	
H(m) = NAME - NAMO	7,00	
b (m)	100	

Tabla 56:

Datos iniciales, eje central

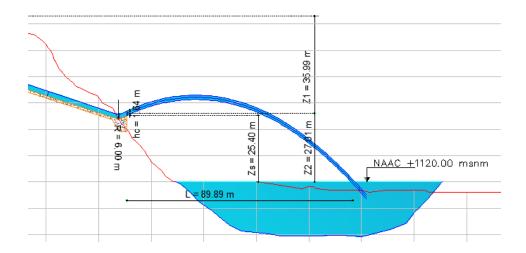

DATOS INICIALES		
Q(x) (m ³ /s)	4240,000	caudal de descarga
\dot{H}_d (m)	5,680	altura de descarga
P ₂ (m)	56,00	

Tabla 57:Cálculos de velocidad, y tirante crítico, eje central

CÁLCULOS		
<i>T</i> (m)	T=H+P	61,68
V_o (m/s)	$V_o=Q/bT$	3,407
$T_o(m)$	$H+P_2+v^2/2g$	62,272
h _{cr} (m)	$\sqrt[3]{Q^2/g*b^2}$	5,680

Figura 86:

Esquema del deflector tipo esquí – Eje Izquierdo

La trayectoria del eje central de la partícula se la describe con la siguiente ecuación:

$$z = x * \tan(25.00^{\circ}) - \frac{9.8 * x^{2}}{2 * 25.866^{2} * \cos(25.00^{\circ})^{2}}$$

Tabla 58:

Tabla de resumen de para el cálculo de L, eje central

V (m/s)	25,841	
Z ₂ (m)	-27,002	
Z ₁ (m)	35,998	
F_r	6,444	
Fr ²	41,485	
K_a	1,000	
L (m)	86,893	

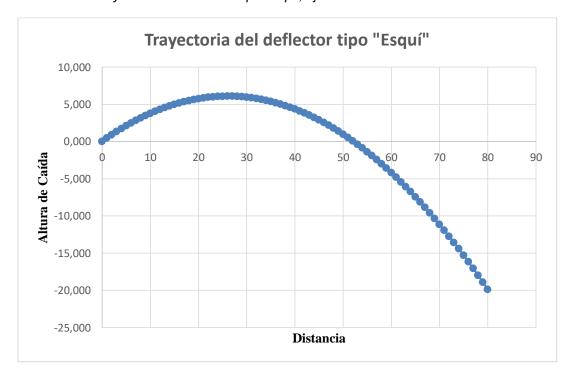
Tabla 59:

Tabla de datos, eje central

Zs	25,400	m
В	25,000	grados
V	25,841	m/s

$$z = x * \tan(25,00^{\circ}) - \frac{9,8 * x^{2}}{2 * 25,866^{2} * \cos(25,00^{\circ})^{2}}$$

Tabla 60:Coordenadas de las partículas, eje central


TRAYECTORIA		
X	Z	
0	0,000	
1	0,457	
2	0,897	
3	1,319	
4	1,722	
5	2,108	
6	2,476	
7	2,826	
8	3,159	
9	3,473	
10	3,770	
11	4,048	
12	4,309	
13	4,552	
14	4,777	
15	4,985	
16	5,174	
17	5,345	
18	5,499	
19	5,635	
20	5,753	
21	5,853	
22	5,935	
23	5,999	
24	6,046	
25	6,074	
26	6,085	
27	6,078	
28	6,053	
29	6,010	
30	5,949	
31	5,870	
32	5,774	

TRAYECTORIA		
X	Z	
33	5,660	
34	5,527	
35	5,377	
36	5,209	
37	5,023	
38	4,820	
39	4,598	
40	4,359	
41	4,101	
42	3,826	
43	3,533	
44	3,222	
45	2,893	
46	2,547	
47	2,182	
48	1,800	
49	1,400	
50	0,981	
51	0,546	
52	0,092	
53	-0,380	
54	-0,870	
55	-1,377	
56	-1,902	
57	-2,446	
58	-3,007	
59	-3,586	
60	-4,182	
61	-4,797	
62	-5,430	
63	-6,080	
64	-6,748	
65	-7,434	
66	-8,138	
67	-8,860	
68	-9,600	
69	-10,357	
70	-11,133	
71	-11,926	
72	-12,737	
73	-13,566	

TRAYECTORIA		
X	Z	
74	-14,413	
<i>7</i> 5	-15,278	
76	-16,161	
77	-17,061	
78	-17,980	
79	-18,916	
80	-19,870	

Figura 87:

Gráfica de la trayectoria del deflector tipo Esquí, eje central

Altura de los muros laterales

Para la altura del muro lateral se requiere calcular la altura del borde libre con la ecuación (3.59 y 3.60) (Sandoval W. , 2019)

Tabla 61:

Altura de los muros laterales

Altura de los muros laterales		
bl ₁ (m)	1,829	
Altura de muro	3,467	
bl ₂ (m)	1,484	
Altura de muro (m)	3,125	
Altura de muro asumida (m)	3,50	

Profundidad de socavación

Tabla 62:

Tabla de resumen

q (m³/s)	42,400
Z (m)	63,00
$Z_{o}(m)$	122,717
α (grados)	44,589
$\mathbf{k_a}$	0,8498

Tabla 63:Profundidad de socavación

Profundidad de socavación		
h _{s1} (m)	36,506	
$hs_2(m)$	32,967	
h _{s máx} (m)	24,092	

Se toma 24,10 m como valor de diseño final, considerando que esta es una obra permanente.

Radio de empalme

Tabla 64:

Radio de empalme

Radio de empalme	
R (m)	8,204
R (m)	3,172
R promedio (m)	5,688

Deflector eje derecho

Tabla 65:

Datos para el diseño del canal de acercamiento, eje derecho

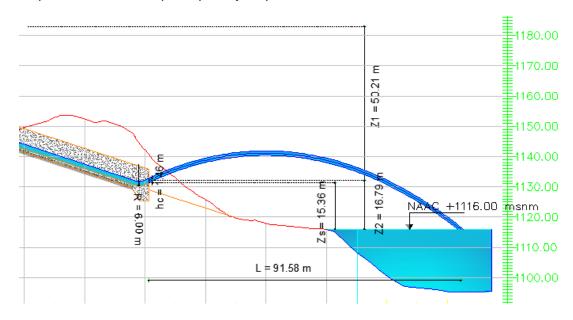
DATOS PARA EL DISEÑO DEL CANAL DE ACERCAMIENTO		
Nivel de Aguas del Proyecto NAP (msnm)	1183,00	
Nivel de Solera de entrada (NSE) (msnm)	1176	
Nivel de la Solera del Cauce (NSC) (msnm) (fondo del río)	1159	
Nivel de Aguas Abajo del Cauce (NAAC) (msnm)	1116	
Caudal Q (m³/s)	4240	
H (m) = NAME - NAMO	7,00	
Cv	0,955	
b (m)	100	

Tabla 66:

Datos iniciales, eje derecho

DATOS INICIALES		
Q(x) (m ³ /s)	4240,000	caudal de descarga
H_d (m)	5,680	altura de descarga
P ₂ (m)	60,00	

Tabla 67:


Cálculos de velocidad, y tirante crítico, eje derecho

CÁLCULOS			
<i>T</i> (m)	T=H+P	65.68	
V _o (m/s)	V _o =Q/bT	3,407	

CÁLCULOS			
T_o (m)	$H+P_2+v^2/2g$	66,272	
H _{cr} (m)	$\sqrt[3]{Q^2/g*b^2}$	5,680	

Figura 88:

Esquema del deflector tipo esquí – Eje Izquierdo

La trayectoria del eje derecho de la partícula se la describe con la siguiente ecuación:

$$z = x * \tan(25,00^{\circ}) - \frac{9,8 * x^{2}}{2 * 25,866^{2} * \cos(25,00^{\circ})^{2}}$$

Tabla 68:

Tabla de resumen de para el cálculo de L, eje derecho

V (m/s)	29,015
Z ₂ (m)	-16,789
Z ₁ (m)	50,211
F_r	7,663
F_r^2	58,728
K_a	1,000
L (m)	91,585

Tabla 69:

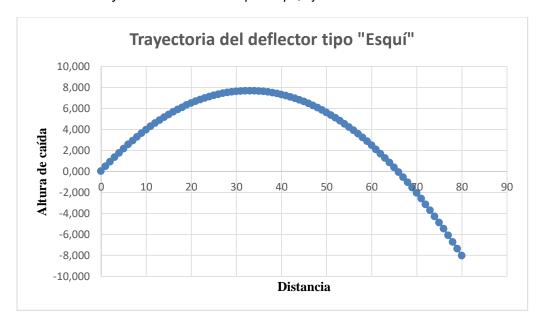
Tabla de datos eje derecho

Zs	15,362	m
В	25,000	grados
V	29,015	m/s

$$z = x * \tan(25,00^\circ) - \frac{9,8 * x^2}{2 * 25,866^2 * \cos(25,00^\circ)^2}$$

Tabla 70:

Coordenadas de las partículas, eje derecho


	, 	
TRAYECTORIA		
X	Z	
0	0,000	
1	0,459	
2	0,904	
3	1,335	
4	1,752	
5	2,154	
6	2,543	
7	2,917	
8	3,277	
9	3,623	
10	3,954	
11	4,272	
12	4,575	
13	4,864	
14	5,139	
15	5,400	
16	5,647	
17	5,879	
18	6,098	
19	6,302	
20	6,492	
21	6,668	
22	6,829	
23	6,977	
24	7,110	

	TRAYECTORIA		
X	Z		
25	7,229		
26	7,334		
27	7,425		
28	7,501		
29	7,564		
30	7,612		
31	7,646		
32	7,666		
33	7,672		
34	7,663		
35	7,641		
36	7,604		
37	7,553		
38	7,488		
39	7,408		
40	7,315		
41	7,207		
42	7,085		
43	6,949		
44	6,799		
<i>4</i> 5	6,635		
46	6,457		
47	6,264		
48	6,057		
49	5,836		
50	5,601		
51	5,351		
52	5,088		
53	4,810		
54	4,518		
55	4,212		
56	3,892		
57	3,558		
58	3,209		
59	2,846		
60	2,469		
61	2,078		
62	1,673		
63	1,254		
64	0,820		
65	0,372		
66	-0,090		

TRAYECTORIA		
X	Z	
67	-0,566	
68	-1,056	
69	-1,560	
70	-2,079	
71	-2,612	
72	-3,159	
73	-3,720	
74	-4,295	
<i>7</i> 5	-4,885	
76	-5,488	
77	-6,106	
78	-6,738	
79	-7,384	
80	-8,045	

Figura 89:

Gráfica de la trayectoria del deflector tipo Esquí, eje derecho

Altura de los muros laterales

Para la altura del muro lateral se requiere calcular la altura del borde libre con la ecuación (3.59 y 3.60) (Sandoval W., 2019)

Tabla 71:

Altura de muros laterales

Altura de los muros late	rales
bl ₁ (m)	1,927
Altura de muro (m)	3,388
bl ₂ (m)	1,484
Altura de muro (m)	2,945
Altura de muro asumida (m)	3,50

Profundidad de socavación

Tabla 72:

Tabla de resumen

q (m³/s)	42,400
Z (m)	67,00
Z _o (m)	125,378
α (grados)	37,218
k_a	0,792

Tabla 73:Profundidad de socavación

Profundidad de socavación	
h _{s1} (m)	37,0167
H_{s2} (m)	33,170
h _{s máx} (m)	23,896

Se toma 23,90 m como valor de diseño final, considerando que esta es una obra permanente.

Radio de empalme

Tabla 74:
Radio de empalme

Radio de empalme	
R (m)	8,196
R (m)	3,261
R promedio	5,728
(m)	

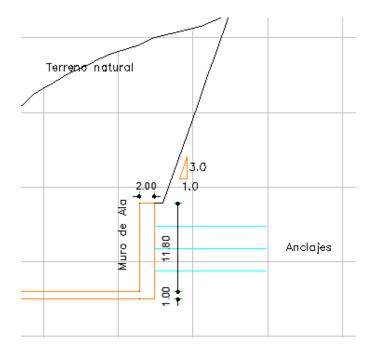
Una vez calculados los diferentes radios de empalme se asume un radio de curvatura R = 6 para unir la rápida con el deflector tipo esquí de todo el aliviadero

Muros de ala

"De acuerdo con Kirienko (1987), en los muros de contención o de ala, se aplica las siguientes relaciones" (Sandoval W. , 2019)

Tabla 75:

Cálculo de muro de ala


Muro de Ala							
Cota de coro	na de vertede	ro	=	1187,8			
Espesor de s	solera de cana	I					
t=(0,03-0,35)*v*(h)^0,5		=	0,70728909	m			
		Asumo	=	1	m		
Hm = Altura del muro de ala		a	=	12,8	m		
Bm= (0,5 a 0),9)*Hm						
Bm =	0,5	а	0,9	=	8,96	Se asume	9
b2= (0,25 a (0,3)*Bm						
b2 =	0,25	а	0,3	=	2,46	Se asume	2,5
b4= (0,1 a 0,	2)*Hm						
b4 =	0,1	а	0,2	=	1,92	Se asume	2
b3= (0,4 a 0,5)*b4							

Muro de Ala							
b3 =	0,4	а	0,5	=	0,9	Se asume	0,9
b1=(Bm-b2	-b4)						
b1 =					4,5		

Se asumió un b = 2,00 m, puesto que el diseño se presenta como un muro anclado a la roca.

Figura 90:

Detalle del muro de Ala del Eje Derecho

Diseño de la presa vertedora

Datos preliminares para el diseño de la presa vertedora

• Ancho del vertedero

Debido a que la sección transversal en donde se plantea el diseño de la presa vertedora tiene una longitud de 40,00 m aproximadamente, se asume el mismo valor para el ancho del vertedero.

$$b = 40,00 m$$

Caudal

Para el diseño de la presa vertedora se trabaja con un caudal de 8002,00 m³/s, del cual 7424,052 m³/s de agua pasan por el canal y los 577,948 m³/s pasan por la presa vertedora, por ello el cálculo para el diseño de la presa se lo realizará con el caudal de 578 m³/s.

$$Q = 578 \, m^3/s$$

Cotas de diseño

Las diferentes cotas de diseño se las realizo a partir de las alturas establecidas en el diseño del aliviadero desarrollado anteriormente y las alturas de la tabla 4.3, estás cotas se las puede visualizar en la siguiente tabla.

Tabla 76:

Datos para el diseño de la presa vertedora

DATOS	
b ancho del vertedero (m)	40
Q _{max} : Caudal máximo de avenida (crecida) (m ³ /s)	8002,0
Q _v : Caudal que pasa por el vertedero (m ³ /s)	578
NSE : Nivel de solera de entrada de canal (msnm)	1176
NSC: Nivel de solera del cauce (msnm)	1159
NAMO : Nivel de aguas máximo de operación del vertedero (msnm)	1183
Àltura de descarga H (m)	3,54
NAME: Nivel de aguas máximo extremo (msnm)	1186,54
Nivel mínimo de aguas abajo (m)	1164,610
Talud aguas arriba (m ₁) adm	0,75
b ancho del talud aguas arriba (m)	18

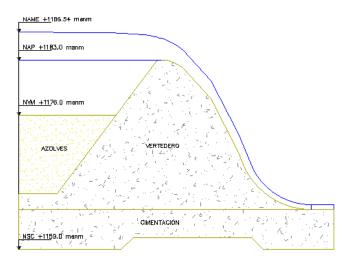

Características de los materiales

Tabla 77:Características de los materiales

Peso específico del agua Y _{agua} = (kg/m³)	1000
Peso específico del concreto $\Upsilon_c = (kg/m^3)$	2400
Peso específico del material de azolves Υ_{azolve} = (kg/m ³)	2700

Figura 91:

Esquema de la presa vertedora

Cálculo de altura de la ola

• Velocidad del viento

La velocidad del viento en la zona de construcción es de 14 km/h tomados a los 2 metros de altura, para proceder con el cálculo se necesita determinar la velocidad del viento a 10 metros de altura.

El cálculo se lo realiza a continuación:

$$\frac{V_z}{V_{ref}} = \left(\frac{Z}{Z_{ref}}\right)^a$$

Donde:

 V_z = Velocidad del viento a estimar a una altura Z sobre el nivel del suelo V_{ref} = Velocidad de referencia, velocidad del viento a una altura establecida a = coeficiente de rugosidad, varía entre 0.0 a 0.40 según el tipo de rugosidad del terreno.

Para la formula se utilizó a = 0.13 como coeficiente de rugosidad, puesto que este valor es recomendado para superficies con agua.

$$\frac{V_z}{14,00} = \left(\frac{10,00}{2,00}\right)^{0,13}$$

$$V_z = 17,258 \ km/h = 4,794 \ m/s$$

• Longitud de Fetch

Para determinar la longitud Fetch se utilizó el programa Google Earth como se representa en la Figura 92.

Figura 92:

Determinación de la longitud Fetch en Google Earth

$$D = 0.68 \, km$$

Se procede a calcular los coeficientes:

$$K = 1 + e^{-0.4*0.668/4.793} = 1.94$$

$$\beta = \frac{1}{\left(9 + 19e^{-\frac{14}{4,793}}\right)} = 0,0997$$

Altura de ola

Cálculo de la altura de ola

$$h = 0.0208 * 0.668^{\frac{1}{3}} * 4.79^{1.25} = 0.1299$$

Tabla 78:

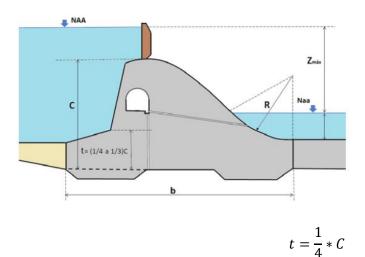
Tabla de resumen de altura de la ola

CÁLCULO DE ALTURA DE OLA		
Fetch: D (Km)	0,668	
velocidad del viento w (m/s)	4,793	
Calculo de la altura de la ola		
Factor K [adm] =	1,946	
Factor β [adm] =	0,0997	
Altura de la ola (m)=	0,13	
Cota de la altura de la ola (m)	1187,269	

Características de la presa vertedora

• Altura de muro de ala

Cota de altura del muro = NAME + altura de la ola + 0,6


Cota de altura del muro = 1186,54 + 0,129 + 0,6 = 1187,30 msnm

Tomando en cuenta que en el diseño del aliviadero se tomó la cota 1187,8 msnm se iguala a esta altura el muro de ala del vertedero.

• Espesor recomendado para la base

Figura 93:

Dimensionamiento de la cimentación

Se toma en cuenta que la cimentación de la presa vertedora se ubicará sobre NSC, entonces:

$$C = NAMO - NSC$$

$$C = 1183,00 - 1159,00 = 24,00 m$$

$$t = \frac{1}{4} * 24,00 = 6,00$$

Para el diseño del vertedero se asumió en el extremo izquierdo una altura de 7,00 m y el derecho de 5,00 m.

• Ancho de cimentación del vertedero

De acuerdo a la figura 4.38 en el ancho de la base de la cimentación b, se lo establece de acuerdo a los coeficientes de seguridad (Figura 94).

Figura 94:

Coeficientes de seguridad

Suelos constituidos por gravas gruesas y medias b = (2,0 a 2,25) $Z_{m\acute{a}x}$ Suelos constituidos por arenas gruesas y finas b = (2,25 a 2,5) $Z_{m\acute{a}x}$ Suelos constituidos por limos b = (2,5 a 2,75) $Z_{m\acute{a}x}$ Suelos constituidos por arcillas b = (2,75 a 3,0) $Z_{m\acute{a}x}$

Nota. El gráfico representa los coeficientes de seguridad para el ancho de la base de la cimentación. Tomada de *Diseño de Obras Hidrotécnicas* (p. 142), por W. Sandoval, 2019.

Tomando en cuenta que el tipo de suelo en el área de estudio está constituido por arenas gruesas y finas el ancho es:

$$b = 2.5 * 21.93 = 54.83 m$$

Para disminuir está sección se diseñó la presa vertedora con 2 tablaestacas siendo el ancho asumido de b = 40,0 m.

Altura de sedimentos

La altura de sedimentos se lo determina según la altura del NSE del aliviadero el cual es 1176,00 msnm, ya que hasta esta altura se depositarán el arrastre de sedimentos aluviales.

Altura de sedimentos =
$$1176,00 - 1159,00 - 7,00 = 10,00 m$$

Tabla 79:

Tabla de resumen de características de la presa vertedora

CARACTERÍSTICAS DE LA PRESA VERTEDORA			
Cota de la altura del muro de ala (m) ASUMIDO	1187,80		
Altura del vertedero sin la cimentación (m)	24,00		
Espesor recomendado para la base del vertedero (m)	6,00		

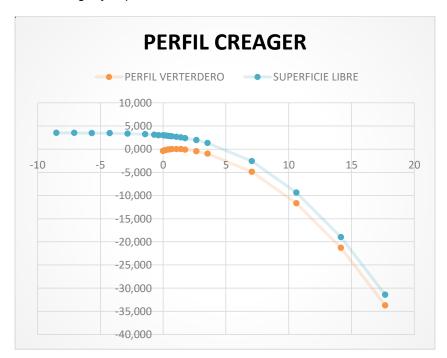
CARACTERÍSTICAS DE LA PRESA VERTEDORA			
Ancho de cimentación del vertedero (m)	40,00		
Profundidad cimentación extremo izquierdo (m)	7,00		
Profundidad cimentación extremo derecho (m)	5,00		
Altura del vertedero con la cimentación (m)	24,00		
Altura de sedimentos (azolves) (m)	10,00		

Vertedero tipo Creager

Como datos iniciales se tiene los niveles de NAMO y NAME, su diferencia es la altura de descarga H (m), a partir del cual se determina el perfil Creager y la superficie libre.

$$H = 1186,54 - 1183,00 = 3,54 m$$

Tabla 80:


Coordenadas del vertedero Creager

DISEÑO DEL VERTEDERO					
y/LI	C libro/U				D Crooger
x/H	S. libre/H	P. creager/H	Х	S. libre	P. Creager
-2,4	0,989		-8,496	3,501	
-2	0,984		-7,08	3,483	
-1,6	0,975		-5,664	3,451	
-1,2	0,961		-4,248	3,402	
-0,8	0,938		-2,832	3,321	
-0,4	0,898		-1,416	3,179	
-0,2	0,87		-0,708	3,080	
-0,1	0,837		-0,354	2,963	
0	0,831	-0,125	0	2,942	-0,442
0,05	0,819	-0,066	0,177	2,899	-0,234
0,1	0,807	-0,033	0,354	2,857	-0,117
0,15	0,793	-0,014	0,531	2,807	-0,050
0,2	0,779	0	0,708	2,758	0,000
0,3	0,747	-0,004	1,062	2,644	-0,014
0,4	0,71	-0,011	1,416	2,513	-0,039
0,5	0,668	-0,034	1,77	2,365	-0,120
0,75	0,539	-0,129	2,655	1,908	-0,457
1	0,373	-0,283	3,54	1,320	-1,002
2	-0,743	-1,393	7,08	-2,630	-4,931

		DISEÑO DE	L VERTEDE	ERO	
3	-2,653	-3,303	10,62	-9,392	-11,693
4	-5,363	-6,013	14,16	-18,985	-21,286
5	-8,878	-9,523	17,7	-31,428	-33,711

Figura 95:

Perfil Creager y superficie libre

Radio de curvatura

Se utilizan los datos anteriormente recopilados en la Tabla 80, además el valor del área transversal fue tomado de la Figura (65), (Martínez & Solano, 2020)

Tabla 81:

Resumen de datos para el diseño de la presa vertedora

DATOS INICIALES			
Cota NAME	1186,54	msnm	
Cota NAMO	1183,00	msnm	
Altura de descarga	3,54	m	
Cota NSC	1159,00	msnm	

DATOS INICIALES			
Área transversal	1244,38	m^2	
Q _{máx}	8002,00	m ³ /s	
Q _{vertedero}	577,948	m³/s	
V_{o}	0,46	m3/s	
L (Longitud del vertedero)	40,00	m	
P ₂	24,00	m	

Calcular el coeficiente de velocidad

Tabla 82:

Resumen de cálculos

	CÁLCULOS	
T (m)	T = H + P	27,54
V _O (m/s)	$v_O = \frac{Q}{bT}$	0,464
T_{O} (m)	$H + P_2 + \frac{v^2}{2g}$	27,551
h _{cr} (m)	$h_{cr} = \sqrt[3]{\frac{Q^2}{g * b^2}}$	2,772

 Tabla 83:

 Cálculo de coeficiente de velocidad

Cálculo de C _∨			
$Cv = 1 - 0.0155 * \frac{P_2}{H}$	br	40,00	
Н	C_{ν} calculado	0,895	
$Cv = \left[1 - 0.002 * \left(\frac{P_2}{hcr}\right)^{4/3}\right]^{-1}$	C _v calculado	1,037	
$\mathcal{C}v = e^{-0.004*To}$	C_{ν} calculado	0,896	
	C _v adoptado	0,896	

Cálculo del tirante contraído

$$hc = \frac{Q_{10}}{Cv * br * \sqrt{2g(To - hc)}}$$

Tabla 84:

Cálculo del tirante contraído

Tirante Contraído		
	Iteraciones	
Hc	0,694213802291769	
hc1	0,703128829838625	
hc2	0,703245559601774	
hc3	0,703247088399672	
hc4	0,703247108422249	
hc5	0,703247108684484	
hc6	0,703247108687918	
hc7	0,703247108687963	
hc8	0,703247108687964	
hc9	0,703247108687964	
hc10	0,703247108687964	

Cálculo del radio de curvatura

$$R = 2 * 3,54 * \sqrt{\left(1 + \frac{24,00}{3,54}\right)^{0.5} - 1}$$

$$R = 9,47 m$$

$$R = 1,27 * \left(\frac{24,00}{3,54}\right)^{0.4}$$

$$R = 2,73 m$$

$$R = 5 * 0,6063766$$

$$R = 3,0318 m$$

$$R \ asumido = 7.00 \ m$$

Muros laterales de la presa vertedora

Altura de muro lateral =
$$0.61 + 0.04 * \left(\frac{577.94}{40 * 0.703}\right) * 0.703^{\frac{1}{3}} + 0.703 = 2.044 m$$

Altura de muro lateral =
$$0.2 * 577.94^{0.24} + 0.703 = 1.623 m$$

Altura de muro lateral asumida = 2,10 m

Tabla 85:

Cálculo de muros laterales de la sección vertedora

Muros laterales de la sección vertedora		
Altura de muro lateral (m)	2,044	
Altura de muro lateral (m)	1,623	
Altura de muro asumido (m)	2,100	

Calculo de la losa de zampeado

Longitud del remolino

$$l_s = 16,7(2,77 - 0,703) = 34,55 m$$

Longitud de la losa recomendada

Longitud de la losa =
$$0.9 * 34,55 = 31,095 m$$

Para la longitud de diseño de la losa:

$$Se\ asume=33,00\ m$$

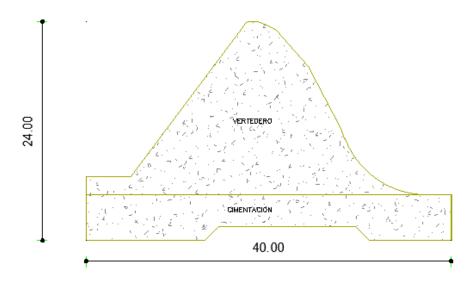
Espesor de la losa

$$t_z = 0.15 * \left(\frac{577,94}{40 * 0.703}\right) * \sqrt{0.703} = 2.58 m$$

$$Se\ asume=3,00\ m$$

Tabla 86:

Cálculo de losa de zampeado


Losa de Zampeado	
Longitud del remolino I _s (m)	34,55
Longitud de la losa (m)	33,00
Espesor de losa t _z (m)	3,00

Esbeltez de la presa vertedora

Relación de esbeltez

Figura 96:

Altura y base del vertedero

Esbeltez =
$$\frac{40,00}{24,00}$$
 = 1,667 m

Tabla 87:

Relación de esbeltez

RELACION DE ESBELTEZ	UNIDADES EN (m)
Altura total de la presa P (m)	24,000
Base total de la presa (m)	40,000
Relación de esbeltez (β)	1,667
ENTONCES:	PRESA DE GRAVEDAD

Fuerzas de la presa vertedora

Las fuerzas de presión que se producen en la presa vertedora están dadas por el empuje del agua, tanto aguas arriba como aguas abajo. Para el cálculo no se considera empuje por inmersión puesto que el cauce no permanece almacenado aguas abajo.

$$H_1 = 1183 - 1159 - (5 + 2) + 3,54 = 20,54 m$$

$$W_1 = \frac{1}{2} * 1 * (20,54)^2 = 210,94 T$$

$$H_2 = 1164,7 - 1159 = 5,7 m$$

$$W_2 = \frac{1}{2} * 1 * (5,70)^2 = 16,245 T$$

$$H_1 = H_3$$

$$W_3 = \frac{1}{2} * 1 * (20,54)^2 * 0,75 = 158,209 T$$

$$W_4 = \frac{1}{2} * 1 * (5,7)^2 * 0 = 0$$

Tabla 88:

Fuerzas de presión por cada unidad de ancho

,		
FUERZAS DE PRESION	DUD CYDY	

Nomenclatur	a	Dirección	Altura (m)	Fuerza (T)
W_1		\rightarrow	20,540	210,946
W_2		←	5,700	16,245
W_3		\	20,540	158,209
W_4		\	0,000	0,000
		EMPUJE	Ī	
ÁREA (m²)	0,000	Volumen s	sumergido (m³)	
Ancho (m)	1,000	(0,000	0,000

• Peso de la estructura

Se calcula el peso de la presa vertedora de acuerdo con el área que se presenta en la siguiente ilustración, cuyos resultados se representan en la siguiente tabla.

Figura 97:

Área de la sección vertedora

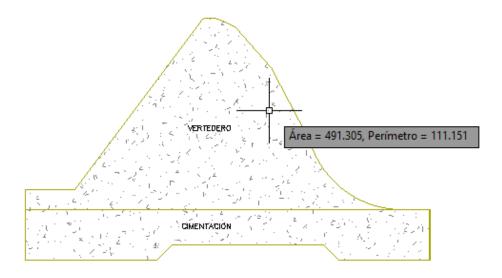
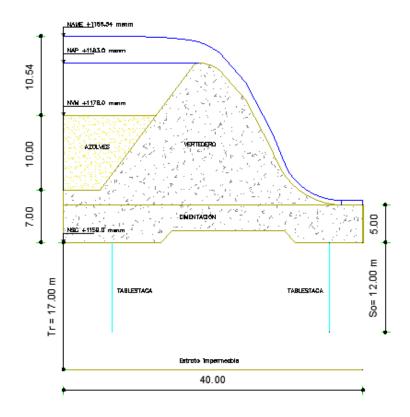


Tabla 89:


Peso propio de la sección vertedora

PESO PROPIO DE LA SECCIÓN VERTEDORA Ancho de análisis b (m) 1 FIGURA ÁREA (m²) VOLUMEN (m³) PESO (T) G1 491,305 491,305 1179,132 PESO TOTAL G [Ton] 1179,132

Cálculo de fuerza subpresión en la presa vertedora

Figura 98:

Estrato activo en el proceso de filtración

Para el cálculo de la fuerza subpresión se usa el método de Chugaev, para el cuál se debe considerar los coeficientes de las siguientes tablas:

Tabla 90:

Coeficientes de filtración de varios suelos

NOMBRE DEL SUELO	COEFICIENTE DE FILTRACIÓN		
NOMBRE DEL SUELO	cm/s	m/día	
Grava lavada	> 0,1	> 80	
Grava con arena	0,1 a 0,2	80 a 17	
Arena gruesa	0,05 a 0,01	40 a 8	
Arena fina	0,005 a 0,001	4 a 0,8	
Arena arcillosa	0,002 a 0,0001	1,5 a 0,08	
Marga arenosa suelta	0,005 a 0,001	4 a 0,8	
Marga arenosa compacta	0,0005 0,0001	0,4 a 0,08	
Limo	< 0,0001	< 0,08	
Arcilla	< 0,000001	< 0,0008	

Nota. En la siguiente tabla se establece los coeficientes de filtración. Tomada de *Diseño de Obras Hidrotécnicas* (p. 154), por W. Sandoval, 2019.

Tabla 91:

Gradientes críticos de acuerdo con el suelo

NOMBRE DEL	GRADIENTE
SUELO	CRÍTICO (Jcr)
Arena fina	0,32
Arena media	0,42
Arena gruesa	0,48
Marga	0,60
Limo	0,80
Arcilla	1,35

Nota. En la siguiente tabla se establece los gradientes críticos de acuerdo al suelo. Tomada de Diseño de Obras Hidrotécnicas (p. 159), por W. Sandoval, 2019.

• Carga total

$$Z = NAME - NSC - profundidad \ de \ cimentacion - h_c$$

$$Z = 1186,54 - 1159 - 5,00 - 0,703 = 21,837$$

Espesor estrato activo

$$T_{a1} = 0.8 * 12,00 + 0.5 * 40,00 = 29,60$$

• Espesor estrato real

Se toma el valor de aproximadamente 15,00 m de profundidad desde el nivel de la solera del cauce asumido hasta la profundidad de la roca que se encontró en los datos recopilados por el ensayo de sísmica de refracción.

$$Asumo = 15,00 m$$

Relación de proyección

Los valores de proyección horizontal y proyección vertical se los obtuvo con ayuda del software AutoCAD. Para el cálculo de la relación Lo/So se lo obtiene de la tabla 4.4 de (Sandoval W., 2019)

$$\frac{L_o}{S_o} = \frac{40,00}{12,00} = 3,33$$

Tabla 92:Resumen de datos preliminares para el cálculo de subpresión

DATOS PRELIMINARES PARA FUERZA DE SUBPRESIÓN				
Coeficiente de permeabilidad [Kf]	Tabla 4.74	4		
Gradiente crítico [Jcr]	Tabla 4.75	0,8		
Proyección Horizontal [Lo]		40,000		
Proyección Vertical [So]		12,000		
Carga Total [Z]		21,837		
Espesor de estrato activo	Ta₁	29,600		
Espesor de estrato real	Tr	15,000		
Sí Ta1>Tr se ocupa Tr	Asumo	15,000		

Tabla 93:

Resumen por tramos de cálculo de subpresión por el método de Chugaev

TRAMOS		DATOS				С	ÁLCULO	S	
		T1	T2	S 1	S 2	L	Coef.	hi	hj
Tramo de Entrada	I	22,0	17,0	17			4,16 7	11,32	10,51 6
Tramo Horizontal entre Tablestaca	II		17,0	12	12	4 0	1,64 7	4,474	6,041
Tramo de Salida	III	17,0	22,0	17			2,22 3	6,041	0
	SUMA						8,03	21,83	
							8	6	

Tabla 94:

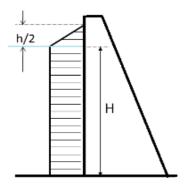
Cálculo de fuerza de subpresión

CÁLCULO FUERZA DE SUBPRESIÓN				
α 0,202				
Gradiente de salida [Jsal] 1 Z	0,8			
$J_{sal} = \frac{1}{\alpha * T1} * \frac{\Sigma}{\Sigma \tau i}$				
CONDICIÓN Jsal <jcr contrario="" de="" el="" es="" lo="" no="" removido,="" si<="" suelo="" td=""><td>NO ES REMOVIDO</td></jcr>	NO ES REMOVIDO			
Peso específico del agua Y _{agua} (T/m³)	1,000			
Wf	0,273			

Cálculo de la presión del azolve en la presa vertedora

$$W_a = \gamma_a \frac{{h_a}^2}{2} tan^2 \left(45 - \frac{\phi}{2}\right)$$
$$\gamma_a = \gamma_{as} - \gamma(1 - n)$$

Tabla 95:


Cálculo de presión de azolve

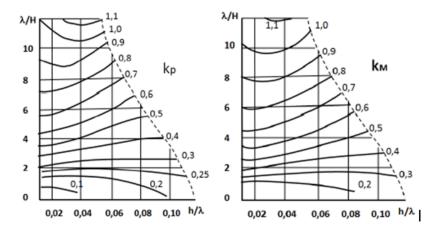
PRESIÓN DE AZOLVE		
n: Porosidad relativa	0,300	
Angulo de fricción interna	0,000	
Peso específico del material saturado	2,000	
Altura de sedimentos (Azolve) ha (m)	10,000	
Presión de Azolve W _a (T)	100	

Cálculo de presión por impacto de una ola

Figura 99:

Diagrama de presiones por impacto de la ola

Nota. El gráfico representa la carga de agua por impacto de la ola. Tomada de *Diseño de Obras Hidrotécnicas* (p. 86), por W. Sandoval, 2019.


Figura 100:

Datos de presión por impacto de una ola

PRESIÓN POR IMPACTO DE UNA OLA		
Fetch "D" (Km)	0,668	
Velocidad del viento "W" (m/s)	4,794	
Altura del agua sin considerar asolves "H" (m)	20,540	
Factor "K" (adm)	1,946	
Factor "β" (adm)	0,100	
Altura de la Ola "h" (m)	0,129	
Distancia o longitud de la Ola "χ" (m)	0,906	
Coeficientes para entrar en el nomograma	0,044	
Coeficientes para entrar en el nomograma	0,142	

Mediante el nomograma se calculó los coeficientes de $K_P y K_M$

Figura 101: Nomograma para coeficientes $K_P Y K_M$

Nota. El gráfico representa los nomogramas para coeficientes K_{P y} K_M. Tomada de *Diseño de Obras Hidrotécnicas* (p. 86), por W. Sandoval, 2019.

$$P_{max} = k_p * \gamma * h * (H + \frac{h}{2})$$

$$M_{max} = k_M * \gamma * h * \left(\frac{h^2}{6} + \frac{h * H}{2} + \frac{H^2}{2}\right)$$

Tabla 96: Determinación de valores $K_{Py}K_M$

Coeficiente K _P	0,220
Coeficiente K _M	0,250
Fuerza de impacto máxima P _{max} (T)	0,585
Momento máximo M _{max} (T)	6,845

Cálculo de fuerzas sísmicas en la presa vertedora

El factor de zona sísmica toma en cuenta el lugar en el que está ubicada la presa vertedora. Para este caso se tuvo como dato, que corresponde a la zona con mayor sismicidad, debido a la presencia del volcán Reventador.

Si Z=0,6 con las ecuaciones (2.17) y (3.18), (Sandoval W., 2019), se tiene que:

$$\alpha_h = \frac{Z}{1 + 3 * Z}$$

$$\alpha_v = \frac{2}{3} * \alpha_h$$

A partir del peso de la presa $G=1179.132\,\mathrm{t}$, a través de la ecuación (3.16), (Sandoval W., 2019), se encuentra que:

• Componente horizontal:

$$S_h = G * \alpha_h$$

Componente vertical:

$$S_{\nu} = G * \alpha_{\nu}$$

El período de vibración de la cimentación en segundos, y para cimentaciones en roca tiene un valor de 0,20 a 0,45, se toma de la tabla 3.6, (Sandoval W. , 2019). En este caso te=0,35 s

$$Ce = \frac{0.817}{\sqrt{1 - 0.72 * \left(\frac{H}{304.8 * t_e}\right)^2}}$$

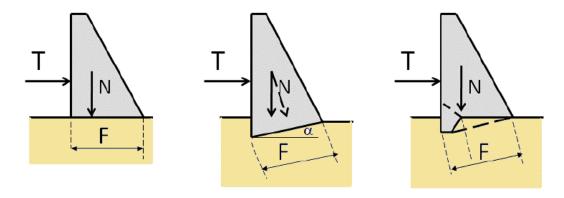
En consecuencia, la fuerza hidrodinámica es:

$$Ws = \frac{2}{3} * Ce * \alpha_h * \gamma * \sqrt{\gamma * H}$$

La fuerza sísmica generada por los sedimentos, ecuación (3.20), (Sandoval W., 2019), es:

$$Wsa = 2,15 * \alpha_h * \gamma_a * H^2$$

Tabla 97:


Cálculo de fuerzas sísmicas

CÁLCULO DE FUERZAS SÍSMICAS			
Aceleración máxima esperada en la roca de cimentación	0,600		
Coeficiente sísmico horizontal $lpha_{f h}$	0,214		
Coeficiente sísmico vertical $lpha_{ m v}$	0,143		
Peso de la presa G (T)	1179,132		
Fuerza sísmica horizontal de la presa $s_{ m h}$	252,671		
Fuerza sísmica vertical de la presa $s_{ m v}$	168,447		
Fuerza sísmica por el efecto del agua en el embalse			
periodo de Vibración de la presa T_e [seg]	0,350		
Altura del agua H (m)	10,540		
Altura del agua sin la consideración de sedimentos Y (m)	20,540		
Coeficiente c _e	0,828		
Fuerza sísmica del agua $W_{ m s}$	49,911		
Fuerza sísmica generada por los sedimentos W_{sa}	92,143		

Cálculo de coeficientes de estabilidad: seguridad al deslizamiento

Figura 102:

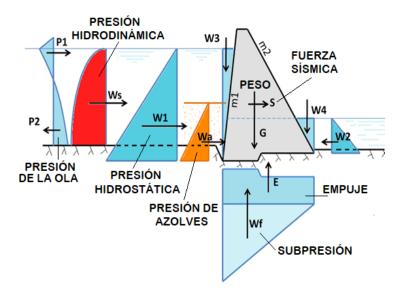
Condiciones de deslizamiento de una presa

Nota. El gráfico representa las condiciones de deslizamiento de una presa. Tomada de *Diseño* de *Obras Hidrotécnicas* (p. 92), por W. Sandoval, 2019.

Tabla 98:

Combinación de fuerzas en situaciones normales N21 y en situaciones accidentales A23

COMBINACION N21		
Coeficiente según el tipo de cimentación f (adm)	0,750	
Coeficiente según el tipo de cimentación Cv (Mpa)	0,400	
Longitud de la base de la presa F (m)	40,000	
Angulo de inclinación de la presa α (grados)	0,000	
FUERZAS HORIZONTALES (T)		
Empuje Hidrostático NMN (W1-W2) (T)	194,701	
Empuje de sedimentos (Wa) (T)	100,000	
Efectos Térmicos (T)	0,000	
Ola máxima en el nivel normal NMN (Pmax) (T)	0,585	
T (T)	295,285	
FUERZAS VERTICALES [N]		
Peso propio (G) (T)	1179,132	
Empuje hidrostático (NMN) (W3+W4) (T)	158,209	
Empuje (E.) (T)	0,000	
Subpresión (Wf) (T)	0,273	
N (T)	1337,068	
\mathbf{k}_{sd}	8,815	Cumple


COMBINACION A23		
Coeficiente según el tipo de cimentación f (adm)	0,750	
Coeficiente según el tipo de cimentación Cv (Mpa)	0,400	
Longitud de la base de la presa F (m)	40,000	
Angulo de inclinación de la presa α (grados)	0,000	
FUERZAS HORIZONTALES [T]		
Empuje Hidrostático NMN (W1-W2) (T)	194,701	
Efecto sísmico del proyecto (Sh) (T)	252,671	
Empuje de sedimentos (Wa) (T)	100,000	
Ola sísmica (Ws) (T)	49,911	
F. sísmica de sedimentos (Wsa) (T)	92,143	
T (T)	689,426	
FUERZAS VERTICALES [N]		
Peso propio (G) (T)	1179,132	
Empuje hidrostático (NMN) (W3+W4) (T)	158,209	
Empuje (E.) (T)	0,000	
Subpresión (Wf) (T)	0,273	
Efecto sísmico del proyecto (Sv) (T)	168,447	
N (T)	1168,621	
$\mathbf{k_{sd}}$	3,592	Cumple

Esfuerzos en la sección vertedora

Mediante el software AutoCAD se obtuvo las dimensiones de la presa vertedora.

Figura 103:

Principales fuerzas que actúan sobre una presa

Nota. El gráfico representa las fuerzas actuantes en una presa. Tomada de *Diseño de Obras Hidrotécnicas* (p. 80), por W. Sandoval, 2019.

Figura 104:

Características físicas de la presa vertedora obtenida del software AutoCAD

```
Precise esquina opuesta o [Borde/polígonOV/polígonOC]:
Comando: PROPFIS
Designe objetos: 1 encontrados
Designe objetos:
                    REGIONES
Área:
                        491.305
Perímetro:
                        111.151
Cuadro delimitador:
                           X: -20.000 -- 20.000
                      Y: 0.000 -- 24.000
Centro de gravedad:
                               X: -1.347
                      Y: 8.529
Momentos de inercia:
                      X: 52632.000
                      Y: 40801.730
Producto de inercia: XY: 6138.250
Radios de giro:
                  X: 10.350
                     Y: 9.113
Momentos principales y direcciones X-Y alrededor del centro de gravedad:
                      I: 16885.560 a lo largo de [1.000 -0.021]
                      J: 39921.133 a lo largo de [0.021 1.000]
```

Tabla 99:Tabla de resumen de fuerzas aplicadas en el vertedero

Fuerza	Valor	Unidad
W ₁	210,946	ton
W_2	16,245	ton
W_3	158,209	ton
W_4	0,000	ton
G	1179,132	ton
E	0,000	ton
W_{f}	0,273	ton
W_a	100,000	ton
P_{max}	0,585	ton
S_v	168,447	ton
S_h	252,671	ton
W_s	49,911	ton
W _{sa}	92,143	ton

Tabla 100:

Combinación de fuerzas en situaciones normales N21

	COMBINACIÓN N21					
	NOMENCLATURA	FUERZA (T)	DISTANCIA (m)	BRAZO (m)	MOMENTO (T-m)	
0	W_1	210,946	20,540	6,847	-1444,276	
2	W_2	16,245	5,700	1,900	30,866	
ĭTÁT	W_3	158,209	10,550	10,550	1669,109	
EMPUJE HIDROSTÁTICO	W_4	0,000	0,000	0,000	0,000	
PESO DEL ALIVIADERO	G1	1179,132	1,347	-1,347	-1588,291	

		СО	MBINACIÓN N2	<u>. </u>	
SUBPRESIÓN	W_f	0,273	40,000	6,667	-1,820
AZOLVE	W _a	100,000	10,000	10,333	-1033,333
IMPACTO OLA	P _{max}	0,585	20,540	20,540	-12,010
	EMPUJE	0,000	0,000	0,000	0,000

Con los resultados de la tabla 4.83 se procede al cálculo momento y reacción

$$M = -1444,27 + 30,866 + 1669,109 + 0 - 1588,291 - 1,820 - 1033,33 - 12,01$$
$$= -2379,755 T.m$$
$$V = 158,209 + 0 + 1179,132 - 0,273 - 0 = 1337,068$$

Tabla 101:Tabla de resultados de combinación de fuerzas N21

RESULTADOS DE FUERZAS N21					
MOMENTO TOTAL (T-m)	-2379,755				
REACCIÓN (T)	1337,068				
ANCHO DE LA PRESA (m)	40,000				
y (m)	20,540				
PESO ESPECIFICO DEL AGUA (T/m ³)	1,000				
PENDIENTE m ₁	0,750				
PENDIENTE m ₂	0,890				

Tabla 102:Combinación de fuerzas en situaciones accidentales A23

	COMBINACIÓN A23					
	NOMENCLATURA	FUERZA (T)	DISTANCIA (m)	BRAZO (m)	MOMENTO (T-m)	
	W_1	210,946	20,540	-6,847	-1444,276	
8	W_2	16,245	5,700	1,900	30,866	
ÁTI	W_3	158,209	10,550	10,550	1669,109	
EMPUJE HIDROSTÁTICO	W_4	0,000	0,000	0,000	0,000	
PESO DEL ALIVIADERO	G	1179,132	1,347	-1,347	-1588,291	
SUBPRESIÓN	W_f	0,273	40,000	-6,667	-1,820	
AZOLVE	W_a	100,000	10,000	-10,333	-1033,333	
S	S_h	252,671	8,530	-8,529	-2155,032	
SISMICAS						
	S _v	168,447	1,347	-1,347	-226,899	

	COMBINACIÓN A23					
W_s	49,911	10,540	-4,216	-210,426		
Wsa	92,143	10,000	-6,000	-552,857		
EMPUJE	0,000	0,000	0,000	0,000		

Con los resultados de la tabla 4.84 se procede al cálculo momento y reacción

$$M = -1444,276 + 30,866 + 1669,109 + 0 - 1588,291 - 1,82 - 1033,333 - 2155,032$$

 $- 226,899 - 210,426 - 552,857 = -5512,96 \text{ T.m}$
 $V = 1179,132 + 158,209 + 0 - 0 - 0,273 - 168,447 = 1168,621 \text{ T}$

Tabla 103:

Tabla de resultados de combinación de fuerzas A23

RESULTADOS DE FUERZAS A23					
MOMENTO TOTAL (T-m)	-5512,960				
REACCIÓN (T)	1168,621				
ANCHO DE LA PRESA (m)	40,000				
y (m)	20,540				
PESO ESPECIFICO DEL AGUA (T/m³)	1,000				
PENDIENTE m ₁	0,750				
PENDIENTE m ₂	0,890				

Esfuerzos verticales en condiciones normales N21

$$\sigma_{y} = \frac{V}{b} \pm \frac{6M}{b^{2}}$$

$$\sigma_{y1} = \frac{1337,068}{40} - \frac{6|-5512,96|}{40^{2}} = 24,503$$

$$\sigma_{y2} = \frac{1337,068}{40} + \frac{6|-5512,96|}{40^{2}} = 42,351$$

Verificación de esfuerzos:

La relación de esfuerzos debe ser inferior a 3

Relación de esfuerzos =
$$\frac{42,351}{24,503}$$
 = 1,728

Esfuerzos horizontales en condiciones normales N21

$$\sigma_{x_1} = \gamma * y - (\gamma * y - \sigma_{y_1}) * m_1^2$$

$$\sigma_{x_1} = 1 * 20,54 - (1 * 20,54 - 24,503) * 0,75^2 = 22,769 T/m^2$$

$$\sigma_{x_2} = \sigma_{y_2} * m_2^2$$

$$\sigma_{x_2} = 42,351 * 0,89^2 = 33,546 T/m^2$$

Esfuerzos de corte en condiciones normales N21

$$\tau_1 = (\gamma * y - \sigma_{y_1})m_1^2$$

$$\tau_1 = (1 * 20,54 - 24,503) * 0,75^2 = -2,229 T/m^2$$

$$\tau_2 = \sigma_{y_2} * m_2$$

$$\tau_2 = 24,503 * 0,89 = 37,692 T/m^2$$

Tabla 104:

Tabla de resumen de esfuerzos verticales, horizontales y de corte de la presa vertedora en condiciones normales

RESUMEN DE ESFUERZOS N21						
ESFUERZOS VE	RTICALES					
$\sigma_{y1 (T/m2)}$ 24,503						
$\sigma_{y2\;(T/m2)}$	42,351					
ESFUERZOS HOR	RIZONTALES					
$\sigma_{x1 \ (T/m2)}$	22,769					
$\sigma_{x2 (T/m2)}$	33,546					
ESFUERZOS D	E CORTE					
T _{1 (T/m2)} -2,229						
T _{2 (T/m2)}	37,692					

Análisis de costos

Previo al análisis de costos se los establece de acuerdo a los precios actuales de los volúmenes de obra y con la ayuda del software AutoCAD se calcula las áreas y volúmenes de cada una de las obras hidráulicas.

Equipos

El costo de la herramienta menor se calculó del 5% del costo subtotal de mano de obra.

Mano de obra

Los valores tomados para el cálculo de mano de obra se los obtuvo de la tabla de salarios que proporciona la Contraloría General del estado, se utilizó la tabla correspondiente al 2019.

Materiales

El precio de los materiales incluye el transporte hacia la zona en donde se realice la construcción.

El en caso del hormigón se tomó como precios unitarios los que se presentan en las siguientes gráficas, tanto para hormigón de f'c=210 kg/cm² como para el hormigón de f'c=380 kg/cm².

Figura 105:

Análisis de precios unitarios del hormigón simple f"c=210 kg/cm²

Grupos > HORMIGONES Y MORTEROS > APU de Hormigon simple fc=210kg/cm2

EII.					
1. MATERIA	ALES				
	Descripción	Unidad	Cantidad	Precio productivo	Costo total
15914 Ce	emento Fuerte Tipo GU Saco 50 Kg - Holcim DISENSA	saco	7.21	7.68	55.37
18054 Are	ena	m3	0.65	13.50	8.78
18055 Rip	pio	m3	0.95	18.00	17.10
18056 Ag	jua	m3	0.24	0.85	0.20
			Tota	l materiales	81.45

Nota. El gráfico representa el APU de hormigón simple f'c 210 kg/cm². Tomada por Insucons, 2020.

Figura 106:

Análisis de precios unitarios del hormigón simple f"c=380 kg/cm²

Grupos > HORMIGONES Y MORTEROS > APU de Hormigon simple fc=380kg/cm2

En:					
1. MATE	RIALES				
	Descripción	Unidad	Cantidad	Precio productivo	Costo total
15914	Cemento Fuerte Tipo GU Saco 50 Kg - Holcim DISENSA	saco	12.00	7.68	92.16
18054	Arena	m3	0.65	13.50	8.78
18055	Ripio	m3	0.95	18.00	17.10
18056	Agua	m3	0.19	0.85	0.16
19623	Plastiment BV-40 10 Kg - Sika DISENSA	u	0.12	22.60	2.71
			Tota	l materiales	120.91

Nota. El gráfico representa el APU de hormigón simple f'c 380 kg/cm². Tomada por Insucons, 2020.

Para el movimiento de tierras se considerando un camión basculante de 12 t de carga.

Figura 107:

Análisis de precios unitarios de movimiento de tierras

			Costo	Costo
Unidad	Descripción	Cantidad	unitario	parcial
	Equipo y maquinaria			
h	Camión basculante de 12 t de carga, de 162 kW.	0,020	39,51	0,79
		Subtotal equipo y maquinaria:		0,79
	Herramienta menor			
%	Herramienta menor	2,000	0,79	0,02
			Costos directos (1+2):	0,81

Nota. El gráfico representa el APU de movimiento de tierras. Tomada por Insucons, 2020.

• Canal de construcción

Tabla 105:

Volumen total del canal de construcción

CANAL DE CONSTRUCCIÓN								
Área Espesor Volumen (m (m²) (m)								
Muro lateral derecho	2464,08		2	4928,16				
Muro lateral izquierdo	2329,979		2	4659,958				
Base del canal	5519,16		1	5519,16				
Volumen total del cana		15107,278						

Tabla 106:

Análisis de precios del canal de construcción

ANÁLISIS DE PRECIOS DEL CANAL DE CONSTRUCCIÓN

EQUIPOS							
Descripción	Cantidad	Jornal hora	Costo hora	Rendimiento	Costo		
	Α	В	C=A*B	R	D=C*R		
Herramienta menor					26,50		
SUBTOTAL M					26,50		
	MAI	NO DE OBR	Α				
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo		
	Α	В	C=A*B	R	D=C*R		
Peón	80	3,58	286,29	0,80	229,03		
Albañil	40	3,62	144,90	0,80	115,92		
Maestro mayor en ejecución de obras civiles	20	4,01	80,29	0,80	64,23		
Operador de equipo liviano	15	3,62	54,34	0,80	43,47		
Encofrador	10	3,62	36,23	0,80	28,98		
Ingeniero Civil	5	4,03	20,15	0,80	16,12		
Residente de obra	3	4,03	12,09	0,80	9,67		
Topógrafo	2	4,01	8,03	0,80	6,42		
Operador de Excavadora	5	4,01	20,07	0,80	16,06		
Chofer	5	5,26	26,28	0,80	21,02		
Dibujante	3	3,82	11,46	0,80	9,17		
SUBTOTAL N					529,91		

ANÁLISIS DE PRECIOS DEL CANAL DE CONSTRUCCIÓN								
MATERIALES								
Descripción	Unidad	Cantidad	Precio unitario	Costo				
		Α	В	C=A*B				
	m^2	9588,118	4	38352,472				
Encofrado de muros Hormigón f'c=210 kg/cm2	m^3	15107,278	81,45	1230487,79				
Hornigon i c=2 to kg/cm2	m^3	151258,93	0,81	122519,733				
Movimiento de tierras				1391360,00				
SUBTOTAL O	TOTAL (M+N+O+	COSTO	DIRECTO	1391916,41				
	306221,61							
	COSTO TOTAL DEL RUBRO							
	VALOR			1698138,02				

• Muro para colchón de aguas

Tabla 107:

Volumen total del muro

MURO							
Área (m²)	Longitud (m)	Volumen (m ³)					
9	33,5	301,5					

Tabla 108:

Análisis de precios del muro

ANÁLISIS DE PRECIOS DEL MURO PARA COLCHÓN DE AGUAS

EQUIPOS							
Descripción	Cantidad	Jornal hora	Costo hora	Rendimiento	Costo		
	Α	В	C=A*B	R	D=C*R		
Herramienta menor					12,11		
SUBTOTAL M					12,11		

ANÁLISIS DE PREC	IOS DEL MU	JRO PARA	COLCHÓN [DE AGUAS	
	MANO	DE OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	Α	В	C=A*B	R	D=C*R
Peón	40	3,58	143,15	0,80	114,52
Albañil	30	3,62	108,68	0,80	86,94
Maestro mayor en ejecución de obras civiles	5	4,01	20,07	0,80	16,06
Operador de equipo liviano	3	3,62	10,87	0,80	8,69
Ingeniero Civil	1	4,03	4,03	0,80	3,22
Residente de obra	1	4,03	4,03	0,80	3,22
Topógrafo	1	4,01	4,01	0,80	3,21
Operador de Excavadora	2	4,01	8,03	0,80	6,42
Chofer	5	5,26	26,28	0,80	21,02
Dibujante	1	3,82	3,82	0,80	3,06
CURTOTAL N					242,29
SUBTOTAL N	MATE	RIALES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			Α	В	C=A*B
Piedra de enrocado		m^3	301,5	10	3015
					3015,00
SUBTOTAL O		TOTAL	COSTO	DIDECTO	2260 44
		(M+N+O+F		DIRECTO	3269,41
	COSTOS INDIRECTOS Y UTILIDAD 22%				
		COSTO TO	OTAL DEL RI	JBRO	3988,68
		VALOR			3988,68

• Aliviadero

Tabla 109:

Volumen total del aliviadero

	ALIVIADERO		
	Área (m²)	Espesor (m)	Volumen
			(m^3)
Muro lateral derecho	5856,299	2	11712,598
Muro lateral izquierdo	3717,713	2	7435,426
Base del canal	52170,494	1	52170,494
Volumen total del cana	71318,518		

Tabla 110:

Análisis de precios del aliviadero

ANÁLISIS DE PRECIOS DEL ALIVIADERO

		EQUIPOS			
Descripción	Cantidad	Jornal hora	Costo hora	Rendimiento	Costo
	Α	В	C=A*B	R	D=C*R
Herramienta menor					26,50
SUBTOTAL M					26,50
SOBIOTALINI	MA	NO DE OBI	RA		
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	Α	В	C=A*B	R	D=C*R
Peón	80	3,58	286,29	0,80	229,03
Albañil	40	3,62	144,90	0,80	115,92
Maestro mayor en ejecución de obras civiles	20	4,01	80,29	0,80	64,23
Operador de equipo liviano	15	3,62	54,34	0,80	43,47
Encofrador	10	3,62	36,23	0,80	28,98
Ingeniero Civil	5	4,03	20,15	0,80	16,12
Residente de obra	3	4,03	12,09	0,80	9,67
Topógrafo	2	4,01	8,03	0,80	6,42
Operador de Excavadora	5	4,01	20,07	0,80	16,06
Chofer	5	5,26	26,28	0,80	21,02
Dibujante	3	3,82	11,46	0,80	9,17
SUBTOTAL N					529,91
GGB1G17/L14	M	ATERIALES	S		
Descripción		Unidad	Cantidad	Precio unitario	Costo
			Α	В	C=A*B
		m^2	19148,024	4	76592,096
Encofrado de muros		m^3	71318,518	81,45	5808893,29
Hormigón 210 kg/cm2		m^3	1155425,8	0,81	935894,898
Movimiento de tierras					6821380,29
SUBTOTAL O		TOTAL	COSTO	DIRECTO	6821936,70
	(M+N+O+P) COSTOS INDIRECTOS Y UTILIDAD				
		22% COSTO T VALOR	OTAL DEL RI	JBRO	8322762,77 8322762,77

• Presa vertedora

Tabla 111:

Volumen total de la presa vertedora

PRESA VERTEDORA							
Área (m²)	Longitud (m)	Volumen (m³)					
191,305	40	7652,2					

Tabla 112:

Análisis de precios de la presa vertedora

ANÁLISIS DE PRECIOS DE LA PRESA VERTEDORA

EQUIPOS								
Descripción	Cantidad	Jornal hora	Costo hora	Rendimiento	Costo			
	Α	В	C=A*B	R	D=C*R			
HERRAMIENTA MENOR					26,50			
					26,50			
SUBTOTAL M								
	MAN	O DE OBRA	A					
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo			
	Α	В	C=A*B	R	D=C*R			
Peón	80	3,58	286,29	0,80	229,03			
Albañil	40	3,62	144,90	0,80	115,92			
Maestro mayor en ejecución de	20	4,01	80,29	0,80	64,23			
obras civiles	4.5	0.00	5404	0.00	40.47			
Operador de equipo liviano	15	3,62	54,34	0,80	43,47			
Encofrador	10	3,62	36,23	0,80	28,98			
Ingeniero Civil	5	4,03	20,15	0,80	16,12			
Residente de obra	3	4,03	12,09	0,80	9,67			
Topógrafo	2	4,01	8,03	0,80	6,42			
Operador de Excavadora	5	4,01	20,07	0,80	16,06			
CHOFER: Volquete	5	5,26	26,28	0,80	21,02			
Dibujante	3	3,82	11,46	0,80	9,17			
					529,91			
SUBTOTAL N	84.4	TEDIAL EC						
5	IVIA	TERIALES			•			
Descripción		Unidad	Cantidad	Precio unitario	Costo			
			Α	В	C=A*B			
Encofrado de de la presa		m2	382,61	4	1530,44			

ANÁLISIS DE PRECIOS DE LA PRESA VERTEDORA							
Hormigón 380 kg/cm2 SUBTOTAL O	m3	7652,2	120,91	925227,502 926757,94			
SUBTUTALO	TOTAL (M+N+O+i	COSTO	DIRECTO	927314,35			
	`	IŃDIRECTOS	Y UTILIDAD	204009,16			
	COSTO TO	OTAL DEL RU	JBRO	1131323,51 1131323,51			

El costo total del canal de construcción, dique del cierre del cauce, aliviadero del canal y presa vertedora se puede visualizar en la tabla 4.100.

Tabla 113:

Resumen de costos

OBRAS HIDRÁULICAS	COSTO (\$)
Canal periodo de construcción	1391916,41
Cierre del cauce	6821936,70
Aliviadero del canal	927314,35
Presa vertedora	3269,41
Costos indirectos (22%)	2011776,11
COSTO TOTAL	11156212,97

CONCLUSIONES

- En la zona de estudio, el fenómeno de la erosión regresiva ha avanzado de tal manera que ha provocado daños a la infraestructura petrolera y vial, razón por la cual es emergente la construcción de un conjunto de obras hidráulicas para detener este fenómeno.
- El levantamiento topográfico se lo obtuvo el 20 de junio de 2020, en base al cual se diseñaron las obras a la altura de la confluencia del río Montana y río Coca.
 Actualmente, por el avance de la erosión regresiva, esta topografía en parte fue modificada, pero se tomó en cuenta en los diseños efectuados.
- Los análisis de suelos en la zona de estudio dan como resultados la existencia períodos de vibración ambiental varían desde 0,8177 0,9497 (s) y sus velocidades de onda Vs30 desde 324,7 371,7 (m/s) indicando como suelo predominante es un perfil tipo D, con una variación de tipo C, como de acuerdo a los estudios a una profundidad aproximada de 16.7 m se encuentra la presencia de una roca blanda.
- Los caudales de diseño para las distintas obras hidráulicas se establecieron de acuerdo a la curva de caudales correspondiente al proyecto CCS, en donde, Q = 957,0 m³/s para el diseño del canal en período de construcción con un período de retorno aproximado de 1 año, Q = 4240,0 m³/s para el diseño del aliviadero emergente con un período de retorno aproximado de 20 años y Q_{máx} = 8002,0 m³/s para el diseño de la presa vertedora para un período de retorno aproximado

de 1000 años, donde el caudal de diseño es la diferencia que existe entre el $Q_{m\acute{a}x}$ y el caudal que pasa por el aliviadero, siendo Q = 578 m³/s.

- El canal en período de construcción trabajará a sección llena con el fin de desviar el río hasta finalizar la construcción de las obras hidráulicas propuestas.
- Las dimensiones del para el período de construcción está constituido por una sección rectangular de ancho b = 15 m; altura de H = 6 m, longitud L = 316, 71 m, finalizando con un deflector de ángulo de 10°, con el propósito que el agua impacte directamente en la confluencia entre el río Montana y río Coca.
- La solera de entrada del aliviadero-canal se lo estableció al nivel de 1176,00
 msnm, con la finalidad que hacia aguas arriba el arrastre de sedimentos se
 acumule hasta la cota mencionada, recuperando la topografía del cauce antes
 de la erosión regresiva.
- El aliviadero emergente consta de un canal de entrada, disipador de energía establecida en dos tramos y un deflector tipo esquí, donde la longitud del segundo tramo de la rápida se lo determino acorde a la topografía que presenta la zona de estudio, tenido variedad de longitud en el eje central, izquierdo y derecho.
- El salto de esquí del segundo tramo del disipador se ha diseñado de tal forma
 que el agua en sus tres ejes impacte sobre el río Coca, asegurando su descarga
 directamente en el cauce.

- Para el diseño de la presa vertedora se tomó el nivel de la corona de 1183,0
 msnm, siendo la altura de la carga hidráulica que pasa por el aliviadero, con la
 finalidad que está trabaje en máximas crecidas que sobrepase la altura de agua
 que está diseñado el aliviadero.
- La presa vertedora está asentada sobre NSC = 1159 msnm, dándole así una altura de 24 m, el cual se extiende a lo largo de 40 m adaptándose a la topografía de la sección transversal del cauce.
- El costo de construcción de las diferentes obras hidráulicas es de 11156212,97 dólares.

RECOMENDACIONES

- En vista de que la topografía ha cambiado de manera permanente en la zona, se recomienda, que previo a la construcción de las diferentes obras hidráulicas, actualizar la misma para emplazar el vertedero en el cauce erosionado.
- Implementar y ejecutar los diseños de las diferentes obras hidráulicas propuestos de manera urgente, con la finalidad de evitar que la erosión regresiva continúe avanzando hacia aguas arriba del rio Coca.
- Tener en cuenta las normas y lineamientos estipulados por las autoridades ambientales competentes durante la ejecución del proyecto considerando que, estas obras contribuyen a su vez a la preservación del medio ambiente de la zona afectado por la erosión regresiva.

REFERENCIAS BIBLIOGRÁFICAS

- Ágora, E. (10 de Febrero de 2020). Tomado de https://www.elagoradiario.com/agua/cascada-san-rafael-crater-represa-rio-coca/
- Akimov, O. (2004). Hidrología de las Estructuras Hidráulicas. Xabarovsk: Rusia: MBGU.
- Andrade, A. (Abril de 2016). ANÁLISIS DE LA INFLUENCIA DE LA GEODINÁMICA Y

 LOS IMPACTOS ANTRÓPICOS EN LA GEOMORFOLOGÍA FLUVIAL DEL RÍO

 COCA. CASO DE ESTUDIO: IMPACTOS FLUVIALES DEL PROYECTO COCA

 CODO SINCLAIR PHCCS. Quito, Pichincha, Ecuador.
- Aspend, J., & Litherland, M. (1992). The geology and Mesozoic collisional history of the Cordillera Real, Ecuador. 205.
- Baby, P., Barragán, R., & Rivadeneira, M. (2015). *La Cuenca Oriente: Geología y petróleo*. Lima: Institut français d'études andines.
- Báez, C. (Enero de 2018). ANÁLISIS GEOMORFOLÓGICO Y TECTÓNICO PARA LA

 DETERMINACIÓN DE LOS FACTORES CONDICIONANTES EN LA

 PRODUCCIÓN DE SEDIMENTOS DE LA SUBCUENCA HIDROGRÁFICA DEL

 RÍO SALADO (CUENCA HIDROGRÁFICA DEL RIO COCA). Quito.
- Barnola, I., & García, L. (Octubre de 2004). *Análisis de los vertederos tipo laberinto en aliviaderos como alternativas para incrementar las capacidades útiles en embalses*. Tomado de Universidad Católica Andrés Bello:

 http://biblioteca2.ucab.edu.ve/anexos/biblioteca/marc/texto/AAQ4465.pdf
- Basantes, A. (04 de Mayo de 2020). MONGABAY LATAM. Tomado de https://es.mongabay.com/2020/05/ecuador-rotura-oleoducto-ocp-petroleo/

- Benitez, S. (1995). Evolution géodynamique de la Provine Cotiere Sud-équatorienne au Crétacé supérieire Tertiare. Francia.
- Bonilla, O. (2014). DETERMINACIÓN DEL TRANSPORTE DE SEDIMENTOS EN SUSPENSIÓN DE FONDO Y TOTAL EN EL PUENTE GRANDE DEL RÍO DE COATA- PUNO.
- BUREAU OF RECLAMATION. (1987). DESIGN OF SMALL DAMS.
- Castillo, L. Á. (2013). Modelación numérica de sedimentación y lavado de sedimentos mediante "flushing" en el embalse Paute-Cardenillo. *III Jornadas de Ingeniería del Agua* (págs. 1-8). Barcelona: La protección contra los riesgos hídricos.
- Chow, V. T. (1994). Hidrología aplicada. Santafé de Bogotá: Universidad Autónoma de San Luis Potosí.
- CNEGP-CICCP. (1997). Guías Técnicas de Seguridad de Presas, Aliviaderos y Desagües. Madrid: Graficas Rita.
- Comité Nacional Español de Grandes Presas. (2018). *GUÍAS TÉCNICAS DE*SEGURIDAD DE PRESAS ALIVIADERS Y DESAGÜES. Madrid: Comité

 Nacional Español de Grandes Presas.
- Cuéllar, M., Julián, L., Carrillo, E., Ibáñez, D., Sandoval, J., & Osorio, J. (Mayo de 2014).

 Control de la actividad téctonicas sobre los procesos de erosión remontante: El caso de la cuenca del Río Combeima, Cordillera Central, Colombia. Tomado de Researchgate:
 - https://www.researchgate.net/publication/262560682_Control_de_la_actividad_te ctonica_sobre_los_procesos_de_erosion_remontante_El_caso_de_la_Cuenca_del_Rio_Combeima_Cordillera_Central_Colombia

- Daly, M. (1989). Correlations between Nazca/Farallon plate kinematics and forearc Correlations between Nazca/Farallon plate kinematics and forearc. En *Tectonics* (págs. 769-790).
- Deniaud, Y. (Marzo de 2000). Enregistrements sédimentaire et structural de l'évolution géodynamique des Andes Equatoriennes au cours du Néogène : étude des bassins d'avant-arc et bilans de masse. Tomado de ResearchGate:

 https://www.researchgate.net/publication/278639906_Enregistrements_sediment aire_et_structural_de_l'evolution_geodynamique_des_Andes_equatoriennes_au _cours_du_Neogene_etude_des_bassins_d'avant-arc_et_bilans_de_masse
- Dji. (2020). PHANTOM 4 RTK. Tomado de https://www.dji.com/phantom-4-rtk
- EFE, A. (08 de Febrero de 2020). Tomado de

 https://www.efe.com/efe/america/sociedad/el-colapso-de-la-mayor-cascada-enecuador-debe-alertar-ante-nuevas-infraestructuras/20000013-4169295
- ENACON S.A. (2012). Estudio de crecida en bocatoma del Río Truful. Santiago de Chile, Chile.
- Fattorelli, S., & Fernández, P. (2011). *Diseño Hidrológico*. París: Water Assessment & Advisory Global Network.
- Geónica, S. A. (2019). Geónica, S. A. Tomado de http://www.geonica.com/prod/136/218/Equipos-GEOFISICA-/Sismografos-para-Voladuras-y-Vibraciones/index.html
- Geoseismic. (2 de Agosto de 2017). *Geoseismic*. Tomado de http://www.geoseismic.cl/metodo-sismico-hvsr-tecnica-nakamura/

- Goroshkov, I. (1979). Cálculos hidrológicos. San Petersburgo, Rusia: Hidrometereológica.
- Hall, M. (1977). El Volcanismo en el Ecuador. Sección Nacional del Ecuador, 73-80.
- Hall, M. (2000). Los terremotos del Ecuador del 5 de Marzo de 1987. Quito: Corporación Editora Nacional.
- Hall, M. L., & Calle, J. (1982). Geochronological control for the main tectonic-magmatic events of Ecuador. *Earth-Science Reviews*, 215-239.
- Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of sea levels since the Triassic. *Science, Volumen 235*, 1156-1167.
- Horna, L. (Marzo de 2016). Evaluación Hidrometereológica y de Sedimentos en la Cuenca del Río Coca en la zona de influencia del Proyecto Coca Codo Sinclair.

 Quito, Pichincha, Ecuador.
- Ibañez, S., Moreno, H., & Gisbert, J. (2011). *Métodos para la determinación del coeficiente de escorrentía (c).* Tomado de Universidad Politécnica de Valencia: https://riunet.upv.es/bitstream/handle/10251/10781/Coeficiente%20de%20escorrent%C3%ADa.pdf
- Insucons. (30 de Agosto de 2020). Tomado de https://www.insucons.com/ec/analisis-precio-unitario/hh/hormigones-y-morteros/17115/hormigon-simple-fc210kgcm2
- Kirienko, I. (1987). Estructuras Hidráulicas. Diseño y Cálculo. Rusia: Kiev: Escuela Superior.
- Litherland, M., Aspen, J. A., & Jemielita, R. A. (1994). *The metamorphic belts of Ecuador*. British Geological Survey.

- Luieux, L., Heller, F., Spikings, R., Winkler, W., & Vallejo, C. (Noviembre de 2005).

 Cretaceous block rotations in the coastal forearc of Ecuador: paleomagnetic,
 chronstratigraphic evidences, and implications for the origin and accretion of the
 blocks. Tomado de ResearchGate:

 https://www.researchgate.net/publication/309132896_Cretaceous_block_rotation
 s_in_the_coastal_forearc_of_Ecuador_paleomagnetic_chronstratigraphic_eviden
 ces_and_implications_for_the_origin_and_accretion_of_the_blocks
- Luzuriaga Hermida, M. B., & Amaya Zhingre, D. A. (2014). Simulación numérica del flujo de sedimentos en el desarenador del proyecto Hidroeléctrico Coca Codo Sinclair. Cuenca, Ecuador.
- Martínez, D., & Solano, B. (2020). DISEÑO DEL ALIVIADERO DE EMERGENCIA EN LA ZONA DE LA CASCADA MONTANA PROVINCIA DE NAPO. Sangolquí, Pichincha, Ecuador: Universidad de las Fuerzas Armadas ESPE.
- Martínez, D., & Solano, B. (2020). *Informe de Resultados SÍSMICA SOCAVÓN RÍO COCA*. Sangolquí: Universidad de las Fuerzas Armadas ESPE.
- Maza Álvarez, J. A., & García Flores, M. (s.f.). Transporte de sedimentos.
- Medina, L. (1992). Comportamiento Hidraúlico de Aliviadero del Proyecto Yacambu.
- Mégard, F., & Lebrat, M. (1986). Los terrenos exóticos del Occidente Ecuatoriano y. *Cultura: Revista del Banco Central del Ecuador, 8(24a)*, 161-171.
- Ministerio de Transporte y Obras Públicas. (1 de Julio de 2013). *Anexo N°3. Geología y Geotecnia.* Tomado de Obras Públicas: https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2013/07/01-07-2013_ConcursoPublico_StoDomingo-Esmeraldas_Anexo-03-geologia-geotecnia.pdf

- Mullo, F. (2012). EMPLEO DE LAS CLASIFICACIONES GEOMECÁNICAS, PARA LA INVESTIGACIÓN DEL COMPORTAMIENTO GEOTÉCNICO DE LAS EXCAVACIONES SUBTERRÁNEAS EN LA CENTRAL LA HIDROELÉCTRICA COCA CODO SINCLAIR 1500 MW. Quito, Ecuador.
- Nocquet, J., Villegas, J., Chlieh, M., Mothes, P., Rolandone, F., Jarrin, P., y otros. (2 de Marzo de 2014). Motion of continental slivers and creeping subduction in the northern Andes. Nature Geoscience.
- Pacheco, M. (22 de Agosto de 2020). *EL COMERCIO*. Tomado de https://www.elcomercio.com/actualidad/via-baeza-lago-agrio-colapso.html
- Pardo Gómez, R., Lobaina Fernandéz, S., & Martí Díaz, D. (2017). Researchgate.

 Recuperado el 03 de 07 de 2020, de

 https://www.researchgate.net/publication/327989172_Disipadores_de_energia
- Pardo, R., & Alegret, E. (Diciembre de 2010). *Diseño Hidraulico de aliviaderos y obras de toma para presas.* Tomado de Researchgate:

 https://www.researchgate.net/publication/310425736_Diseno_hidraulico_de_aliviaderos_y_obras_de_toma_para_presas
- Pérez, G., & Rodríguez, A. (2009). Hidrología Superficial. México: Ebook.
- Puerta Colorado, C. (2015). Tecnología Drone en Levantamientos Topográficos.
- Rivadeneira, M., Dávila, C., Christophoul, F., & Baby, P. (1999). La cuenca oriente: estilo tectónico, etapas de deformación y características geológicas de los principales campos de producción. Quito: Quito: Petroecuador.
- Rivero, J. (2009). Sedimentación de Embalses de la Costa Ecuatoriana. Guayaquil: Guayaquil: CEDEGE.

- Sandoval, P. (25 de Mayo de 2020). *El Universo*. Tomado de https://www.eluniverso.com/noticias/2020/05/25/nota/7850742/erosion-rio-coca-amenaza-complejo-obras-estrategico
- Sandoval, W. (2019). Diseño de Obras Hidrotécnicas. Quito: ESPE.
- Sandoval, W., & Aguilera, E. (2014). Caudal de crecida del Río Grande (Chone) del 4 de marzo de 2013. Sangolquí, Pichincha, Ecuador: Congreso de Ciencia y Tecnología.
- Sandoval, W., Carrera, D., Masabanda, M., & Arce, E. (2016). New Methodology for

 Determining of the Ecological Flow with Hydrometric Data. *World Multidisciplinary Earth Sciences Symposium (WMESS 2016).* IOP Publishing IOP

 Conf. Series: Earth and Environmental Sc.
- Sevilla, J. (25 de Mayo de 2020). Crónica de una tragedia anunciada: La cascada San Rafael. Ecuador.
- Sinde, I. (Junio de 2020). Levantamiento Cascada San Rafael. Tomado de https://drive.google.com/file/d/1AuJBZ02UEzTWJ36G28sxtDgrmOgf8QoZ/view
- Solano, B., Martínez, D., Del Pino, C., & Dávila, C. (2018). VULNERABILIDAD SÍSMICA

 DE LA RESIDENCIA UNIVERSITARIA DE LA UNIVERSIDAD DE LAS

 FUERZAS ARMADAS ESPE. Sangolquí, Pichincha, Ecuador.
- Terneus, E. (5 de Junio de 2020). "Coca Codo Sinclair y la erosión regresiva". Tomado de UIDE: https://www.uide.edu.ec/coca-codo-sinclair-y-la-erosion-regresiva/
- Tibanta, J. (Diciembre de 2012). *Diseño de Diques de Gaviones para el Control de la Erosion en ríos de montaña*. Recuperado el 03 de Julio de 2020, de http://repositorio.usfq.edu.ec/bitstream/23000/1449/1/105470.pdf

- Tschopp, H. (1953). OIL EXPLORATIONS IN THE ORIENTE OF ECUADOR, 1938-1950. BULLETIN OF THE AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS, 2303-2347.
- U.S. GEOLOGICAL SURVEY. (1985).
- UNIVERSO, E. (22 de Agosto de 2020). *EL UNIVERSO*. Tomado de https://www.eluniverso.com/noticias/2020/08/22/nota/7951159/carretera-baeza-lago-agrio-cerrada-sector-reventador-erosion-rio
- USBR. (2014). United States Bureau of Reclamation.
- Vallejo, C. (2007). Evolution of the Western Cordillera in the Andes of Ecuador (Late Cretaceous-Paleogene). Quito, Ecuador.
- Vallejo, C., Wikler, W., Spikings, R., Luzieux, L., Friedrich, H., & Bussy, F. (Mayo de 2009). Mode and timing of terrane accretion in the forearc of the Andes in Ecuador. En *Memoir of the Geological Society of America* (págs. 197-216).
- Voscresiensky, K. (1956). Cálculos hidrológicos para el diseño de obras hidráulicas en pequeños ríos y riachuelos. San Petersburgo, Rusia: Hidrometereológica.
- Winkler, W., Villagómez, D., Spikings, R., Abegglen, P., Tobler, S., & Egüez, A. (2005).
 The Chota basin and its significance for the inception and tectonic setting of the inter-Andean depression in Ecuador. *Journal of South American Earth Sciences*, 5-19.
- Yánez, M. (Enero de 2016). CARACTERIZACIÓN E INTERPRETACIÓN

 GEOLÓGICOESTRUCTURAL DE LAS SECUENCIAS LITOTECTÓNICAS DE LA. Quito, Ecuador.

- Zhelezniakov, G., & Negovskaya, T. O. (1984). Hidrología, Hidrometría y Regulación de Escorrentía (en ruso). Moscú:.
- Zhivotovsky, B. (1978). Cálculos hidrológicos para construcciones hidráulicas. Moscú, Rusia: UAP.

ANEXOS