

DEPARTAMENTO DE CIENCIAS DE LA ELÉCTRICA Y ELECTRÓNICA

CARRERA DE INGENIERÍA EN ELECTROMECÁNICA

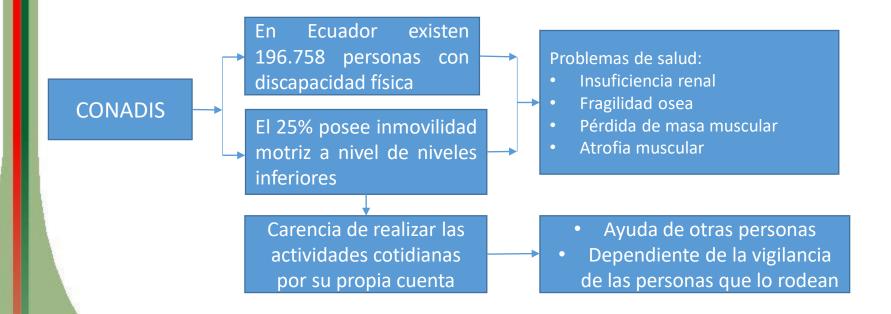
TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO

EN ELECTROMECÁNICA

TEMA: DISEÑO Y CONSTRUCCIÓN DE UN BIPEDESTADOR AUTOSUSTENTABLE PARA EL DESPLAZAMIENTO AUTÓNOMO DE PERSONAS CON PARAPLEJIA.

AUTOR:

CÁRDENAS GABELA, ÁLVARO ANDRÉS


DIRECTOR:

ING. ACUÑA COELLO, FAUSTO VINICIO

Planteamiento del Problema

Justificación e Importancia

Dispositivos de asistencia no adaptados para personas con discapacidad física

En muchos casos no se ha tomado en cuenta a una persona que no puede ponerse de pie por sus propios medios

Actividades cotidianas en las que la persona requiere estar de pie

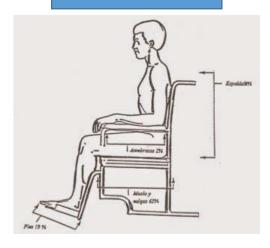
No depender de la ayuda de las personas que le rodean

No depender de una fuente de energía

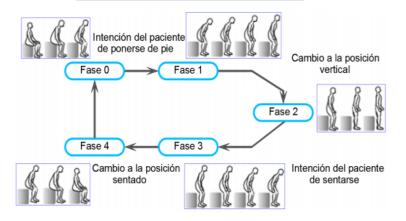
Bipedestador autosustentable

Objetivo General

Diseño y construcción de un bipedestador autosustentable para el desplazamiento autónomo de personas con paraplejia.

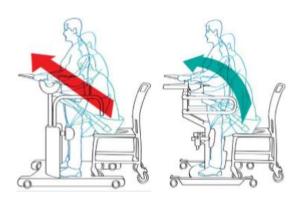

Objetivos Específicos

- Analizar las necesidades y requerimientos del bipedestador.
- Diseñar un mecanismo autosustentable de bipedestación para el desplazamiento autónomo de personas con parapléjica.
- Construir un bipedestador de forma que sea manipulado por la fuerza de la persona, sin el uso de ningún actuador.
- Comprobar el funcionamiento de los sistemas del equipo mediante pruebas de funcionamiento en personas con parapléjia



Posiciones y Ejercicios a Realizar

Sedestación


Transición sit to stand

Bipedestación

Biomecánica en la Transición sit to stand

Hipótesis

Mediante el diseño y construcción de un bipedestador autosustentable, las personas con paraplejia podrán desplazarse

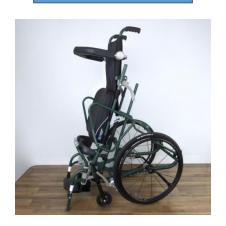
Sistema de Variables

Variable Independiente:

Diseño y Construcción de un Bipedestador Autosustentable.

Variable Dependiente:

Desplazamiento autónomo de personas con paraplejia.


Bipedestadores Autosustentables Existentes

EasyStand Mobile 5000 Stander

LifeStand LS

Leo II (Lightest Standing Wheelchair)

VA Manualstand Wheelchair

LifeStand Helium LS

Metodología de la Investigación

Modalidad de Investigación Tipos de Investigación

- Investigación Aplicada
- Investigación de Método Deductivo
- Diseño de la Investigación

Niveles de Investigación

- Nivel Exploratorio
- Nivel Descriptivo

Población de Muestra

Técnica de recolección de datos

Técnica de análisis de datos

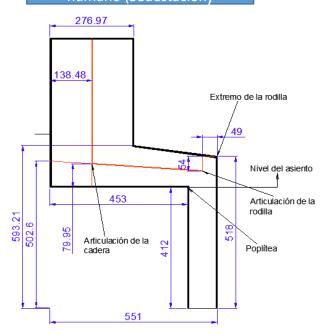
Técnica de comprobación de la hipótesis

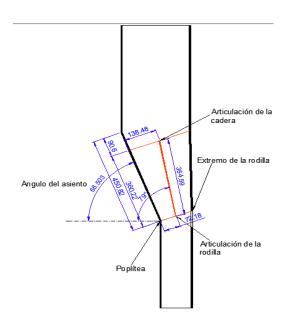
Parámetros utilizados para la selección de un equipo, y su nivel de importancia según las entrevistas realizadas

Tabulación de las encuestas realizadas								
Resultados Generales								
			Ponderación de	e las Entrevistas				
Parámetro		P1	P2	Р3		P4	Total	
Seguridad		6	6	6		6	24	
Operación		5	5	5		5	20	
Costo		4	3	4		3	14	
Traslado		1	1	1		4	7	
Mantenimiento		3	4	2		2	11	
Duración		2 2		3		1	8	
							84	
Porcentaje de In	fluencia	de cada por	nderación					
Parámetro	Suma	-	Valor asignado (redono	deado *10)				
Seguridad	24	0,285714	2,8					
Operación	20	0,238095	2,4					
Costo	14	0,166667	1,7					
Traslado	7	0,083333	0,8					
Mantenimiento	11	0,130952	1,3					
Duración	8	0,095238	1					

Evaluación de los Tipos de bipedestadores

	Tipos de bipedestador autosustentable						
Parámetros	Mecanismo Mecanismo		Mecanismo	Mecanismo			
	por	por gato	por poleas y	por Soporte			
	aumento de	hidráulico	bandas	ajustable			
	palanca						
Seguridad (2.8)	1	0	1	1			
Operación (2.4)	0	1	1	-1			
Costo (1.7)	1	0	0	1			
Traslado (0.8)	1	-1	1	1			
Mantenimiento	1	-1	0	1			
(1.3)							
Durabilidad (1)	1	-1	0	1			
Total Positivos	7.6	2.4	6	7.6			
Total Negativos	0	-3.1	0	-2.4			
Total neutros	0	0	0	0			
Total	7.6	-0.7	6	5.2			

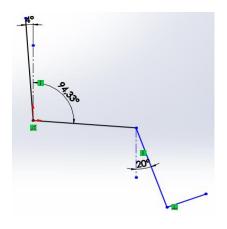


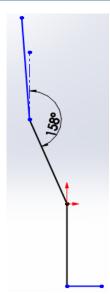

Medidas utilizadas para realizar el diseño

Altura posición relajado	870
Altura de la rodilla	518
Altura de la poplítea	412
Longitud glúteo-poplítea	453
Longitud glúteo-rodilla	551
Ancho de caderas, posición sentado	375
Altura de la región lumbar	503.206
Profundidad máxima del cuerpo	276.97
noncionas dal Cuarna	Dimonciones del Cuerno

Dimensiones del Cuerpo humano (Sedestación)

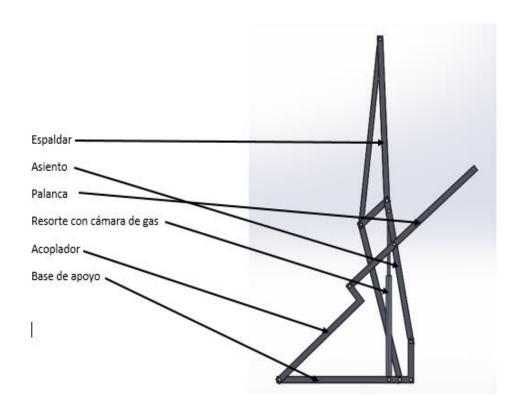
Dimensiones del Cuerpo humano (Bipedestación)



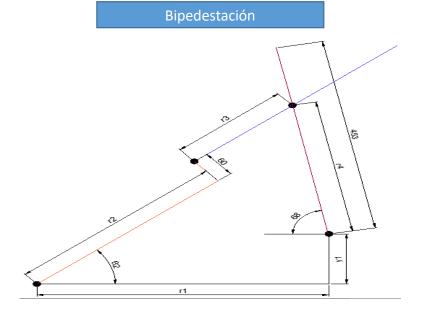

Inclinaciones de los Eslabones

Eslabón	Posición Sedente	Posición Bípeda
Espaldar	4°	_
Asiento	94°	158°
Apoya pie	20°	0°

Dimensiones del Cuerpo humano (Sedestación)



Dimensiones del Cuerpo humano (Bipedestación)



Bosquejo General

Mecanismo Principal (Elevación y Accionamiento)

Ecuaciones Vectoriales:

En el eje x:

$$(r_3 + r_2) * \cos \theta_2 - 60 * \sin \theta_2 + r_4 * \cos 68 = r_1$$

En el eje y:

$$(r_2 + r_3) * \sin \theta_2 + 60 * \cos \theta_2 = r_4 * \sin 68 + y_1$$

Mecanismo Principal (Parámetros conocidos)

 y_1 entre $130 - 150 \ mm$, en recorridos de $5 \ mm$.

La longitud r_4 , entre (226.5 mm), 351.4 mm

 θ_2 en un rango de $[30^{\circ} - 40^{\circ}]$ en recorridos de 2° .

 r_1 deberá comprender una distancia cercana a $700 \ mm$, considerando

un rango validado entre (680 mm - 720 mm)

Mecanismo Principal (Elevación y Accionamiento)

Sedestación 453 r4 r3 r4 r1

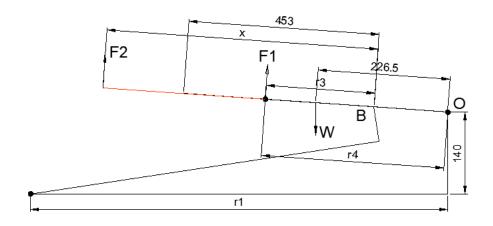
Ecuaciones Vectoriales:

En el eje x:

$$r_2 * \cos \theta_1 - 60 * \sin \theta_1 + (r_4 - r_3) * \cos 4 = r_1$$

En el eje y:

$$y_1 = r_2 * \sin \theta_1 + 60 * \cos \theta_1 - (r_4 - r_3) * \sin 4$$


Resultados de las longitudes de los eslabones

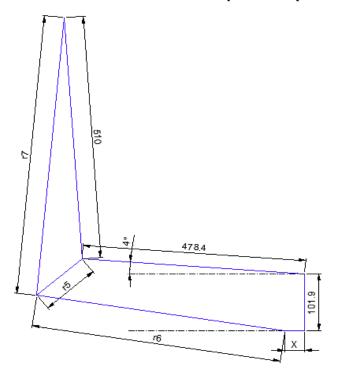
y1	r4	r1	r2+r3	r2	r3	θ1
150	276,46	687,3465	708,7355	569,4855	139,25	10,181
135	288,95	686,1014	701,8955	557,3455	144,55	8,846
140	288,95	694,7616	711,8955	567,4705	144,425	9,22
145	288,95	703,4218	721,8955	577,1855	144,71	9,56
150	288,95	712,0821	731,8955	587,1705	144,725	9,904
130	301,44	702,1771	715,0555	564,2055	150,85	8,24
135	301,44	710,8374	725,0555	573,7555	151,3	8,61
140	301,44	719,4976	735,0555	583,5855	151,47	8,98
150	301,44	687,0315	714,4677	558,0927	156,375	9,503
135	313,93	686,2369	708,0138	547,5638	160,45	8,641
140	313,93	694,2387	717,4493	556,3893	161,06	8,94
145	313,93	702,2404	726,8848	565,7048	161,18	9,12
150	313,93	710,2422	736,3203	574,7803	161,54	9,35
130	326,42	701,4472	720,4309	554,8009	165,63	8,15
135	326,42	709,449	729,8664	563,8564	166,01	8,49
140	326,42	717,4508	739,3019	572,8519	166,45	8,704
150	326,42	686,0791	720,5286	553,7286	166,8	9,03
135	338,91	685,6916	714,4161	542,7261	171,69	8,55
140	338,91	693,1046	723,3577	551,3077	172,05	8,82
145	338,91	700,5176	732,2993	559,9893	172,31	9,19
150	338,91	707,93	741,24	568,64	172,6	9,56
130	351,40	700,1241	726,1797	550,2597	175,92	8,37
135	351,40	707,5371	735,1213	559,0913	176,03	8,616
140	351,40	714,95	744,063	566,483	177,58	8,854
150	351,40	684,4811	726,93	548,29	178,64	9,052

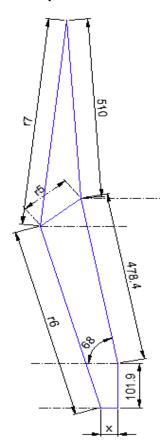
Mecanismo Principal (Elevación y Accionamiento)

Esquema tentativo para determinar la mejor disposición de eslabones en función de la multiplicación de fuerza

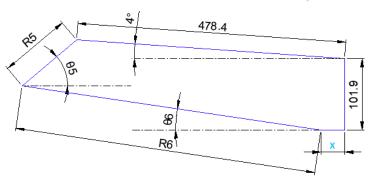
Ecuación para determinar las Fuerzas que se deben ejercer para levantar una carga aleatoria

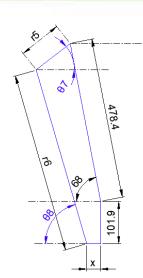
$$F_2 = \frac{225.95 * W * r_3}{x * r_4}$$




Evaluación para cada alternativa

r1	r2	r4	r3	F2
687,3465	569,4855	276,46	139,25	113,33014
686,1014	557,3455	288,95	144,55	112,5584
694,7616	<mark>567,4705</mark>	<mark>288,95</mark>	<mark>144,425</mark>	112,46107
703,4218	577,1855	288,95	144,71	112,68299
712,0821	587,1705	288,95	144,725	112,69467
702,1771	564,2055	301,44	150,85	112,59703
710,8374	573,7555	301,44	151,3	112,93292
719,4976	583,5855	301,44	151,47	113,05981
687,0315	558,0927	301,44	156,375	116,72099
686,2369	547,5638	313,93	160,45	114,99777
694,2387	556,3893	313,93	161,06	115,43497
702,2404	565,7048	313,93	161,18	115,52098
710,2422	574,7803	313,93	161,54	115,779
701,4472	554,8009	326,42	165,63	114,1681
709,449	563,8564	326,42	166,01	114,43003
717,4508	572,8519	326,42	166,45	114,73332
686,0791	553,7286	326,42	166,8	114,97457
685,6916	542,7261	338,91	171,69	113,9838
693,1046	551,3077	338,91	172,05	114,2228
700,5176	559,9893	338,91	172,31	114,39541
707,93	568,64	338,91	172,6	114,58794
700,1241	550,2597	351,40	175,92	112,64087
707,5371	559,0913	351,40	176,03	112,7113
714,95	566,483	351,40	177,58	113,70376
684,4811	548,29	351,40	178,64	114,38247


Síntesis Espaldar y eslabón de acople



Síntesis Espaldar y eslabón de acople

Ecuaciones vectoriales:

En el eje y:

$$r_6 * \sin \theta_6 + r_5 * \sin \theta_5 - 478.4 * \sin 4 = 101.9$$

En el eje x:

$$x + r_6 * \cos \theta_6 = r_5 * \cos \theta_5 + 478.4 * \cos 4$$

Ecuaciones vectoriales.

En el eje y:

$$r_6 * \sin \theta_8 + r_5 * \sin \theta_7 - 478.4 * \sin 68 = 101.9$$

En el eje x:

$$x + r_6 * \cos \theta_8 = r_5 * \cos \theta_7 + 478.4 * \cos 68$$

Rangos conocidos:

Condición:

Valores calculados:

Parámetros válidos:

X se evalúa entre: 30-50 mm

 $\theta_5 = \theta_7$

 $r_6 = 513.426 \, mm$

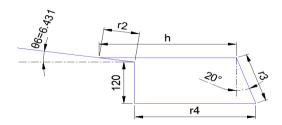
 $\theta_5 = 45^{\circ}$

 r_5 =110 mm

 $\theta_7 = 45.132^\circ$

x = 45 mm

Evaluación para θ_5 entre $40^\circ - 50^\circ$.


 $\theta_8 = 65.626^{\circ}$

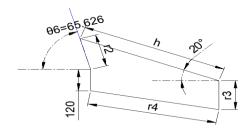
Variación del ángulo del espaldar:

$$\theta_{10} = 94,757^{\circ}$$

Síntesis del apoyapie

Ecuaciones vectoriales:

En el eje x:


$$r_2 * \cos \theta_6 + r_4 = h + r_3 * \sin 20$$

En el eje y:

$$140 + r_2 * \sin \theta_6 = r_3 * \cos 20$$

Para:

$$\theta_6 = 6.431^{\circ}$$

Ecuaciones vectoriales:

En el eje x:

$$h * \cos 20 = r_2 * \cos \theta_6 + r_4 * \cos \theta_4$$

En el eje y:

$$r_4 * \sin \theta_4 + 140 + r_2 * \sin \theta_6 = h * \sin 20 + r_3$$

Para:

$$\theta_6 = 65,626^{\circ}$$

Sistema de Ecuaciones:

$$120 + 0.112 * r_2 = 0.94 * r_3$$

$$0.9937 * r_2 + r_4 = h + r_3 * 0.342$$

$$0.087156 * r_4 + 120 + 0.91087 * r_2 = 0.342 * h + r_3$$

$$0.94 * h = 0.4127 * r_2 + 0.9962 * r_4$$

Valores calculados:

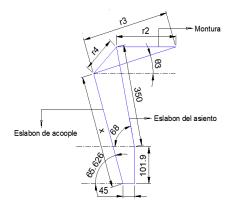
$$h = 296.6484 \, mm$$

$$r_2 = 112.117 \ mm$$

$$r_3 = 141.018 \, mm$$

$$r_4 = 233.4660 \, mm$$

Valores calculados:


Síntesis de la montura móvil

 $h = 296.6484 \, mm$

$$r_2 = 112.117 \, mm$$

$$r_3 = 141.018 \, mm$$

$$r_4 = 233.4660 \, mm$$

Ecuaciones vectoriales:

En el laso conformado por el eslabón de acople, r_4 , y el asiento:

En el eje x:

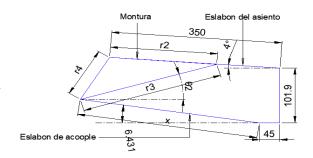
$$45 + x * \cos 65.626 - 350 * \cos 68 = r_{4x}$$

En el eje y:

$$101.9 + 350 * \sin 68 - x * \sin 65.626 = r_{4y}$$

En el laso correspondiente a la montura se tiene:

$$r_{4x} = r_3 * \cos \theta_3 - 220$$
 (Ec.20)
 $r_{4y} = r_3 * \sin \theta_3$ (Ec.21)


Sistema de Ecuaciones:

$$426.414 - 0.911 * x = r_3 * \sin \theta_3$$

$$133.887 + 0.4127 * x = r_3 * \cos \theta_3$$

$$110.96 - 0.112 * x = r_3 * \sin \theta_2$$

$$0.9937 * x - 84.683 = r_3 * \cos \theta_3$$

Ecuaciones vectoriales:

En el laso conformado por el eslabón de acople, r_4 , y el asiento:

En el eje x:

$$45 + x * \cos 6.431 - 350 * \cos 4 = r_{4x}$$

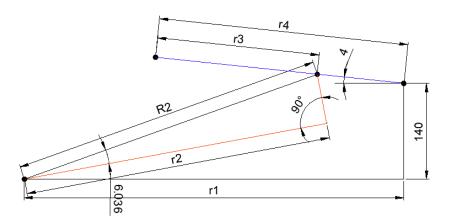
En el eje y:

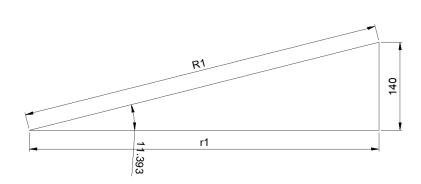
$$101.9 + 350 * \sin 4 - x * \sin 6.431 = r_{4y}$$

En el laso correspondiente a la montura se tiene:

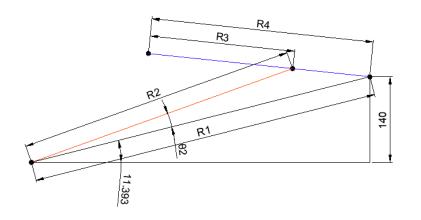
$$r_{4x} = r_3 * \cos \theta_2 - r_2 * \cos 4$$

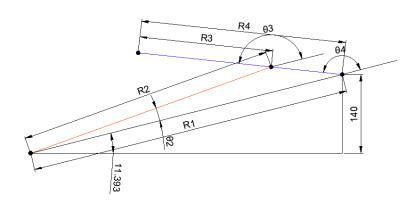
 $r_{4y} = r_3 * \sin \theta_2 + r_2 * \sin 4$


Valores calculados:

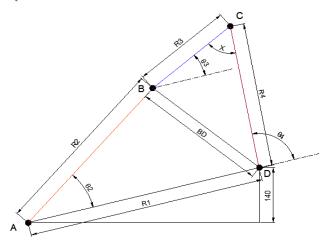

$$r_3 = 301.665 mm$$

 $x = 380.911 mm$




Modelamiento Matemático del Mecanismo

Identificación de parámetros del mecanismo de 4 barras



Modelamiento Matemático del Mecanismo

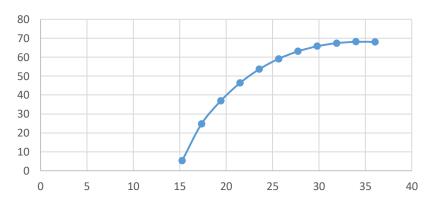
Identificación de parámetros del mecanismo de 4 barras

Ecuaciones que rigen el mecanismo de 4 barras

$$BD = \sqrt{{R_1}^2 + {R_2}^2 - 2 * R_1 * R_2 * \cos \theta_2}$$

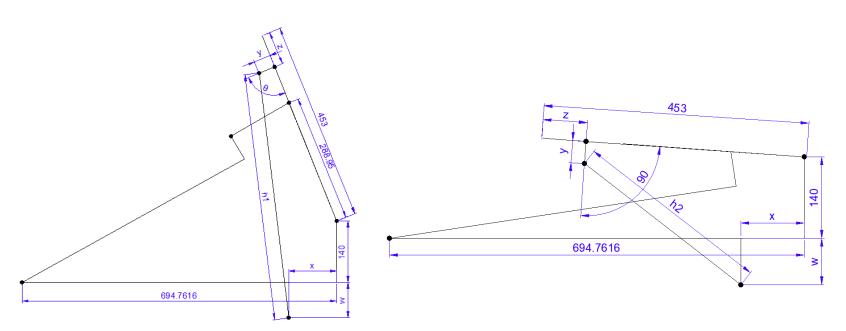
$$X = \cos^{-1}(\frac{R_3^2 + R_4^2 - BD^2}{2 * R_3 * R_4})$$

$$\theta_3 = 2 * \tan^{-1} \left(\frac{-R_2 * \sin \theta_2 + R_4 * \sin x}{R_1 + R_3 - R_2 * \cos \theta_2 + R_4 * \sin x} \right)$$


$$\theta_4 = 2 * \tan^{-1}(\frac{R_2 * \sin \theta_2 - R_3 * \sin x}{-R_1 + R_4 + R_2 * \cos \theta_2 - R_3 * \sin x})$$

Modelamiento Matemático del Mecanismo Trayectoria de Levantamiento de la persona

θ2''	θ3"	θ3'''	θ4"	θ4'''
15,255991	173,458626	6,54137385	174,716878	5,28312225
17,3339861	141,227849	38,7721512	155,362012	24,6379877
19,4119812	121,124366	58,8756336	143,14988	36,8501204
21,4899764	104,334179	75,6658214	133,679002	46,3209983
23,5679715	89,8913186	90,1086814	126,396125	53,6038751
25,6459667	77,2742288	102,725771	120,932624	59,0673762
27,7239618	66,0897108	113,910289	116,982251	63,0177487
29,801957	56,0178197	123,98218	114,292103	65,7078967
31,8799521	46,7924269	133,207573	112,660659	67,3393411
33,9579472	38,1867476	141,813252	111,933712	68,0662883
36,0359424	29,9987888	150,001211	111,999944	68,0000563



Medidas de los resortes de gas

Fuerza del resorte	Longitud total (cilindro retraído)	Longitud del cilindro contraído	Carrera
	(h1)	(h2)	
300 N	504 mm	298 mm	206 mm
360 N	546 mm	338 mm	208 mm
400 N	604 mm	356 mm	248 mm

Parámetros a tomarse en cuenta para la ubicación de resortes de gas

Ecuaciones Principales

$$h_{1x}^2 + h_{1y}^2 = h_1^2$$

$$h_{2x}^2 + h_{2y}^2 = h_2^2$$

Ecuaciones Vectoriales en Bipedestación

En el eje x:

$$x + h_{1x} = (453 - z) * \cos 68 + y * \sin 68$$

En el eje y:

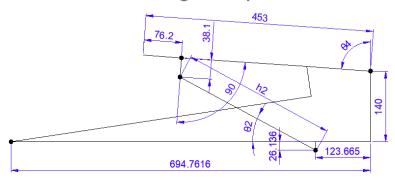
$$h_{1y} = w + 140 + (453 - z) * \sin 68 - y * \cos 68$$

Ecuaciones Vectoriales en Sedestación

En el eje x:

$$x + h_{2x} = (453 - z) * \cos 4 + y * \sin 4$$

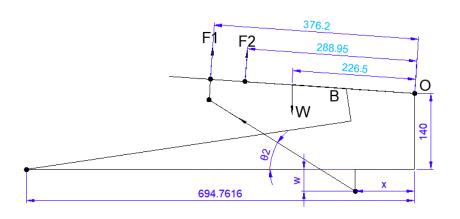
En el eje y:


$$h_{2y} = w + 140 + (453 - z) * \sin 4 - y * \cos 4$$

Parámetros de ubicación para diferentes resortes de gas

Fuerza	(h1)	(h2)	х	w
300 N	504 mm	298 mm	123.665 mm	26.136 mm
360 N	546 mm	338 mm	101.79 mm	65.78 mm
400 N	604 mm	356 mm	130.57 mm	127.16362

Inclinación del resorte de gas respecto al asiento

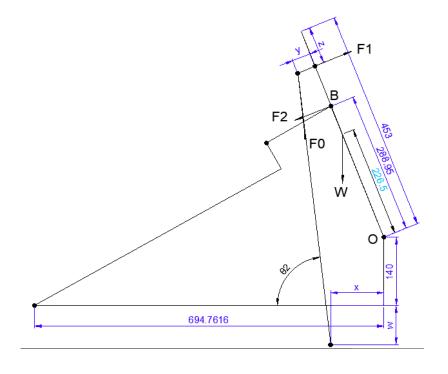

Despejando h_2 de ambas ecuaciones se tiene:

$$h_2 * \cos \theta_2 = 376.8 * \sin \theta_4 + 38.1 * \sin(90 - \theta_4) - 123.665$$
 (Ec.36)
$$h_2 * \sin \theta_2 = 26.136 + 140 + 376.8 * \cos \theta_4 - 38.1 * \cos(90 - \theta_4)$$
 (Ec.37)

Dividiendo la ecuación 37 para la ecuación 36, se tiene:

$$\theta_2 = \tan^{-1}(\frac{26.136 + 140 + 376.8 * \cos \theta_4 - 38.1 * \cos(90 - \theta_4)}{376.8 * \sin \theta_4 + 38.1 * \sin(90 - \theta_4) - 123.665})$$

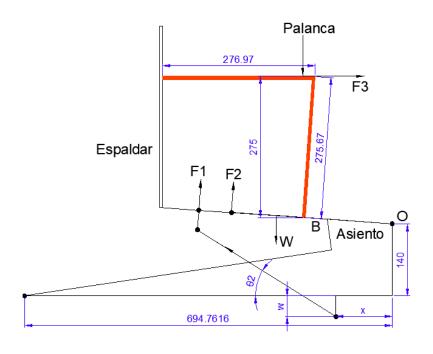
Fuerzas que actúan en la operación del equipo



$$\sum M_O = 0$$

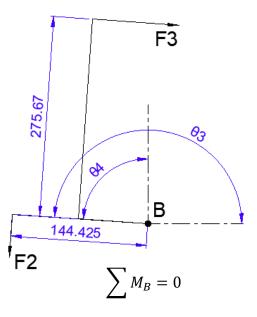
$$F_1 * 376.8 + F_2 * 288.95 = W * \sin \theta_4 * 226.5$$

$$F_1 = F_0 * \sin(\theta_2 - 90^\circ + \theta_4)$$


$$F_0 * \sin(\theta_2 - 90^\circ + \theta_4) * 376.8 + F_2 * 288.95 = W * \sin\theta_4 * 226.5$$

Valores de *F*₀: 600N, 720N y 800N

Dimensiones de la palanca



$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

θ4	θ3
86,00	176
79,60	164,937599
73,20	154,280102
66,80	143,622606
60,40	133,059716
54,00	122,524243
47,60	111,15815
41,20	99,262174
34,80	86,2072942
28,40	70,1073075
22,00	30

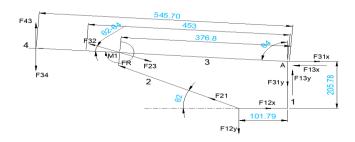
Fuerzas que Actúan en la palanca

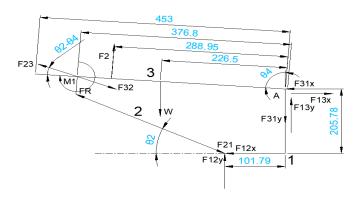
		m=50 Kg	m=60 Kg	m=70 Kg	m=80 Kg
θ4	θ3	F3	F3	F3	F3
86,00	176,00	1,357	5,450	9,542	13,635
79,60	164,90	0,962	4,984	9,005	13,027
73,20	153,98	0,607	4,487	8,367	12, 248
66,80	143,06	0,249	3,920	7,592	11,263
60,40	132,12	-0,134	3,270	6,675	10,080
54,00	121,17	-0,554	2,535	5,623	8,711
47,60	109,67	-1,000	1,713	4,426	7,138
41,20	97,65	-1,448	0,845	3,138	5,431
34,80	84,34	-1,845	-0,015	1,815	3,645
28,40	68,08	-2,043	-0,744	0,554	1,852
22,00	30,00	-0,531	-0,318	-0,104	0,109

Resultados

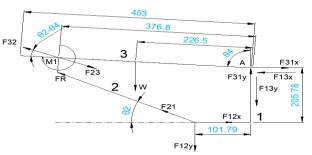
		m=50 Kg	m=60 Kg	m=70 Kg	m=80 Kg	
		F0= 720 N				
θ4	θ3	F3	F3	F3	F3	
86,00	176,00	-5,391	-1,298	2,794	6,887	
79,60	164,90	-5,032	-1,010	3,012	7,033	
73,20	153,98	-4,665	-0,784	3,096	6,976	
66,80	143,06	-4,325	-0,653	3,018	6,689	
60,40	132,12	-4,038	-0,633	2,772	6,176	
54,00	121,17	-3,813	-0,725	2,364	5,452	
47,60	109,67	-3,625	-0,912	1,801	4,514	
41,20	97,65	-3,461	-1,167	1,126	3,419	
34,80	84,34	-3,268	-1,438	0,392	2,222	
28,40	68,08	-2,892	-1,594	-0,296	1,002	
22,00	30,00	-0,634	-0,421	-0,207	0,007	

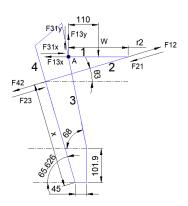
		m=50 Kg	m=60 Kg	m=70 Kg	m=80 Kg		
		F0= 800 N					
θ4	θ3	F3	F3	F3	F3		
86,00	176,00	-16,708	-12,616	-8,523	-4,431		
79,60	164,90	-15,531	-11,509	-7,487	-3,465		
73,20	153,98	-14,351	-10,471	-6,590	-2,710		
66,80	143,06	-13,196	-9,524	-5,853	-2,182		
60,40	132,12	-12,099	-8,694	-5,289	-1,884		
54,00	121,17	-11,067	-7,978	-4,890	-1,802		
47,60	109,67	-10,032	-7,320	-4,607	-1,894		
41,20	97,65	-8,996	-6,703	-4,410	-2,117		
34,80	84,34	-7,875	-6,045	-4,215	-2,385		
28,40	68,08	-6,395	-5,097	-3,799	-2,501		
22,00	30,00	-1,279	-1,065	-0,852	-0,638		


Componentes del equipo



Fuerzas que actúan en el Equipo


DCL Equipo sin carga


DCL Equipo en operación

DCL Equipo en sedestación

DCL Equipo en bipedestación

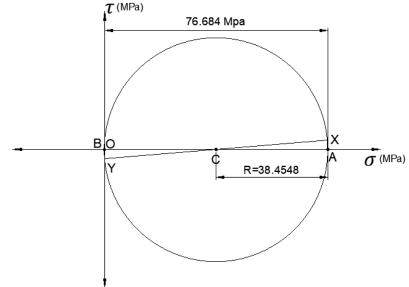
Diseño del tubo más crítico

Diseño del tubo más crítico

$$M_{max} = 35.406 N * m$$
 $V_{max} = 349.822 N$
 $P = 719.60 N$
 $\sigma_{perm} = \frac{250 MPa}{5}$
 $\sigma_{perm} = 50 MPa$

$$S_{min} = \frac{M_{max}}{2 * \sigma_{perm}}$$

Esfuerzo flector:


$$\sigma_f = \frac{M_{max}}{S}$$

$$\sigma_f = \frac{35.406 N * m}{5.053 * 10^{-7} m^3}$$

$$\sigma_f = 70.07 MPa$$

El esfuerzo de tracción:

$$\begin{split} \sigma_{tracción} &= \frac{P}{A} \\ \sigma_{tracción} &= \frac{719.60 \ N}{11.263 * 10^{-5} \ m^2} \\ \sigma_{tracción} &= 6.389 \ MPa \\ \sigma_{x} &= \sigma_{f} + \sigma_{tracción} \\ \sigma_{x} &= 70.07 \ MPa + 6.389 \ MPa = 76.459 \ MPa \\ \tau_{xy} &= -\frac{V_{max}}{A_{T}} \\ 349.822 \ N \\ \tau_{xy} &= -4.1618 \ MPa \end{split}$$

El esfuerzo máximo es:

$$\sigma_{max} = \overline{OC} + R$$

$$\sigma_{max} = 38.229 (MPa) + 38.4548MPa$$

$$\sigma_{max} = 76.684 MPa$$

Esfuerzo máximo por barra

$$\sigma_{max,nor\ barra} = 38.342\ MPa$$

El factor de seguridad:

$$f_s = \frac{\sigma_{perm}}{\sigma_{max}} = \frac{250 \, MPa}{38.342 \, MPa} = 6.52$$

Diseño de pernos

$$\tau = \frac{V}{A}$$

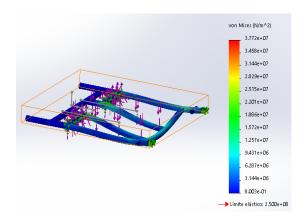
$$\tau_{perm} = \frac{145 \text{ MPa}}{5} = 29 \text{ MPa}$$

$$A = \frac{V}{\tau}$$

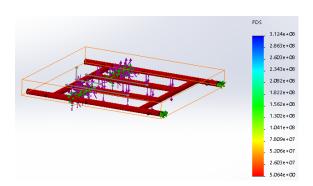
$$A = \frac{1733.89 \text{ N}}{29 \text{ MPa}} = 5.979 * 10^{-5} m^2$$

$$\frac{\pi}{4} \phi^2 = 5.979 * 10^{-5} m^2$$

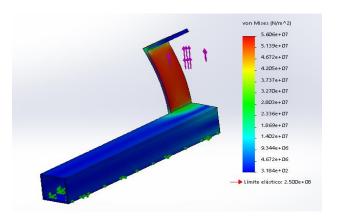
$$\phi = 8.725 * 10^{-3} \text{ m} = 8.725 \text{ mm}$$

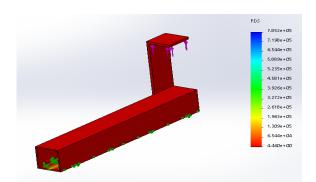

Perno seleccionado:

$$\emptyset = 3/8''$$



Análisis Estructural del Equipo


Trazado de Tensiones (Asiento)


Trazado de Factor de Seguridad (Asiento)

Trazado de Tensiones (Bloqueo)

Trazado de Factor de Seguridad (Bloqueo)

Construcción e Implementación

Pruebas de Funcionamiento

Comprobación de la Hipótesis

Método: Validación Interna

- Contraste Continuo
- Observación Detallada
- Triangulación

Persona	Institución	Prueba 1	Prueba 2	Prueba 3	Promedio
1	IESS	5	5	5	5
	Latacunga				
2	Patronato	4	5	5	4.666
	Municipal				
3	MIES	3	4	4	3.666

$$\bar{x} = \frac{5 + 4.666 + 3.666}{3} = 4.333$$

Desarrollo Socioeconómico del Proyecto

Análisis Costo - Efectividad

Cantida	Componente	Valor	Valor
d		unitario (\$)	total (\$)
6	Tubo estructural redondo (6 metros)	15\$/metro	90
2	Llantas aro 24"	30	60
2	Amortiguadores de compuerta Shibumi	15	30
1	Correa de sujeción de las rodillas	7	7
1	Correa de sujeción del pecho	10	10
1	Correa de sujeción de los pies	5	5
5	Platina de 4 mm de espesor	3	15
1	Platina de 10 mm de espesor	3	3
1	Platina de 8 mm de espesor	5	5
1	Eje roscado de acero inoxidable de ¾" de diámetro	7	7
30	Pernos y tuercas	0.30	9
4	cáncamos	0.25	1
4	Arandelas planas 3/8"	0.10	0.40
4	Arandelas de presión	0.12	0.48
2	Ruedas locas	10	20
2	Freno de zapata	15	30
1	Tapicería	60	60
		Total	352.88

Cantid	Item	Valor	Valor
ad		unitario (\$)	total (\$)
1	Corte perfiles	15	15
1	Soldadura SMAW	140	140
1	Soldadura Oxiacetilénica	7	7
1	Doblado de tubos	40	40
1	Corrección de fallas	50	50
2	Machuelado	3.50	7
1	Proceso de acabados	40	40
1	Proceso de pintura	35	35
1	Diseño mecánico	200	200
		Total	534
		าบเสา	554

Detalle	Costo (\$)
Materiales y componentes	352.88
Mano de obra	534
Total	886.88

Desarrollo Socioeconómico del Proyecto

Análisis Costo - Efectividad

$$eficiencia = \frac{ \frac{Resultado\ alcanzado}{costo\ real} }{\frac{Resultado\ previsto}{costo\ previsto} }$$

$$eficacia = \frac{Resultado\ alcanzado}{Resultado\ previsto}$$

Calculando el nivel de efectividad:

$$efectividad = eficiencia*eficacia$$

$$CE = \frac{C}{E}$$

Opciones	C (\$)	E (%)	CE (^{\$} / _{0/2})
Bipedestador autosustentable	886.88	75	11.825
Silla de ruedas	170	5.214	32.604

Opciones	C (\$)	E (%)	CE (^{\$} / _{0/2})
Bipedestador autosustentable	886.88	100	8.868
Silla de ruedas	170	521.4	0.326

Opciones	CE1 (80%)	CE2 (20%)	CET (\$\frac{\$}{\infty})
Bipedestador autosustentable	9.46	1.7736	11.2336
Silla de ruedas	26.083	0.0652	26.148

Conclusiones

Se diseñó e implementó un bipedestador autosustentable para personas con parapléjia, con una capacidad de carga de 80 Kg, factor de seguridad de 5, y un costo de 885.88\$, el cual presentó una gran aceptación entre todos los usuarios.

Se analizaron las necesidades y requerimientos del bipedestador según entrevistas realizadas con varios expertos en Fisioterapia, donde se pudo determinar que los parámetros más relevantes son: Seguridad, Operación y Costo.

Se diseñó un mecanismo autosustentable de bipedestación, el cual se basa en un mecanismo multiplicador de fuerza por medio de palancas y eslabonamientos, llegándose a obtener una fuerza de operación máxima de 6.887 Kg para una persona que pesa 80 Kg, lo que se puede decir que se ha multiplicado la fuerza 11.616 veces respecto al peso de la persona.

El mecanismo diseñado cumple con todas las trayectorias que realiza en cuerpo humano en la transición sit to stand, logrando un alto factor de comodidad para las personas.

Conclusiones

De los análisis estructurales realizados, se llegó a determinar que el para un material ASTM A36, el perfil circular de 1 $^{\prime\prime}$ de diámetro por un 1.5 mm de espesor, es el más adecuado para la construcción de la estructura, ofreciendo un factor de seguridad de 5. Sin embargo se llegó a obtener una estructura grande y pesada.

El bipedestador autosustentable permite la fácil manipulación de la persona por medio del accionamiento de una palanca, lo que le permite controlar las posiciones que el usuario requiera adoptar sin realizar ningún otro accionamiento de tipo (eléctrico, neumático, hidráulico, etc).

Como dispositivo de asistencia se utilizaron resortes con cámara de gas, los cuales ayudan a la propulsión de la persona. Pese que es un actuador hidráulico, éste dispositivo se controla únicamente por las fuerzas a las que está sometido, sin tener ningún otro tipo de accionamiento, por tanto no afecta en el uso autosustentable del equipo.

Al realizar las pruebas de funcionamiento del equipo, se pudo identificar que en la Prueba 1 es donde mayor complicación tienen las personas al momento de realizar la bipedestación, a su vez de la preocupación sobre su estabilidad y la del equipo, sin embargo al realizar las Pruebas 2 y 3, presentaron un mejor desempeño al momento de operar la máquina, y conforme se realizaron más Pruebas, las personas podían manipular la máquina fácilmente.

Recomendaciones

- Es importante que la estructura sea robusta pero a la vez ligera, por lo que se recomienda realizar el análisis con otros materiales, sin embargo hay que tomar en cuenta que ésta mejora implica un aumento de costos.
- En caso del soporte, no debe haber pernos o tuercas en contacto con la piel de la persona, ya que ésta al no poseer sensibilidad en sus miembros inferiores, fácilmente puede atascarse e incluso lastimarse seriamente, por lo que se recomienda que la montura sea lo más angosta posible.
- Al realizar la adquisición de un resorte de gas, es importante que se encuentren disponibles varios resortes de gas adicionales con los mismos parámetros de recorrido y fuerza, en caso que deban ser reemplazados.
- Si el equipo empieza a dar dificultades a la hora de realizar la bipedestación, se recomienda revisar los resortes de gas, y en caso de ser necesario, realizar su reemplazo.

GRACIAS

