

"DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE RIEGO INTELIGENTE PARA INCREMENTAR EL RENDIMIENTO EN LOS CULTIVOS BASADO EN ENERGÍA SOLAR FOTOVOLTAICA"

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN ELECTROMECÁNICA

AUTORES: MONTALUISA TORRES, THALIA LIZBETH VARGAS TOCA, FELIX GABRIEL

DIRECTOR: ING. ORTIZ VILLALBA, DIEGO EDMUNDO

AGENDA

■ MOTIVACIÓN PLANTEAMIENTO DEL **PROBLEMA** OBJETIVOS ☐ DISEÑO DEL SISTEMA (AGRONÓMICO, HIDRÁULICO, FOTOVOLTAICO, SISTEMA DE CONTROL) ☐ ANÁLISIS DE RESULTADO CONCLUSIONES ■ RECOMENDACIONES ■ BIBLIOGRAFÍA

Motivación

Antecedentes

Objetivos

Metodología

<u>Diseño</u>

Análisis de resultados

Conclusiones

Recomendaciones

El número estimado de personas desnutridas pasó de 804 millones en 2016 a 821 millones en 2021

En 2013 la superficie de uso agrario en Ecuador fue de 7,32 millones de hectáreas, mientras en 2018 fue de 5,28 millones.

Entre 2006 y 2016 la sequia causo el 30% de las perdidas de cultivo

El cambio climático afecta el rendimiento de los cultivos, y en aspectos ecológicos y sociales

Objetivos

Metodología

<u>Diseño</u>

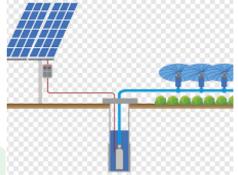
Análisis de resultados

Conclusiones

Recomendaciones

Justificación e Importancia

Es necesario producir un 60% por encima de los niveles de 2006



Un sistema de riego, inteligente es capaz de mejorar el rendimiento de un cultivo?

Ecuador tiene 30 y 44% de rendimiento en producción, por debajo en comparación con Colombia y Perú

Propuesta

Sistema de riego inteligente basado en energía solar

Objetivos

Metodología

<u>Diseño</u>

Análisis de resultados

Conclusiones

Recomendaciones

Objetivos

Diseñar e implementar un sistema de riego inteligente para incrementar el rendimiento en los cultivos basado en energía solar fotovoltaica

Obtener una metodología que permita el diseño de sistemas tecnológicos para mejorar el rendimiento de diferentes cultivos.

Diseñar e implementar un sistema de bombeo solar fotovoltaico.

Diseñar e implementar un sistema de control para riego óptimo del cultivo.

Analizar el rendimiento del cultivo después de la intervención.

Objetivos

Metodología

<u>Diseño</u>

Análisis de resultados

Conclusiones

Recomendaciones

Metodología

Objetivos

Metodología

<u>Diseño</u>

Análisis de resultados

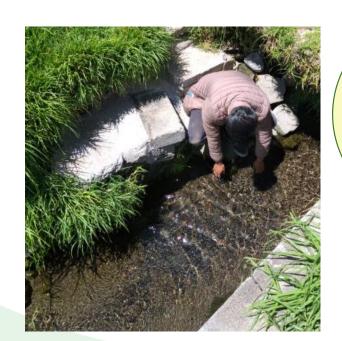
Conclusiones

Recomendaciones

Estudio del suelo / cultivo

Diseño Tecnológico

Ejecución


Seguimiento /evaluación

Cultivo: Alfalfa

Parcela de 1173 m^2 localizada en la parroquia urbana Ignacio Flores

Aplicación del recurso hídrico en verano se realiza con una bomba de caudal de 5HP y un sistema de riego por aspersión

No cuenta con suministro de energía eléctrica, pero si cuenta con abundante agua de vertientes naturales

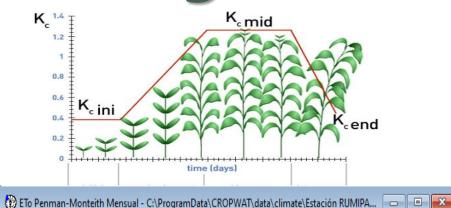
Objetivos

Metodología

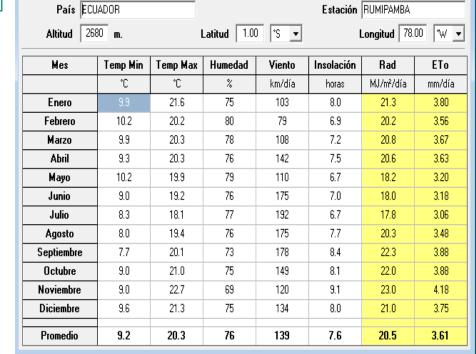
Diseño

Análisis de resultados

Conclusiones


Recomendaciones

REQUERIMIENTOS HÍDRICOS


		1			
Cultivo	Alfalfa	Fases	dias	Z(mm)	
		inicial	5	100	
Kc:		Desarrollo	10	275	_
inicial	0,4	Intermedio	10	800	F
Desarrollo	1,05	final	5	800	E
Intermedio	1,2				Á
final	1,15	total	30		

	umbral	0,3
	cc(mʒ/mʒ)	0,09
1	Da(gr/cm ₃)	1,3
1	Pmp(m3/m3)	0,04
$\frac{1}{2}$	Efic. Riego(%)	0,75
	Área de Riego (m2)	1173
		1173

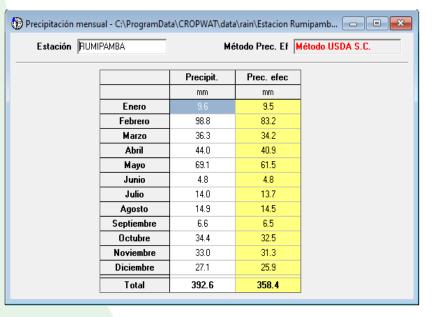
Cultivo	lnic. (L _{ini})	Des. (L _{des})	Med, (L _{med})	Final (L _{fin})	Total	Fecha de Siembra	Región
Sorgo	20 20	35 35	40 45	30 30	125 130	Mayo/Jun. Mar/Abril	EU, Pakistán., Med. Región Árida
Arroz	30 30	30 30	60 80	30 40	150 180	Dic; Mayo Mayo	Trópicos; Mediterráneo Trópicos
j. Forrajes							
Alfalfa, temporada completa⁴	10	30	varía	varía	varía		último -4°C (primavera) hasta primer -4°C (otoño)
Alfalfa⁴ 1er ciclo de corte	10 10	20 30	20 25	10 10	60 75	Enero Abril (último -4°C)	Calif., EU. Idah o , EU.
Alfalfa ⁴ , otros ciclos de corte	5 5	10 20	10 10	5 10	30 45	Marzo Junio	Calif., EU. Idaho, EU.

Diseño Agronómico

Diseño

Análisis de resultados

Conclusiones


Recomendaciones

Estudio del suelo

Diseño Tecnológico

Ejecución

Seguimiento /evaluación

Diseño Agronómico

Mes

Junio

CALENDARIO DE RIEGO

V -1 WORN TO		PRESIONES DE TRABAJO			
X cel WOBBLER	10	15	20	25	
Boquilla 6 (Gold) R/M 1/2"					
Caudal (GPM)	0.78	0.95	1.10	1.23	
Diámetro a 0.50 m	11.13	12.50	13.72	14.02	
Boquilla 7 (Lima) R/M ¹ /2"					
Caudal (GPM)	1.06	1.3	1.5	1.68	
Diámetro a 0.50 m	12.19	14.17	14.32	15.40	
Boquilla 10 (Turquesa) R/M ¹ /2" y	3/4"				
Caudal (GPM)	2.22	2.72	3.14	3.51	
Diámetro a 0.50 m	13.56	14.94	15.40	16.30	

Selección del aspersor							
Características del aspersor							
Nombre:	X cel Wobbler (Gold) R/M 1/2	"				
Boquilla N°:	6						
Q asp:	1,1	GPM					
P asp:	20	PSI					
Elat:	10	m					
Easp:	10	m					
PMS=	2,5						
Superficie Interv	venida m2=	1173	m2				
Elat*Ea	100	m2					
N° de asper	12						
Q asp 7	Γ=	13	GPM				
P asp T	=	235	PSI				

de Riego

4,16

4,16

Volumen de Tiempo

Riego

24,2

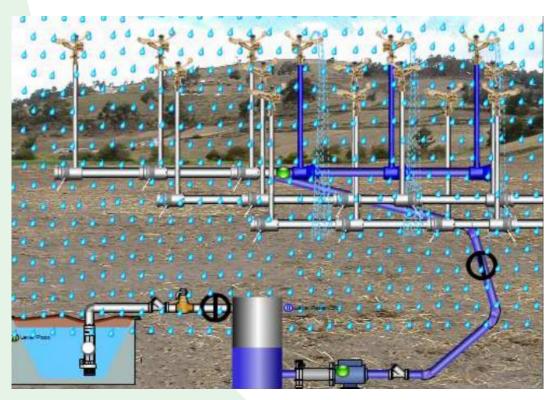
24,2

<u>Diseño</u>

Análisis de resultados

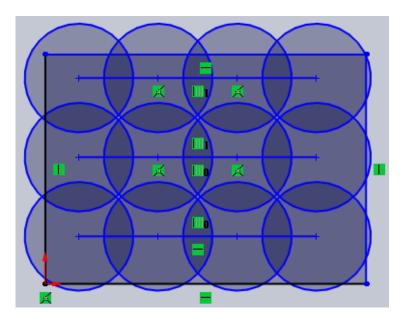
Conclusiones

Recomendaciones


Estudio del suelo

Diseño Tecnológico

Ejecución


Seguimiento /evaluación

Diseño Hidráulico

$$Q = V * A$$

$$D = \sqrt{\frac{4 * Q}{\pi * V}}$$

	Rango recomendado de velocidad			
Tipo de Servicio	pie/s	m/s		
Líneas de succión	2 – 4	0.6 – 1.2		
Líneas de retorno	4 – 13	1.5 – 4		
Líneas de descarga	7 – 18	2 – 5.5		

Diseño

Análisis de resultados

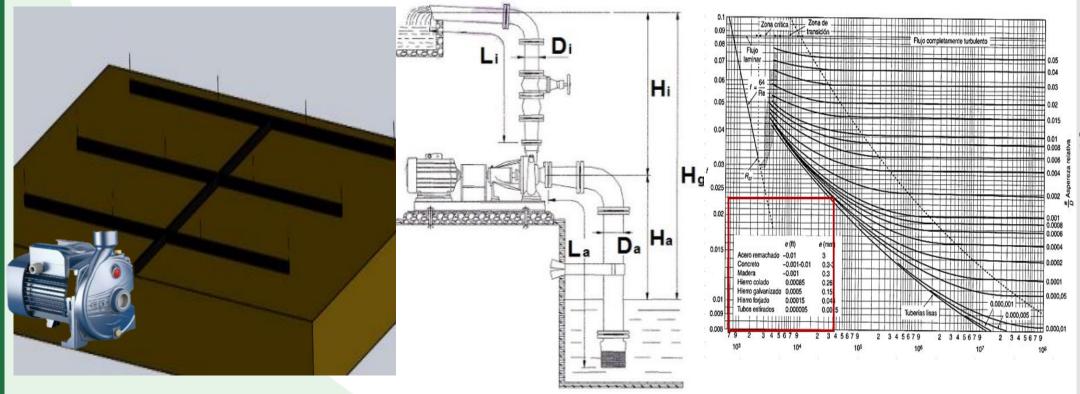
Conclusiones

Recomendaciones

Estudio del suelo

Diseño Tecnológico

Ejecución


Seguimiento /evaluación

Carga Dinámica Total

$$CDT = H_S + H_f + h_f + H_o + H_e$$

Diseño Hidráulico

$$f = f(R_e, \frac{\varepsilon}{D})$$

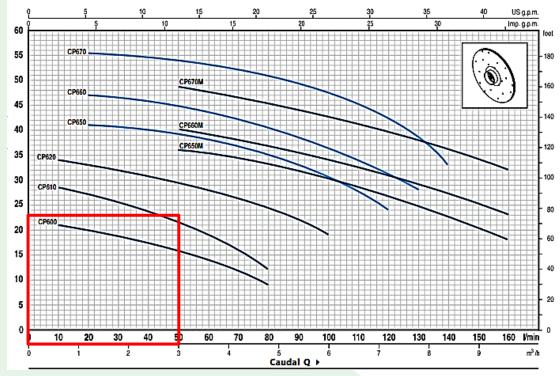
 Datos elaborados por los autores

Objetivos

Metodología

Diseño

Análisis de resultados


Conclusiones

Recomendaciones

Estudio del suelo

Curvas de prestaciones de bombas Pedrollo

Objetivos

Metodología

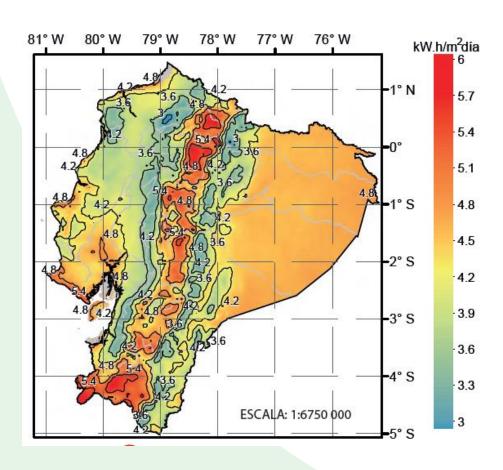
Diseño

Análisis de resultados

Conclusiones

Recomendaciones

Estudio del suelo


Diseño Tecnológico

Ejecución

Seguimiento /evaluación

Radiación Solar en Ecuador

Diseño Fotovoltaico

El mapa de irradiación global horizontal anual muestra que aproximadamente el 75% del territorio ecuatoriano tiene niveles por encima de 3,8 $\frac{Kwh}{m^2}d$ ía

Tomado del atlas solar 2019 (Vaca & López, 2019)

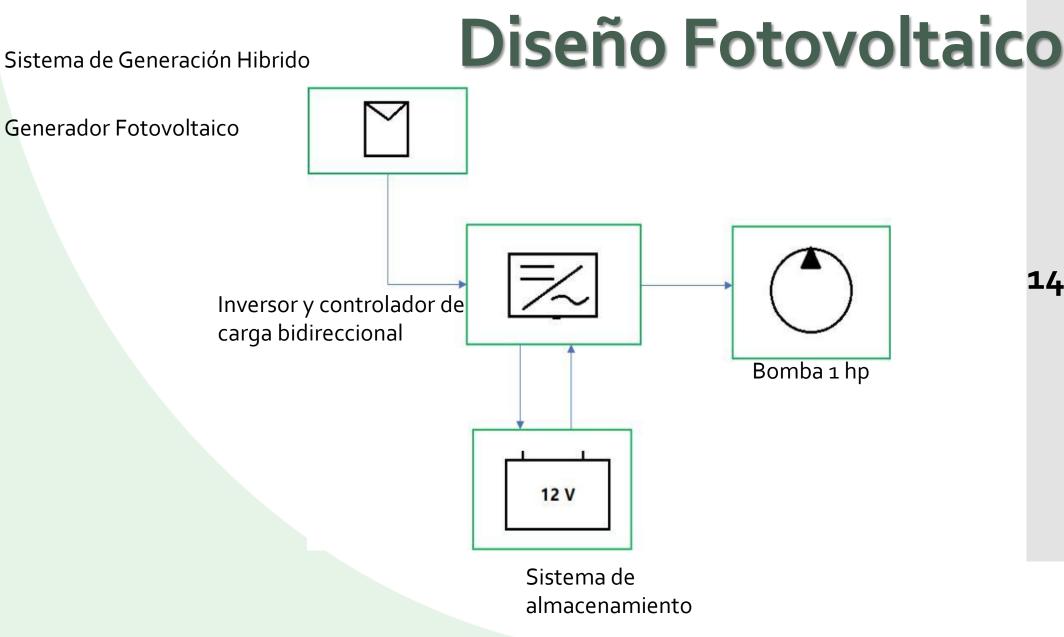
Objetivos

Metodología

<u>Diseño</u>

Análisis de resultados

Conclusiones


Recomendaciones

Estudio del suelo

Diseño Tecnológico

Ejecución

Seguimiento /evaluación

<u>Diseño</u>

Análisis de resultados

Conclusiones

Recomendaciones

Estudio del suelo

Diseño Tecnológico

Ejecución

Seguimiento /evaluación

Diseño Fotovoltaico

EQUIPO	POTENCIA (W)	TIEMPO CONSUMO (h)	CONSU MO DIÁRIO(Wh)
вомва	750	4	3000
PLC	11	24	264
MODULO I/O	11	24	264
FUENTE 24 V	48	24	1152
P. TOTAL	820	Energía T (Wh/día)	4680

$$P_{total_instalada} = 820 w$$

 $P_{panel} = 365 w$

Número de paneles

$$N_{panel} = P_{total_instalada} / P_{panel}$$

$$N_{panel} = 820 \, w/365 \, w$$

$$N_{panel} = 2,24$$

$$N_{panel} = 3$$

Objetivos

Metodología

<u>Diseño</u>

Análisis de resultados

Conclusiones

Recomendaciones

Estudio del suelo

Diseño Tecnológico

Ejecución

Seguimiento /evaluación

Diseño Fotovoltaico

$$Área_{m^2} = 3 * 0.992(m) * 1.956(m)$$

$$\text{Á}rea_{m^2} = 5,83 m$$

 $Irradiancia_{9h}$: 553 w/m^2

Eficiencia de la planta: 96%

 $E = Irradiancia\left(\frac{w}{m^2}\right) * Eficiencia panel * Eficiencia planta * Área(m^2)$


$$E = 553 \left(\frac{w}{m^2}\right) * 18,81\% * 96\% * 5,83(m^2)$$

$$E = 581 w$$

13 JUNIO 2015

Objetivos

Metodología

<u>Diseño</u>

Análisis de resultados

Conclusiones

Recomendaciones

Estudio del suelo

Diseño Tecnológico

Ejecución

Seguimiento /evaluación

Diseño Fotovoltaico

Sistema de almacenamiento de energía:

EQUIPO	POTENCIA (W)	TIEMPO CONSUMO (h)	CONSU MO DIÁRIO(Wh)
вомва	750	4	3000
PLC	11	24	264
MODULO I/O	11	24	264
FUENTE 24 V	48	24	1152
P. TOTAL	820	Energía T (Wh/día)	4680

$$C \ bat(A - H) = \frac{Consumo\left(\frac{Wh}{dia}\right) * Autonomía(dia)}{Profundidad_{Descarga} * Voltaje_{Bateria}}$$

$$C \ bat(A - H)_{Bomba} = \frac{3000 \left(\frac{Wh}{dia}\right) * 0,16(dia)}{0,7 * 24}$$

$$C bat(A - H)_{Bomba} = 28,57 A - h$$

$$C \ bat(A-H)_{sistemacntrol} = 60 \ a-h$$

$$C \ bat(A-H)_{total} = 88 \ a-h$$

Objetivos

Metodología

Diseño

Análisis de resultados

Conclusiones

Recomendaciones

Estudio del suelo

Diseño Tecnológico

Ejecución

Seguimiento /evaluación

Diseño Fotovoltaico

Inversor y regulador de carga:

Salida de onda senoidal pura Prioridad de alimentación programable Corriente de carga ajustable por el usuario

$$capacidad\ Instalada = \frac{E\ dia(Kwh)}{Factor_{planta}*24h}$$

$$P_{inv} = 1.5 * Capacidad Instalada$$

$$capacidad Instalada = 0.97 kW$$

$$P_{inv} = 1.46 \, kW$$

<u>Diseño</u>

Análisis de resultados

Conclusiones

Recomendaciones

Estudio del suelo

Diseño Tecnológico

Ejecución

Seguimiento /evaluación

Sistema de control

Sistemas Inteligentes:

INTELIGENCIA ARTIFICIAL

INTELIGENCIA: Grado en que un individuo puede resolver un problema ARTIFICIAL: Falso o no natural

Es la inteligencia llevada a cabo por máquinas o sistemas.

TÉCNICAS INTELIGENTES:

Análisis de un razonamiento:

- -Robótica
- -Redes Neuronales
- -Lógica Difusa
- -Algoritmos Genéticos

La lógica difusa forma parte de los controladores inteligentes, permite trabajar con información imprecisa, el uso de lógica difusa en sistemas de riego permite evaluar diferentes parámetros climáticos con el fin de decidir la cantidad de agua que se puede suministrar a un cultivo (Fierro, 2019).

Lógica Difusa

LÓGICA DE CONTROL

UNIDAD DE CONTROL

Objetivos

Metodología

<u>Diseño</u>

Análisis de resultados

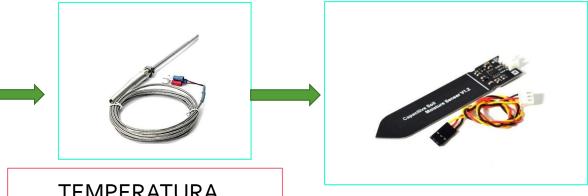
Conclusiones

Recomendaciones

Estudio del suelo

Diseño Tecnológico

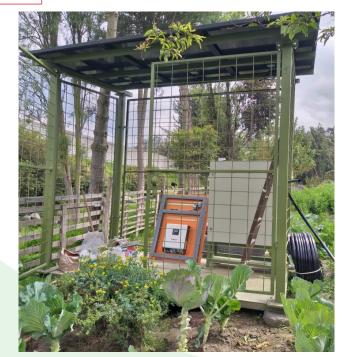
Ejecución

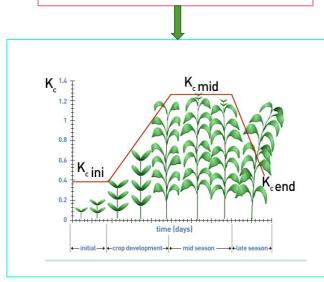

Seguimiento /evaluación

SENSORES

EVOTRANSPIRACIÓN

Sistema de control




TEMPERATURA

ACTUADOR

BOMBA

HÚMEDAD

ETAPA CULTIVO

Objetivos

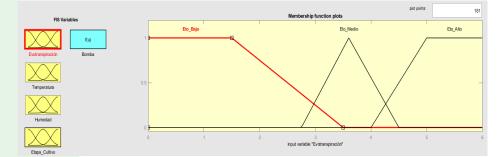
Metodología

<u>Diseño</u>

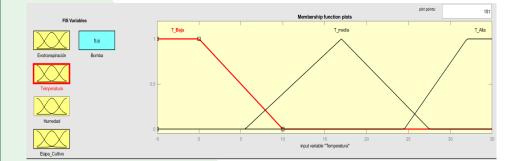
Análisis de resultados

Conclusiones

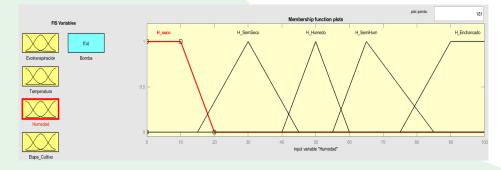
Recomendaciones

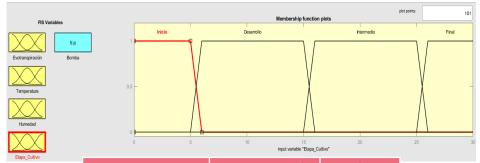

Estudio del suelo

Diseño Tecnológico


Ejecución

Seguimiento /evaluación


Variables linguisticas de entrada EVOTRANSPIRACIÓN


TEMPERATURA

HUMEDAD

CICLO DEL CULTIVO

Sistema de control

	input variable "Etapa_C	Cultivo"
VARIABLE	Evotranspiración	mm/día
Variable Lingüística	ETO BAJO	1,5-3,5
Variable Lingüística	ETO MEDIO	2,75-4,5
Variable Lingüística	ETO ALTO	4,0-6
VARIABLE	Temperatura	C°
Variable Lingüística	T: BAJA	de -5 a 10
Variable Lingüística	T:MEDIA	7,5 a 27.5
Variable Lingüística	T:ALTA	24,5 a 32
VARIABLE	Etapa del cultivo	Días
Variable Lingüística	INICIO	5
Variable Lingüística	DESARROLLO	10
Variable Lingüística	INTERMEDIO	10
Variable Lingüística	FINAL	5
VARIABLE	Húmedad	%
Variable Lingüística	SECO	0-20
Variable Lingüística	SEMISECO	15-45
Variable Lingüística	HÚMEDO	40-60
Variable Lingüística	SEMIHÚMEDO	55-80
Variable Lingüística	SUPERHÚMEDO	75-100

Objetivos

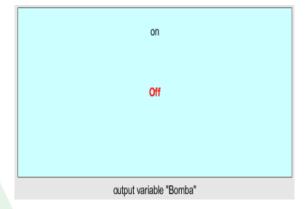
Metodología

<u>Diseño</u>

Análisis de resultados

Conclusiones

Recomendaciones


Estudio del suelo

Diseño Tecnológico

Ejecución

Seguimiento /evaluación

Variables linguisticas de Salida.

Reglas del sistema de control

- Basadas en experiencia del diseñador
- Investigaciones y consultas
- Pruebas

Sistema de control

Variable	Variable lingüística
ВОМВА	SI
ВОМВА	NO

ETAPA INICIAL					
TEMPERATURA BAJA	4				
	HUME	DAD			
					MUYHUMED
EVOTRANSPIRACIÓN	SECC	SEMISECO	HUMEDO	SEMIHUMEDO	0
ETO BAJO	on	on	off	off	off
ETO MEDIO	on	on	off	off	off
ETO ALTO	on	on	on	off	off
TEMPERATURA MED	NΑ				
	HUMEDAD				
					MUYHUMED
EVOTRANSPIRACIÓN	SECO	SEMISECO	HUMEDO	SEMIHUMEDO	0
ETO BAJO	on	on	off	off	off
ETO MEDIO	on	on	on	off	off
ETO ALTO	on	on	on	off	off

Diseño Tecnológico

Ejecución

Seguimiento /evaluación

Antecedentes

Objetivos

Metodología

<u>Diseño</u>

Análisis de resultados

Conclusiones

Recomendaciones

Objetivos

Metodología

<u>Diseño</u>

Análisis de resultados

Conclusiones

Recomendaciones

Estudio del suelo

Diseño Tecnológico

Seguimiento /evaluación

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE

Cálculo del rendimiento en produccion de Kg en Materia Verde por Hectárea

3	and the continuous on products		The term of the per meeting
CULTIVO	ALFALFA	FECHA	6/6/2020
RESPONSABLI	THALIA MONTALUISA	8/3/2021	DATOS A INGRESAR

N°	MATERIAL	OBSERVACIÓ	ANCHO(m)	LARGO(m)
1	CUADRADO DE MUESTRA		0,7	0,7
2	BALANZA	150 KG		

ÁREA m2	m2 en 1 ha	cuadrados en 1ha
0,49	10000	20408,16327

Fechas de corte

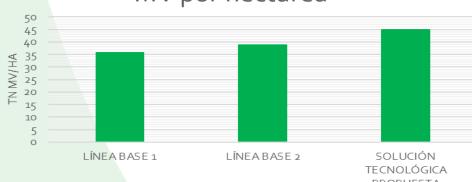
	GRAMOS MV	kg MV/ha	Tn MV/ha	20/9/2020	Tiempo de producción
LÍNEA BASE 1	1750	35714,28571	35,71428571	16/11/2020	60
LÍNEA BASE 2	1900	38775,5102	38,7755102	31/1/2021	63
LUCIÓN TECNOLÓGICA PROPUES	2200	44897,95918	44,89795918	28/2/2021	28

Objetivos

Metodología

Diseño

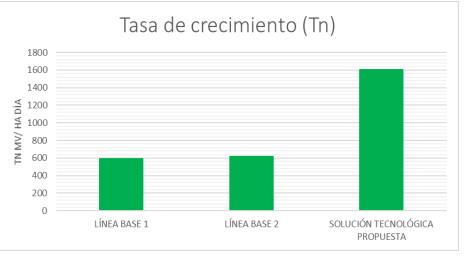
Análisis de resultados


Conclusiones

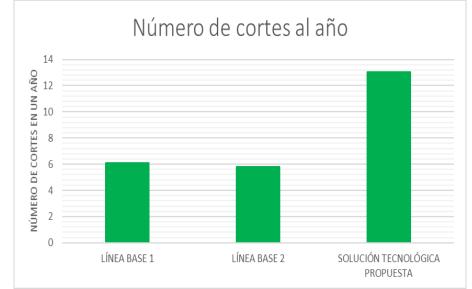
Recomendaciones

uno

Análisis de resultados



Incremento de 13.6% respecto a la línea base dos Incremento de 20.31% respecto a la línea base


Producción entre 60 y 63 días,6 cortes al año.

Producción de 28 días, 13 cortes al año.

Línea bases 596 y 615 Tn Mv/ha día

Solución tecnológica 1603 Tn Mv/ha día

Antecedentes
Objetivos

Metodología

Diseño

Análisis de resultados

Conclusiones

Recomendaciones

Estudio Económico

Rubro	Total	Costo
Sistema Fotovoltaico (Paneles FV, inversor, BESS protecciones)		\$1635,00
Sistema Hidráulico (Bomba, tuberías, aspersores, acoples rápidos, válvulas)		\$365,16
Sistema de control (PLC, Modulo A/I, Fuente, Sensores, transmisores, cajas porta sensores)		\$1390,00
Armario de control (armario, luces piloto)		\$210,00
Obra civil (pozo, jaula de protección, candado, soporte de baterías)		\$1070,00
Materiales menores (rollos de cable sucre, terminales, cinta aislante, amarras,		\$467,02
Valor total		\$5137,18

	Alternativa	Alternativa
	convencional	Tecnológica
Costo Anual de Producción	\$1362.00	\$1540,80
Ingreso anual	\$2949,23	\$5114,68
Utilidad anual	\$1587,23	\$3573,88

$$A = CI * \frac{i(1+i)^n}{(1+i)^n - 1}$$

Objetivos

Metodología

Diseño

Análisis de resultados

Conclusiones

Recomendaciones

CONCLUSIONES

- En el presente trabajo de investigación se propone una metodología interesante que permite el diseño de sistemas tecnológicos con la capacidad de mejorar el rendimiento de cualquier cultivo bajo estudio.
- Se analizó la disponibilidad del recurso solar en la zona de estudio con la finalidad de dimensionar el sistema fotovoltaico y el sistema de almacenamiento de energía, el cual tiene la capacidad de suministrar energía al sistema de riego, siempre priorizando la energía solar fotovoltaica.
- Se desarrolló un sistema de control basado en lógica difusa con variables de entrada ambientales y características propias del cultivo de estudio como: temperatura, humedad, evotranspiración y etapa del cultivo, con una serie de reglas de inferencia difusa que dan como resultado el encendido o apagado de la bomba, que suministra la cantidad óptima del recurso hídrico requerida por el cultivo.
- Los resultados de este trabajo muestran que el rendimiento del cultivo incrementó entre el 13.6 y 20.31% respecto a sus líneas base y se obtuvo un incremento en el ciclo de producción pasado de entre 60 y 63 días a 28 días, lo que se traduce en aproximadamente 13 cortes al año, presentando un incremento de un 53.84% del número de ciclos de producción esperados al año.

Objetivos

Metodología

Diseño

Análisis de resultados

Conclusiones

Recomendaciones

CONCLUSIONES

- Se realizo la evaluación técnica económica del proyecto considerando el costo total del sistema, se pudo demostrar que la alternativa tecnológica genera un margen de utilidad más elevado lo que permite recuperar la inversión en un periodo de tiempo muy acotado.
- Con el desarrollo de este proyecto se ha mejorado la calidad de vida del agricultor además de disminuir las pérdidas hídricas aportando a la preservación y el cuidado de fuentes naturales de agua. La energía solar fotovoltaica es una de las formas de producción de energía limpia, segura y amigable con el ambiente, permite disminuir la producción de gases efecto invernadero y reemplazar combustibles fósiles.

Objetivos

Metodología

Diseño

Análisis de resultados

Conclusiones

Recomendaciones

RECOMENDACIONES

- Es importante analizar el comportamiento del rendimiento del cultivo en el resto del año, ya que la dinámica de crecimiento puede verse afectada por factores externos como plagas o insectos, por esto es recomendable hacer un estudio de un sistema de fertirriego, para poder controlar de mejor manera el sistema
- Se recomienda trabajar con un programa de mantenimiento preventivo y predictivo de todos los elementos que conforman el sistema, así como la limpieza de los paneles fotovoltaicos debido a la cantidad de polvo que pueden experimentar lo que podría ocasionar una disminución en el factor de planta.

Objetivos

Metodología

Diseño

Análisis de resultados

Conclusiones

Recomendaciones

<u>Bibliografía</u>

BIBLIOGRAFÍA

Alcaraz, J., & Jiménez, J. (2018). La aplicación de la agricultura de precisión en el proceso de fertilización: un caso de estudio para el sector bananero de Urabá-Anioqueño. Medellin: Universidad EAFIT.

Almazan, R. C. (2003). Apuntes de la Materia de Riego y Drenaje . San Luis Potosí.

Alocén, J. C. (2007). Manual práctico para el diseño de sistemas de minirriego. Honduras.

Appelbaum, J. (2016). Bifacial photovoltaic panels field. Renewable Energy, 338-343.

Arias, M. P. (2012). Diseño de un sistema de riego por aspersión con automatización para el sector de Ugñag, cantón Penipe. En G. A. Patricia, *Diseño de un sistema de riego por aspersión con automatización para el sector de Ugñag, cantón Penipe* (pág. 40). Riobamba.

Avedaño, V. M. (2004). Estudio de la factibilidad de laintroduccion de un sistema de riego por gravedad-aspersión en el caserío Corral de Piedra concepción Tutuapa San Marcos. Guatemala.

Cevallos, J., & Ramos, J. (2018). Spatial assessment of the potential of renewable energy: The case of Ecuador. *Renewable and Sustainable Energy Reviews*, 81:1154-1165.

Cifuentes., R. L. (2017). Guía de desarollo de proyectos pequeños y medianos proyectos de Energía Eolíca. En R. L. Cifuentes., *Guía de desarollo de proyectos pequeños y medianos proyectos de Energía Eolíca.* (págs. 11-14). Santiago de Chile: Rodrigo Vieytes.

Collado, E. (2017). Sistema de Riego Inteligente para optimizar el consumo de agua en cultivos en Paanamá. Global Partnerships for Development and Engineering Education, 19-21.

Cox, S. (2002). The global key to precision agriculture and sustainability. Conput Electron Agric, 93-111.

Objetivos

Metodología

<u>Diseño</u>

Trabajo Futuro

