

Departamento de Ciencias de la Energía y Mecánica

Carrera de Petroquímica

"SEPARACIÓN DE ESPECIES QUÍMICAS DEL REFORMADO DE GLICEROL, EMPLEANDO EL SOFTWARE DE SIMULACIÓN PRO II".

AUTOR: Freire Zapata, Daniela Salomé

DIRECTOR: Tuza Alvarado, Pablo Vinicio, D. Sc

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

Según, Tuza et al. (2013) los productos detectados en fase líquida a 270 °C son: ácido láctico, acetol, propilenglicol y pequeñas trazas de 1,2 – butanodiol, ciclopentanona, 2,5 – hexanodiona y 4 – hidroxi – 3 – hexanona.

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

OBJETIVO GENERAL

Separar especies químicas del reformado de glicerol en fase acuosa, empleando el software de simulación Pro II y evaluar el costo del sistema de separación para que los compuestos individuales sean aprovechados y convertidos en productos de mayor valor comercial.

OBJETIVOS ESPECÍFICOS

- Determinar del grado de idealidad de la mezcla de los productos de reacción de reformado de glicerol en fase líquida mediante análisis de presencia de azeótropos y del coeficiente de actividad en cada mezcla binaria posible.
- Identificar la secuencia de separación óptima y económica a través de un análisis de velocidad marginal de vapor.
- Diseñar un sistema de separación para obtener productos químicos por separado por simulación en computadora empleando el software Pro II.
- Evaluar los costos de los equipos empleados en el sistema de separación mediante la aplicación de modelos de estimación de costos.

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

EXTRACCIÓN DE DATOS

Tabla 1:Datos de la reacción de reformado de glicerol en fase acuosa.

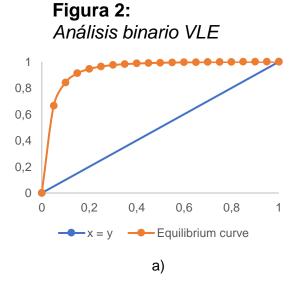
Condiciones de la reacción				
Concentración inicial de glicerol	10 wt%			
Catalizador	Ni20Cu20			
Temperatura de la reacción	270 °C			
Conversión	59%			
^a Agua	882,14 g/L			
^a Glicerol	41,79 g/L			
1,2 – propilenglicol	22 g/L			
Ácido láctico	19 g/L (en catalizador Ni)			
^b Acetol	22 g/L (en catalizador Ni20Cu) y			
	3 g/L (en catalizador Ni)			
^c 1,2 – butanodiol	0,1 g/L			
^c Ciclopentanona	0,1 g/L			
^c 2,5 – hexanodiona	0,1 g/L			
^c 4-hidroxi-3-hexanona	0,1 g/L			

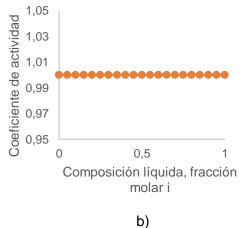
Nota. a. Calculada. b. Se consideran los 22 g/L para el acetol en lugar de los 3 g/L para la simulación. c. Son compuestos traza.

Tabla 2: Flujo molar de alimentación por especie.

Compuesto	Simbología	Concentración másica [g/L]	Fracción molar	Flujo molar [lbmol/h]
Agua	Α	882,14	0,98	4875,23
Ciclopentanona	В	0,1	2,4E-05	0,12
Acetol	С	22	0,006	29,57
1,2 – propilenglicol	D	22	0,006	28,78
1,2 – butanodiol	E	0,1	2,2E-05	0,11
Ácido láctico	G	19	0,004	21,001
Glicerol	Н	41,79	0,01	45,18

- De los productos del reformado de glicerol reportados por Tuza et al (2013), se eliminaron,
 específicamente las trazas de 2,5 hexanodiona y 4 hidroxi 3 hexanona.
- Los flujos molares de las especies se calcularon planteando como base de cálculo un flujo molar total de alimentación 5000 lbmol/h, ya que, para valores inferiores, los flujos volumétricos de las corrientes de producto resultaron bajos considerando que se trata de un proceso industrial.




Presencia de azeótropos.

Coeficientes de actividad.

- Melter / Freezer.
- Figura 1: Melter/Freezer.

Orden de puntos de ebullición normal.

Curvas Presión de vapor vs. Temperatura

RELATIVA

Figura 3: Curvas presión de vapor vs. temperatura

Tabla 3: Número de secuencias posibles para la separación por destilación ordinaria

Número de Productos, P	Número de Separadores en la Secuencia	Número de Secuencias Diferentes, N _s
2	1	1
3	2	2
4	3	5
5	4	14
6	5	42
7	6	132
8	7	429
9	8	1430
10	9	4862

Tabla 4:	
Ajuste de secuencias de separación	7

Componentes	Simbología	Modificaciones primer sistema de separación	Modificaciones segundo sistema de separación
Agua	Α	A A D	
Ciclopentanona	В	A= AB	A= BC
Acetol	С	B= C	,, ,,
1,2-	D	C DE	B= DE
propilenglicol	D	C= DE	C= G
1,2-butanodiol	Е	D= G	
Ácido láctico	G	E= H	D= H
Glicerol	Н	C= H	

$$X_{LK} = 99,9\%$$

$$X_{HK} = 0.1\%$$

Hall (2011) y Sinnott (2005):

$$R/R_{min} = 1.2 - 1.5$$

- Calcular la presión del punto de burbuja (P_D) del destilado a 120 °F (49 °C)
- $P_D < 215 \text{ psia } (1,48 \text{ MPa})$
- Usar un condensador total (reiniciar P_D a 30 psia si $P_D < 30 \text{ psia}$

$$P_{\text{alimentación}} = P_{\text{condensador}} + 70 \text{ kPa}$$
 [5]
 $P_{\text{hervidor}} = P_{\text{condensador}} + 35 \text{ kPa}$ [6]

$$V = D(R + 1)$$
 [7]

$$V = D(R+1)$$
 [7]

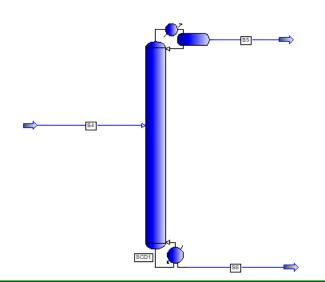
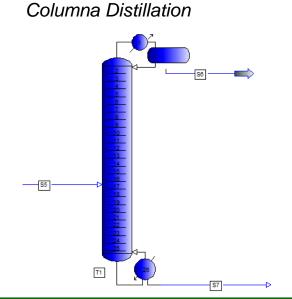
Modelado riguroso

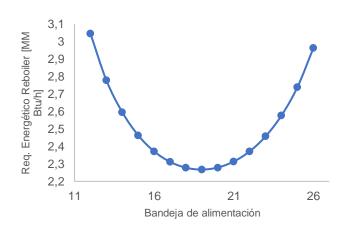
Dimensionamiento

DATOS COLUMNAS DE DESTILACIÓN DESTILACIÓN DESTILACIÓN

- Número de etapas.
- Etapa de alimentación.
- Flujo molar del destilado

Figura 4: Columna Shortcut


Figura 5:

OPTIMIZACIÓN DEL PLATO DE ALIMENTACIÓN

Case Study

Figura 6:Duty Reboiler vs. Bandeja de alimentación

COSTOS

Costos sobredimensionados adecuados desde el punto de vista de la ingeniería

Columnas de destilación

Mulet et al. (1981a,b)

$$C_{P} = F_{M}C_{V} + C_{PL}$$
 [8]
 $C_{T} = N_{T}F_{NT}F_{TT}F_{TM}C_{BT}$ [9]
 $C_{CD} = C_{P} C_{T}$ [10]

Intercambiadores de calor (IC)

Corripio et al. (1982b)

$$C_{IC} = F_P F_M F_L C_B \qquad [11]$$

Bomba

Corripio et al. (1982a)

$$C_{P,B} = F_T F_M C_B$$
 [12]
 $C_{P,M} = F_T C_B$ [13]
 $C_B = C_{P,B} + C_{P,M}$ [14]

Cristalizador

Seider et al. (2009)

$$C_c = 28200 W^{0.63}$$
 [15]

Columnas de destilación

Altura, diámetro interno y peso.

Intercambiadores de calor (IC)

 Área y longitud de los tubos

Bomba

Flujo volumétrico y factor de tamaño.

Cristalizador

 Flujo de producción de cristales.

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

IDEALIDAD DE LA MEZCLA

Tabla 5:Presencia de azeótropos y coeficientes de actividad para el primer sistema de separación.

Componente 1	Componente 2	Azeótropos	Coeficiente de actividad
	ciclopentanona	Sí	3,02 (agua) y 1 (CPN)
	Acetol	No	1
Agua	1,2 – propilenglicol	No	1 (agua) y 1,23 (12PG)
	1,2 – butanodiol	No	1
	Ácido Láctico	No	1
	Glicerol	No	1
	Acetol	No	1
	1,2 – propilenglicol	No	1
Ciclopentanona	1,2 – butanodiol	No	1
	Ácido Láctico	No	1
	Glicerol	No	1
	1,2 – propilenglicol	No	1
Acetol	1,2 – butanodiol	No	1
Acetoi	Ácido Láctico	No	1
	Glicerol	No	1
	1,2 – butanodiol	No	1
1,2 – propilenglicol	Ácido Láctico	No	1
1,2 – propilerigilcoi	Glicerol	No	0,89 (12PG) y
			1 (glicerol)
1,2 – butanodiol	Ácido Láctico	No	1
·	Glicerol	No	1
Ácido Láctico	Glicerol	No	1

Tabla 6:Presencia de azeótropos y coeficientes de actividad para el

segundo sistema de separación.

Componento 1	Componento 2	Annátranca	Coeficiente
Componente 1	Componente 2	Azeótropos	de actividad
	Acetol	No	1
	1,2 – propilenglicol	No	1
Ciclopentanona	1,2 – butanodiol	No	1
	Ácido Láctico	No	1
	Glicerol	No	1
	1,2 – propilenglicol	No	1
Acatal	1,2 – butanodiol	No	1
Acetol	Ácido Láctico	No	1
	Glicerol	No	1
	1,2 – butanodiol	No	1
4.0	Ácido Láctico	No	1
1,2 – propilenglicol	Glicerol	No	0,89 (12PG) y 1 (glicerol)
4.0 houtonedial	Ácido Láctico	No	1
1,2 – butanodiol	Glicerol	No	1
Ácido Láctico	Glicerol	No	1

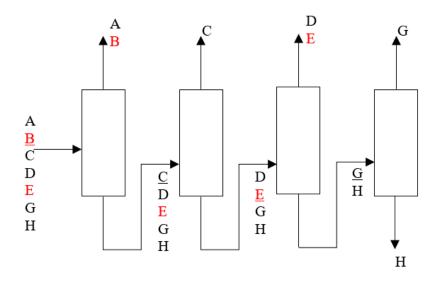
VOLATILIDAD RELATIVA

Tabla 7:Volatilidad relativa en el primer sistema de separación.

0	Olarek a la sefa	Temperatura de	Presión de vapor a	Volatilidad	
Compuesto	Simbología ebullición [ºF]		77 °F [psia]	Relativa (α _{ii})	
Agua	А	212,00	0,46	6,65 a	
Ciclopentanona	В	267,17	0,22	07 70 h	
Acetol	С	293,90	0,07	27,72 b	
1,2 – propilenglicol	D	369,68	0,0025	00.04.6	
1,2 - butanodiol	Е	381,20	0,0015	36,31 ^c	
Ácido láctico	G	422,33	6,87E-05	04 00 d	
Glicerol	Н	550,13	3,23E-06	21,23 ^d	

Nota. a: α_{AC} b: α_{CD} c: α_{DG} d: α_{GH}

Tabla 8: Volatilidad relativa en el segundo sistema de separación.


0	Olamba la mía	Temperatura de	Presión de vapor	Volatilidad
Compuesto	Simbologia	Simbología ebullición [ºF]		Relativa (α _{ii})
Ciclopentanona	В	267,17	0,22	07.70.3
Acetol	С	293,90	0,07	27,72 ^a
1,2 – propilenglicol	D	369,68	0,002	00 04 h
1,2 – butanodiol	Е	381,20	0,001	36,31 b
Ácido láctico	G	422,33	6,9E-05	04.00.0
Glicerol	Н	550,13	3,2E-06	21,23 °

Nota. a: $\alpha_{CD.}$ b: $\alpha_{DG.}$ c: $\alpha_{GH.}$

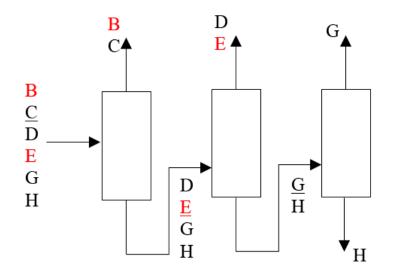
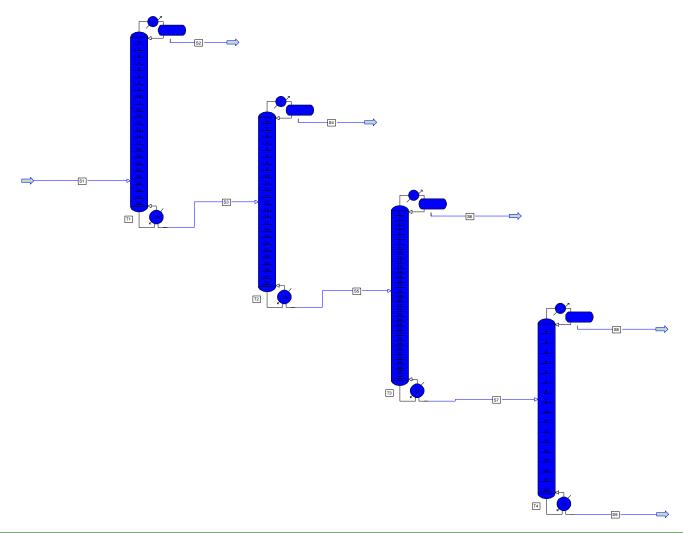

VELOCIDAD MARGINAL DE VAPOR (MVR)

Figura 7: Secuencia de separación óptima para el primer sistema de separación.

Secuencia directa MRV= 923,17 lbmol/h

Figura 8: Secuencia de separación óptima para el segundo sistema de separación.



Secuencia directa MRV= 13,53 lbmol/h

PRIMER SISTEMA DE SEPARACIÓN

Figura 9: Primer sistema de separación.

PRIMER SISTEMA DE SEPARACIÓN

Tabla 9: *Alimentación al sistema de separación.*

	•
Compuesto	Flujo molar [lbmol/h]
Agua	4875,23
Ciclopentanona	0,12
Acetol	29,57
1,2 – propilenglicol	28,78
1,2 – butanodiol	0,11
Ácido láctico	21,001
Glicerol	45,18 (B)

Nota. (B): producto de fondo

Tabla 10:
Resultados de flujos molares por especie del primer sistema de separación.

Parámetro Parámetro	Columna 1	Columna 2	Columna 3	Columna 4
Flujo molar destilado [lbmol/h]	4870,51	34,41	28,89	21,03
Composición Destilado [lbmol/h]				
Agua	4870,36	4,88	0	0
Ciclopentanona	0,12	4,2E-06	1,6E-09	0
Acetol	0,03	29,51	0,03	3E-13
1,2 – propilenglicol	6,1E-19	0,03	28,73	0,03
1,2 – butanodiol	3,7E-25	7,2E-06	0,11	6,6E-05
Ácido láctico	0	3E-08	0,02	20,96
Glicerol	0	0	0	0,05
Flujo molar fondo [lbmol/h]	129,49	95,08	66,19	45,16
Composición del fondo [lbmol/h]				
Agua	4,88	1,9E-25	0	0
Ciclopentanona	4,2E-06	1,6E-09	9,5E-20	0
Acetol	29,54	0,03	3E-13	7E-23
1,2 – propilenglicol	28,78	28,76	0,03	2,4E-08
1,2 - butanodiol	0,11	0,11	6,6E-05	4,4E-11
Ácido láctico	21	21	20,98	0,02
Glicerol	45,18	45,18	45,18	45,14

PRIMER SISTEMA DE SEPARACIÓN

Tabla 11:Resultados generales del primer sistema de separación.

Parámetro	Columna 1	Columna 2	Columna 3	Columna 4
Razón de reflujo	0,37	0,76	2,35	0,72
Número de platos	27	27	37	19
Plato de alimentación	23	14	18	9
Presión de operación [psia]	32,95	32,06	32,72	31,68
Temperatura del destilado [°F]	250,4	316,1	412,7	464,5
Temperatura del fondo [°F]	281,6	477,8	531,6	607,2
Material de la columna	Acero al carbono	Acero al carbono	Acero al carbono	Acero al carbono
Tipo de plato	Bandejas perforadas	Bandejas perforadas	Bandejas perforadas	Bandejas perforadas
Grosor de pared [in]	0,31	0,25	0,25	0,25
Altura [ft]	60	30	42	20,4
Diámetro interno [ft]	10	2,5	2,5	2,5
Costo [\$]	448452,92	131920,59	144889,93	123679,38
COSTO TOTAL [\$]		8489	42,82	

Tabla 12: Puntos de fusión de los componentes a separar.

Compuesto	Simbología	Temperatura de fusión [ºF]
Agua	А	32,00
Ciclopentanona	В	-60,34
Acetol	С	1,40
1,2 – propilenglicol	D	-76,00
1,2 – butanodiol	E	-173,2
Ácido láctico	G	62,15
Glicerol	Н	64,72

El glicerol y del ácido láctico se consideran sólidos no convencionales. Esto se sustenta en base a Kirk -Othmer (2007), quien menciona que es muy raro ver al glicerol en forma de cristal ya que posee una característica propia conocida como sobreenfriamiento, la cual produce una disminución significativa de su punto de congelación cuando se encuentra en una mezcla con agua, es así como una mezcla glicerol (66,7%) – agua (33,3%) tendrá un punto de congelación de -46,5 °C (-51,7 °F). De igual forma, para el ácido láctico, Van Krieken (2007) reporta que la temperatura de cristalización de este compuesto es -25 °C (-13 °F).

Tabla 13:Resultados del Melter/ Freezer, la bomba y el calentador..

Parámetro	Corriente S₁	Corriente S ₂	Corriente S ₃	Corriente S ₄	Corriente S ₅
Temperatura [°F]	77	30,99	30,99	31,09	77
Presión [psia]	14,7	14,7	14,7	35,08	35,08
Flujo molar [lbmol/h]					
Agua	4875,23	4875,23	0	0	0
Ciclopentanona	0,12	0	0,12	0,12	0,12
Acetol	29,57	0	29,57	29,57	29,57
1,2 – propilenglicol	28,78	0	28,78	28,78	28,78
1,2 – butanodiol	0,11	0	0,11	0,11	0,11
Ácido láctico	21,001	0	21,001	21,001	21,001

Figura 10:

Etapa previa al segundo tren de separación.

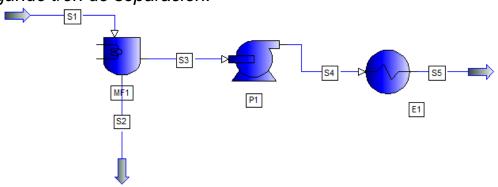


Figura 11: Segundo sistema de separación.

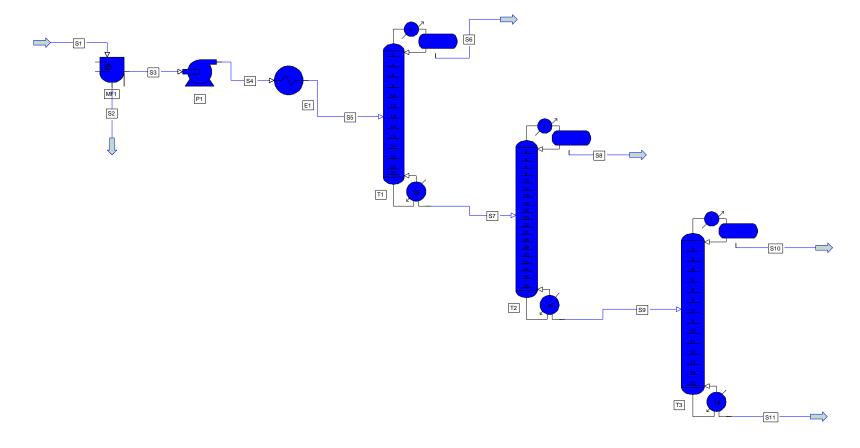


Tabla 14: Resultados de la columna 1 del segundo sistema de separación.

Compuesto	Flujo Alimentación	Flujo Destilado	Flujo Fondo (S ₇)	Recuperación
Compuesto	(S ₅) [lbmol/h]	(S_6) [lbmol/h]	[lbmol/h]	(S ₆ /S ₅) x 100%
Ciclopentanona	0,12	0,12	3,5E-05	99,97
Acetol	29,59	29,54	0,03	99,90
1,2 – propilenglicol	28,78	0,03	28,76	0,09
1,2 - butanodiol	0,11	7,4E-06	0,11	
Ácido láctico	21,001	3,5E-08	21,001	
Glicerol	45,18	0	45,18	

Tabla 15: Resultados de la columna 2 del segundo sistema de separación.

Compuesto	Flujo Alimentación	Flujo Destilado	Flujo Fondo (S ₉)	Recuperación
Compuesto	(S ₇) [lbmol/h]	(S ₈) [lbmol/h]	[lbmol/h]	(S ₈ /S ₇) x 100%
Ciclopentanona	3,5E-05	3,5E-05	9,8E-16	
Acetol	0,03	0,03	1,3E-13	
1,2 – propilenglicol	28,76	28,73	0,03	99,90
1,2 – butanodiol	0,11	0,11	6,4E-05	99,94
Ácido láctico	21,001	0,02	20,98	0,10
Glicerol	45,18	0	45,18	

Tabla 16: Resultados de la columna 3 del segundo sistema de separación.

Compuesto	Flujo Alimentación	Flujo Destilado	Flujo Fondo (S ₁₁)	Recuperación
Compuesto	(S ₉) [lbmol/h]	(S ₁₀) [lbmol/h]	[lbmol/h]	(S ₁₀ /S ₉) x 100%
Ciclopentanona	9,8E-16	9,8E-16	1,8E-22	
Acetol	1,3E-13	1,3E-13	5E-22	
1,2 – propilenglicol	0,03	0,03	8,25E-08	
1,2 – butanodiol	6,4E-05	6,4E-05	1,5E-10	
Ácido láctico	20,98	20,96	0,02	99,90
Glicerol	45,18	0,05	45,14	0,09

Tabla 17:

Resultados generales del segundo sistema de separación.

Parámetro	Columna Distillation 1	Columna Distillation 2	Columna Distillation 3
Presión de operación [psia]	32,02	32,81	31,59
Temperatura de operación [ºF]	477,69	531,86	606,95
Flujo molar Destilado [lbmol/h]	29,69	28,89	21,03
Flujo molar Fondo [lbmol/h]	95,089	66,19	45,16
Razón de reflujo	0,71	2,24	0,81
Número de platos	26	39	16
Espaciado entre platos [ft]	1	1	1
Diámetro interno [ft]	3	2,5	2,5
Longitud [ft]	28,8	44,4	16,8

Tabla 18:

Comparación de resultados con y sin optimización del plato de alimentación.

	N.º						.,
С	platos	Sin optimización			Con optimización		
		Feed Stage	Q Hervidor [MM Btu/h]	Q Condensador [MM Btu/h]	Feed Stage	Q Hervidor [MM Btu/h]	Q Condensador [MM Btu/h]
1	26	12	3,58	0,93	14	3,56	0,90
2	39	18	2,28	2,11	19	2,27	2,10
3	16	7	1,17	0,99	8	1,16	0,99
Nota. C significa columna.							

ESPE UNIVERSIDAD DE LAS FUERZAS ARMADAS

COSTOS

Tabla 19: Resultado de los costos de compra de los equipos del segundo sistema de separación.

Tipo de equipo	Equipo	Aproximación	Costo Unitario [\$]		
Columnas de destilación	Columna 1	W = 9000 lb	97859,27		
	Columna 2	Di = 3 ft W = 9000 lb	114809,75		
	Columna 3	Di = 3 ft L = 27 ft W = 9000 lb	90425,71		
	Condensador 1	$A = 150 \text{ ft}^2$	8965,85		
	Condensador 2	$A = 150 \text{ ft}^2$	8965,85		
Intercambiadores de	Condensador 3	$A = 150 \text{ ft}^2$	8965,85		
	Hervidor 1	No aplica	24886,76		
Calor	Hervidor 2	No aplica	23644,84		
	Hervidor 3	$A = 150 \text{ ft}^2$	23360,90		
	Calentador	$A = 150 \text{ ft}^2$	8965,85		
		Centrífuga			
Bomba	Bomba	Q = 50 gpm	13667,45		
		$S = 400 \text{ gpm}(ft^{0.5})$			
		Cristalizador draft-tube baffled			
Cristalizador	lor Melter / Freezer	r / Freezer 3 cristalizadores W = 250 ton/día			
		1 cristalizador W = 206,12 ton/día			
COSTO TOTAL [\$]	COSTO TOTAL [\$] 4739476,90				

INTRODUCCIÓN

OBJETIVOS

METODOLOGÍA

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- Se desarrollaron dos configuraciones diferentes del sistema de separación. Para ambos casos la recuperación de los productos fue de aproximadamente el 99,9%. Los productos en mezcla fueron agua con trazas de ciclopentanona para el primer sistema, trazas de ciclopentanona con acetol para el segundo sistema de separación y 1,2 propilenglicol con trazas de 1,2 butanodiol para ambos sistemas de separación.
- Para los dos sistemas de separación la mezcla resulto ser ideal.
- Para la aplicación del método de velocidad marginal de vapor primero se ordenaron los productos en forma descendente según su volatilidad. El orden de volatilidades en el rango de temperatura en el que operaron las columnas de destilación revela que existe un intercambio en el orden de la ciclopentanona y el acetol a partir de los 450 °F. El resultado de la velocidad marginal de vapor señaló que la secuencia directa es la más adecuada en los dos sistemas con valores iguales a 923,17 lbmol/h para el primero y 13,53 lbmol/h para el segundo.
- El primer sistema corresponde a un tren de cuatro columnas destilación en secuencia directa que separa cinco productos (1. Agua con trazas de ciclopentanona, 2. acetol, 3. 1,2 propilenglicol con trazas de 1,2 butanodiol, 4. ácido láctico y 5. glicerol). Y el segundo emplea en primer lugar la separación del agua de los productos orgánicos por cristalización por enfriamiento seguido de una bomba y un intercambiador de calor y tren de destilación de 3 columnas para cuatro productos (1. trazas de ciclopentanona con acetol, 2. 1,2 propilenglicol con trazas de 1,2 butanodiol, 3. ácido láctico y 4. glicerol).

CONCLUSIONES

- Los costos de las columnas se evaluaron considerando el costo total de la torre, los componentes correspondientes y además el costo del condensador y el hervidor en ambos sistemas de separación. Para el segundo sistema se calcularon además los costos para una bomba, un intercambiador de calor y un cristalizador. El costo del cristalizador fue calculado como un cristalizador evaporativo tipo draft-tube baffled, porque no existen métodos en la literatura para la estimación de costos para equipos empleados en cristalización por enfriamiento, por lo que el cálculo presenta un error, pero permite aproximar el precio de compra del equipo. El número total de equipos en ambos sistemas de separación fue de 12, el primer sistema se forma con 4 columnas, 4 condensadores y 4 hervidores cuyo costo fue de \$ 848942,82, mientras que para el segundo emplea 3 columnas, 3 condensadores, 3 hervidores, 1 bomba y 1 intercambiador de calor y 1 Melter/Freezer (cristalizador) con un costo de \$ 4739476,90, lo cual se atribuye a la alta taza de producción de cristales requerida.
- La evaluación de los costos de compra de los equipos refleja que el diseño de un sistema de separación con cuatro columnas de destilación en secuencia directa resulta más económico que si se elimina previamente el agua de la solución. La diferencia de los costos entre los sistemas de separación fue de \$ 3890534,08, lo que representa una reducción del precio del 82,09% a favor del tren que separa agua usando una columna de destilación.

RECOMENDACIONES

- Usar un software de simulación que contenga todos los compuestos químicos a separar en su base de datos.
- Implementar la cristalización en estado fundido.
- Calcular los costos de las utilidades de enfriamiento y calentamiento.

REFERENCIAS BIBLIOGRÁFICAS

- Corripio, A. B., Chrien, K. S., & Evans, L. B. (1982a). Estimate Costs of Centrifugal Pumps and Electric Motors. Chem. Eng., 89, 115–118.
- Corripio, A. B., Chrien, K. S., & Evans, L. B. (1982b). Estimate Costs of Heat Exchangers and Storage Tanks via Correlations. *Chem. Eng., 89*, 125–127.
- Jenkins, S. (2020). 2019 CHEMICAL ENGINEERING PLANT COST INDEX ANNUAL AVERAGE. https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/
- Kirk -Othmer. (2007). Encyclopedia of Chemical Technology (5th ed.). John Wiley & Sons, Inc.
- Mulet, A., Corripio, A. B., & Evans, L. B. (1981a). Estimate Costs of Distillation and Absorption Towers via Correlations. *Chem. Eng., 88*(26), 77–82.
- Mulet, A., Corripio, A. B., & Evans, L. B. (1981b). Estimate Costs of Pressure Vessels via Correlations. Chem. Eng., 88(20), 145–150.
- Seider, W. D., Seader, J. D., Lewin, D. R., & Widagdo, S. (2009). *Product and process design principles Synthesis, Analysis, and Evaluation* (3rd ed.). John Wiley & Sons, Inc.
- Tuza, P. V., Manfro, R. L., Ribeiro, N. F. P., & Souza, M. M. V. M. (2013). Production of renewable hydrogen by aqueous-phase reforming of glycerol over NieCu catalysts derived from hydrotalcite precursors. *Renewable Energy*, *50*, 408–414. https://doi.org/10.1016/j.renene.2012.07.006
- Van Krieken, J. (2007). *Método para la purificación de ácido láctico a escala industrial*. (Patent No. ES2283440T3). OFICINA ESPAÑOLA DE PATENTES Y MARCAS.

GRACIAS POR SU ATENCIÓN

