

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE SEDE LATACUNGA

CARRERA DE PETROQUÍMICA

"EVALUACIÓN DE PROPIEDADES DE MEDIOS NATURALES Y ELEMENTOS CONTAMINANTES EN UNA ZONA DE SALCEDO POTENCIALMENTE EN RIESGO A CAUSA DE INDUSTRIAS TEXTILES- DISEÑO EXPERIMENTAL Y ANÁLISIS QUÍMICO."

AUTOR: FIALLOS CRUZ, MARCO ANDRÉS

DIRECTOR: URRUTIA GOYES, EDGAR RICARDO, PHD

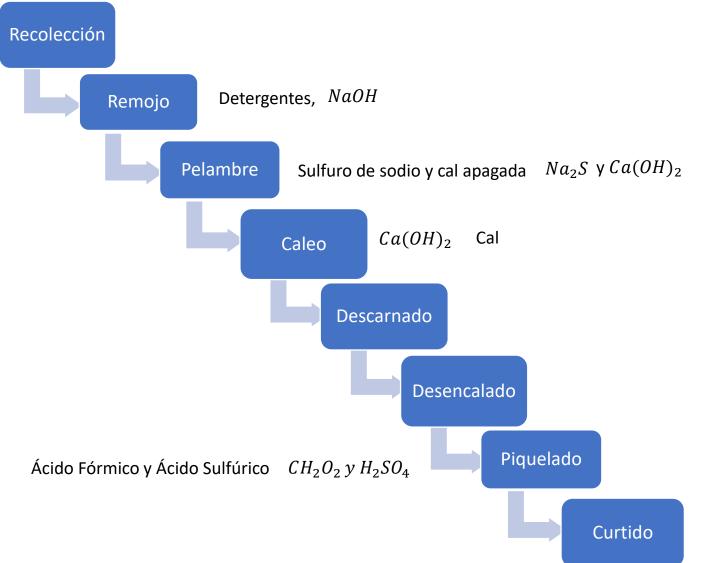
INTRODUCCIÓN

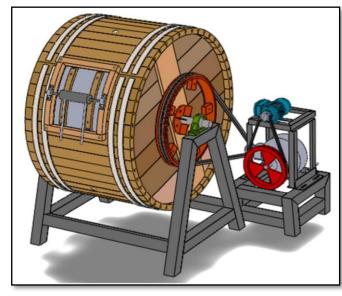
OBJETIVOS

METODOLOGÍA

ANÁLISIS DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES





Proceso de Curtiembre

Tomado de (Núñez Garcés, 2018).

Sales de Cromo

Parámetros analizados

Aceites y grasas Cromo Total DBO₅ DQO **Dureza Total** Oxígeno Disuelto Sólidos Totales Sulfatos Sulfuros **Tensoactivos** Caudal рН Temperatura

Norma Ambiental Vigente en el Ecuador (TULSMA). Norma de Calidad Ambiental y Descarga de Efluentes al Recurso Agua.

INTRODUCCIÓN **OBJETIVOS METODOLOGÍA** ANÁLISIS DE RESULTADOS **CONCLUSIONES Y RECOMENDACIONES**

OBJETIVOS

OBJETIVO GENERAL

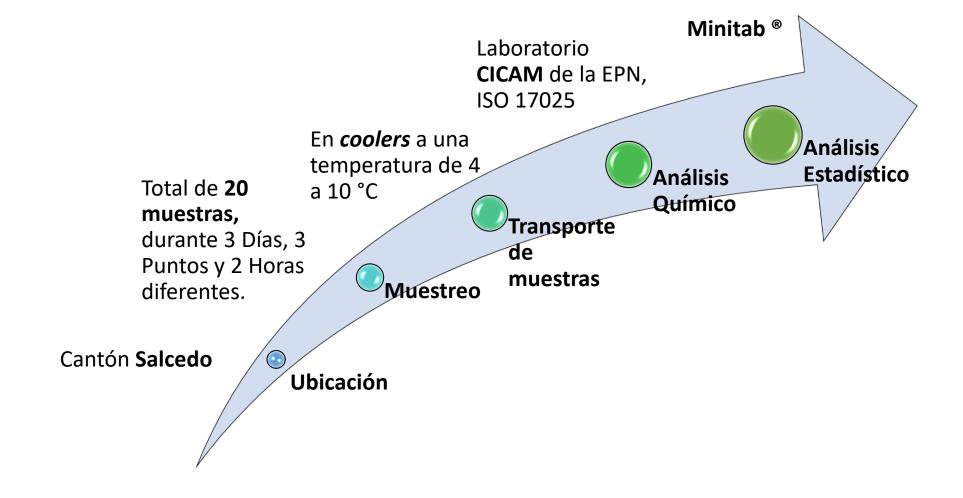
Evaluación de propiedades de medios naturales y elementos contaminantes en una zona de salcedo

potencialmente en riesgo a causa de industrias textiles-Diseño experimental y Análisis químico.

OBJETIVOS

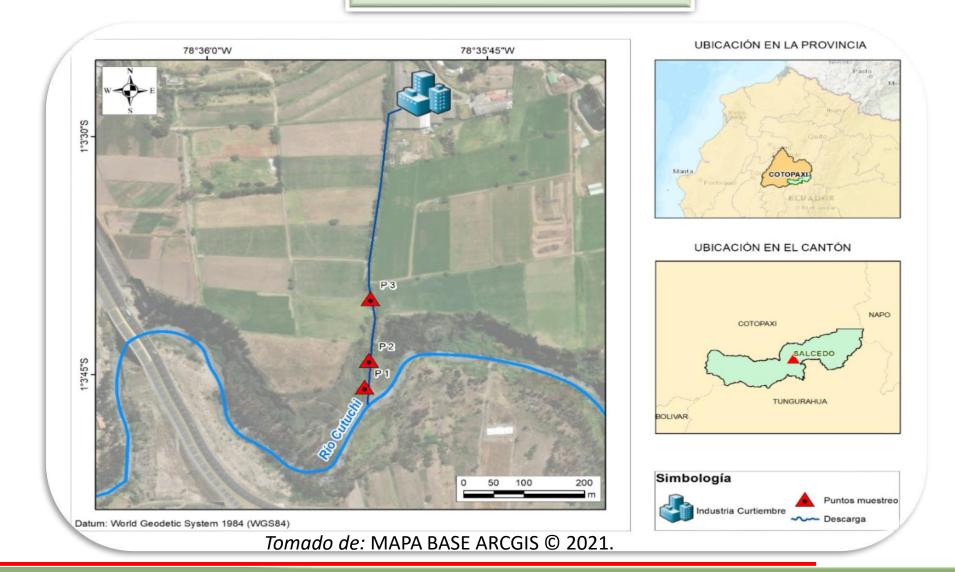
OBJETIVO ESPECÍFICOS

- Determinar las zonas potenciales para el estudio y sus características.
- Analizar las muestras del medio seleccionado para conocer sus propiedades o concentración de contaminantes.



INTRODUCCIÓN **OBJETIVOS METODOLOGÍA** ANÁLISIS DE RESULTADOS **CONCLUSIONES Y RECOMENDACIONES**

METODOLOGÍA



UBICACIÓN

MUESTREO

Dureza total, Cromo total, DBO5, DQO, Sólidos totales, Sulfatos, Tensoactivos Plástico 3 L 4-10 °C

Oxígeno Disuelto y Sulfuros

Aceites y Grasas

Ámbar 1 L 4-10 °C 0,001 L de ácido sulfúrico. Winkler

0,3 L

4-10 °C

0,001 L de sulfato

manganoso, sustancia
álcali yoduro azida,
ácido sulfúrico.

MUESTREO

Temperatura

Caudal

рН

ANÁLISIS QUÍMICO

PARÁMETRO	MÉTODO
Aceites y grasas	
Sólidos totales	Gravimetría
Demanda bioquímica de oxígeno DBO ₅	
Dureza total	Volumetría
Oxígeno disuelto (OD)	
Sulfatos	
Demanda química de oxígeno, DQO	
Sulfuros	Espectrofotometría UV-VIS
Tensoactivos	
Cromo total	Absorción Atómica

Gravimetría

Es una técnica o método cuantitativo de análisis que mide la masa de un producto para determinar la **concentración** de un analito presente en una muestra.

Gravimetría por Precipitación

Gravimetría por Volatilización

Se separa el analito de la muestra mediante la formación de un **precipitado** insoluble.

Se separa el analito mediante **calentamiento**, destilación o sublimación, para posteriormente pesar el producto o medir la pérdida de peso de la muestra.

Sólidos Totales, Aceites y Grasas

CICAM,2021

CICAM,2021

Volumetría

Es una técnica que consiste en la determinación de la concentración de una sustancia mediante una titulación.

CICAM,2021

Demanda Bioquímica de Oxígeno (DBO₅), Dureza Total y Oxígeno Disuelto.

Espectrofotometría UV-VIS

La espectrofotometría UV-visible es una técnica analítica que permite determinar la **concentración de un compuesto** en solución. Se basa en que las moléculas **absorben las radiaciones electromagnéticas** y a su vez que la cantidad de luz absorbida depende de forma lineal de la concentración.

CICAM,2021

Demanda Química de Oxígeno(DQO), Sulfatos, Sulfuros y Tensoactivos.

Absorción Atómica

Espectrometría de absorción atómica de horno de grafito (GFAAS) es también conocido como espectrometría de absorción atómica electrotérmica (ETAAS).La técnica se basa en el hecho de que los átomos absorben la luz en las frecuencias o longitudes de onda característica del elemento de interés.

CICAM,2021

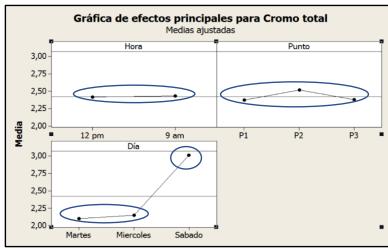
Cromo Total

ANÁLISIS ESTADÍSTICO

Tabulación de Datos de Concentración

N° muestra	Orden Corrida	Hora	Punto	Día	Aceites y	Cromo total	DBO5	DQO	Dureza total	OD	Sólidos totales	Sulfatos	Sulfuros	Tensoactivos	Caudal	Temperatura	pН	РЕ
					grasas mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	l/s	°C		
1	1	9 am	P1	Martes	2.5	2.15	991.0	3310.0	931.0	0	9718.0	1050.0	185.0	5.1	2.02	17.7	11.0	
8	2	9 am	P3	Miércoles	2.5	2.27	1021.0	3730.0	980.0	0	10048.0	1150.0	175.0	4.8	4.65	18.2	11.0	
15	3	12 pm	P2	Sábado	2.5	2.89	882.0	3020.0	733.0	0	8046.0	1020.0	165.0	7.6	2.49	19.2	11.0	
16	4	12 pm	P3	Martes	2.5	1.95	922.0	3410.0	1020.0	0	10010.0	1025.0	190.0	6.1	3.69	18.1	11.0	
9	5	9 am	P3	Sábado	2.5	2.67	689.0	3050.0	752.0	0	7816.0	1040.0	190.0	6.1	2.11	17.8	11.0	
12	6	12 pm	P1	Sábado	2.5	2.83	957.0	2980.0	762.0	0	8000.0	1000.0	173.0	7.1	2.75	18.5	11.0	
6	7	9 am	P2	Sábado	2.5	3.24	733.0	2880.0	752.0	0	7782.0	1040.0	176.0	6.4	2.48	17.5	11.0	
2	8	9 am	P1	Miércoles	2.5	1.72	1000.0	3270.0	921.0	0	10016.0	1175.0	190.0	6.1	3.11	19.7	11.0	
11	9	12 pm	P1	Miércoles	2.5	2.28	1494.0	3680.0	1000.0	0	9654.0	1100.0	182.0	4.3	3.38	20.3	11.0	
14	10	12 pm	P2	Miércoles	2.5	2.41	1230.0	3490.0	960.0	0	9610.0	1125.0	190.0	12.1	4.34	19.9	11.0	
10	11	12 pm	P1	Martes	2.5	2.02	1252.0	3380.0	970.0	0	9980.0	1050.0	200.0	4.6	2.97	19.4	11.0	
18	12	12 pm	P3	Sábado	2.5	3.14	693.0	3300.0	743.0	0	8090.0	960.0	186.0	7.4	1.03	19.1	11.0	
5	13	9 am	P2	Miércoles	2.5	2.11	1142.0	3280.0	941.0	0	10082.0	1125.0	184.0	7.7	3.72	18.2	11.0	
17	14	12 pm	P3	Miércoles	2.5	2.13	1293.0	3520.0	1020.0	0	9552.0	1125.0	197.0	6.2	4.89	20.8	110.	
4	15	9 am	P2	Martes	2.5	2.34	1015.0	3350.0	1020.0	0	9748.0	950.0	170.0	5.8	3.37	16.8	11.0	
3	16	9 am	P1	Sábado	2.5	3.31	851.0	3010.0	733.0	0	7692.0	1020.0	176.0	8.5	2.21	19	11.0	
7	17	9 am	P3	Martes	2.5	2.12	1081.0	3350.0	1010.0	0	9740.0	1025.0	192.0	5	1.73	17.1	11.0	
13	18	12 pm	P2	Martes	2.5	2.11	950.0	3230.0	1000.0	0	10030.0	1075.0	160.0	7.1	4.18	18.1	11.0	
19	19	9 am	P1	Martes	2.5	2.01	1219.0	3240.0	1010.0	0	9756.0	950.0	200.0	5.2	2.16	17.6	11.0	
20	20	12 pm	P3	Miércoles	2.5	2.11	1151.0	3520.0	980.0	0	9608.0	1100.0	195.0	5.8	5.04	20.3	11.0	

INTRODUCCIÓN **OBJETIVOS METODOLOGÍA** ANÁLISIS DE RESULTADOS **CONCLUSIONES Y RECOMENDACIONES**

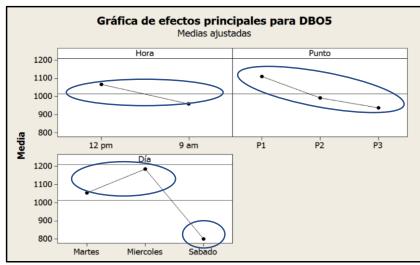

CROMO TOTAL

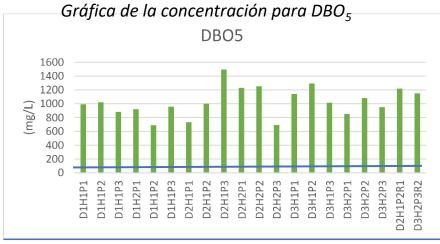
Análisis de varianza para Cromo total

Fuente	GL	SC Ajust.	MC Ajust.	F	P
Hora	1	0.00071	0.00071	0.14	0.742
Punto	2	0.08168	0.04084	8.17	0.109
Día	2	3.23613	1.61806	323.61	0.003
Hora*Punto	2	0.01676	0.00838	1.68	0.374
Hora*Día	2	0.15133	0.07566	15.13	0.062
Punto*Día	4	0.07802	0.01951	3.90	0.214
Hora*Punto*Dia	4	0.41441	0.10360	20.72	0.047
Ettot	2	0.01000	0.00500		
Total	19				

Gráfica de Efectos principales para Cromo total

Gráfica de la concentración para Cromo total

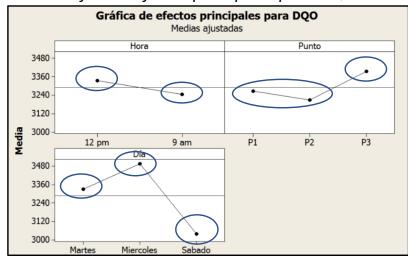

DBO5

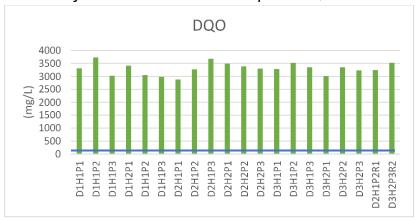


Análisis de varianza para DBO₅

Fuente	GL	SC Ajust.	MC Ajust.	F	P
Hora	1	54778.0	54778.0	3.04	0.224
Punto	2	100824.0	50412.0	2.79	0.264
Día	2	473677.0	236839.0	13.13	0.071
Hora*Punto	2	50433.0	25216.0	1.40	0.417
Hora*Día	2	68246.0	34123.0	1.89	0.346
Punto*Día	4	15866.0	3966.0	0.22	0.907
Hora*Punto*Día	4	27761.0	6940.0	0.38	0.811
Error	2	36074.0	18037.0		
Total	19				

Gráfica de Efectos principales para DBO₅

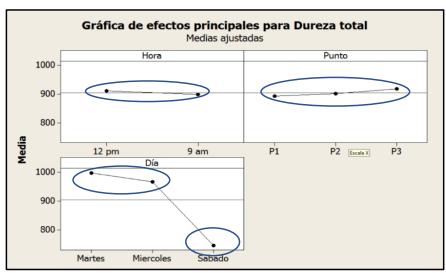

DQO


Análisis de varianza para DQO

Fuente	GL	SC Ajust.	MC Ajust.	F	P
Hora	1	39072.0	39072.0	31.90	0.030
Punto	2	113689.0	56844.0	46.40	0.021
Día	2	661141.0	330571.0	269.85	0.004
Hora*Punto	2	13921.0	6961.0	5.68	0.150
Hora*Día	2	14118.0	7059.0	5.76	0.148
Punto*Día	4	16682.0	4170.0	3.40	0.240
Hora*Punto*Día	4	133217.0	33304.0	27.19	0.036
Error	2	2450.0	33304.0		
Total	19				

Gráfica de Efectos principales para DQO

Gráfica de la concentración para DQO

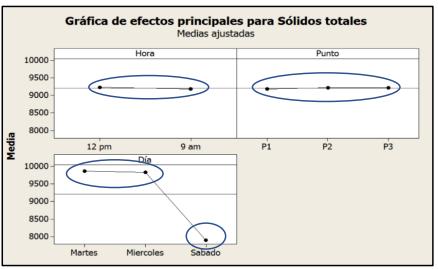

DUREZA TOTAL

Análisis de varianza para Dureza total

Fuente	GL	SC Ajust.	MC Ajust.	F	P
Hora	1	692.0	692.0	0.35	0.613
Punto	2	2075.0	1037.0	0.53	0.654
Día	2	234082.0	117041.0	59.71	0.016
Hora*Punto	2	1491.0	746.0	0.38	0.724
Hora*Día	2	1819.0	910.0	0.46	0.683
Punto*Día	4	2428.0	607.0	0.31	0.854
Hora*Punto*Día	4	733.0	183.0	0.09	0.975
Error	2	3921.0	1960.0		
Total	19				

Gráfica de Efectos principales para Dureza total

Gráfica de la concentración para Dureza total

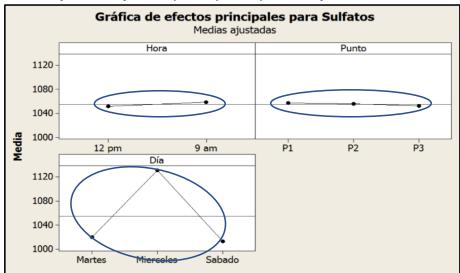

SÓLIDOS TOTALES

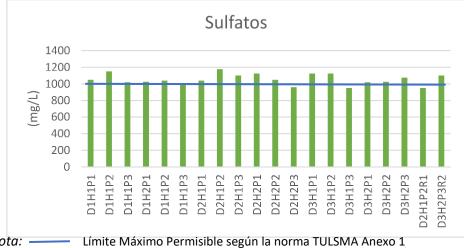
Análisis de varianza para Sólidos totales

Fuente	GL	SC Ajust.	MC Ajust.	F	P
Hora	1	6760.0	6760.0	5.90	0.136
Punto	2	5372.0	2686.0	2.35	0.299
Día	2	15627760.0	7813880.0	6824.35	0.000
Hora*Punto	2	1552.0	776.0	0.68	0.596
Hora*Día	2	537924.0	268962.0	234.90	0.004
Punto*Día	4	9186.0	2297.0	2.01	0.359
Hora*Punto*Día	4	3769.0	942.0	0.82	0.613
Error	2	2290.0	1145.0		
Total	19				

Gráfica de Efectos principales para Sólidos totales

Gráfica de la concentración para Sólidos totales

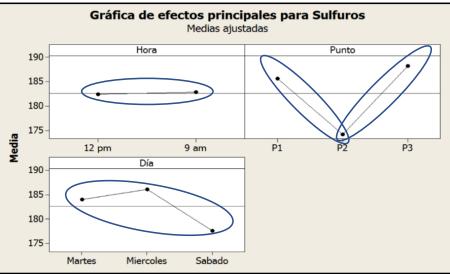

SULFATOS


Análisis de varianza para Sulfatos

Fuente	GL	SC Ajust.	MC Ajust.	F	P
Hora	1	194.0	194.0	0.07	0.812
Punto	2	100.0	50.0	0.02	0.981
Día	2	56079.0	28040.0	10.56	0.087
Hora*Punto	2	4442.0	2221.0	0.84	0.545
Hora*Día	2	10129.0	5064.0	1.91	0.344
Punto*Día	4	1213.0	303.0	0.11	0.965
Hora*Punto*Día	4	2424.0	606.0	0.23	0.902
Error	2	5313.0	2656.0		
Total	19				

Gráfica de Efectos principales para Sulfatos

Gráfica de la concentración para Sulfatos

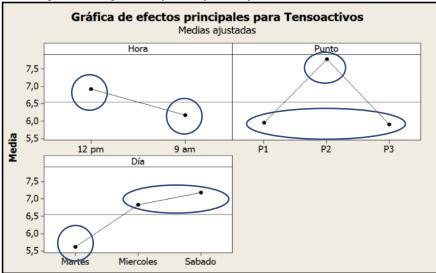

SULFUROS

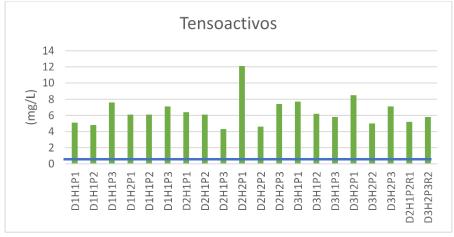
Análisis de varianza para Sulfuros

Fuente	GL	SC Ajust.	MC Ajust.	F	P
Hora	1	0.72	0.72	0.01	0.921
Punto	2	686.31	343.15	5.99	0.143
Día	2	243.07	121.53	2.12	0.320
Hora*Punto	2	80.32	40.16	0.70	0.588
Hora*Día	2	123.07	61.53	1.07	0.482
Punto*Día	4	860.20	215.05	3.76	0.221
Hora*Punto*Día	4	256.09	64.02	1.12	0.522
Error	2	114.50	57.25		
Total	19				

Gráfica de Efectos principales para Sulfuros

Gráfica de la concentración para Sulfuros

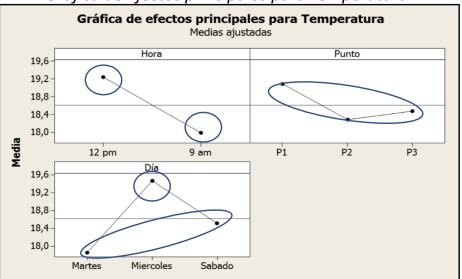

TENSOACTIVOS

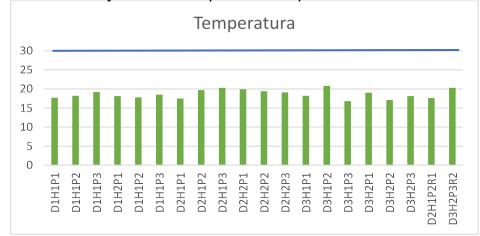

Análisis de varianza para Tensoactivos

Fuente	GL	SC Ajust.	MC Ajust.	F	P
Hora	1	2.6801	2.6801	63.06	0.015
Punto	2	14.1558	7.0779	166.54	0.006
Día	2	8.5242	4.2621	100.28	0.010
Hora*Punto	2	10.4712	5.2356	123.19	0.008
Hora*Día	2	0.6858	0.3429	8.07	0.110
Punto*Día	4	18.5592	4.6398	109.17	0.009
Hora*Punto*Día	4	3.2115	0.8029	18.89	0.051
Error	2	0.0850	0.0425		
Total	19				

Gráfica de Efectos principales para Tensoactivos

Gráfica de la concentración para Tensoactivos

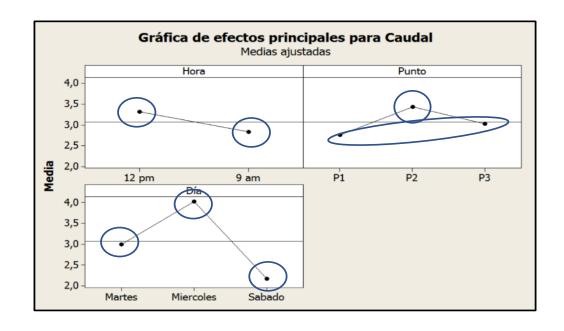

TEMPERATURA


Análisis de varianza para Temperatura

Fuente	GL	SC Ajust.	MC Ajust.	F	P
Hora	1	7.3788	7.3788	113.52	0.009
Punto	2	2.2731	1.1366	17.49	0.054
Día	2	8.6462	4.3231	66.51	0.015
Hora*Punto	2	0.9530	0.4765	7.33	0.120
Hora*Día	2	0.4239	0.2119	3.26	0.235
Punto*Día	4	0.3428	0.0857	1.32	0.474
Hora*Punto*Día	4	1.5990	0.3997	6.15	0.145
Error	2	7.3788	7.3788	113.52	0.009
Total	19	2.2731			

Gráfica de Efectos principales para Temperatura

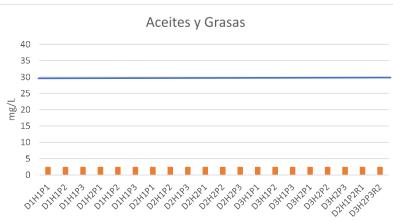
Gráfica de datos para la Temperatura

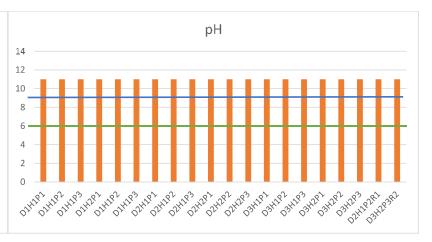

CAUDAL

Análisis de varianza para Caudal

Fuente	GL	SC Ajust.	MC Ajust.	F	P
Hora	1	1.1003	1.1003	104.54	0.009
Punto	2	1.4499	0.7249	68.88	0.014
Día	2	10.7863	5.3932	512.41	0.002
Hora*Punto	2	0.0223	0.0111	1.06	0.486
Hora*Día	2	1.5431	0.7715	73.31	0.013
Punto*Día	4	4.3560	1.0890	103.47	0.010
Hora*Punto*Día	4	1.1385	0.2846	27.04	0.036
Error	2	0.0211	0.0105		
Total	19				


Gráfica de Efectos principales para Caudal





ACEITES Y GRASAS, pH, OXÍGENO DISUELTO

Nota: Límite Mínimo Permisible según la norma TULSMA Anexo 1.

Nota: Límite Máximo Permisible según la norma TULSMA Anexo 1.

Nota: — Rango Permisible según la norma TULSMA Anexo 1.

INTRODUCCIÓN **OBJETIVOS METODOLOGÍA** ANÁLISIS DE RESULTADOS **CONCLUSIONES Y RECOMENDACIONES**

CONCLUSIONES

- Se **evaluó las propiedades del agua** y los elementos contaminantes en la parroquia San Miguel del cantón Salcedo potencialmente en riesgo a causa de la industria textil (Curtiembre).
- Se determinó al agua residual de una acequia, proveniente de una curtiduría, como la zona potencial para el estudio del caso.
 Debido a que dicha acequia desemboca en el rio Cutuchi, y presentó varios contaminantes presentes en el agua.
- Se analizó las muestras de agua, determinando sus propiedades y la concentración de cada uno de los contaminantes presentes en el medio. Basándose en la Norma Ambiental Vigente en el Ecuador, (TULSMA) Texto Unificado de la legislación Secundaria del Ministerio del Ambiente, figurado en el Anexo I, Libro VI, Titulado "Norma de calidad Ambiental y de descarga de efluentes al recurso agua"; los parámetros que se analizaron fueron: Aceites y grasas, Cromo total, Demanda Bioquímica de Oxígeno (DBO₅), Demanda Química de Oxígeno (DQO), Dureza total, Oxígeno disuelto (OD), Sólidos totales, Sulfatos, Sulfuros y Tensoactivos.

CONCLUSIONES

- Mediante un análisis factorial de 2x3x3, se definió el número de muestras, puntos y días, para la recolección de las mismas en la zona potencial de estudio. Se caracterizaron las muestras y fueron analizadas en el laboratorio
 CICAM de la Escuela Politécnica Nacional (EPN).
- Se realizó la tabulación de los **datos de concentración** obtenidos de cada parámetro analizado, y posteriormente se hizo un **análisis de varianza (ANOVA)**, con un nivel de confianza del 95 % (α =0.05).
- Los resultados obtenidos de los parámetros: Cromo total, DBO₅, DQO, Sólidos totales, Sulfuros, Tensoactivos, pH,
 presentan concentraciones por encima del límite máximo establecido para agua dulce, Tabla 9, del Anexo I de
 TULSMA, a excepción de todas las muestras de Aceites y grasas, y un 15 % de las muestras de Sulfatos.

CONCLUSIONES

- La mayoría de parámetros superan en una gran cantidad de concentración a los límites permisibles establecidos por la norma ecuatoriana, siendo la excepción los Sulfatos ya que superan en una concentración de 175.0 mg/L al límite máximo, mientras que los otros parámetros, como los Sólidos totales superan hasta en una concentración de 8,482.0 mg/L el límite máximo permitido, lo que implica que las aguas residuales desechadas a la vertiente deberían tener un tratamiento previo antes de ser liberadas al medio ambiente.
- La Temperatura **no excedió el límite máximo permisible**, por lo que al desecharla al cuerpo de agua dulce no afectaría la temperatura del mismo, y la vida que este posea. Mientras que, para el pH, el valor de 11 se mantuvo sin modificación, es decir el agua residual que proviene de la curtiduría es de **carácter básico**.
- El oxígeno disuelto (OD), presentó **valores de cero** para todas las muestras, es decir está agotado, por lo que nos referimos a ella como aguas anóxicas, por lo que debido a esto no podría haber vida en la vertiente de agua dulce.

RECOMENDACIONES

- Para reducir las concentraciones de cada uno de los parámetros analizados en este proyecto, se debería trabajar en conjunto con la empresa textil y así poder implementar alguna solución, como una planta de tratamiento de aguas.
- Para la toma de muestras, se recomienda siempre utilizar material adecuado, tomar en cuenta la geografía de la zona potencial de estudio y el correcto procedimiento para la **toma de muestras de manera adecuada.**
- En el caso de los Sulfuros, su concentración es la que más excede la normativa local, lo que se recomienda investigar más a fondo la influencia de estos en la descarga del cuerpo de agua dulce, como lo es el río Cutuchi.

RECOMENDACIONES

- Al proyecto, se debería complementar con un estudio adicional del suelo, debido a que no solo la vertiente se ve afectada, sino que también el suelo podría verse alterado, debido a todos los contaminantes que llevan en sí las aguas residuales provenientes de la curtiduría.
- Además del estudio del suelo, se consideraría apropiado de manera adicional un estudio de los efectos que
 pueden causar los contaminantes o parámetros analizados anteriormente en el medio hídrico, medio
 ambiente y principalmente para el uso humano.
- Los riesgos que podrían causar los contaminantes analizados anteriormente, se deberían dar a conocer a la población local o directamente afectada y así poder evitar daños a la salud que estos pueden ocasionar.

GRACIAS POR SU ATENCIÓN