

INSTITUTO TECNOLÓGICO SUPERIOR AERONÁUTICO

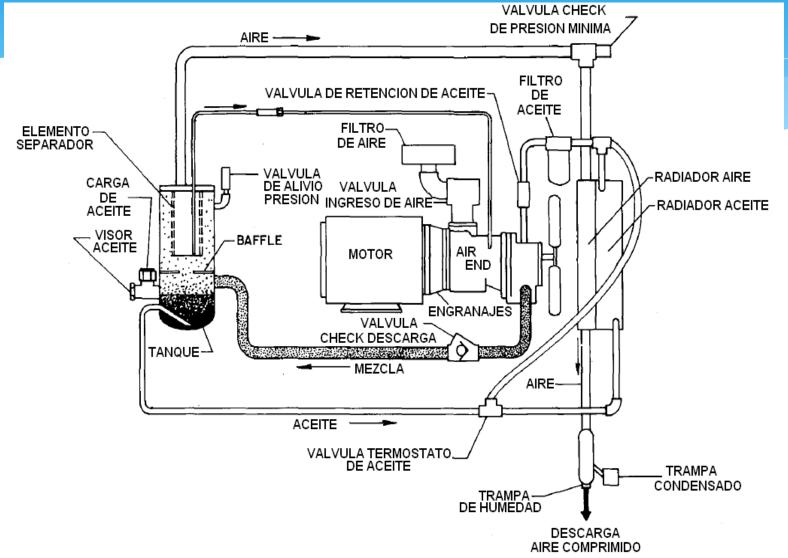
"AUTOMATIZACIÓN DE UN COMPRESOR INGERSOLL RAND PARA LA GENERACIÓN DE AIRE COMPRIMIDO MEDIANTE EL USO DE UN CONTROLADOR LÓGICO PROGRAMABLE"

Justificación

* El crecimiento continuo de esta área y el aumento de la demanda de producto en el mercado ecuatoriano impedían cumplir la producción requerida, esto obligo a la adquisición de nueva maquinaria de calzado para poder cumplir las metas impuestas en la empresa, siendo así insuficiente la generación de aire comprimido lo cual pudo ser mejorado mediante la implementación de un nuevo compresor automatizado.

Objetivo General

✓ Implementar un panel de control para la automatización de un Compresor Ingersoll Rand en el proceso de generación de aire comprimido mediante el uso de un controlador lógico programado.



Objetivos Específicos

- ✓ Definir el proceso de compresión de aire comprimido en el compresor Ingersoll Rand.
- ✓ Establecer los requerimientos y equipos de control que permitan la automatización del compresor Ingersoll Rand.
- ✓ Diseñar la arquitectura del tablero de control para la distribución de los equipos de control.
- ✓ Diseñar el programa de control para el funcionamiento autónomo del compresor Ingersoll Rand mediante el software de programación.

Proceso de Compresión Aire Comprimido

Equipos y Dispositivos Seleccionados

Item	Equipo/Dispositivo	Marca	Descripción
1	Transmisores de Temperatura	Matlow	RTD PT-100
2	Transmisores de Presión	Vega	VEGABAR 14
3	Módulo Lógico	Siemens	LOGO! 12/24 RC 8E/4S C-211
4	Módulo de expansión de entradas y salidas Digital	Siemens	DM8 12/24 RC 4E/4S
5	Módulo de expansión de entradas análogas	Siemens	AM2 12/24 VDC 2E
6	Módulo de expansión de entradas análogas	Siemens	AM2 RTD 2E
7	Visualizador de textos	Siemens	LOGO! TD
8	Fuente de alimentación	Siemens	24VDC 2,5 A
9	Contactor	Schneider	LC1.D115
10	Relés magnéticos	Schneider	24VDC
12	Arrancador Suave	Siemens	Siemens SIRIUS 3RW44

Dispositivo de Medición y Control

TRANSMISOR DE TEMPERATURA

TRANSMISOR DE PRESION

PLC LOGO!

PANTALLA TD!

Dispositivo de Potencia

RELÉ

CONTACTOR

ARRANCADOR SUAVE

1)

2

3)

5)

6)

8)

10)

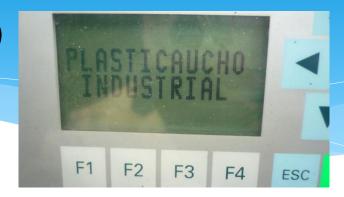


9)

12)

Asignación de Señales para la Programación

	TIPO DE SEÑAL EN Logo!	Logo! Soft Comfort		
VARIABLE		ASIGNACIÓN DEL BLOQUE	CONTROL DE LA SEÑAL	FUNCIÓN EN EL PROCESO
Temperatura Tanque	Entrada Análoga (RTD)	Al3	SF002	Mide la temperatura de aceite en el tanque separador
Temperatura Aire	Entrada Análoga (RTD)	Al4	SF003	Mide la temperatura de aire en el sistema.
Presión Aceite	Entrada Análoga (4-20 mA)	AI5	SF004	Mide la presión de aceite en el tanque
Presión Aire	Entrada Análoga (4-20 mA)	Al6	SF005	Mide la presión de aire de descarga.
Alarma	Salida Digital	Q1		Señal de encendido y apagado Luz piloto amarilla
ON/OFF Luces Pilotos	Salida Digital	Q2		Señal utilizada para controlar el encendido de la luz piloto verde u roja de encendido y apagado.
ON/OFF para Electroválvula 4SV	Salida Digital	Q3		Señal utilizada para Encender Electroválvula para el paso de aceite.
ON/OFF para Electroválvula 1SV	Salida Digital	Q4		Señal utilizada para Encender Electroválvula de Carga y Descarga de aire.
ON/OFF para Electroválvula 2SV	Salida Digital	Q5		Señal utilizada para Encender Electroválvula de modulación de aire.
ON/OFF para Electroválvula 3SV	Salida Digital	Q6		Señal utilizada para Encender Electroválvula de alivio de aire.
ON/OFF del Contactor	Salida Digital	Q7		Señal utilizada para encender al contactor para la parte de potencia.
ON/OFF del Arrancador Suave	Salida Digital	Q8		Señal utilizada para encender al contactor para la parte de potencia.
Texto de aviso	En Logo! TD	SF012		Para visualizar y controlar las variables del proceso.


Fallos en el control del proceso

FALLOS EN EL CONTROL DEL PROCESO					
FALLO	POSIBLES CAUSAS				
	Programa Logo! desconfigurado				
Medición de temperatura errónea	Sensor de temperatura(RTD) en mal estado				
	Cables mal ajustados en bornes del sensor de temperatura				
	(RTD).				
	Programa Logo! desconfigurado				
Medición de presión errónea	Sensor de presión en mal estado				
medicion de presion en onea	Cables mal ajustados en bornes del sensor de temperatura				
	(RTD).				
	Arrancador alarmado por sobre corriente.				
	Arrancador sin energía (fusibles, breaker).				
	Motor en mal estado (quemado).				
Mal funcionamiento del motor	Fallo en los pulsadores.				
	PLC sin energía, para comandar el encendido (fusibles).				
	Relé en mal estado o contactor				
	PLC en mal estado o el equipo sin energía (fusibles).				
Mal funcionamiento del arrancador suave	Motor en mal estado.				
	Arrancador alarmado por sobre corriente o sobre voltaje.				
	Contacto del contactor dañado				
Mal funcionamiento del ventilador	Falta de voltaje.				
	PLC sin energía, para comandar el encendido del contactor.				
	Relé en mal estado.				
Mal funcionamiento de luz piloto de alarma	Conexionado en borneras en mal estado.				
	PLC sin energía, para comandar el encendido (fusibles).				

14)

15)

16)

CONCLUSIONES

- Se logró definir el proceso de compresión de aire comprimido tomando en cuenta el funcionamiento operacional de sus elementos mecánicos, eléctricos y electrónicos del compresor Ingersoll Rand para su perfecto desempeño para la generación de aire comprimido.
- ✓ Se realizo la selección de los equipos e instrumentos de control que mejor se adapten a las necesidades operacionales de los dispositivos que van a comandar al compresor Ingersoll Rand para cumplir con el proceso de generación de aire comprimido.
- ✓ El diseño del tablero de control se realizo mediante las medidas reales exteriores de los dispositivos de control eléctrico y electrónico para poder distribuirlos de la mejor manera, optimizando el espacio y brindando garantías para un buen funcionamiento, de igual forma se tomó en consideración los requerimientos del usuario para que el tablero sea muy versátil.
- ✓ El programa para el PLC Logo! se diseñó en base al funcionamiento lógico del compresor para controlar y monitorear sus diferentes dispositivos y variables del proceso de generación de aire comprimido, brinda las seguridades tanto para el equipo ya que permite llevar un registro de tiempo de funcionamiento para realizar mantenimientos preventivos y para el operador presentando avisos de alarma y de fallos bloqueando así el funcionamiento del compresor.
- ✓ El tablero de control automatizado a través del PLC`s Logo! cumplió con los requerimientos de funcionamiento para el compresor Ingersoll Rand en el proceso de generación de aire comprimido.

RECOMENDACIONES

- Como recomendación para el perfecto funcionamiento del compresor Ingersoll Rand se debe realizar los mantenimientos preventivos a los diferentes componentes mecánicos como eléctricos mediante el uso de la guía de usuario desarrollado. (ANEXO H).
- ✓ Se debe realizar una capacitación previa del funcionamiento del panel de control automatizado implementado en el compresor Ingersoll Rand a los operadores para que la manipulación sea de forma correcta y no ocasionen daños en los diferentes equipos.
- Para mejorar el sistema implementado, se tendría que agregar un secador de aire el cual va a eliminar de mejor manera la condensación (agua) que se produce al generar aire comprimido en el compresor, evitando daños en los dispositivos neumáticos en la maquinaria de producción de calzado lona.
- ✓ Para eliminar riesgos de descargas eléctricas todo sistema eléctrico debe tener una conexión a tierra la cual garantiza la integridad del equipo como del personal que opere el compresor.
- ✓ En la operación del panel de control se recomienda verificar el buen funcionamiento del sistema implementado, en función de las luces pilotos y del visualizador de textos, revisando que cumpla con la función designada.

MUCHAS GRACIAS!