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Abstract —In the following article a nonlinear predictive controller 

(MPC) is presented as a teaching and learning tool, to test the 

tracking of different flight paths in a safe way in unmanned aerial 

vehicles (UAV). This MPC is based on the kinematic model of the 

UAV and performs the function of minimizing control errors, 

restricting control actions, increasing system efficiency, 

maintaining stable flight operation and extending rotor life by 

restricting UAV input speeds. In addition, the comparison of the 

data obtained experimentally from Matlab with the data from the 

DJI Assitant is carried out by simulating the flight path within the 

virtual environment.  

Keywords – virtual environment; nonlinear predictive control; 

kinematic model; tracking; unmanned aerial vehicles. 

I. INTRODUCTION 

Robotics is constantly evolving over time and with it comes 
improved performance in the field of science and technology, 
giving robots greater autonomy, intelligence and energy 
efficiency [1]. The services provided by robotics allow to 
increase productivity, reduce flaws, failures and improve the 
quality of processes, these services are in great demand not only 
in the industrial sector, but also in the commercial, education-al, 
medical and domestic sectors, among others [2]. The basic 
structure that makes up a robot is given by mechanical systems, 
actuators, sensors and control systems [3]. The types of robots 
that exist can be classified: (i) according to their function in 
motion control, autonomous and/or teleoperated; (ii) depending 
on the function in the environment in which the task is 
performed, aquatic, terrestrial and aerial [4]. Aerial robots are 
known as UAVs (unmanned aerial vehicles) [5]. The different 
applications that UAVs can perform are: (i) search and browse 
[6]; (ii) security and military applications [7]; (iii) forest fire 
prevention, mapping and aerial photography [8]; (iv) agriculture 
and geology [9], among other things. The trend in recent years 
is to accomplish the task in an efficient and safe way so advanced 
control algorithms are being developed. It is convenient to test 
these advanced algorithms in software that allows to safely 
emulate the operation of UAVs, for which virtual environments 
are being used [10]. 

Virtual environments are recreations of real environments 
and/or environments created on computers that help with the 
interaction and manipulation of objects. These environments can 
be oriented to the areas of: (i) teaching - learning; and (ii) 
training [11]. There are own virtual simulators, such as the DJI 
Assistant, which allows to calibrate, simulate and obtain the 
flight information of the UAV. In which you can implement 

different advanced control algorithms to analyze the behavior of 
the system against a specific task. 

Advanced control algorithms are automatic control strategies 
that analyze the behavior of MIMO systems (multiple input - 
multiple output), time invariant systems, among others [12]. 
This type of controllers are developed through computer 
platforms that are in charge of interpreting a mathematical model 
and evaluating the system's performance through simulations 
[13]. Among the best known advanced control strategies are: (i) 
expert control, that is the greatest exponent of this type of 
controller is fuzzy control, which consists of the use of fuzzy 
algebra in order to represent a resemblance to human thought; 
(ii) robust control, this type of controller de-fines the 
characteristics of the system regardless of the disturbances that 
occur; (iii) adaptive control, this type of controller is used in 
time invariant systems; (iv) neuronal control, this type of 
controller can be compared to the neural networks in the human 
brain, consisting of a learning stage and a recognition stage; (v) 
optimal control, this type of control is based on the 
implementation of a functional and an optimization criterion that 
allows the adjustment of the control objectives; and, (vi) model 
based predictive control, this type of control is based on the 
future predictions of a system through its past actions [14-15]. 
However, it should be noted that predictive controllers have 
been a relevant issue in the field of research and industry at 
present [16-18]. 

The idea of model based predictive control (MPC) is that in 
using an explicit mathematical model, minimizing a target and 
moving in a sliding horizon [19]. MPC control algorithms are 
computationally developed to provide a response to a control 
action [20]. The elements that make up the MPC are: (i) 
optimizer, finds the best result in the performance of a task, also 
optimizes future control actions; (ii) cost function, is a positive 
function related to an associated cost that varies over the path of 
the prediction horizon; (iii) constraints, are the limits within 
which the system evolves; and, (iv) process model, which 
describes the behavior of the system and can be linear or 
nonlinear [21-23]. Ultimately, the advances made in MPC 
control have positioned it as one of the best controllers when it 
comes to implementation in kinematic and/or dynamic systems 
with long sampling periods [24-28].  

II. PROBLEM FORMULATION 

The proposal of the article is to implement a model based 

predictive control algorithm (MPC) of an unmanned aerial 

vehicle (UAV) for autonomous trajectory tracking tasks. So it 



was developed mainly in four phases: (i) modelling, the non-

linear kinematic MIMO model of the UAV will be obtained; (ii) 

Control algorithm, a nonlinear MPC will be implemented, 

which will take into account the movement restrictions of the 

UAV, such as the time of computation being less than the 

sampling period; (iii) simulation, a 3D virtual simulation 

environment shall be developed to analyse the behaviour of the 

proposed control algorithm when executing autonomous 

trajectory tracking tasks. In addition, the simulator will allow the 

provision of external disturbances, e.g. air currents, in order to 

emulate real flight conditions; (iv) experimentation, different 

experimental tests will be carried out to check the performance 

of the MPC control algorithm implemented in a Phantom 4 PRO. 

 

 
Figure 1. Phases of the proposal. 

III. MODELING AND DESIGN OF THE CONTROLLER 

In the design of the MPC controller, it should be considered 

that the optimizer and the cost function play a very important 

role; the optimizer seeks to minimize the multivariable function 

and the cost function will correct both the control errors and the 

control actions to avoid mechanical stress on the UAV motors; 

furthermore, this controller is directly related to the kinematic 

model and saturation restrictions of the UAV maneuverability 

actions. 

 

A. Kinematic Model 

      The kinematic model of a UAV, represents the 

displacement in its three dimensions , ,X Y Z that found in the 

inertial reference system I . The kinematic model is obtained 

by the partial derivation of the point of interest function 

according to the location of the UAV, ( )
( )

( )
f

t t



=

q
h u

q , where 

h represents the vector of the speeds of the point of interest and 

being the manoeuvrability vector of the UAV composed of 

three linear velocities , ,l m nu u u  with regard to the axes  

, ,l m n  of the mobile reference system S ; in addition, it has 

an angular manoeuvring speed in relation to the axis, as shown 

in Fig. 2. 

 

 

The movement of the UAV with respect to the inertial 

reference system is represented as, 

 

 
Figure 2. Schematic of the UAV. 

 

so that the movement of the UAV within the inertial plane I  

which is represented by the following equation: 
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and at the same time (1 ) can be presented in a compact way 

as, 

 

 

 

 

 

 

 

( ) ( ) ( )t t=h J u                          (2) 

where, ( ) n
t h with 4n = , which represents the velocity 

vector on the inertial system I , and the angular velocity with 

respect to the Z axis; ( )J
nxm

 with m n=  is the Jacobian 

matrix that represents the movement characteristics of the 

UAV; and ( ) n
t u  defines the manoeuvrability vector of the 

UAV. 

B. MPC Controller  

This section describes the implementation of the model-

based predictive controller (MPC) with a UAV, the same one 

that uses directly the mathematical model of the plant by 

repeatedly solving an optimization problem in a sampling 

moment. The MPC predicts future system outputs based on 

current and past system status, its structure show in the 

following Fig 3, 
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Figure 3. MPC Structure. 

 

given the structure scheme of the MPC, the system model needs 

to be expressed in a nonlinear state space as shown below: 
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where, x y zs s s s =  h is the state vector, 

u u u ul m ns s s s
 =
 

u is the vector of the control 

variables, and is considered a as the output vector of the system. 

Discretizing the nonlinear model, we have: 
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where, ( )ky  is given by: 

 

(5) 

 

The predictive control algorithm requires a costing 

functional F  according to the control errors and the variation 

in the manoeuvrability speeds of the UAV. The cost function 

will be defined as a quadratic function of the sum of the next 

errors plus the sum of the predicted increases in the 

manoeuvrability speeds of the UAV which, based on an 

optimisation operation, is formulated as follows,  

 

(6) 

 

 

where, k  represents the current sampling period, N  is the 

predictive horizon, i  is the future prediction, i  weighs the 

efforts of control errors, i  weighs up the efforts of the control 

actions, Q  is the defined positive matrix that weighs the control 

states, P  is the defined positive matrix that weighs the control 

actions, i.e., 0Q  y 0P . 

 

 

 

In addition, ( )k i k+h , represents the future error defined 

below, 

( ) ( ) ( )k i k k i k k i+ = + − +
d

h h h              (7) 

and ( )k i k +u , is the variation in control actions that is given 

by, 
 

(8) 

 

in this way the predictive control algorithm minimizes the target 

function so that the system is in a desired state given a desired 

or reference path. Finally, in order to saturate the 

manoeuvrability speeds ( )ku the maximum and minimum 

speeds permitted by the UAV are considered to be optimisation 

constraints, i.e., ( )min maxk u u u . 

IV. 3D SIMULATION ENVIRONMENT. 

A 3D simulator is developed to evaluate the behaviour of the 
MPC, in the Matlab software, in order to carry out simulation 
tests prior to the real tests, and so, define the parameters to be 
implemented experimentally. 

In Fig. 4, you can see the interface developed, which allows 

the entry of the desired path; N ; 
i ;

i  and the sample time 

along with the task execution time; in addition, using the 
interface options it is possible to simulate the desired flight task 
of the UAV; display the evolution of control errors; UAV 
manoeuvrability command and machine run times in each 
sampling period.  

 

Figure 4. Interface of Simulator 3D of the UAV. 

In order to evaluate the performance of the proposed MPC, 
several tests are executed in the 3D flight simulator developed 
Table 1 shows the desired trajectory to be followed and the 
initial conditions of the UAV. These parameters will be the same 
for the simulation tests. 
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TABLE I. NAVIGATION PARAMETERS CONSIDERING MPC 

Initial 

Parameters 

Data Desired 

Parameters 

Data 
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For the first test it is considered that 3N = ; 0.6i = ;

0.4i = . Fig. 5(a) shows that the control errors obtained given 

the desired path for the UAV, so that they are close to zero; while 
Fig. 5(b) shows the computation run time, this is adequate since 
it is less than the sampling time and therefore has less 
computational cost. 

 

(a) 

 

(b) 

Figure 5. 3D Simulator: (a) control errors, (b) time of execution. 

 

For the second simulation test, it is considered 5N = ; 

0.6i = ; 0.4i = , in such a way that the aim is to enlarge the 

prediction horizon to analyse the behaviour of the controllability 
variables. 

The Fig. 6(a) shows that the displacement of control errors 
with respect to , ,x y z , it improves remarkably, therefore the 

control errors are reduced and they do not present oscillations, 
staying near zero, la Fig. 6(b) shows the effect caused by 
increasing the prediction horizon as it improves the performance 
of the controller and allows the appropriate speeds to be obtained 
for the UAV's flight environment, but it also increases the run 
time, which can cause problems with the sampling time. 

 

(a) 

 

(b) 

Figure 6. 3D Simulator: (a) control errors, (b) time of execution. 

      For the third test it is considered 8N = , 0.6i = ; 0.4i = ,  

given the same trajectory as the previous tests. Fig. 7(a) shows 
how performance increases but compromises computational 
time in the UAV tracking task, where it can fluctuate and the 
system takes time to stabilize; while Fig. 7(b) shows that the run 
time is close to the sampling period where the system becomes 
unstable because the machine run time is longer than the 
sampling period. 



 

(a) 

 

(b) 

Figure 7. 3D Simulator: (a) control errors, (b) time of execution. 

In conclusion, Table 2 shows a detail on the performance of 
the MPC considering different predictive horizons. 

 

TABLA II. COMPARISON OF CONTROL ERRORS VERSUS VARIATION OF THE 

PREDICTION HORIZON. 

Parameters 3N =  5N =  8N   

Control Errors estable estable Inestable 

Time of execution 

  
20ms  35ms      oT  

Para todas las simulaciones se considera que 100msoT =  

V. EXPERIMENTAL EVIDENCE 

      This section presents the experimental tests of the MPC 

implemented in the Phantom 4 PRO DJI. For the experimental 

evaluation, the same parameters set out in Table 1 are 

considered, with a predictive horizon 5N =  and a 

 100oT ms= . Fig. 8 shows the flight reconstruction of the 

UAV based on actual navigation data; in the figure it can be 

seen that the UAV follows the desired trajectory without any 

problems. 

 
 

Figure 8. Strobe movement of the UAV, based on real navigation data from 

the Phanthom 4 PRO. 

 

Figure 9 shows the manoeuvrability speeds of the UAV, that do 

not exceed the maximum and minimum values allowed by the 

Phantom 4 PRO. 

 
Figure 9. ControlErros of the UAV. 

 

Finally, Fig. 10 shows that the computed time is less than the 

sampling time, which ensures that the values obtained in this 

research are the most suitable for implementation in a real 

environment. 
 

 
Figure 10. Machine computing time 

VI. CONCLUSIONS 

       In the present work, a nonlinear predictive control algorithm 

based on an UAV model was designed and implemented, the 

aim is to carry out trajectory monitoring tasks autonomously. 



Additionally, a 3D simulator was developed to evaluate the 

behavior of the proposed controller. It is important to mention 

that the prediction horizon must be selected considering that the 

machine count time is less than the sampling period in order to 

make the system unstable. Finally, the experimental tests show 

an adequate functioning of the MPC considering a 

 100oT ms= with a prediction horizon 5N = . 
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