

# Análisis de parámetros característicos del motor 2T utilizados en karting variando los parámetros de carburación y encendido, verificados por telemetría y software especializado

| Asanza Suquillo, Jefferson Alexander y Rom | nero Pereira. Israel Aleiandro |
|--------------------------------------------|--------------------------------|
|--------------------------------------------|--------------------------------|

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Automotriz

Trabajo de titulación, previo a la obtención del título de Ingeniero en Automotriz

Ing. Erazo Laverde, Washington Germán

Latacunga, 05 de agosto del 2021



# DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA AUTOMOTRIZ

#### Certificación

Certifico que el trabajo de titulación: "Análisis de parámetros característicos del motor 2T utilizados en karting variando los parámetros de carburación y encendido, verificados por telemetría y software especializado", fue realizado por los señores: Asanza Suquillo, Jefferson Alexander y Romero Pereira, Israel Alejandro el cual ha sido revisado y analizado en su totalidad por la herramienta de verificación de similitud de contenido; por lo tanto cumple con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, razón por la cual me permito acreditar y autorizar para que lo sustente públicamente.

Latacunga, 06 de agosto del 2021.

Firma:



Ing. Erazo Laverde, Washington Germán.

C.C: 0501432637



# **Urkund Analysis Result**

Analysed Document: TESIS\_ Asanza, Romero, ERAZO.pdf (D111155432)

 Submitted:
 8/11/2021 2:56:00 AM

 Submitted By:
 wgerazo@espe.edu.ec

Significance: 1 %

# Sources included in the report:

Cabrera Ramírez Erazo Análisis del desempeño del motor de combustión interna Nis san J15 al trucar el tren alternativo e implementar el sistema reprogramable de cont rol electrónico de alimentación de combustible.pdf (D81658873)

https://docplayer.es/43695782-Felipe-andres-fiallo-meza.html

Instances where selected sources appear:

9





Firmado electrónicamente por: WASHINGTON GERMAN ERAZO LAVERDE

Ing. Erazo Laverde, Washington Germán.

C.C: 0501432637



# DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA AUTOMOTRIZ

# Responsabilidad de autoría

Nosotros, Asanza Suquillo, Jefferson Alexander con cédula de ciudadanía N° 1724424781 y Romero Pereira, Israel Alejandro con cédula de ciudadanía N° 0706278165, declaramos que el contenido, ideas y criterios del trabajo de titulación: "Análisis de parámetros característicos del motor 2T utilizados en karting variando los parámetros de carburación y encendido, verificados por telemetría y software especializado", es de nuestra autoría y responsabilidad, cumpliendo con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, respetando los derechos intelectuales de terceros y referenciando las citas bibliográficas.

Latacunga, 06 de agosto del 2021.

Firma:

Asanza Suquillo, Jefferson Alexander

C.C.: 1724424781

Romero Pereira, Israel Alejandro

C.C.: 0706278165



# DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA CARRERA DE INGENIERÍA AUTOMOTRIZ

# Autorización de publicación

Nosotros, *Asanza Suquillo, Jefferson Alexander* con cédula de ciudadanía N° 1724424781 *y Romero Pereira, Israel Alejandro* con cédula de ciudadanía N° 0706278165, autorizamos a la Universidad de las Fuerzas Armadas ESPE publicar el trabajo de titulación: " Análisis de parámetros característicos del motor 2T utilizados en karting variando los parámetros de carburación y encendido, verificados por telemetría y software especializado", en el Repositorio Institucional, cuyo contenido, ideas y criterios son de nuestra responsabilidad.

Latacunga, 06 de agosto del 2021.

Firma:

Asanza Suguillo, Jefferson Alexander

C.C.: 1724424781

Romero Pereira, Israel Alejandro

C.C.: 0706278165

### **Dedicatoria**

Primero le dedico el presente trabajo, a Dios, me mostró el camino correcto y me ofreció consuelo en los momentos más duros de mi vida, nunca me abandonó y me permitió ir de su mano.

A mi madre y padre, para ustedes es este trabajo, mostraron paciencia, amor, confianza y cariño a lo largo de toda la carrera, supieron mencionar siempre las palabras justas para elevar mi autoestima y levantarme de las caídas.

Una gran parte de mi motivación son mi hijo y esposa, no encuentro palabras para describir lo que significaron y significan para mí, no sólo a lo largo de mi carrera estudiantil, sino desde que los tengo conmigo, no quiero el mundo para mí, ustedes son mi mundo y lo que pueda ofrecerles lo haré con todo el cariño y amor que pueda dar.

Finalmente, a mis amigos y compañeros de buenos y malos momentos, les dedico el presente, hicieron de mis días mucho más cómodos y alegres.

Asanza Suquillo, Jefferson Alexander.

7

Agradecimiento

Quiero tomar este pequeño espacio para nombrar a mis padres María del Cármen

Suquillo Rojas y Ulises de Jesús Asanza Espinoza que me otorgaron la educación y sus

valores fueron la roca que me precedía a cada momento, gracias.

A mi esposa Vanessa Caiza Tarapues siempre estuvo a mi lado, nunca dejo de darme

aliento, amor y compañía, la que cargaba mi entusiasmo para continuar y permanecer

firme en mi diario vivir.

Sebastián Alejandro Asanza Caiza, hijo, la crianza se forja con el ejemplo y he tratado de

mostrar lo mejor de mí para que contemples la vida de una mejor manera, gracias mi niño

eres mi retoño y mi mejor logro.

Asanza Suquillo, Jefferson Alexander.

**Dedicatoria** 

Dedico el presente trabajo de investigación a Dios, por ser quía y pastor en mi arduo

camino, mostrándome que la vida se la forja a base de errores y no sólo de aciertos,

enseñándome a remontar una caída manteniendo la mirada en alto.

El presente trabajo es una pequeña muestra de agradecimiento, a mi madre, pues no

existe un regalo que llegue merecer lo que le debo a ella, mostró siempre amor, alegría,

comprensión, ánimos y apoyo. A mi padre Paul Solano por criarme con valores de pudor,

rectitud, civismo, caballerosidad, generosidad, responsabilidad y sobre todo respeto que

a diario me han servido para mostrar la educación de mi hogar, y por haber puesto su

confianza en mí y nunca dudar dándome fuerza para continuar.

A mis hermanos por ser mi motor y aliento para salir adelante, creyeron en mi desde el

principio y me alegra poder ser un ejemplo para ellos.

A toda mi familia que depositaron su confianza y por compartir buenos y malos momentos

a lado mío.

A mis compañeros y amigos que a lo largo de mi carrera formaron parte de mi vida

compartiendo grandes e inolvidables momentos que me han llevado y formado en lo que

soy ahora, les agradezco.

Romero Pereira, Israel Alejandro.

# Agradecimiento

Quiero agradecer de gran manera a mis padres, Mirian Elena Pereira Encalada y Víctor Paúl Solano Neira, su mejor herencia la recibí desde que nací, su constante ánimo, valores y educación que me ofrecieron son las bases de mi carácter.

Ronny Paúl Solano Pereira y Leslye Dayana Solano Pereira, mis hermanos, mil gracias por demostrarme siempre su cariño y afecto; me enseñaron a nunca rendirme porque sé que mis acciones serán reflejo suyo, siempre han sido mi motivo para no mirar a los lados ni atrás.

Gracias a mis amigos que siempre dieron alegría, y acompañaron lo que hacía llenando la monotonía estudiantil con ironía, sarcasmo y diversión.

Finalmente quiero mencionar a mis profesores de carrera, en especial mis tutores de tesis Germán Erazo y José Quiroz, quienes a diario supieron fomentar el conocimiento práctico y teórico, dándose con las formas de dictar sus clases, en pro de nuestro aprendizaje.

Romero Pereira, Israel Alejandro.

# **Tabla de Contenidos**

| Caratula                               | 1  |
|----------------------------------------|----|
| Certificación                          | 2  |
| Reporte de Urkund                      | 3  |
| Responsabilidad de autoría             | 4  |
| Autorización de publicación            | 5  |
| Dedicatoria                            | 6  |
| Agradecimiento                         | 7  |
| Tabla de Contenidos                    | 10 |
| Índice de Tablas                       | 17 |
| Índice de Figuras                      | 22 |
| Índice de Ecuaciones                   | 31 |
| Resumen                                | 34 |
| Abstract                               | 35 |
| Marco Metodológico de la Investigación | 36 |
| Antecedentes Investigativos            | 36 |
| Planteamiento del Problema             | 38 |
| Descripción Detallada del Proyecto     | 39 |
| Justificación e Importancia            | 41 |
| Objetivos                              | 42 |
| Objetivo General                       |    |
| Objetivos Específicos                  | 43 |
| Metas                                  | 44 |
| Hipótesis                              | 44 |
| Variables de la Investigación          | 44 |

| Variable Independiente                                      | 44 |
|-------------------------------------------------------------|----|
| Variable Dependiente                                        | 47 |
| Metodología de Desarrollo del Proyecto                      | 50 |
| Marco Teórico                                               | 53 |
| Competencias de Karting                                     | 53 |
| Motores 2T en Karting                                       | 54 |
| Ciclo 2T                                                    | 55 |
| Ciclo Teórico Termodinámico 2T                              | 59 |
| Ciclo Real Termodinámico 2T                                 | 59 |
| Propiedades de los Motores de Dos Tiempos                   | 61 |
| Motor Vortex 60 cc                                          | 62 |
| Sistema de Carburación                                      | 64 |
| Sistemas de un Carburador                                   | 65 |
| Carburador Dell Orto PHBG                                   | 71 |
| Circuito de Entrada de Combustible y Nivel Constante        | 73 |
| Circuito Principal                                          | 74 |
| Circuito de Ralentí                                         | 76 |
| Otros Dispositivos del Carburador Dell Orto.                | 76 |
| Parámetros de Carburación                                   | 76 |
| Sistema de Encendido                                        | 82 |
| Encendido CDI                                               | 82 |
| Encendido Analógico Selettra PVL                            | 84 |
| Fase de Pre Ruptura                                         | 85 |
| Fase de Ruptura                                             | 85 |
| Fase de Arco                                                | 86 |
| Parámetros de Encendido                                     | 86 |
| Velocidad de Quemado Relación A/F $(WA/F)$                  | 86 |
| Volumen de Combustión Ideal (Vz)                            | 86 |
| Grados de Finalización de la Combustión Ideal ( $	heta z$ ) | 87 |
| Tensión de Ruptura                                          | 87 |
| Retraso del Tiempo en el Motor                              | 89 |
| Factores de Diseño que Afectan a la Detonación              | 90 |

| Rendimiento, Potencia y Par Motor                          | 91  |
|------------------------------------------------------------|-----|
| Presión Media Indicada (Pi)                                | 91  |
| Presión Media Indicada no Redondeada (Pt $*nt$ )           | 92  |
| Potencia Indicada (Ni)                                     | 92  |
| Presión Media Correspondiente a Perdidas Mecánicas (Pm)    | 93  |
| Presión Media Efectiva (Pe)                                | 93  |
| Rendimiento Mecánico (ηm)                                  | 94  |
| Potencia Efectiva (Ne)                                     | 94  |
| Par Efectivo (Me)                                          | 95  |
| Caballos por Litros de Cilindrada (Kwm3)                   | 95  |
| Eficiencia Térmica (ηt)                                    | 96  |
| Gasto Específico (gt)                                      | 96  |
| Rendimiento Indicado (η i)                                 | 97  |
| Banco de Pruebas (Dinamómetro Inercial)                    | 97  |
| Telemetría                                                 | 100 |
| Componentes de un Sistema de Telemetría                    | 101 |
| Mychron 5                                                  | 102 |
| Race Studio 3                                              | 105 |
| Parámetros de Telemetría                                   | 105 |
| Software Ricardo Wave                                      | 106 |
| Implementación, Optimización, Ajustes y Puesta a Punto del |     |
| Sistema de Carburación y Encendido del Motor 2T 60cc       | 111 |
| Equipos                                                    | 111 |
| Motor Combustión Interna Vortex 2T 60 cc                   | 111 |
| Volumen de la Cámara de Combustión                         | 112 |
| Squish                                                     | 113 |
| Geometría                                                  | 115 |
| Equipo de Medición Dinamómetro Inercial                    | 119 |
| Equipo de Medición Sistema de Encendido                    | 127 |
| Descripción del Instrumento                                | 128 |
| Descripción del Display                                    | 129 |
| Equipo de medición de telemetría                           | 130 |

| Software Ricardo Wave                                          | 135 |
|----------------------------------------------------------------|-----|
| Procedimiento de Puesta a Punto del Motor                      | 166 |
| Sistema de Carburación Motor Vortex 2T 60 cc                   | 168 |
| Análisis y Requerimientos del Sistema                          | 169 |
| Descripción del Sistema                                        | 174 |
| Sistema de encendido motor Vortex 2T 60 cc                     | 180 |
| Análisis y requerimientos del sistema                          | 181 |
| Descripción del sistema                                        | 183 |
| Matematización de optimización                                 | 186 |
| Sistema Carburación                                            | 186 |
| Sistema Encendido                                              | 192 |
| Implementación y Ajustes                                       | 218 |
| Sistema Carburación                                            | 218 |
| Sistema Encendido                                              | 220 |
| Pruebas, Simulación y Análisis Comparativo de la Investigación | 221 |
| Protocolo de pruebas                                           | 221 |
| Mecánicas                                                      | 221 |
| Eléctricas                                                     | 225 |
| Protocolo de pruebas de simulación                             | 228 |
| Valores Estándar                                               | 228 |
| Valores Modificados                                            | 231 |
| Selección de gráficas                                          | 234 |
| Selección de casos                                             | 236 |
| De Telemetría                                                  | 238 |
| Curvas Características                                         | 239 |
| Curvas Características Motor 2T 60 cc                          | 241 |
| Prueba N° 1                                                    | 241 |
| Curvas Características Motor 2T 60 Cc Variando Parámetros de   |     |
| Carburación                                                    | 243 |
| Prueba N° 2                                                    | 243 |
| Prueba N° 3                                                    | 246 |

| Prueba N° 4248                                                    |
|-------------------------------------------------------------------|
| Prueba N° 5251                                                    |
| Prueba N° 6254                                                    |
| Prueba N° 7256                                                    |
| Prueba N° 8259                                                    |
| Prueba N° 9262                                                    |
| Prueba N° 10264                                                   |
| Prueba N° 11267                                                   |
| Prueba N° 12269                                                   |
| Prueba N° 13272                                                   |
| Curvas Características Motor 2T 60 Cc Variando Parámetros de      |
| Encendido275                                                      |
| Prueba N° 14275                                                   |
| Prueba N° 15277                                                   |
| Prueba N° 16280                                                   |
| Prueba N° 17283                                                   |
| Prueba N° 18285                                                   |
| Prueba N° 19288                                                   |
| Obtención Relación Aire – Combustible (A/F)291                    |
| Relación Aire - Combustible en Carburación Estándar y Mejorada294 |
| Tabulación de Resultados295                                       |
| Tabulación Curvas de Rendimiento295                               |
| Tabulación de Resultados Variando Aguja de Mezcla295              |
| Tabulación de Resultados Variando Altura de Aguja                 |
| de Guillotina298                                                  |
| Tabulación de Resultados Variando Jet Principal con               |
| Emulsor AN 266301                                                 |
| Tabulación de Resultados Variando Jet Principal con               |
| Emulsor AN 262304                                                 |
| Tabulación de Resultados Variando el Tiempo de Encendido307       |
| Tabulación de Resultados Variando el Gap de Bujía310              |
| Tabulación relación aire – combustible313                         |
| Simulación de Obtención314                                        |

| Simulación del Motor 21 60 cc con Software Ricardo Wave        | 314 |
|----------------------------------------------------------------|-----|
| Curvas Características del Motor 2T 60 cc Estándar Obtenido de |     |
| Simulación                                                     | 321 |
| Gráficas de tiempo                                             | 321 |
| Gráficas de barrido                                            | 323 |
| Gráficas de promedio                                           | 326 |
| Curvas Características del Motor 2T 60 cc con Mejoras          |     |
| en Carburación y Encendido Obtenido de Simulación              | 328 |
| Gráficas de tiempo                                             | 328 |
| Gráficas de barrido                                            | 330 |
| Gráficas de promedio                                           | 333 |
| Parametrización de telemetría                                  | 335 |
| Trazado de Pista                                               | 335 |
| Obtención Telemetría con Motor 2T 60 cc Estándar               | 336 |
| Obtención Telemetría con Motor 2T 60 cc con Mejoras en         |     |
| Carburación y Encendido                                        | 338 |
| Análisis de Resultados                                         | 341 |
| Curvas Características                                         | 342 |
| Análisis de Resultados Relación Aire – Combustible             | 346 |
| Simulación Final Software Ricardo Wave                         | 348 |
| Parametrización de Telemetría                                  | 361 |
| Comparación entre Valores Experimentales, Indicativos y        |     |
| Calculados                                                     | 364 |
| Marco Administrativo                                           | 368 |
| Recursos                                                       | 368 |
| Recursos Humanos                                               | 368 |
| Recursos Tecnológicos                                          | 369 |
| Recursos Materiales                                            |     |
| Presupuesto y financiamiento                                   | 370 |
| Costos de pruebas de laboratorio                               | 370 |
| Costos de Pruebas de Pista                                     | 371 |
| Costo Total de la Investigación                                | 371 |
|                                                                |     |

| Conclusiones y Recomendaciones | 373 |
|--------------------------------|-----|
| Conclusiones                   | 373 |
| Recomendaciones                | 376 |
| Bibliografía                   | 377 |
| Anexos                         | 381 |

# Índice de Tablas

| Tabla 1 Sistemas de carburación                                                     | 45  |
|-------------------------------------------------------------------------------------|-----|
| Tabla 2 Sistema de encendido                                                        | 46  |
| Tabla 3   Parámetros característicos del motor                                      | 47  |
| Tabla 4 Metodología de desarrollo del proyecto                                      | 50  |
| Tabla 5 Especificaciones técnicas del motor Vortex 2T 60 cc                         | 64  |
| Tabla 6 Características del Mychron 5                                               | 104 |
| Tabla 7 Características del motor mini Vortex 2T 60 cc                              | 112 |
| Tabla 8 Características de las lumbreras del motor mini Vortex 2T 60 cc             | 117 |
| Tabla 9 Componentes del banco de pruebas                                            |     |
| Tabla 10 Datos específicos GTC 505                                                  | 127 |
| Tabla 11 Dimensiones de la aguja cónica Serie W23                                   | 170 |
| Tabla 12 Dimensiones de la aguja cónica Serie W23                                   | 171 |
| Tabla 13 Características del estator del sistema Selettra                           | 182 |
| Tabla 14 Análisis de bujía usada                                                    | 183 |
| Tabla 15 Datos de motor Vortex 60 cc                                                | 186 |
| Tabla 16 Tipos de flotadores                                                        | 192 |
| Tabla 17    Características de los tiempos del motor mini Vortex 2T 60 cc           | 196 |
| Tabla 18 Detalles del adelanto al encendido                                         | 198 |
| Tabla 19 Explicación del diagrama de mando del Motor Vortex 2T 60 cc                | 201 |
| Tabla 20         Valores de presión y temperatura de combustión a distintos lambdas | 208 |
| Tabla 21 Presión y temperatura de combustión y expansión a                          |     |
| distintos grado de elevación de presión                                             | 210 |
| Tabla 22 Cambios desarrollados en el sistema de carburación                         | 218 |
| Tabla 23 Cambios desarrollados en el sistema de encendido                           | 220 |
| Tabla 24 Parámetros de la simulación estándar                                       | 229 |
| Tabla 25 Casos de la simulación estándar                                            | 230 |
| Tabla 26 Parámetros de la simulación mejorada                                       | 231 |
| Tabla 27 Casos de la simulación mejorada                                            | 233 |
| Tabla 28 Potencia indicada de los 11 casos de la simulación estándar                | 237 |
| Tabla 29 Potencia indicada de los 11 casos de la simulación mejorada                | 237 |
| Tabla 30 Datos del Sistema de carburación y encendido para el                       |     |
| motor Vortex 2T 60 cc en condiciones estándar                                       | 241 |

| Tabla 31 Potencia vs rpm prueba N°1                                 | 242 |
|---------------------------------------------------------------------|-----|
| Tabla 32 Par motor vs rpm prueba N°1                                | 243 |
| Tabla 33 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador - Prueba Nº 2        | 244 |
| Tabla 34 Potencia vs rpm Prueba N°2                                 | 245 |
| Tabla 35 Par motor vs rpm Prueba N°2                                | 246 |
| Tabla 36 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador - Prueba Nº 3        | 246 |
| Tabla 37 Potencia vs rpm Prueba N° 3                                | 247 |
| Tabla 38 Par motor vs rpm Prueba N° 3                               | 248 |
| Tabla 39 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba N° 4        | 249 |
| Tabla 40 Potencia vs rpm Prueba N° 4                                | 250 |
| Tabla 41 Par motor vs rpm Prueba N° 4                               | 251 |
| Tabla 42 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba N° 5        | 252 |
| Tabla 43 Potencia vs rpm Prueba N° 5                                | 253 |
| Tabla 44 Par motor vs rpm Prueba N° 5                               | 254 |
| Tabla 45 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba Nº 6        | 254 |
| Tabla 46 Potencia vs rpm Prueba N° 6                                | 255 |
| Tabla 47 Par motor vs rpm Prueba N° 6                               | 256 |
| Tabla 48 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba Nº 7        | 257 |
| Tabla 49 Potencia vs rpm Prueba N° 7                                | 258 |
| Tabla 50 Par motor vs rpm Prueba N° 7                               | 259 |
| Tabla 51 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba Nº 8        | 260 |
| Tabla 52 Potencia vs rpm Prueba N° 8                                | 261 |
| Tabla 53 Par motor vs rpm Prueba N° 8                               | 262 |
| Tabla 54 Potencia vs rpm Prueba N° 9                                | 263 |
| Tabla 55 Par motor vs rpm Prueba N° 9                               | 264 |
| Tabla 56 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba Nº 10       | 264 |

| Tabla 57 Potencia vs rpm Prueba N° 10                               | 265 |
|---------------------------------------------------------------------|-----|
| Tabla 58 Par motor vs rpm Prueba N° 10                              | 266 |
| Tabla 59 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba N° 11       | 267 |
| Tabla 60 Potencia vs rpm Prueba N° 11                               | 268 |
| Tabla 61 Par motor vs rpm Prueba N° 11                              | 269 |
| Tabla 62 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba N° 12       | 270 |
| Tabla 63 Potencia vs rpm Prueba N° 12                               | 271 |
| Tabla 64 Par motor vs rpm Prueba N° 12                              | 272 |
| Tabla 65 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba N° 13       | 272 |
| Tabla 66 Potencia vs rpm Prueba N° 13                               | 273 |
| Tabla 67 Par motor vs rpm Prueba N° 13                              | 274 |
| Tabla 68 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba N° 14       | 275 |
| Tabla 69 Potencia vs rpm Prueba N° 14                               | 276 |
| Tabla 70 Par motor vs rpm Prueba N° 14                              | 277 |
| Tabla 71 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba N° 15       | 278 |
| Tabla 72 Potencia vs rpm Prueba N° 15                               | 279 |
| Tabla 73 Par motor vs rpm Prueba N° 15                              | 280 |
| Tabla 74 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba Nº 16       | 280 |
| Tabla 75 Potencia vs rpm Prueba N° 16                               | 281 |
| Tabla 76 Par motor vs rpm Prueba N° 16                              | 282 |
| Tabla 77 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba N° 17       | 283 |
| Tabla 78 Potencia vs rpm Prueba N° 17                               | 284 |
| Tabla 79 Par motor vs rpm Prueba N° 17                              | 285 |
| Tabla 80 Datos del Sistema de carburación y encendido para el motor |     |
| Vortex 2T 60 cc con variación en el carburador – Prueba N° 18       | 286 |
| Tabla 81 Potencia vs rpm Prueba N° 18                               | 287 |
| Tabla 82 Par motor vs rpm Prueba N° 18                              | 200 |

| Tabla 83 Datos del Sistema de carburación y encendido para el motor      |     |
|--------------------------------------------------------------------------|-----|
| Vortex 2T 60 cc con variación en el carburador – Prueba N° 19            | 288 |
| Tabla 84 Potencia vs rpm Prueba N° 19                                    | 289 |
| Tabla 85 Par motor vs rpm Prueba N° 19                                   | 290 |
| Tabla 86 Velocidad del aire (ms)                                         | 292 |
| Tabla 87 Resultados del caudal de aire (m3s)                             | 293 |
| Tabla 88 Resultado Caudal de combustible (m3s)                           | 293 |
| Tabla 89 Resultado de flujo másico de aire (kgs)                         | 293 |
| Tabla 90 Resultado de flujo másico de combustible (kgs)                  | 294 |
| Tabla 91 Relación aire – combustible (A/F)                               | 294 |
| Tabla 92 Resultados de par motor de la prueba 2, prueba 3 y prueba 4     | 297 |
| Tabla 93 Resultados de potencia de la prueba 5, prueba 6 y prueba 7      | 299 |
| Tabla 94 Resultados de par motor de la prueba 5, prueba 6 y prueba 7     | 300 |
| Tabla 95 Resultados de potencia de la prueba 8, prueba 9 y prueba 10     | 302 |
| Tabla 96 Resultados de par motor de la prueba 8, prueba 9 y prueba 10    | 303 |
| Tabla 97 Resultados de potencia de la prueba 11, prueba 12 y prueba 13   | 305 |
| Tabla 98 Resultados de par motor de la prueba 11, prueba 12 y prueba 13  | 306 |
| Tabla 99 Resultados de potencia de la prueba 14, prueba 15 y prueba 16   | 308 |
| Tabla 100 Resultados de par motor de la prueba 14, prueba 15 y prueba 16 | 309 |
| Tabla 101 Resultados de potencia de la prueba 17, prueba 18 y prueba 19  | 311 |
| Tabla 102 Resultados de par motor de la prueba 17, prueba 18 y prueba 19 | 312 |
| Tabla 103 Relación aire – combustible promedio                           | 313 |
| Tabla 104 Resultados de la simulación del motor estándar                 | 314 |
| Tabla 105 Resultados de la simulación del motor modificado               | 317 |
| Tabla 106 Parámetros obtenidos de la Manga Nº 1                          | 337 |
| Tabla 107 Datos del Sistema de carburación y encendido para el motor     |     |
| Vortex 2T 60 cc en condiciones mejoradas                                 | 339 |
| Tabla 108 Parámetros obtenidos de la Manga Nº 2                          | 340 |
| Tabla 109 Parámetros de motor utilizados en la tesis                     | 342 |
| Tabla 110 Potencia del motor estándar y del motor modificado             |     |
| Tabla 111 Torque del motor estándar y del motor modificado               | 345 |
| Tabla 112 Porcentaje de mejora en potencia y torque del motor            | 346 |
| Tabla 113 Cantidad de masa de cada parte de aire y combustible           | 347 |

| Tabla 114 Consumo de combustible al freno de los motores de                 |     |
|-----------------------------------------------------------------------------|-----|
| las dos simulaciones                                                        | 352 |
| Tabla 115 Eficiencia total entregada de los motores de las dos simulaciones | 354 |
| Tabla 116 Potencia al freno de los motores de las dos simulaciones          | 356 |
| Tabla 117 Torque al freno de los motores de las dos simulaciones            | 358 |
| Tabla 118 Sensor de oxígeno de los motores de las dos simulaciones          | 360 |
| Tabla 119 Velocidad y rpm en pruebas telemétricas de la manga N° 1 y 2      | 362 |
| Tabla 120 Porcentaje de mejora en velocidad lineal y angular del motor      | 362 |
| Tabla 121 Par motor y potencia en pruebas telemétricas de la manga N° 1 y 2 | 363 |
| Tabla 122 Porcentaje de mejora en potencia y torque del motor               | 364 |
| Tabla 123 Parámetros característicos en las distintas pruebas realizadas    | 365 |
| Tabla 124 Recursos humanos                                                  | 368 |
| Tabla 125 Recursos tecnológicos                                             | 369 |
| Tabla 126 Recursos materiales                                               | 370 |
| Tabla 127 Costos de pruebas de laboratorio                                  | 371 |
| Tabla 128 Costo de pruebas de pista                                         | 371 |
| Tabla 129 Costo total del proyecto                                          | 372 |
|                                                                             |     |

# Índice de Figuras

| Figura 1 Esquema del planteamiento d    | lel problema3                       | 9  |
|-----------------------------------------|-------------------------------------|----|
| Figura 2 Fases de un motor dos tiemp    | os de barrido por cárter5           | 6  |
| Figura 3 Primer tiempo del motor 2T     | 5                                   | 7  |
| Figura 4 Segundo tiempo motor 2T        | 5                                   | 8  |
| Figura 5 Diagrama de P-V motor 2 ties   | mpos teórico5                       | 9  |
| Figura 6 Diagrama de trabajo motor 2    | tiempos real6                       | 0  |
| Figura 7 Foto térmica de un motor de    | 2T en plena carga térmica6          | 2  |
| Figura 8 Motor Mini Rok 2T 60 cc        | 6                                   | 3  |
| Figura 9 Mecanismo de nivel constante   | ə6                                  | 5  |
| Figura 10 Estrangulador (E) para el al  | ranque del motor en frío6           | 6  |
| Figura 11 Esquema del dispositivo de    | alimentación de ralentí6            | 7  |
| Figura 12 Detalle funcionamiento de lo  | s orificios de progresión bypass6   | 8  |
| Figura 13 Circuito de marcha normal d   | e un carburador SOLEX7              | '0 |
| Figura 14 Bomba de aceleración          | 7                                   | '1 |
| Figura 15 Carburador de venturi varial  | ole de accionamiento mecánico7      | 2  |
| Figura 16 Vista interior del carburador | Dell Orto7                          | '3 |
| Figura 17 Componentes carburador De     | ell Orto <b>7</b>                   | '4 |
| Figura 18 Circuito principal en un carb | urador Dell Orto <b>7</b>           | '5 |
| Figura 19 Configuración básica de un    | carburador elemental7               | '8 |
| Figura 20 Sistema CDI y sus partes      | 8                                   | 3  |
| Figura 21 Sistema de encendido Selet    | tra8                                | 4  |
| Figura 22 Evolución temporal del volta  | <i>je y de la intensidad</i> en un  |    |
| sistema de encendido Selettra           | 8                                   | 5  |
| Figura 23 Variación del campo eléctric  | o de ruptura en función de la       |    |
| presión del gas                         | 8                                   | 8  |
| Figura 24 Variación del campo eléctric  | o de ruptura en función del         |    |
| avance de encendido                     | 8                                   | 9  |
| Figura 25 Dinamómetro inercial MWD      | RK600i9                             | 8  |
| Figura 26 Curvas de par y potencia ob   | tenido en un dinamómetro inercial10 | 0  |
| Figura 27 Diagrama de un sistema de     | telemetría10                        | 1  |
| Figura 28 Mychron 5                     | 10                                  | 3  |
| Figura 29 Estructura del Mychron 5      | 10                                  | 13 |

| Figura | 30 | Logo Race Studio 3                                          | 105 |
|--------|----|-------------------------------------------------------------|-----|
| Figura | 31 | Logo de Ricardo WAVE                                        | 107 |
| Figura | 32 | Configuración de Ricardo WAVE del motor GTDI                | 109 |
| Figura | 33 | WavePost interfaz                                           | 110 |
| Figura | 34 | Motor Vortex 2T 60 cc                                       | 111 |
| Figura | 35 | Volumen del inserto para colocar la bureta graduada         | 113 |
| Figura | 36 | Dimensiones del squish                                      | 114 |
| Figura | 37 | Filtro de aire                                              | 115 |
| Figura | 38 | Escape motor Vortex                                         | 116 |
| Figura | 39 | Cotas lumbreras del cilindro Vortex 2T                      | 116 |
| Figura | 40 | Cotas lumbreras del cilindro Vortex 2T                      | 117 |
| Figura | 41 | Cotas del bulón                                             | 118 |
| _      |    | Cotas de la biela                                           |     |
| Figura | 43 | Cotas del cigüeñal                                          | 119 |
| Figura | 44 | Graficas de Potencia y Torque vs rpm                        | 120 |
| Figura | 45 | Instalador software GS                                      | 121 |
| Figura | 46 | Icono del software GS                                       | 121 |
| Figura | 47 | Configuración del software GS                               | 122 |
|        |    | Interfaz de adquisición                                     |     |
| Figura | 49 | Interfaz de gráficas                                        | 125 |
| Figura | 50 | GTC 505 analizador de encendido                             | 128 |
| Figura | 51 | Display configuración de ciclos                             | 129 |
| Figura | 52 | Display de configuración de modos de operación              | 129 |
| Figura | 53 | Componentes de la Mychron 5                                 | 131 |
| Figura | 54 | Conexión Race Studio a la Mychron 5                         | 133 |
| Figura | 55 | Interfaz de análisis de parámetros de motor del Race Studio | 134 |
| Figura | 56 | Interfaz de ajustes del motor de Race Studio                | 134 |
| Figura | 57 | Elementos de la simulación independientes                   | 136 |
| Figura | 58 | Puertos del cilindro y cárter                               | 136 |
| Figura | 59 | Configuración de los puertos del cilindro                   | 137 |
| Figura | 60 | Simulación con elementos conectados                         | 137 |
| Figura | 61 | Pestaña de configuración del ambiente de entrada            | 138 |
| Figura | 62 | Configuración del estado del fluido                         | 138 |

| Figura 63 Estadísticas de temperatura de las principales estaciones                |     |
|------------------------------------------------------------------------------------|-----|
| de Ecuador                                                                         | 139 |
| Figura 64 Presión promedio de las principales provincias del Ecuador               | 139 |
| Figura 65 Prismas rectangulares parte del dibujo del filtro de aire                | 140 |
| Figura 66 Filtro de aire final en interfaz complex                                 | 141 |
| Figura 67 Tubo de escape en interfaz complex                                       |     |
| Figura 68 Tubo de escape finalizado                                                | 142 |
| Figura 69 Simulación con componentes de WAVE Build 3D                              | 143 |
| Figura 70 Conjunto carburador                                                      |     |
| Figura 71 Estructura del motor                                                     | 144 |
| Figura 72 Conjunto del sistema de escape                                           |     |
| Figura 73 Pestaña del modelo de simulación                                         |     |
| Figura 74 Pestaña de configuración del "Ducto 1"                                   | 146 |
| Figura 75 Valores de emisividad                                                    |     |
| Figura 76 Propiedades de los materiales                                            |     |
| Figura 77 Configuración del efecto final del "Ducto 1"                             | 148 |
| Figura 78 Configuración de las condiciones de perímetro del "Ducto 1"              | 148 |
| Figura 79 Configuración del estado del fluido de la lumbrera de transferencia      | 150 |
| Figura 80 Configuración de las condiciones de perímetro del Ducto 2                | 151 |
| Figura 81 Configuración del estado de fluido del restrictor de escape              | 151 |
| Figura 82 Configuración de las condiciones de perímetro del restrictor de escape   |     |
| Figura 83 Configuración del inyector                                               | 152 |
| Figura 84 Configuración del perfil del coeficiente de flujo de la válvula mariposa | 153 |
| Figura 85 Configuración del perfil de área y masa de la válvula reed               | 154 |
| Figura 86 Configuración del perfil del coeficiente de flujo de la válvula reed     | 154 |
| Figura 87 Estructura de conexión de las lumbreras de transferencia                 | 155 |
| Figura 88 Configuración del perfil del coeficiente de flujo de la válvula de área  | 156 |
| Figura 89 Configuración del perfil de área efectiva de las válvulas                |     |
| de transferencia 1                                                                 | 157 |
| Figura 90 Configuración del perfil de área efectiva de las válvulas                |     |
| de transferencia 3 y 4                                                             | 158 |
| Figura 91 Configuración del cilindro                                               | 158 |
| Figura 92 Pestaña de configuración de los submodelos del cilindro                  | 159 |
| Figura 03 Gráfica do SI Wioho Combustión                                           | 160 |

| Figura 94 Configuración del submodelo de transferencia de calor por convección |     |
|--------------------------------------------------------------------------------|-----|
| Woschni                                                                        | 160 |
| Figura 95 Configuración de las condiciones de perímetro del cárter             | 161 |
| Figura 96 Configuración del submodelo de transferencia de                      |     |
| calor "Colburn Analogy"                                                        | 162 |
| Figura 97 Conexiones del "bloque motor"                                        | 162 |
| Figura 98 Configuración del "bloque motor"                                     | 163 |
| Figura 99 Fórmula de la correlación Chen-Flynn fricción del motor              | 164 |
| Figura 100 Configuración de la correlación Chen-Flynn fricción del motor       | 164 |
| Figura 101 Curva cúbica del barrido de motor                                   | 165 |
| Figura 102 Configuración de las propiedades de la simulación                   | 166 |
| Figura 103 Filtro de combustible de un kart                                    | 167 |
| Figura 104 Aguja cónica Serie W23                                              | 169 |
| Figura 105 Rango de funcionamiento acorde a la apertura de la guillotina       | 170 |
| Figura 106 Flotador 8gr para carburador PHBG 18 BS                             | 172 |
| Figura 107 Forma de medir nivel de flotadores                                  | 172 |
| Figura 108 Ángulo de instalación del carburador                                | 173 |
| Figura 109 Emulsor AN266 del carburador PHBG 18 BS                             | 173 |
| Figura 110 Conexión carburador – motor                                         | 174 |
| Figura 111 Efecto venturi carburador Dell Orto                                 | 175 |
| Figura 112 Carburador Dell Orto PHBG 18BS                                      | 176 |
| Figura 113 Circuito de arranque independiente en frío carburador PHBG 18 BS    | 177 |
| Figura 114 Circuito de ralentí carburador PHBG 18 BS                           | 178 |
| Figura 115 Circuito de progresión Dell Orto PHBG 18 BS                         | 179 |
| Figura 116 Circuito de aceleración máxima                                      | 180 |
| Figura 117 Influencia de la separación de electrodos con respecto a la tensión | 181 |
| Figura 118 Dimensiones del estator PVL                                         | 184 |
| Figura 119 Dimensiones del rotor                                               | 185 |
| Figura 120 Curva de avance de encendido motor Vortex 2T 60 cc                  | 185 |
| Figura 121 Diagrama de mando Motor Vortex 2T 60 cc                             | 200 |
| Figura 122 Diagrama de Presión vs Volumen Motor Vortex 2T 60 cc                | 210 |
| Figura 123 Motor mini Vortex 2T embancado en el dinamómetro inercial           | 221 |
| Figura 124 Motor mini Vortex 2T montado con sus elementos complementarios      | 222 |
| Figura 125 Panel de control del dinamómetro inercial                           | 223 |

| Figura | 126 | Partes del panel de control del dinamómetro inercial           | 223 |
|--------|-----|----------------------------------------------------------------|-----|
| Figura | 127 | Datos latentes del motor vistos en la Mychron 5                | 224 |
| Figura | 128 | Tacómetro del software dinamométrico                           | 224 |
| Figura | 129 | Gráfica potencia-rpm en la interfaz del software dinamométrico | 225 |
| Figura | 130 | Medición del tiempo de quemado con el GTC -505                 | 226 |
| Figura | 131 | Adelanto al encendido reflejado en el reloj comparador         | 227 |
| Figura | 132 | Comparación entre curvas potencia-rpm de distintos ensayos     | 227 |
| Figura | 133 | Simulación final                                               | 228 |
| Figura | 134 | Cilindro con sus gráficas seleccionadas                        | 234 |
| Figura | 135 | Selección de gráficas de barrido para el bloque                | 235 |
| Figura | 136 | Configuración de las gráficas promedio                         | 236 |
| Figura | 137 | Curva de potencia motor Vortex 2T 60cc                         | 240 |
| Figura | 138 | Curva de par del motor Vortex 2T 60 cc                         | 241 |
| Figura | 139 | Curva de potencia Prueba N°1                                   | 242 |
| Figura | 140 | Curva de par motor prueba N° 1                                 | 243 |
| Figura | 141 | Curva de potencia Prueba N°2                                   | 244 |
| Figura | 142 | Curva de par motor Prueba N° 2                                 | 245 |
| Figura | 143 | Curva de potencia Prueba N° 3                                  | 247 |
| Figura | 144 | Curva de par motor prueba N° 3                                 | 248 |
| Figura | 145 | Curva de potencia Prueba N° 4                                  | 249 |
| Figura | 146 | Curva de par motor prueba N° 4                                 | 250 |
| Figura | 147 | Curva de potencia Prueba N° 5                                  | 252 |
| Figura | 148 | Curva de par motor prueba N° 5                                 | 253 |
| Figura | 149 | Curva de potencia Prueba N° 6                                  | 255 |
| Figura | 150 | Curva de par motor prueba N° 6                                 | 256 |
| Figura | 151 | Curva de potencia Prueba N°7                                   | 257 |
| Figura | 152 | Curva de par motor prueba N° 7                                 | 258 |
| Figura | 153 | Curva de potencia Prueba N°8                                   | 260 |
| Figura | 154 | Curva de par motor prueba N° 8                                 | 261 |
| Figura | 155 | Curva de potencia Prueba N° 9                                  | 262 |
| Figura | 156 | Curva de par motor prueba N° 9                                 | 263 |
| Figura | 157 | Curva de potencia Prueba N°10                                  | 265 |
| Figura | 158 | Curva de par motor prueba N° 10                                | 266 |
| Figura | 159 | Curva de potencia Prueba N°11                                  | 268 |

| Figura 160 Curva de par motor prueba N° 11                                  | 269              |
|-----------------------------------------------------------------------------|------------------|
| Figura 161 Curva de potencia Prueba N° 12                                   | 270              |
| Figura 162 Curva de par motor prueba N° 12                                  | 271              |
| Figura 163 Curva de potencia Prueba N°13                                    | 273              |
| Figura 164 Curva de par motor prueba N° 13                                  | 274              |
| Figura 165 Curva de potencia Prueba N° 14                                   | 276              |
| Figura 166 Curva de par motor prueba N° 14                                  | 277              |
| Figura 167 Curva de potencia Prueba N° 15                                   | 278              |
| Figura 168 Curva de par motor prueba N° 15                                  | 279              |
| Figura 169 Curva de potencia Prueba N°16                                    | 281              |
| Figura 170 Curva de par motor prueba N° 16                                  | 282              |
| Figura 171 Curva de potencia Prueba N°17                                    | 284              |
| Figura 172 Curva de par motor prueba N° 17                                  | 285              |
| Figura 173 Curva de potencia Prueba N° 18                                   | 286              |
| Figura 174 Curva de par motor prueba N° 18                                  | 287              |
| Figura 175 Curva de potencia Prueba N°19                                    | 289              |
| Figura 176 Curva de par motor prueba N° 19                                  | 290              |
| Figura 177 Comparación de potencia de la prueba 2, prueba 3                 |                  |
| y prueba 4 vs rpm                                                           | 295              |
| Figura 178 Resultados de potencia de la prueba 2, prueba 3 y prueba 4       | 296              |
| Figura 179 Resultados comparativos de potencia variando aguja de mezcla.    | 296              |
| Figura 180 Comparación del par motor de la prueba 2, prueba 3 y             |                  |
| prueba 4 vs rpm                                                             | 297              |
| Figura 181 Resultados comparativos de par motor variando aguja de mezcla    | 298              |
| Figura 182 Comparación de potencia de la prueba 5, prueba 6 y               |                  |
| prueba 7 vs rpm                                                             | 298              |
| Figura 183 Resultados comparativos de potencia variando aguja de guillotina | <del>3</del> 299 |
| Figura 184 Comparación del par motor de la prueba 5, prueba 6 y             |                  |
| prueba 7 vs rpm                                                             | 300              |
| Figura 185 Resultados comparativos de par motor variando aguja de guillotir | na <b>301</b>    |
| Figura 186 Comparación de potencia de la prueba 8, prueba 9 y               |                  |
| prueba 10 vs rpm                                                            | 301              |
| Figura 187 Resultados comparativos de potencia variando jet principal       | 302              |

| Figura 188 Comparación del par motor de la prueba 8, prueba 9 y             |     |
|-----------------------------------------------------------------------------|-----|
| prueba 10 vs rpm                                                            | 303 |
| Figura 189 Resultados comparativos de par motor variando jet principal      | 304 |
| Figura 190 Comparación de potencia de la prueba 11, prueba 12               |     |
| y prueba 13 vs rpm                                                          | 304 |
| Figura 191 Resultados comparativos de potencia emulsor AN 262 variando jet  | 305 |
| Figura 192 Comparación del par motor de la prueba 11, prueba 12 y           |     |
| prueba 13 vs rpm                                                            | 306 |
| Figura 193 Resultados comparativos de par motor emulsor AN 262              |     |
| variando jet principal                                                      | 307 |
| Figura 194 Comparación de potencia de la prueba 14, prueba 15               |     |
| y prueba 16 vs rpm                                                          | 307 |
| Figura 195 Resultados comparativos de potencia variando tiempo de encendido | 308 |
| Figura 196 Comparación del par motor de la prueba 14, prueba 15             |     |
| y prueba 16 vs rpm                                                          | 309 |
| Figura 197 Resultados comparativos de par motor variando                    |     |
| tiempo de encendido                                                         | 310 |
| Figura 198 Comparación de potencia de la prueba 17, prueba 18               |     |
| y prueba 19 vs rpm                                                          | 310 |
| Figura 199 Resultados comparativos de potencia variando gap de bujía        | 311 |
| Figura 200 Comparación del par motor de la prueba 17, prueba 18             |     |
| y prueba 19 vs rpm                                                          | 312 |
| Figura 201 Resultados comparativos de par motor variando gap de bujía       | 313 |
| Figura 202 Relación aire – combustible promedio                             | 314 |
| Figura 203 Diagrama P-V del cilindro de la simulación estándar              | 321 |
| Figura 204 Temperatura del cilindro vs ángulo del cigüeñal de la simulación |     |
| estándar                                                                    | 322 |
| Figura 205 Presión del cilindro vs ángulo del cigüeñal de la                |     |
| simulación estándar                                                         | 322 |
| Figura 206 Consumo de combustible al freno vs velocidad angular             |     |
| del motor de la simulación estándar                                         | 323 |
| Figura 207 Eficiencia total entregada vs velocidad angular del motor de la  |     |
| simulación                                                                  | 323 |

| Figura 208 Potencia al freno vs velocidad angular del motor de la simulación |     |
|------------------------------------------------------------------------------|-----|
| estándar                                                                     | 324 |
| Figura 209 Torque al freno vs velocidad angular del motor de                 |     |
| la simulación estándar                                                       | 324 |
| Figura 210 Potencia indicada vs velocidad angular del motor de la simulación | 325 |
| Figura 211 Torque indicado vs velocidad angular del motor                    |     |
| de la simulación estándar                                                    | 325 |
| Figura 212 Lambda vs velocidad angular del motor de la simulación estándar   | 326 |
| Figura 213 Estructura de la ruta a tomar por las variantes en las            |     |
| gráficas promedio                                                            | 326 |
| Figura 214 Presión de la simulación estándar                                 | 327 |
| Figura 215 Temperatura de la simulación estándar                             | 327 |
| Figura 216 Diagrama P-V del cilindro de la simulación modificada             | 328 |
| Figura 217: Temperatura del cilindro vs ángulo del cigüeñal de la simulación | 329 |
| Figura 218 Presión del cilindro vs ángulo del cigüeñal de la                 |     |
| simulación modificada                                                        | 329 |
| Figura 219 Consumo de combustible al freno vs velocidad angular              |     |
| del motor de la simulación modificada                                        | 330 |
| Figura 220 Eficiencia total entregada vs velocidad angular del motor         |     |
| de la simulación modificada                                                  | 330 |
| Figura 221 Potencia al freno vs velocidad angular del motor de               |     |
| la simulación modificada                                                     | 331 |
| Figura 222 Torque al freno vs velocidad angular del motor de                 |     |
| la simulación modificada                                                     | 331 |
| Figura 223 Potencia indicada vs velocidad angular del motor de la simulación |     |
| modificada                                                                   | 332 |
| Figura 224 Torque indicado vs velocidad angular del motor de                 |     |
| la simulación modificada                                                     | 332 |
| Figura 225 Lambda vs velocidad angular del motor de la                       |     |
| simulación modificada                                                        | 333 |
| Figura 226 Estructura de la ruta a tomar por las variantes en                |     |
| las gráficas promedio                                                        | 333 |
| Figura 227 Presión de la simulación modificada                               | 334 |
| Figura 228 Temperatura de la simulación modificada                           | 334 |

| Figura 229 Circuito de pruebas telemétricas                                     | 335 |
|---------------------------------------------------------------------------------|-----|
| Figura 230 Tiempo acorde a la manga N° 1                                        | 336 |
| Figura 231 Velocidad (km/h) y revoluciones del motor (rpm) – Manga N° 1         | 337 |
| Figura 232 Curva de potencia y par motor en tiempo de vuelta – Manga N° 1       | 338 |
| Figura 233 Tiempos acorde a la manga N° 2                                       | 339 |
| Figura 234 Velocidad (km/h) y revoluciones del motor (rpm) – Manga N° 2         | 340 |
| Figura 235 Curva de potencia y par motor en tiempo de vuelta – Manga N° 2       | 341 |
| Figura 236 Curva dinamométrica comparativa entre potencia                       |     |
| del motor estándar y motor con variación de carburación y encendido             | 343 |
| Figura 237 Curva dinamométrica comparativa entre torque del motor               |     |
| estándar y motor con variación de carburación y encendido                       | 345 |
| Figura 238 Diagrama P-V de las dos simulaciones                                 | 349 |
| Figura 239 Temperatura del cilindro vs ángulo del cigüeñal                      |     |
| de las dos simulaciones                                                         | 350 |
| Figura 240 Presión del cilindro vs ángulo del cigüeñal de las dos simulaciones  | 351 |
| Figura 241 Consumo de combustible al freno vs velocidad angular                 |     |
| del motor de las dos simulaciones                                               | 352 |
| Figura 242 Eficiencia total entregada vs velocidad angular del                  |     |
| motor de las dos simulaciones                                                   | 354 |
| Figura 243 Potencia al freno vs velocidad angular del motor de las              |     |
| dos simulaciones                                                                | 356 |
| Figura 244 Torque al freno vs velocidad angular del motor de las                |     |
| dos simulaciones                                                                | 357 |
| Figura 245 Potencia indicada vs velocidad angular del motor de las dos          |     |
| simulaciones                                                                    | 359 |
| Figura 246 Torque indicado vs velocidad angular del motor de las dos            |     |
| simulaciones                                                                    | 359 |
| Figura 247 Lambda vs velocidad angular del motor de las dos simulaciones        | 360 |
| Figura 248 Curva telemétrica comparativa de velocidad y rpm                     |     |
| de la manga N° 1 y 2                                                            | 361 |
| Figura 249 Curva telemétrica comparativa de par motor y potencia                |     |
| de la manga N° 1 y 2                                                            | 363 |
| Figura 250 Resultados de potencia en los distintos tipos de pruebas realizados  | 365 |
| Figura 251 Resultados de par motor en los distintos tipos de pruebas realizados | 366 |

# Índice de Ecuaciones

| Ecuación 1 Gasto de combustible                                                | 78  |
|--------------------------------------------------------------------------------|-----|
| Ecuación 2 Gasto de aire                                                       | 79  |
| Ecuación 3 Coeficiente de compresibilidad del aire                             | 80  |
| Ecuación 4 Diámetro del carburador                                             | 80  |
| Ecuación 5 Diámetro del carburador 2° forma                                    | 81  |
| Ecuación 6 Diámetro del difusor                                                | 81  |
| Ecuación 7 Velocidad de la mezcla en el difusor                                | 81  |
| Ecuación 8 Velocidad media del pistón                                          | 81  |
| Ecuación 9 Velocidad de quemado relación A/F                                   | 86  |
| Ecuación 10 Volumen de combustión                                              | 86  |
| Ecuación 11 Grados de finalización de la combustión ideal                      | 87  |
| Ecuación 12 Tensión de ruptura                                                 | 87  |
| Ecuación 13 Retraso del tiempo en el motor                                     | 89  |
| Ecuación 14 Retraso del tiempo en el motor 2° forma                            | 90  |
| Ecuación 15 Presión media indicada                                             | 91  |
| Ecuación 16 Presión media indicada no redondeada                               | 92  |
| Ecuación 17 Potencia indicada                                                  | 92  |
| Ecuación 18 Presión media correspondiente a pérdidas mecánicas                 | 93  |
| Ecuación 19 Presión media efectiva                                             | 93  |
| Ecuación 20 Rendimiento mecánico                                               | 94  |
| Ecuación 21 Potencia efectiva                                                  | 94  |
| Ecuación 22 Par efectivo                                                       | 95  |
| Ecuación 23 Caballos por litros de cilindrada                                  | 95  |
| Ecuación 24 Eficiencia térmica                                                 | 96  |
| Ecuación 25 Gasto específico                                                   | 96  |
| Ecuación 26 Rendimiento indicado                                               | 97  |
| Ecuación 27 Factor de seguridad                                                | 122 |
| Ecuación 28 Diámetro referencial de las válvulas de área efectiva del cárter   | 149 |
| Ecuación 29 Diámetro referencial de las válvulas de área efectiva del cilindro | 149 |
| <b>Ecuación 30</b> Velocidad en el difusor (vd.)                               | 187 |

| Ecuación 31 | Velocidad media en el pistón (vp)                                  | 187 |
|-------------|--------------------------------------------------------------------|-----|
| Ecuación 32 | Diámetro del difusor optimo                                        | 188 |
| Ecuación 33 | Revoluciones de funcionamiento óptimo (rpm)                        | 188 |
| Ecuación 34 | Diámetro del carburador (mm)                                       | 189 |
| Ecuación 35 | Calibre del surtidor principal o shiglor de alta (Øsurtidor)       | 190 |
| Ecuación 36 | Calibre del surtidor principal                                     | 191 |
| Ecuación 37 | Velocidad de quemado relación A/F (WA/F)                           | 192 |
| Ecuación 38 | Volumen de combustión ideal (Vz)                                   | 193 |
| Ecuación 39 | Grados de finalización de la combustión ideal $(\theta z)$         | 193 |
| Ecuación 40 | Volumen efectivo del cilindro (vH')                                | 194 |
| Ecuación 41 | Volumen del cilindro (vH)                                          | 194 |
| Ecuación 42 | Relación de compresión efectivo ( $Rc' \rightarrow \varepsilon'$ ) | 195 |
| Ecuación 43 | Relación de compresión $(Rc \rightarrow \varepsilon)$              | 196 |
| Ecuación 44 | Ángulo del cigüeñal                                                | 196 |
| Ecuación 45 | Densidad de la carga de admisión ρο                                | 201 |
| Ecuación 46 | Presión al final de la admisión Pα                                 | 202 |
| Ecuación 47 | Coeficiente de barrido (ηs)                                        | 202 |
| Ecuación 48 | Temperatura al terminar admisión (Ta)                              | 203 |
| Ecuación 49 | Coeficiente de llenado (ηv)                                        | 204 |
| Ecuación 50 | Presión de compresión                                              | 204 |
| Ecuación 51 | Temperatura de compresión                                          | 205 |
| Ecuación 52 | Presión de combustión                                              | 205 |
| Ecuación 53 | Presión máxima del ciclo (Pz')                                     | 206 |
| Ecuación 54 | Temperatura de combustión (Tz)                                     | 207 |
| Ecuación 55 | Presión al finalizar expansión (Pb)                                | 208 |
| Ecuación 56 | Temperatura de expansión (Tb)                                      | 209 |
| Ecuación 57 | Presión media indicada (Pi)                                        | 211 |
| Ecuación 58 | Presión media indicada no redondeada (Pt * nt)                     | 211 |
| Ecuación 59 | Potencia indicada (Ni)                                             | 212 |
| Ecuación 60 | Presión media correspondiente a perdidas mecánicas (Pm)            | 213 |
| Ecuación 61 | Presión media efectiva (Pe)                                        | 213 |
|             | Rendimiento mecánico (ηm)                                          |     |
|             | Potencia efectiva (Ne)                                             |     |

| Ecuación 64 Par efectivo (Me)                        | 215          |
|------------------------------------------------------|--------------|
| Ecuación 65 Caballos por litros de cilindrada (Kwm3) | 215          |
| Ecuación 66 Eficiencia térmica (ηt)                  | 21           |
| Ecuación 67 Gasto específico (gt)                    | 216          |
| Ecuación 68 Rendimiento indicado (ηί)                | 217          |
| Ecuación 69 Flujo másico de combustible (kgs)        | 2 <b>9</b> 1 |
| Ecuación 70 Flujo másico de aire (kgs)               | 2 <b>9</b> 1 |
| Ecuación 71 Caudal de aire (m3s)                     | 292          |
| Ecuación 72 Relación aire – combustible (A/F)        | 294          |

#### Resumen

El proyecto de investigación trata del análisis de los parámetros de carburación y encendido de un motor mini Vortex 2T 60 cc a través de telemetría, cálculos matemáticos. pruebas dinamométricas y simulación en el software Ricardo WAVE. La búsqueda de la exacta mezcla aire-combustible y el punto de encendido, permitirán elevar la potencia del motor, torque y rendimientos (parámetros característicos). La carburación se logra afectar con los shiglores, tubos de emulsión y tornillos de mezcla y aire; mientras que el encendido se afecta con la separación de los electrodos de la bujía, adelanto al encendido, tipo de bujía y bobina. Las pruebas dinamométricas permitirán observar los cambios en la potencia del motor de manera práctica, la telemetría en cambio realizará las pruebas de ruta con el piloto certificado estando ya en carrera, y la simulación software desarrollará pruebas teóricas (de la misma forma que los cálculos matemáticos) identificando qué factores se deben alterar para aumentar la potencia antes de hacer los cambios físicamente. La telemetría, las pruebas dinamométricas y la simulación en Ricardo WAVE arrojan gráficas de parámetros característicos del motor, las cuales serán analizadas y comparadas para determinar las diferencias entre pruebas estándares y pruebas con modificaciones, y así mejorar el desempeño del motor en práctica de pista.

# **PALABRAS CLAVES:**

- CARBURACIÓN
- ENCENDIDO
- PRUEBAS DINAMOMÉTRICAS
- TELEMETRÍA
- SOFTWARE RICARDO WAVE

#### **Abstract**

The research project is about analysis of carburetion and ignition parameters of starting a mini engine Vortex 2T 60 cc through by telemetry, mathematical calculations, dynamometric tests and simulation in Ricardo WAVE software. The correct air-fuel mixture and the exact ignition point allow elevating motor potential, torque and performances (characteristic parameters). The carburetion of the engine is achieved by the effect with the shiglores, emulsion tubes and mixing air and screws; while ignition is affected by the separation of the spark plug electrodes, advance to ignition, type of spark plug and bovine. The dynamometric test will allow us observing changes in engine power in a practical way, on the other hand, telemetry will perform route test by a certified pilot who will be in the race, and the simulation software will perform theoretical tests (in the same way as mathematical calculations). These will identify which factors need to be altered to increase power before making the changes physically. Telemetry, dynamometric tests and simulation in Ricardo WAVE throw graphics, characteristic motor parameters, which will be analyzed and compared to establish the differences between standard tests and tests with modifications. In this way it is improved engine performance in track practice.

#### **KEYWORDS**

- CARBURATION
- IGNITION
- DYNAMOMETRIC TESTS
- TELEMETRY
- SOFTWARE RICARDO WAVE

#### Capítulo I

# 1. Marco Metodológico de la Investigación

# 1.1. Antecedentes Investigativos

La industria automovilística es una de las más grandes por albergar dentro de sí otras ramas que le permiten elaborar el producto final:

Una de las características que esta industria posee es la de estar concentrada, puesto que existen pocas compañías en la cúspide de la organización jerárquica que compiten entre sí. Así entonces, la competencia no es sólo entre las empresas automovilísticas sino entre una cadena productiva que incluye a un conjunto de proveedores de diversos tamaños, que se enfrenta con otra cadena productiva con similares características. (Rodríguez, 2013, p.2)

# Crespo (2015) afirma:

Las competencias deportivas y en especial las del mundo tuerca han aumentado mucho con el paso de los años pues los avances tecnológicos van de la mano con este mundo. Para competidores de renombre como Ayrton Sena y Alain Prost, para llegar a triunfar en las competencias automovilísticas se debe iniciar en el karting, pues es aquí donde el amor hacia los autos se forja diariamente, en conjunto con una serie de habilidades y experiencias que permitirán al piloto crecer como competidor profesional y como persona. (p.11)

Los parámetros en general de un motor de dos tiempos son trascendentales ya que determinan potencia, rendimiento, riesgos e impacto sobre el medioambiente:

A pesar del gran desarrollo del motor de 2T, cuya principal ventaja no es la de carecer de válvulas si no de disponer de una explosión por cada revolución

del motor; queda mucho camino por recorrer para que sea considerado un motor totalmente desarrollado y apto para su uso mayoritario en la industria, ya que la carburación y encendido son los principales parámetros que fluctúan circunstancialmente. (Fiallo, 2005, p.13)

Determinar la relación aire - combustible óptima, ya que influye en la potencia y torque del motor, parámetros de gran importancia en competición:

El comportamiento de la potencia y consumo específico de combustible está ligado totalmente a la relación aire - combustible, en general al empobrecer la mezcla se genera más potencia y el consumo específico de combustible disminuye, pero también la temperatura del motor es un factor importante, las mezclas pobres generan temperaturas considerablemente altas. (Bacca, 2004, p.48)

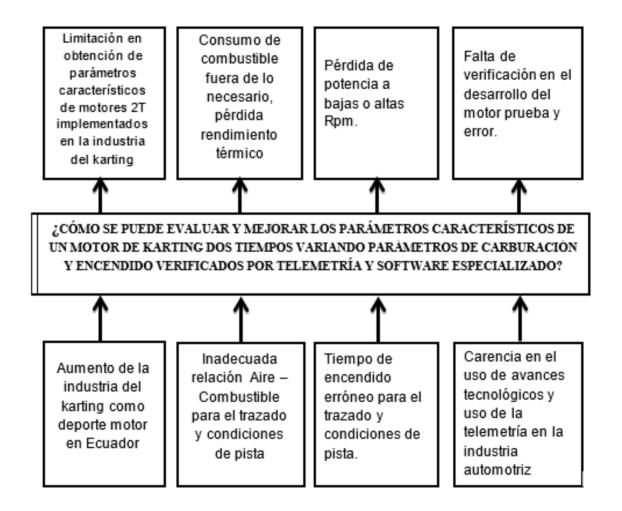
El software de uso automotriz, en cuanto a análisis de parámetros de funcionalidad, posee un grado de complejidad alto, Ricardo en su defecto sintetiza operaciones:

El funcionamiento básico del código WAVE analiza redes de flujo compuestas por conductos, uniones y orificios. Dentro de esta red de plomería, se pueden insertar cilindros de motor, turbocompresores, compresores y bombas. WAVE puede simular motores de combustión interna, así como otros sistemas de flujo de fluido compresible. (Dresler & Richtár, 2011, p.2)

Utilizando la telemetría se puede llegar a percibir variaciones en magnitudes físicas tanto de conducción como parámetros del motor, en tiempo real, esta información es percibida por el operador, siendo en la competición el preparador de motores, coaching

y piloto:

La telemetría es ampliamente utilizada para monitoreo y a veces en el control de grandes sistemas industriales como plantas químicas, textiles, petroleras, naves espaciales; e incluso en competencias deportivas para autos para realizar el monitoreo del funcionamiento del mismo y poder dar instrucciones tanto a mecánicos como al piloto, dentro de estas competencias se encuentran el rally, la fórmula 1 y el karting. (Morales & Vargas, 2012, p.12)


## 1.2. Planteamiento del Problema

En la última década el karting nacional como deporte motor ha ido en aumento, esto lo evidencia la página del kartódromo Cotopaxi, presentando en inscripciones promedio anual 70 pilotos en el año 2018, mientras para el año 2019 presenta 130 pilotos inscritos. Al ser un deporte nuevo, es limitada la información que los preparadores pueden ajustar para obtener los parámetros característicos de motores 2T en la industria del karting.

Los motores utilizan carburador Dell Orto, por tanto, cada preparador de motores está en la obligación de hallar una mezcla aire – combustible óptimo acorde al trazado y condiciones de pista. Pero de este planteamiento surge un nuevo problema pues este deporte necesita ser verificado en mejoras de rendimiento del motor, todo esto se puede lograr con el uso de avances tecnológicos (software aplicado y telemetría), sin recurrir a la prueba y error. Para esta problemática se estudia un motor Vortex 2T 60 cc que permite plantear el problema: ¿Cómo se puede evaluar y mejorar los parámetros característicos de un motor de karting dos tiempos variando parámetros de carburación y encendido verificados por telemetría y software especializado?

Figura 1

Esquema del planteamiento del problema



# 1.3. Descripción Detallada del Proyecto

La investigación se realizará como trabajo de campo en el Kartódromo Cotopaxi ubicado a 2750 msnm, en la ciudad de Latacunga específicamente en el sector San Buenaventura, donde la temperatura promedio es de 14°C.

Fundamentar teóricamente motores de dos tiempos en vehículos kart, parámetros de funcionamiento, equipo de telemetría y el software especializado (Ricardo Wave) con

licencia autorizada, otorgada por la empresa Ricardo Software para uso académico; a partir de fuentes bibliográficas y bases digitales confiables.

Ejecutar la puesta a punto inicial del motor Vortex 2T 60 cc, acorde a las condiciones de funcionamiento en pista y reglajes recomendados por el fabricante, además de las condiciones de funcionamiento acorde a la normativa vigente.

Realizar mediciones de los parámetros característicos del motor Vortex 2T 60 cc en condiciones iniciales de operación, ajuste respecto a carburación y tiempo de encendido, en el dinamómetro de acuerdo a la normativa establecida.

Matematizar los parámetros característicos del motor de combustión interna (carburación y encendido) y lo referente a rendimientos.

Seleccionar componentes del sistema de carburación como difusores, surtidores, emulsores, y shiglores para optimizar la mezcla aire combustible en el motor.

Poner a punto el sistema de encendido y seleccionar componentes como bujías y bobinas de encendido, que mediante el adecuado ajuste del adelanto de encendido logren optimizar los valores de desempeño del M.C.I.

Obtener la gráfica de relación aire - combustible (P - A/F), mediante la obtención de datos del consumo másico de aire a través de un anemómetro, y el consumo de combustible.

Realizar mediciones de verificación de los ajustes realizados en carburación y encendido, para determinar los mejores valores de parámetros característicos del motor a través del dinamómetro y validados con la matematización y Ricardo WAVE.

Diseñar y ejecutar la simulación del motor Vortex 2T 60 cc, mediante el software Ricardo WAVE, en condiciones iniciales de funcionamiento y con las respectivas variaciones de parámetros de carburación y encendido, así evaluar de manera teórica y comprobar la optimización de los parámetros característicos.

Ejecutar pruebas de pista monitoreadas por telemetría con un piloto calificado, en

un determinado trazado del kartódromo Cotopaxi, haciendo uso del motor en condiciones iniciales de funcionamiento y con las variaciones de carburación y encendido, así se podrá verificar la influencia de los parámetros del motor (potencia, velocidad, rpm, aceleración, desaceleración), en función de la posición en pista y tiempos por vuelta del trazado.

Analizar los resultados de las pruebas mediante comparación y tabulación de datos en condiciones estándar y modificadas, tanto en lo práctico, teórico y simulado, así justificar y evidenciar la mejor configuración en carburación y tiempo de encendido para el motor mini Vortex 2T 60 cc.

## 1.4. Justificación e Importancia

En los últimos años los vehículos han pasado de ser, a parte de un medio de transporte, unas máquinas de potencia y velocidad no sólo para uso personal sino en competencias, ya que llaman la atención de muchas personas con el solo hecho de acelerar el motor. En Ecuador estos deportes tuerca son nuevos y es esta expectativa de novedad lo que incentiva a investigar más sobre el corazón de estas máquinas, el motor.

Para alcanzar el máximo provecho de un motor es necesario obtener los mejores resultados en cuanto a potencia y par motor, utilizando pocos recursos, que vendría a hacer el combustible. Los motores de 2T son mucho más potentes que los de 4T, en igualdad de cilindrada, aunque contaminen más por su calidad de combustión; aquí entra la inadecuada relación aire-combustible pues en pista no se logra alcanzar el máximo provecho de desarrollo del motor y esto ocurre por falta de estudios en este deporte relativamente nuevo en el país.

El motor monocilíndrico mini Vortex de 2T 60 cc produce una potencia nominal de 10 hp que en la práctica el piloto no llega a ver un valor cercano al ya mencionado; el tiempo de encendido y calidad de combustión provocada permitirán jugar con la potencia

real. Que la potencia al freno (real) sea aproximada a la nominal sería lo ideal tanto para los vehículos como para los competidores que tendrían mayores oportunidades de ganar competencias.

Con la globalización mundial es necesario incursionar en la industria automotriz y usar las tecnologías de manera eficiente y correcta, en especial los equipos telemétricos y el software de simulación; la empresa Ricardo Software tiene como objetivo "Ayudar a resolver los problemas importantes mediante la exploración de tecnología y la innovación de procesos. Entregamos herramientas de ingeniería virtual avanzadas, respaldadas por un equipo de expertos técnicos, a socios globales en las industrias automotriz, ferroviaria, de motocicletas, todo terreno, defensa, energía y medio ambiente." Es por ello que nos ha otorgado la licencia completa del software Ricardo WAVE para uso académico, cabe recalcar que en su página oficial de internet existe una versión de descarga libre. El software Ricardo WAVE permitirá simular el motor mini Vortex para tener una variante que agilice el hacer cambios teóricos antes de los reales, ya que éstos demandan dinero y tiempo, para de esta manera cuando se modifiquen los parámetros se llegue con un conocimiento base de que características alternar en pro de la potencia real. Las modificaciones pueden ocurrir en cualquier dirección, del software a lo empírico o viceversa ya que los dos son complementarios.

Dejar una base de datos de los principales cambios que se puede hacer tanto en carburación como en encendido permitirá a posteriores investigaciones evitar mociones dubitativas del tema, incluyendo que el análisis también se lo hace aplicado al software lo cual es muy didáctico y aporta a sustentar dichas modificaciones en el motor.

## 1.5. Objetivos

## 1.5.1. Objetivo General

 Analizar los parámetros característicos del motor 2T utilizados en karting variando los parámetros de carburación y encendido verificados por telemetría y software especializado.

## 1.5.2. Objetivos Específicos

- Realizar búsqueda teórica en fuentes bibliográficas y bases digitales confiables que permitan sustentar el tema del proyecto.
- Realizar la puesta a punto inicial del motor Vortex 2T 60 cc, acorde a las condiciones de funcionamiento en pista, reglajes recomendados por el fabricante y acorde a la normativa vigente de las pruebas a realizar.
- Medir los parámetros característicos del motor Vortex 2T 60 cc en condiciones iniciales de operación, mediante tomas de medición en el banco de pruebas.
- Matematizar con cálculos los parámetros característicos del MCI y lo referente a rendimientos.
- Implementar componentes del carburador que permitan tener la relación aire combustible óptima mejorando la potencia del motor.
- Poner a punto el motor Vortex mediante un adecuado ajuste del tiempo de encendido y seleccionar los componentes más óptimos del sistema.
- Realizar mediciones de verificación de los ajustes realizados en carburación y encendido, para determinar los mejores valores a través del dinamómetro y validados a través de la matematización y software.
- Obtener la gráfica de relación aire-combustible (A/F), mediante obtención de datos en el banco de pruebas.
- Desarrollar e implementar un análisis y simulación 1D de los parámetros característicos del motor Vortex 2T 60 cc mediante software Ricardo Wave.
- Realizar pruebas de pista con un piloto calificado, que permita obtener datos de

telemetría, así verificar la influencia de los cambios de carburación y encendido en la conducción y parámetros del motor (potencia, rpm, velocidad, aceleración, desaceleración).

- Tabular los datos obtenidos, así generar un registro de las variaciones de los parámetros característicos del motor Vortex 2T 60 cc.
- Analizar los resultados post pruebas con valores obtenidos en las distintas condiciones de desempeño tanto en lo práctico, teórico y simulado.

## 1.6. Metas

- Optimizar el 5% de los parámetros característicos del motor Vortex 2T 60 cc
  capaz de alcanzar la máxima potencia nominal, obteniendo un aprovechamiento
  extendido de la energía química de la mezcla estequiometrica y perfecto tiempo
  de encendido.
- Obtener un máximo de 2% de diferencia entre los datos teóricos (Software especializado y matematización) con respecto a los empíricos.

# 1.7. Hipótesis

Optimizando los parámetros de carburación y encendido, verificado por monitoreo de telemetría y simulación en software especializado permitió mejorar los parámetros característicos del motor Vortex 2T 60 cc.

## 1.8. Variables de la Investigación

## 1.8.1. Variable Independiente

Tabla 1
Sistemas de carburación

| Concepto                                                     | Categoría                        | Indicadores                      | Ítem  | Técnicas                    | Instrumentos                          |
|--------------------------------------------------------------|----------------------------------|----------------------------------|-------|-----------------------------|---------------------------------------|
| El sistema de carburación es                                 |                                  | Entrada de combustible           | Kg/s  | Cálculo y<br>Medición       | Protocolo de pruebas                  |
| un dispositivo<br>de tipo                                    |                                  | o nivel constante                |       |                             | Anemómetro                            |
| mecánico que<br>dosifica el<br>combustible<br>líquido y lo   |                                  |                                  |       |                             | Banco de<br>consumo de<br>combustible |
| mezcla con el<br>aire de<br>admisión al                      |                                  | Circuito principal o             | Kg/s  | Cálculo y<br>Medición       | Protocolo de pruebas                  |
| motor utilizando<br>el efecto de                             | Circuito del carburador          | de marcha<br>normal              |       |                             | Anemómetro                            |
| depresión<br>ocasionado por<br>el caudal de<br>aire cuando   | carburador                       |                                  |       |                             | Banco de<br>consumo de<br>combustible |
| circula a través<br>de un<br>estrechamiento<br>en la sección |                                  | Circuito de                      | Kg/s  |                             | Protocolo de pruebas                  |
| de paso<br>(difusor o                                        |                                  | ralentí                          |       | Cálculo y                   | Anemómetro                            |
| venturi).                                                    |                                  |                                  |       | Medición                    | Banco de<br>consumo de<br>combustible |
|                                                              |                                  | Circuito de obturador o estárter | Kg/ s | Cálculo y<br>Medición       | Protocolo de pruebas                  |
|                                                              |                                  | estarter                         |       |                             | Anemómetro                            |
|                                                              |                                  |                                  |       |                             | Banco de<br>consumo de<br>combustible |
|                                                              | Componentes<br>del<br>carburador | Diámetro                         | mm    | mm<br>Cálculo y<br>Medición | Protocolo de pruebas                  |
|                                                              | carburaudi                       | del venturi                      |       |                             | Micrómetro<br>de interiores           |

| Concepto | Categoría | Indicadores                               | Ítem                | Técnicas              | Instrumentos                           |
|----------|-----------|-------------------------------------------|---------------------|-----------------------|----------------------------------------|
|          |           | Calibre del surtidor y                    | mm                  | Cálculo y<br>Medición | Protocolo de pruebas                   |
|          |           | Shiglor                                   |                     |                       | Galgas para<br>calibre de<br>shiglores |
|          |           |                                           | ٥                   |                       | Pie de rey                             |
|          |           | Tornillo de<br>reglaje de<br>dosificación | Š                   | Medición              | Protocolo de pruebas                   |
|          |           | domination                                | 0                   |                       | Goniómetro                             |
|          |           | Tornillo de reglaje del                   |                     | Medición              | Protocolo de pruebas                   |
|          |           | tope de<br>válvula<br>corredera           |                     |                       | Goniómetro                             |
|          |           | Regulación<br>de la aguja                 | Posición<br>del pin |                       | Protocolo de pruebas                   |
|          |           |                                           |                     |                       | Observación                            |

Tabla 2
Sistema de encendido

| Concepto                                                                | Categoría                     | Indicadores               | Ítem | Técnicas | Instrumentos                    |
|-------------------------------------------------------------------------|-------------------------------|---------------------------|------|----------|---------------------------------|
| El sistema de<br>encendido ha de<br>ser capaz de                        | Parámetros<br>de<br>encendido | Voltaje del<br>primario   | KV   | Medición | Protocolo de pruebas            |
| suministrar la<br>energía necesaria,<br>en el momento<br>adecuado, para |                               | Voltaje del<br>secundario | KV   | Cálculo  | Multímetro Protocolo de pruebas |

| Concepto                               | Categoría | Indicadores | Ítem  | Técnicas  | Instrumentos  |
|----------------------------------------|-----------|-------------|-------|-----------|---------------|
| Consopio                               | Outogoria | maioaaores  | 10111 | 100111040 | mon amontos   |
| iniciar al procesa de                  |           |             |       |           |               |
| iniciar el proceso de<br>combustión en |           |             |       |           | Multímetro    |
| cada ciclo del                         |           |             |       |           | Maithnetto    |
| motor. Se basa en                      |           |             |       |           |               |
| el suministro de                       |           |             |       |           |               |
| una energía                            |           | Tiempo de   | ms    | Cálculo y | Protocolo de  |
| eléctrica que se                       |           | quemado     |       | Medición  | pruebas       |
| transformará en                        |           | •           |       |           | •             |
| energía térmica en                     |           |             |       |           | GTC 505       |
| un periodo de                          |           |             |       |           |               |
| tiempo lo más corto                    |           | Tensión de  | ΚV    | Medición  | Protocolo de  |
| posible. La chispa                     |           | ruptura     |       |           | pruebas       |
| se producirá en el                     |           |             |       |           |               |
| punto de mayor                         |           |             |       |           | GTC 505       |
| resistencia eléctrica                  |           |             |       |           |               |
| del circuito, es                       |           | Distancia   | mm    | Medición  | Protocolo de  |
| decir, entre los                       |           | entre       |       |           | pruebas       |
| electrodos de la                       |           | electrodos  |       |           |               |
| bujía.                                 |           | (bujía)     |       |           | Calibrador de |
|                                        |           |             |       |           | láminas       |

# 1.8.2. Variable Dependiente

Tabla 3

Parámetros característicos del motor

| Concepto                                                                                     | Categoría                     | Indicadore<br>s | Ítem | Técnicas              | Instrumento<br>s     |
|----------------------------------------------------------------------------------------------|-------------------------------|-----------------|------|-----------------------|----------------------|
| Los parámetros<br>característicos<br>definen el estado<br>operativo del<br>motor a partir de | Curvas<br>característica<br>s | Potencia        | KW   | Cálculo y<br>medición | Protocolo de pruebas |
| variables que pueden medirse experimentalment                                                |                               | Torque          | N.m  | Cálculo y<br>medición | Protocolo de pruebas |

| Concepto                                                                                        | Categoría                | Indicadore                                     | Ítem              | Técnicas                    | Instrumento          |
|-------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------|-------------------|-----------------------------|----------------------|
|                                                                                                 |                          | S                                              |                   |                             | S                    |
| e y sobre las que<br>actuará el<br>sistema de<br>control del motor<br>para fijar el punto<br>de |                          | Consumo<br>específico<br>de<br>combustibl<br>e | $\frac{l}{h}$     | Cálculo                     | Protocolo de pruebas |
| funcionamiento<br>deseado.                                                                      | Parámetros               | Rendimient<br>o<br>volumétrico                 | %                 | Cálculo                     | Protocolo de pruebas |
|                                                                                                 | de<br>funcionamient<br>o | Régimen y<br>velocidad                         | $rpm-\frac{m}{s}$ | Cálculo                     | Protocolo de pruebas |
|                                                                                                 |                          | lineal del<br>pistón                           | %                 |                             | ·                    |
|                                                                                                 |                          | Grado de<br>carga                              |                   | Cálculo                     | Protocolo de pruebas |
|                                                                                                 | Parámetros<br>indicados  | Trabajo<br>indicado                            | J                 | Cálculo                     | Protocolo de pruebas |
|                                                                                                 |                          | Potencia<br>indicada                           | W                 | Cálculo                     | Protocolo de pruebas |
|                                                                                                 |                          | Rendimient<br>o indicado                       | %                 | Cálculo                     | Protocolo de pruebas |
|                                                                                                 |                          | Presión<br>media<br>indicada                   | Pa                | Cálculo                     | Protocolo de pruebas |
|                                                                                                 |                          | Rendimient<br>o<br>volumétrico                 | %                 | Cálculo y<br>simulació<br>n | Protocolo de pruebas |

| Concepto | Categoría               | Indicadore<br>s                                | Ítem       | Técnicas                    | Instrumento<br>s     |
|----------|-------------------------|------------------------------------------------|------------|-----------------------------|----------------------|
|          | Parámetros<br>efectivos | Par efectivo                                   | N.m        | Cálculo y<br>simulació<br>n | Protocolo de pruebas |
|          |                         | Potencia<br>efectiva                           | Vatio      | Cálculo                     | Protocolo de pruebas |
|          |                         | Trabajo<br>efectivo                            | J          | Cálculo                     | Protocolo de pruebas |
|          |                         | Presión<br>media<br>efectiva                   | Pa         | Cálculo                     | Protocolo de pruebas |
|          |                         | Consumo<br>específico<br>de<br>combustibl<br>e | g/KW.<br>h | Cálculo                     | Protocolo de pruebas |
|          |                         | Rendimient<br>o mecánico                       | %          | Cálculo                     | Protocolo de pruebas |
|          |                         | Rendimient<br>o efectivo                       | %          | Cálculo y<br>simulació<br>n | Protocolo de pruebas |

# 1.9. Metodología de Desarrollo del Proyecto

Tabla 4

Metodología de desarrollo del proyecto

| Metodología                 | Descripción                                                                                                                                                                                                                                                                                                         | Equipo                                                                                                                            | Laboratorio -<br>Instalaciones |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| De Análisis de<br>Contenido | Se buscará información técnica en documentos como libros, tesis, publicaciones científicas y revistas, acerca de vehículos de competición karting y sistemas de carburación y encendido para los mismos, con el fin de obtener datos necesarios que aporten al marco teórico.                                       | <ul> <li>Libros.</li> <li>Tesis.</li> <li>Publicaciones científicas.</li> <li>Revistas científicas.</li> <li>Manuales.</li> </ul> | Biblioteca<br>Virtual Espe     |
| De Medición                 | Método por el cual se realizarán tomas de datos de parámetros característicos del motor Vortex en el banco de pruebas.  Método con el que se obtendrá datos para elaborar el diagrama potencia vs relación aire combustible  Método que permitirá monitorear el desempeño del motor en pruebas de pista a través de | <ul> <li>Motor Vortex</li> <li>Dinamómetro inercial</li> <li>Anemómetro</li> <li>Mychron 5</li> <li>Race Studio 3</li> </ul>      | Kartódromo<br>Cotopaxi         |

Laboratorio -

|                | 2000po                                                                                                                                                                                   | _qp-                                                                                     | Instalaciones          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------|
|                | mediciones de<br>telemetría.                                                                                                                                                             |                                                                                          |                        |
| Matematización | Mediante cálculos<br>matematizar los<br>parámetros<br>característicos del<br>MCI y lo referente a<br>rendimiento,<br>relacionado con la<br>carburación y<br>encendido del<br>mismo.      | <ul> <li>Herramientas de cálculo</li> <li>Computador</li> </ul>                          | Campo de<br>estudio    |
| Experimental   | Método utilizado para implementar componentes del carburador y realizar un ajuste adecuado del tiempo de encendido, así verificar la influencia en la conducción y parámetros del motor. | <ul> <li>Kit de reparación del carburador</li> <li>GTC 505</li> </ul>                    | Kartódromo<br>Cotopaxi |
| Modelación     | Método utilizado<br>para modelar y<br>simular, mediante el<br>software automotriz,<br>condiciones de<br>funcionamiento y<br>parámetros<br>característicos del                            | <ul> <li>Computador</li> <li>Licencia</li> <li>Software Ricardo</li> <li>WAVE</li> </ul> | Campo de<br>estudio    |

Equipo

Metodología

Descripción

| Metodología | Descripción                                                                                                                                                                                                                                     | Equipo                                                            | Laboratorio -            |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|
| •           | •                                                                                                                                                                                                                                               |                                                                   | Instalaciones            |
|             | motor en cuestión,<br>de forma teórica.                                                                                                                                                                                                         |                                                                   |                          |
| Comparativo | Se compara mediante tabulación de datos en condiciones estándar y modificadas, tanto en lo práctico, teórico y simulado, así justificar y evidenciar la mejor configuración en carburación y tiempo de encendido para el motor Vortex 2T 60 cc. | <ul> <li>Computador</li> <li>Herramienta<br/>Microsoft</li> </ul> | ESPE/Campo<br>de estudio |

#### Capítulo II

#### 2. Marco Teórico

# 2.1. Competencias de Karting

La disciplina del automovilismo que se realiza sobre un vehículo sin suspensión, es llamado karting; en el Ecuador es un deporte que ha tenido crecimiento durante los últimos cinco años pasando de tener 20 a 120 pilotos en promedio, la pista tiene longitud aproximada entre 600 a 1600 metros y ancho entre 8 a 15 metros acorde al trazado planteado. En el Ecuador existen 4 pistas: Kartódromo dos hemisferios (Quito), Kartódromo Cotopaxi, Kartódromo de Guayaquil y Kartódromo de Loja; cada pista es manejada bajo el reglamento internacional basado en la CIK FIA y reglamento interno a la categoría representante; las competencias de karting se realizan una vez por mes en cada categoría y en el Ecuador existen tres categorías: lame, Rotax y Rok Cup (Vortex).

El karting necesita de colaboraciones de múltiples ramas de la ciencia, pero en especial de la mecánica automotriz, pues la mayoría de sistemas motrices van de la mano con los avances de la tecnología en este ámbito.

Desde los inicios del karting este se ha expandido rápidamente y ha evolucionado en conjunto con el desarrollo tecnológico. A medida que esta modalidad deportiva va tornándose popular entre los ciudadanos, los fabricantes de go-karts comenzaron a hacer más investigación y desarrollo para mejorar estos prototipos, en parámetros como el diseño del chasis, la velocidad, el sistema de frenado y el sistema de transmisión. Diseñadores, ingenieros y otros se han involucrado directamente en nuevos logros para mejorar todos los aspectos de un kart. Tanto ha representado el desarrollo de estos vehículos, que hoy en día un kart puede alcanzar fácilmente velocidades de 200 Km/h, con prestaciones equiparables a la de un prototipo de fórmula 1. En varios años de evolución el karting ha alcanzado un fuerte prestigio a nivel mundial, al punto de llegar a considerarse como un deporte completo y una base

fundamental dentro de la práctica automovilística actual. (Quezada, 2018, p.8)

## 2.2. Motores 2T en Karting

El motor 2T sintetiza piezas en el cabezote porque no posee válvulas, utiliza lumbreras que son activadas por el émbolo.

El motor de 2T es un motor en el que se ha conseguido condensar las cuatro fases fundamentales del ciclo en dos únicas carreras (Admisión, compresión, explosión y escape cada una de las cuales requiere una carrera ascendente o descendente en un motor de 4T). Esto quiere decir que en cada carrera de pistón tanto ascendente como descendente se realizan 2 fases al mismo tiempo.

(Fiallo, 2005, p.14)

Como puede verse, en todo este proceso se emplean solamente dos carreras del pistón gracias a la simultaneidad con que se producen las diversas funciones de admisión y escape. Así, el ritmo de trabajo de este motor es de dos carreras para producir el ciclo completo. Al igual que en los motores de ciclo de cuatro tiempos, las cámaras de compresión de los de dos tiempos sufren intensamente con las elevadas temperaturas, altas presiones y los efectos corrosivos producidos por la combustión. (Fiallo, 2005, p.14)

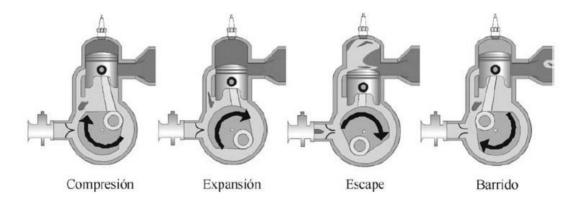
El karting hace uso de motores monocilíndricos de 2 tiempos con Power Valve y sin Power Valve; motores que manejan potencia acorde a las categorías de competencia desde los 10 hp para motores de 60 cc, 36 hp para motores 125cc directos y 48 hp para motores 125cc con caja de cambios de 6 velocidades; estos motores pueden utilizar dos sistemas de refrigeración: por aire o circulación de agua.

El motor 2 tiempos hace uso de lumbreras de admisión, escape y transferencia para el ingreso o salida de gases, abriéndolas o cerrándolas por el mismo movimiento del pistón, lo que genera pérdidas volumétricas en el cruce de admisión y escape teniendo fugas de combustible sin quemar, elevando el consumo de combustible y excesiva contaminación al ambiente. "Las ventajas que presenta son notables, por lo que se ha diversificado enormemente su aplicación a los más variados usos: motocicletas, karting, motonáutica, modelismo, ultraligeros, herramientas variadas (cortacéspedes, motocultores, generadores, compresores, motobombas, etc." (EFM, 2017, p.3).

#### 2.2.1. Ciclo 2T

Sanz (2007) menciona:

El motor de dos tiempos realiza su ciclo de trabajo en dos carreras del pistón (180°X 2), en las cuales se llevan a cabo los procesos de admisión, compresión, expansión y escape. Se produce, por tanto, una carrera de trabajo por cada vuelta del cigüeñal. Esta es la principal característica que diferencia a estos motores de los de cuatro tiempos, en los cuales se necesitan dos vueltas de cigüeñal (180° x 4) para obtener una carrera motriz. (p. 346)


El motor dos tiempos realiza los 4 ciclos en dos tiempos, siendo fundamental la renovación de carga.

# EFM (2017) afirma:

Un motor 2T al eliminar el sistema de distribución por válvulas y eje de levas se eliminan las pérdidas de energía requeridas para su arrastre, así como también se eliminan todas sus inercias. El excelente rendimiento global de este motor está penalizado por un elevado consumo real debido a las fugas de

combustible sin quemar por la lumbrera de escape en el momento del cruce de flujos de Admisión y Escape. (p. 3)

Fases de un motor dos tiempos de barrido por cárter



Nota. Se muestra los ciclos del motor 2 tiempos extraído del libro (Payri & Desantes, 2014).

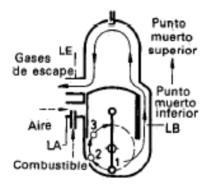
## Primer tiempo

Posición 1: El pistón se encuentra en el PMI donde la LE (Lumbrera escape) y LB (Lumbrera de transferencia) se encuentran abiertas, la mezcla de aire - combustible ubicada en el cárter fluye hacia la cámara del cilindro, se origina el barrido por cárter donde la mezcla nueva empuja los gases de escape expulsándolos por la LE.

## Para Payri & Desantes (2014):

En estos motores la mayor parte de los procesos de escape y de admisión ocurre simultáneamente, en lo que se denomina proceso de barrido. Como ese término indica, el pistón no expulsa los gases quemados y aspira los gases frescos, sino que son los gases frescos, que se encuentran a mayor presión que

los gases en el cilindro, los que barren a los gases quemados hacia el escape. (p. 30)


Posición 2: El pistón comienza su ascenso hacia el PMS, en un punto intermedio cierra LE, LB y LA, el pistón comprime la mezcla en la cámara del cilindro, mientras tanto en el cárter se produce una depresión por el ascenso del pistón. (Beneharo, 2018, p.22)

Posición 3: Al ascender de manera completa al PMS, el pistón comprime de manera total la mezcla, cierra LE y LB, mientras tanto por LA aspira mezcla fresca. (Beneharo, 2018, p.22)

•

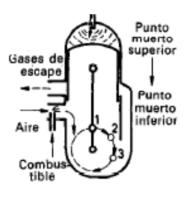
Figura 3

Primer tiempo del motor 2T



Nota. En el primer tiempo la mezcla que se encuentra en el cárter ingresa al cilindro por la lumbrera de transferencia, la nueva mezcla barre los gases de escape, (Hamm & Bruk, 2001).

# Segundo tiempo

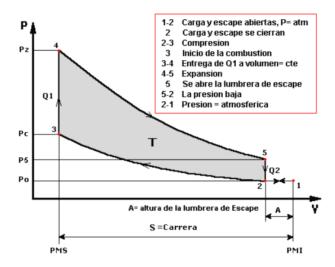

Posición 1: El pistón se encuentra en el PMS, por lo tanto, LE y LB están cerradas; mediante el sistema de encendido se genera una chispa, así inicia la combustión, los gases se calientan y expanden empujando el pistón hacia el PMI.

Posición 2: Mientras el pistón sigue descendiendo, en la parte intermedia de la carrera se encuentra cerrado LE, LB y LA, los gases frescos se pre-comprimen en la cámara del cigüeñal. (Barro, 2018, p.23)

Posición 3: Finalmente el pistón desciende de manera total al PMI, LE y LB abiertas y LA cerrada, los gases pre comprimidos pasan hacia la cámara del cilindro barriendo los gases de escape y expulsándolos, reiniciando el ciclo 2T. (Barro, 2018, p.23)

Figura 4

Segundo tiempo motor 2T




Nota: El pistón desciende desde el PMS al PMI, salta la chispa de la bujía iniciando la combustión, mientras por la lumbrera de admisión ingresa al cárter la mezcla fresca.

## 2.2.2. Ciclo Teórico Termodinámico 2T

Figura 5

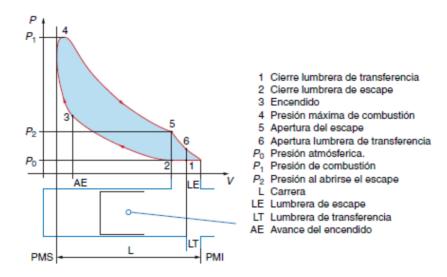
Diagrama de P-V motor 2 tiempos teórico



Nota. El diagrama P-V de un motor dos tiempos pierde el área efectiva de trabajo debido que la lumbrera de escape permanece abierta durante el inicio de compresión y final de la combustión.

El diagrama Presión-Volumen teórico considera un motor ideal es decir no toma en cuenta inercias de las masas de los componentes del motor, pérdidas por fricción, retardos al encendido, etc.

El diagrama para el motor de dos tiempos es idéntico al del de cuatro tiempos ya que el funcionamiento teórico en las fases de transformación de energía es el mismo. (Fiallo, 2005, p.7)


## 2.2.3. Ciclo Real Termodinámico 2T

Sanz Acebes (2007) afirma: "El diagrama de trabajo muestra cómo evolucionan los valores de presión y volumen dentro del cilindro en el transcurso de un ciclo de

funcionamiento" (p. 349)

Figura 6

Diagrama de trabajo motor 2 tiempos real



Nota. El diagrama P-V en ciclo real disminuye el área efectiva del trabajo con respecto al ciclo teórico por diversas pérdidas una de ella el barrido durante la transferencia y escape.

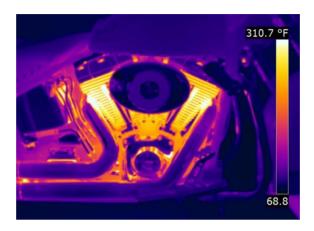
Como se explicó anteriormente en el motor 2T el ciclo de trabajo inicia desde el PMI, el pistón inicia el ascenso cerrando la LT (1), y a continuación LE (2), el pistón comprime la mezcla aire - combustible, por lo tanto, disminuye el volumen y aumenta la presión, antes de ello se produce la chispa eléctrica (3), el avance permite compensar el tiempo que tarda en propagarse la combustión, de forma que, cuando el pistón ha superado ligeramente el PMS, se alcanza la máxima presión (4). La máxima presión se aplica sobre la cabeza del pistón que lo hace descender en expansión, por lo tanto, el volumen aumenta y la presión disminuye de manera progresiva, en el punto (5) inicia la apertura de LE disminuyendo la presión de los gases quemados. (Sanz Acebes, 2007, p.348)

Sanz Acebes (2007) menciona:

El tramo 5-6 tiene una duración calculada para que la presión descienda lo suficiente como para poder introducir en el cilindro, a través de la lumbrera de transferencia, los gases frescos comprimidos en el cárter. Mientras tanto desde el punto 6 al punto 1 se realiza el barrido de los gases quemados expulsándolos por la LE. (p. 349)

# 2.2.4. Propiedades de los Motores de Dos Tiempos

#### Esfuerzo de rotación uniforme


Granizo & Toscano (2003) aseveran: Un motor de dos tiempos y tres cilindros tiene casi la misma regularidad de marcha que un motor de cuatro tiempos con seis cilindros. (p.12)

## Mayor carga térmica

Esta carga se debe al doble número de fases de trabajo con que cesan las refrigerantes carreras en vacío. Cuando se trata de cilindros mayores se presentan dificultades en la refrigeración. Por esta razón se construyen solamente motores de uno, dos y tres cilindros cuya cilindrada por cilindro no es mayor de 350 cm3.

(Granizo & Toscano, 2003, p.13)

Foto térmica de un motor de 2T en plena carga térmica



Nota. Se muestra la temperatura de la culata en un motor 2 T en condiciones de funcionamiento

#### Lubricación

El aceite es mezclado con la gasolina en el cárter. Debido a las velocidades de la mezcla, el aceite se va depositando en las paredes del cilindro, pistón y demás componentes. Este efecto es incrementado por las altas temperaturas de las piezas a lubricar. Un exceso de aceite en la mezcla implica la posibilidad de que se genere carbonilla en la cámara de explosión, y su escasez, el riesgo de que se gripe el motor. Estos aceites suelen ser del tipo SAE 30, al que se le añaden aditivos como inhibidores de corrosión y otros.

# 2.2.5. Motor Vortex 60 cc

El motor Vortex 60 cc está dedicado para la categoría más joven del Karting, es un motor monocilíndrico 2T que dispone de un sistema de refrigeración por aire (aletas en culata), el motor dispone de un sistema de arranque eléctrico integrado, la transmisión de par y potencia se realiza por un embrague seco centrífugo; de manera indicativa el

motor entrega 10 hp a 11000 rpm de potencia y par de 6,5 N.m a 9000 rpm.

Figura 8

Motor Mini Rok 2T 60 cc



Nota. Motor Vortex 2T 60 cc utilizado para competencias de karting exclusivo para las categorías infantiles, extraído de (Vortex, 2017)

Mini Rok ha demostrado desarrollar pequeños talentos de karting. Gracias a algunas de sus características clave es seguro y fácil de usar, por lo que los conductores jóvenes pueden familiarizarse con el kart sin tensiones.

El motor tiene las siguientes características: motor monocilíndrico de 2 tiempos, cilindrada 60 cc, puerto de pistón, refrigerado por aire, equipado con embrague seco centrífugo y arrancador eléctrico integrado. El motor viene en un kit completo con Dell 'Orto Carburador PHBG Ø 18 mm, bomba de combustible Dell 'Orto, Vortex silenciador de admisión y escape con escape integrado silenciador, motor de arranque completo con batería. El motor Mini Rok está dirigido a la generación más joven y durante más de una década se ha extendido por todo el mundo, por lo tanto, cada vez más federaciones lo han elegido como categoría nacional de nivel de entrada. (Vortex, 2019, p.10)

Tabla 5

Especificaciones técnicas del motor Vortex 2T 60 cc

| Parámetro                    | Descripción            |
|------------------------------|------------------------|
| Cilindrada                   | 60cc                   |
| Diámetro máximo del cilindro | 42,1 mm                |
| Carrera del pistón           | 43 mm                  |
| Sistema de admisión          | Lumbrera de            |
|                              | admisión               |
| Sistema de refrigeración     | Circulación aire       |
| Carburador                   | Dell Orto PHBG         |
|                              | 18 BS                  |
| Sistema de encendido         | Selettra               |
| Tipo encendido               | Analógico              |
| Tiempo de encendido          | $3 \text{ mm} \pm 0.2$ |
| Calibración de bujía         | 0,8 mm                 |
| Peso del motor               | 17 kg                  |

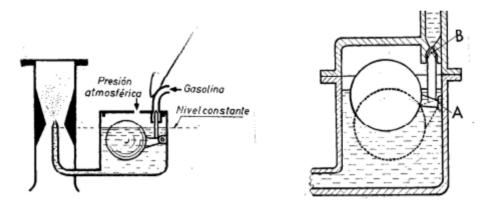
Nota. Toda dimensión y medida se expresa en unidades métricas

## 2.3. Sistema de Carburación

EFM (2017) enuncia:

La preparación de la mezcla de gases de aire y gasolina con una relación estequiometrica exacta o aproximadamente exacta, se realiza en el carburador, cuyo mecanismo de funcionamiento se basa en el principio de VENTURI, con las correcciones y adaptaciones propias a las características de los flujos de gases en un motor de 2T. (p. 6)

El sistema de carburación en motores 2T para competición por lo general tienen diseño y construcción que definen la mezcla aire combustible casi perfecta en las diferentes revoluciones del motor: bajas, medias y altas rpm.


## 2.3.1. Sistemas de un Carburador

El carburador basa su funcionamiento como el de un pulverizador. Para poder conseguir dosificaciones de mezcla adaptadas a todas las condiciones de funcionamiento del motor, además del carburador elemental, se necesitan unos dispositivos para la corrección automática de las mezclas. (Guevara, s.f., p.4)

## Mecanismo de mantenimiento del nivel constante

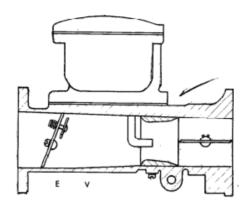
Figura 9

#### Mecanismo de nivel constante



Nota. En la imagen de observa los flotadores ubicados en la cuba, el sistema de funcionamiento se denomina nivel constante, entrega combustible al venturi por diferencia de presiones

Este sistema permite mantener el surtidor siempre a un nivel constante de gasolina del todo independiente del depósito de combustible.


El sistema consiste en una boya que al hallarse hueca flota. En su extremo A lleva una válvula cuya punta cónica B tapa el orificio de entrada de la gasolina cuando la boya se halla suficientemente alta. Cuando el nivel desciende por haberse pulverizado por el orificio del surtidor, la boya rebasa su línea de flotación y desciende, lo cual provoca a su vez el descenso de la válvula B y la abertura del orificio de entrada de gasolina. (Castro,

2001, p.22)

#### El estárter

Figura 10

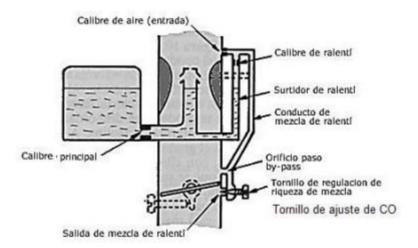
Estrangulador (E) para el arranque del motor en frío



Nota. A bajas rpm cierra los orificios de progresión con el fin de enriquecer la mezcla

Para el momento de la puesta en marcha del motor, se requiere la mezcla más rica. El estárter consiste en otra válvula de mariposa puesta al principio de la toma de aire. Cuando se produce el funcionamiento de esta válvula permanece del todo abierta, pero en el momento del arranque es accionada de modo que detiene el paso del aire llegando casi a ser preciso cerrarla completamente. La aspiración producida es rica en combustible. (Castro, 2001, p.30)

El estárter tiene muchas variantes de sí mismo que se han desarrollado por distintos fabricantes acorde a sus necesidades y circunstancias, el anteriormente mencionado es el más común.


Para el arranque en frío tenemos varios sistemas, empecemos por el que creo es el más antiguo, el cebador, se verá en la parte superior de la cuba el dispositivo de cebado, muy sencillo, se aprieta, éste empuja el flotador y deja

entrar gasolina, con ello subimos el nivel de gasolina en el pozo de mezcla o inundamos un poco el venturi, por lo que conseguimos un enriquecimiento de la mezcla en las primeras pistonadas facilitando el arranque.

(Lisbonal et al., s. f., p.10)

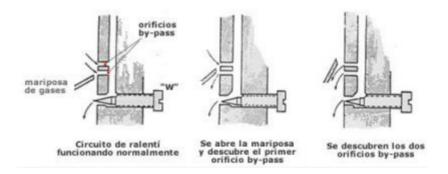
El dispositivo de marcha a ralentí

Figura 11 Esquema del dispositivo de alimentación de ralentí



Nota. El sistema de ralentí utiliza un pequeño orificio por donde circula aire y por diferencia de presiones entrega combustible al venturi, en el sistema de progresión el orificio entrega combustible. (Cuenca, 2012)

El funcionamiento del motor a régimen de ralentí se consigue introduciendo una pequeña cantidad de combustible por debajo de la válvula de aceleración, cuando esta permanece cerrada. Comúnmente la velocidad del motor en este régimen es inferior a 1000 revoluciones por minuto. A través de su recorrido el combustible pasa en primer lugar desde el depósito del carburador por un paso calibrado—shiglor de bajas revoluciones- hacia el emulsificador de la gasolina, el cual permite el ingreso de pequeñas cantidades de aire, el cual es


arrastrado por el torrente de gasolina, formando pequeñas burbujas, las cuales posteriormente facilitarán la pulverización del combustible. (Cuenca, 2012, p.23)

## • El circuito de marcha normal

El sistema se compone de dos circuitos en el que se identifica un surtidor principal y otra de orificios de progresión que ayudan la transición de ralentí a marcha normal.

Figura 12

Detalle funcionamiento de los orificios de progresión bypass



Nota. Funcionamiento de los orificios de progresión para ralentí y sistema de progresión. (Guevara, s.f.)

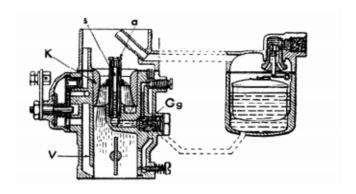
A medida que se abre la mariposa de gases, para pasar de funcionamiento de ralentí a funcionamiento normal, se destapa uno de estos orificios bypass y se transmite por una mayor depresión al exterior, con lo cual la succión de combustible aumenta, para compensar el paso de mayor caudal de aire que permite la mariposa. Por el orificio bypass sale la mezcla de ralentí y también por el orificio de paso que gradúa el tornillo de paso "W".

Cuando la acción de la mariposa obliga a descubrir el segundo orificio de

bypass, la depresión no aumenta, ya que parte de ella se transmite por el colector principal, pero aumenta la salida de mezcla que, en este momento, sale por los dos orificios y por el orificio de paso que le permite el tornillo "W". En estas condiciones el motor se mantiene en funcionamiento transitorio hasta que la depresión en difusor es ya suficiente para el cebado y succión del circuito principal. (Guevara, s.f., p.8)

El circuito de marcha lenta posee el surtidor principal que es el corazón del carburador, por esto se lo reconoce como el más importante.

La cantidad de gases que entran son regulados por una mariposa, que se halla entre el difusor y el motor. La mariposa obstaculiza no sólo el aire sino también la gasolina, conforme se va abriendo la cantidad de aire aumenta y es proporcional a la gasolina que, por efecto de dicho aire en el venturi por depresión, es succionada a través del surtidor principal.


Las partes de este subcircuito son:

- Difusor de aire (K)
- Atomización: Surtidor principal (Gg), boquilla de automaticidad (a) y tubo de emulsión (s)

(Castro, 2001, p.24-25)

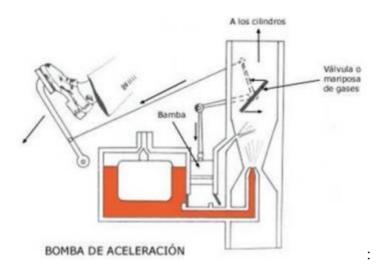
Circuito de marcha normal de un carburador SOLEX

Figura 13



Nota. Extraído del libro (Castro, 2001)

Para condiciones de potencia media y marcha moderada se utilizan los economizadores que empobrecen la mezcla ya sea actuando sobre la gasolina o sobre el aire.


## • La bomba de aceleración

Si se requiere una aceleración rápida, se precisa de un dispositivo en el carburador que enriquezca la mezcla de manera inmediata. Cuando se acelera a fondo, la mariposa de gases se abre de golpe, sin embargo, la mezcla no se enriquece al mismo tiempo por efecto de inercia, el combustible se demora más en llegar al surtidor y como el aire reacciona de inmediato, la mezcla se empobrece momentáneamente. Para evitar este inconveniente se coloca en el carburador un circuito de sobrealimentación, cuyo fin es suministrar una cantidad adicional de combustible al circuito principal, enriquecer de momento la mezcla y conseguir la potencia máxima instantánea del motor, hasta el momento en que opere el enriquecedor de mezcla. (Armas & Vallejo, 2013, p.44)

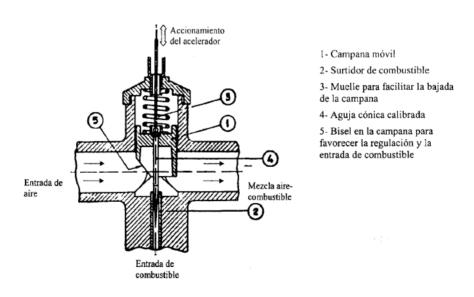
Una bomba de aceleración generalmente suele ser de pistón, de manera que, a partir de cierto punto de apertura de la válvula de mariposa, esta presiona y envía la gasolina al colector para enriquecer la mezcla realizada por el difusor. (Armas & Vallejo, 2013, p.45)

Figura 14

#### Bomba de aceleración



Nota. La bomba de aceleración tiene un pistón que mediante diferencia de presiones abre el paso de combustible por otro surtidor diferente al principal. (Guevara, s.f.)


## 2.3.2. Carburador Dell Orto PHBG

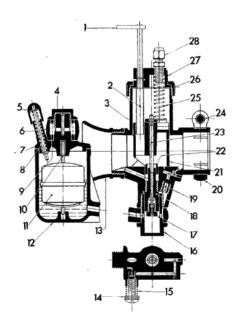
Los Carburadores Dell Orto son la marca italiana referente a competición; PHBG va enfocado para motores de medio rango de preparación, el carburador utilizado en karting es PHBG 18 BS, tiene medidas de admisión de 25 mm de diámetro exterior, dispone de sistema de bajas, medias y altas rpm, es considerado un carburador horizontal de venturi variable de accionamiento mecánico.

En estos carburadores, la sección de paso de aire del venturi se modifica desde un valor pequeño al ralentí, hasta un valor máximo a plena admisión. Esto se consigue mediante una válvula de corredera o campana, que se desplaza verticalmente. La parte inferior de dicha campana se prolonga mediante una aguja cónica que conjuntamente con el conducto de entrada de combustible regula la entrada de éste. El perfil de la aguja es tal que las secciones de paso de combustible están en consonancia con las de paso de aire, a fin de conseguir los valores de dosado requeridos por el motor para las distintas alturas de la campana. El desplazamiento de la campana puede realizarse por accionamiento directo del mando de regulación de la carga (acelerador) o bien por la depresión generada en el propio carburador. (Payri & Desantes, 2014, p.470)

Figura 15

Carburador de venturi variable de accionamiento mecánico




Nota. Carburador utilizado en motocicletas dispone de una guillotina que abre o cierra acorde al accionamiento del pedal de aceleración, variando la sección del venturi acorde a la altura, en medio de la guillotina dispone de una aguja cónica. (Payri & Desantes,

2014)

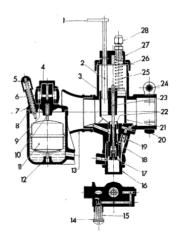
Para el carburador de accionamiento mecánico, la propia campana determina el flujo de aire que se admite al motor (Figura 16). Existen dispositivos adicionales para realizar un ajuste adecuado del dosado de la mezcla proporcionado, tales como marcha al ralentí, dosado de máxima potencia, arranque en frío y calentamiento, y bomba de aceleración.

Figura 16

Vista interior del carburador Dell Orto



Nota. Carburador Dell Orto de difusor variable, gama media para competición. (Guevara, s.f.)


a) Circuito de Entrada de Combustible y Nivel Constante. El combustible
viaja por la pipa de entrada de combustible (6) a la cuba por medio del tornillo de fijación
(4), procedente del depósito, y por gravedad, el cual atraviesa un filtro de tela metálica

antes de introducirse por el orificio de entrada a la cuba. Este orificio tiene regulado el paso gracias a la acción de una aguja cónica (10) regida por el flotador (11). De este modo la cantidad de líquido se regula automáticamente asegurando el nivel conveniente. (Savage, 2008, p.3)

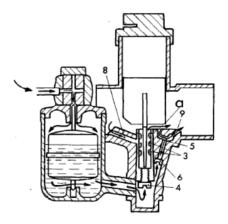
En el momento del arranque, y con el motor frío, se precisa una mezcla muy rica que se obtiene al rebosar este nivel de modo que la gasolina salga por el surtidor (22) bastando para ello mantener apretado unos segundos el agitador (5). Este agitador hunde el flotador no permitiéndole subir de modo que la aguja con cono del flotador no impide el paso de la gasolina y ésta fluye hacia el interior de la cuba sin medida reguladora. El agitador consta de un muelle (8) que lo mantiene siempre levantado. (Castro, 2001, p. 187)

Figura 17

Componentes carburador Dell Orto



Nota. Extraído del libro de carburadores (Castro, 2001)


**b) Circuito Principal.** El circuito principal puede verse con mayor detalle gracias a la figura 18.

Conocido como circuito rector de todos los movimientos del carburador, debido a que carece de mecanismos semejantes a una bomba de aceleración o cualquier otro procedimiento para enriquecer la mezcla, pero independientemente del circuito, resulta que éste se puede suplir, por sí solo, estos mecanismos de modo que pesa sobre él la responsabilidad de hallar una mezcla correcta a cualquier régimen del motor. (Castro, 2001, p. 187)

El economizador consiste en una serie de agujeros (3) practicados a lo largo del surtidor, los cuales se llenan de gasolina. Cuando el gasto de ésta es grande el nivel desciende, dejando libres o abiertos estos orificios y por ellos penetra aire que sale por la punta del surtidor principal empobreciendo la mezcla. La aguja cónica cumple, además, con su cometido general en todos los carburadores, es decir, hallar la proporción de la mezcla más adecuada para cualquier régimen del giro del motor. (Savage, 2008, p.5)

Circuito principal en un carburador Dell Orto

Figura 18



Nota. El circuito principal de carburación se considera sistema de aceleración conformado por un surtidor principal o paso calibrado un emulsor.

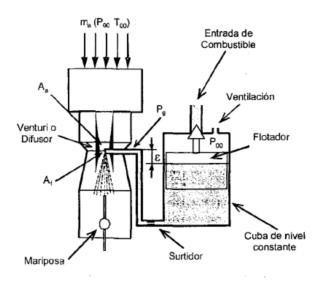
c) Circuito de Ralentí. Para este circuito se vale de 2 surtidores, así como del orificio de progresión.

Cuando la válvula corredera se halla del todo baja, el aire es aspirado a través del conducto (a) el cual tiene comunicación hacia el aire exterior. Al pasar este aire por el calibre (5) aspira gasolina por el surtidor de ralentí la cual va hacia los cilindros por el surtidor (9). De esta forma se logra una mezcla muy rica y suficiente para aguantar la marcha lenta en el vacío. (Savage, 2008, p.6)

Castro (2001) afirma: "Cuando la válvula corredera se levanta, la depresión sobre el surtidor (5) decrece y entonces, aumenta la aspiración de marcha por el orificio (9) hasta que el surtidor principal se hace cargo de la marcha del vehículo" (p. 189).

d) Otros Dispositivos del Carburador Dell Orto. Estos dispositivos son el filtro de aire y el obturador del mismo.

En este caso los carburadores Dell Orto van provistos de una trompeta de forma cónica, la cual tiene por misión la de evitar las pérdidas de combustible que pueda efectuarse al producirse el retroceso de la corriente portadora de la mezcla. (Castro, 2001) menciona: Estas corrientes son debidas a la velocidad con que el gas penetra en el interior del cilindro a través de la lumbrera de entrada al cárter. Para evitar esta pérdida se une esta prolongación del tubo llamado cornetín y que sustituye al filtro de aire (p.189).


#### 2.3.3. Parámetros de Carburación

La mariposa del acelerador es el dispositivo que regula el flujo de aire, y en consecuencia de mezcla, que entra en combustión. Se encuentra en la parte inferior del carburador, en el sentido del flujo que ingresa, provocando que en el colector de admisión la presión tome valores diferentes según su posición. El caudal de aire

admitido atraviesa un venturi en el carburador. Al aumentar la velocidad del aire en el venturi se genera una depresión △Pd (diferencia entre la presión atmosférica y la presión en el venturi) que es mayor que la que existe en el colector de admisión △p cuando la válvula de mariposa está abierta. No obstante, entre una y otra puede haber importantes diferencias si la válvula de mariposa está cerrada completamente o en parte. (Savage, 2008, p.5)

La presión en la cuba coincide con la atmosférica. La depresión en el venturi actúa para aspirar el combustible y hacer que éste se introduzca en el eje del venturi, incorporándose al flujo de aire en forma de gotas, que viajan a lo largo del colector hasta los cilindros, a la vez que se evaporan. La depresión generada en el venturi ha de ser suficiente para que se salve la diferencia geométrica & entre la salida del combustible y el nivel de la cuba, así como las pérdidas de carga del circuito hidráulico. El tamaño de las gotas de combustible formadas en el venturi es función de la depresión y en parte determina la calidad y homogeneidad de las mezclas en el sistema de carburación. Para evitar la dispersión mecánica y obtener un valor estandarizado de las pérdidas hidráulicas en el circuito del combustible, se incluye un shiglor, que concentra las pérdidas del circuito. (Payri & Desantes, 2014, p. 461)

Configuración básica de un carburador elemental



Nota. El carburador elemental trabaja por diferencia de presiones, el venturi trabaja por depresión y en la cuba a presión atmosférica en teoría, por el shiglor principal entrega combustible al venturi para mezclarse con el aire que pasa a una velocidad determinada.

El gasto de combustible  $m^f$  se puede calcular aplicando la ecuación de Bernoulli, puesto que es un fluido incompresible:

# Ecuación 1

Figura 19

Gasto de combustible

$$m^f = Cf Af \sqrt{2\rho f(\Delta Pd - \rho f g \varepsilon)}$$

Donde:

 $m^f = gasto de combustible$ 

Cf = coeficiente de descarga del surtidor

Af = secci'on del surtidor principal

 $\rho f = densidad de combustible$ 

 $\Delta Pd = depresión en el difusor o venturi$ 

g = aceleración de la gravedad

 $\varepsilon = diferencia geométrica de altura$ 

También es posible calcular el gasto de aire  $m^a\,$  , aunque en este caso sean aires compresibles, resultando:

### Ecuación 2

Gasto de aire

$$m^a = Ca Aa \varphi a \sqrt{2\rho a \Delta P d}$$

Donde:

 $m^a = gasto de aire$ 

 $Ca = coeficiente de descarga del venturi \approx 1$ 

Aa = sección del venturi

 $\rho a = densidad del aire aguas arriba del venturi Poo$ 

 $\Delta Pd = depresión en el difusor o venturi$ 

 $\varphi a = coeficiente de compresibilidad del aire$ 

El coeficiente de compresibilidad del aire se encuentra en función de la presión en el venturi y la presión que se encuentra encima del mismo, con valores próximos a la unidad para bajas depresiones y valores inferiores a 1 a medida que la depresión generada aumenta. (Castro, 2001, p.204)

### Ecuación 3

Coeficiente de compresibilidad del aire

$$\varphi a = \left[\frac{\gamma}{\gamma - 1} \left[ \left(\frac{Pg}{Poo}\right)^{\frac{2}{\gamma}} - \left(\frac{Pg}{Poo}\right)^{\frac{\gamma + 1}{\gamma}} \right] \right]^{1/2} \left(1 - \frac{Pg}{Poo}\right)^{-1/2}$$

Donde:

 $\gamma = cociente de calores específicos = \frac{Cp}{Cv}$ 

Pg = presión en el venturi

Poo = presión atmosférica

El diámetro del carburador determina la velocidad de circulación del aire (Castro, 2001) menciona:

Esta sencilla fórmula cuenta entre sus factores, ante todo, con la capacidad del cilindro y el número de revoluciones máximas que puede alcanzar el motor. El diámetro del carburador vendrá determinado por la ecuación 2.4. (p. 205)

### Ecuación 4

Diámetro del carburador

$$D = 0.82\sqrt{VccxN}$$

Donde:

D = diámetro del carburador

Vcc = Cilindrada

N = revoluciones del motor a potencia nominal

### Ecuación 5

Diámetro del carburador 2° forma

$$D = [Vcc^{1/3,55}x\sqrt{\frac{4xNxVcc}{94,25*vaire}}x\frac{1}{2,65}] *Fc$$

Donde:

vaire = velocidad del aire

El libro de (Castro, 2001) menciona: "El diámetro del difusor acostumbra ser unas 4/5 partes del diámetro del carburador. Por lo tanto, para hallar este dato bastará multiplicar el diámetro del carburador por 0,8" (p. 208). Esta ecuación es aproximada, por lo que también se coloca la exacta.

### Ecuación 6

Diámetro del difusor

$$D_{difusor} = D * 0.8$$

### Ecuación 7

Velocidad de la mezcla en el difusor

$$v$$
  $_{difusor} = v$   $_{piston} * \frac{D}{D} \frac{piston}{difusor}$ 

# Ecuación 8

Velocidad media del pistón

$$v_{piston} = s * N/30$$

#### Donde:

D difusor = diámetro del difusor o venturi

 $v_{difusor} = velocidad de la mezcla en el difusor$ 

v <sub>piston</sub> = velocidad media del pistón

s = carrera del pistón

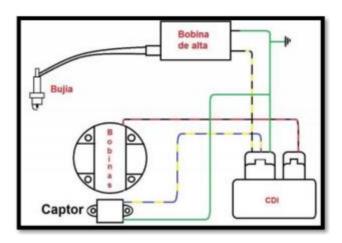
Para concluir (Castro, 1971) enuncia: "El valor del surtidor principal del carburador puede establecerse como cinco veces el diámetro del difusor. El resultado quedará expresado en centésimas de milímetro" (p. 208)

#### 2.4. Sistema de Encendido

El sistema de encendido es el encargado de generar la chispa eléctrica en el ángulo y voltaje adecuado, se encarga primordialmente de aportar la energía que necesita el motor para encender la mezcla aire combustible.

Para (Payri & Desantes, 2014):

La gran influencia que el avance de encendido y la potencia de la chispa tienen sobre las prestaciones mecánicas, las emisiones contaminantes y el comportamiento de los motores, en general, ha conducido al empeño continuado de los ingenieros por mejorar los sistemas de encendido de los motores. Es por ello que el conocimiento preciso de lo que ocurre entre los electrodos de la bujía durante el salto de la chispa o el conocimiento del comportamiento eléctrico del sistema de encendido resultan de gran interés. (p. 500)


#### 2.4.1. Encendido CDI

El encendido tipo CDI (Capacitor Discharge Ignition por sus siglas en inglés), es

un tipo de sistema de encendido para motores de dos y cuatro tiempos con ciclo Otto. Robayo (2016) explica el funcionamiento eléctrico de este sistema:

Consta en un circuito electrónico que elimina la necesidad de utilizar contactos mecánicos para la generación de pulsos de encendido. Puede tener diferentes configuraciones, pero sus elementos principales son en general una bobina elevadora de voltaje, un capacitor y un tiristor o SCR que es el encargado de realizar la carga de capacitor. (p.1)

Figura 20
Sistema CDI y sus partes



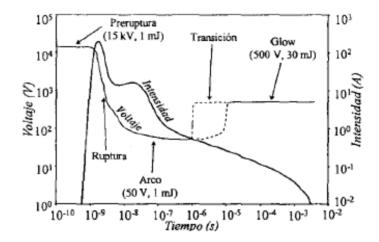
Nota. Extraído de internet.https://www.youtube.com/?v=50UXy2\_vPSE

# 2.4.2. Encendido Analógico Selettra PVL

El motor Vortex 60 cc dispone de un sistema de encendido analógico, está conformado por un rotor PVL, estator PVL y bobina de alta tensión.

Figura 21

Sistema de encendido Selettra




Nota. Sistema de encendido analógico por rotor y estator, componentes de la empresa Selettra

La mezcla estequiometrica es combustionada mediante la ignición por descarga eléctrica en la bujía. Como consecuencia de esta inflamación, se crea y después propaga una llama turbulenta a través de la mezcla hasta alcanzar las paredes de la cámara de combustión, donde se extingue. (Álvarez Flórez et al., 2005, p. 109)

Figura 22

Evolución temporal del voltaje y de la intensidad en un sistema de encendido Selettra.



Nota. (Álvarez Flórez et al., 2005)

- a) Fase de Pre Ruptura. Inicialmente el gas entre los electrodos de la bujía actúa como aislante. Al aumentar la tensión eléctrica entre los electrodos, alrededor de los 15 kV, los electrones que se encuentran entre ellos aumentan su energía y empiezan a desplazarse hacia el ánodo, pero manteniéndose una intensidad muy baja.
- b) Fase de Ruptura. Cuando el número de electrones liberados alcanza un valor determinado, la impedancia entre los electrodos cae de forma brusca, aumenta la corriente de forma rápida a unos 200 A, disminuye la caída de tensión y el proceso se automantiene, iniciándose la fase de ruptura que dura unos 10 ns. En esta fase, se forma inicialmente un estrecho canal de unos 40 μm en el que las partículas están disociadas, ionizadas y excitadas con energías potenciales de más de 20 eV, por lo que la energía almacenada es muy alta. Debido al rápido aumento de la temperatura (≈ 60 000 K), se produce un aumento de la presión en el interior del canal que provoca su brusca expansión. (Álvarez Flórez et al., 2005, p. 120)

c) Fase de Arco. En esta fase el voltaje es pequeño (≈ 50 V) y la corriente disminuye hasta un valor que el sistema de encendido sea capaz de mantener.

### 2.4.3. Parámetros de Encendido

a) Velocidad de Quemado Relación A/F  $(W_{A/F})$ 

# Ecuación 9

Velocidad de quemado relación A/F

$$W_{A/F} = A * \rho^{n_t} * \varepsilon^{-\frac{E}{RTc}}$$

Donde:

 $W_{A/F}$ : Velocidad de quemado  $(mol * \frac{m^3}{s})$ .

A : Factor constante → Depende del combustible → Composición Súper A-93 .

 $\rho$ : Densidad del aire.

 $\eta_t$ : Orden de la reacción

E: Energía de activación

*R* : Constante universal de la tesis.

T<sub>c</sub>: Temperatura de compresión

# b) Volumen de Combustión Ideal ( $V_z$ )

### Ecuación 10

Volumen de combustión

$$V_z = \frac{V_b}{\varepsilon'}$$

Donde:

 $V_{\rm z}$ : Volumen de combustión (cc).

 $V_{\rm b}$ : Volumen al inicio de escape (cc).

 $\varepsilon'$ : Relación de compresión efectiva.

c) Grados de Finalización de la Combustión Ideal ( $\theta_z$ )

### Ecuación 11

Grados de finalización de la combustión ideal

$$\theta_z = \frac{V_z * 180^{\circ}}{V_h}$$

Donde:

 $\theta_z$ : Grados de finalización de la combustión (°).

 $V_z$ : Volumen de combustión (cc).

 $V_{\rm h}$ : Volumen del cilindro (cc).

d) Tensión de Ruptura. Desde el punto de vista de la combustión, la mezcla aire combustible confinada en la cámara de combustión de un motor es una mezcla de gases no conductores y por tanto un dieléctrico, posee una determinada tensión de ruptura, Vr, que depende del tipo de gas y sus condiciones de presión, según la ley de Paschen. (Álvarez Flórez et al., 2005, p. 125)

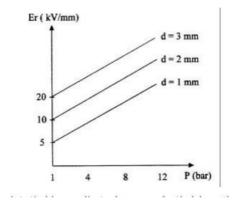
# Ecuación 12

Tensión de ruptura

$$Vr = K \rho d$$

Donde:

K = factor que depende del medio y electrodos

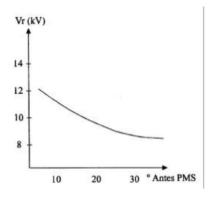

 $\rho$  = densidad del medio

d = distancia entre electrodos

En la figura 23 puede observarse la variación del campo eléctrico de ruptura en función de la presión del gas.

Figura 23

Variación del campo eléctrico de ruptura en función de la presión del gas




Nota. (Álvarez Flórez et al., 2005)

El nivel de Vr en el interior de la cámara de combustión varía según las condiciones operativas del motor, y además aumenta con el grado de envejecimiento de las bujías por el aumento de la distancia entre electrodos.

Figura 24

Variación del campo eléctrico de ruptura en función del avance de encendido



Nota. A menor adelanto al encendido se necesita menos tensión de ruptura para una correcta combustión, al contrario, si el adelanto al encendido es mayor la tensión de ruptura debe aumentar. (Álvarez Flórez et al., 2005)

e) Retraso del Tiempo en el Motor. El valor de r (tiempo de retraso) será función de la presión y de la temperatura, que a su vez son función del tiempo. Existen diversas relaciones empíricas que ajustan el valor del tiempo de retraso para distintos hidrocarburos o para combustibles formados por varios de estos hidrocarburos. (Álvarez Flórez et al., 2005, p. 156)

### Ecuación 13

Retraso del tiempo en el motor

$$r = Ap^{-n}e^{(\frac{B}{T})}$$

### Ecuación 14

Retraso del tiempo en el motor 2° forma

$$r = 17,68 \left(\frac{NO}{100}\right)^{-3,402} e^{\left(\frac{3800}{T}\right)} p^{-1.7}$$

Donde:

r = tiempo de retraso en milisegundos

A, n y B = parámetros que dependen del combustible

T = Temperatura en la cámara en °K

NO = número de octano del combustible

# 2.5. Factores de Diseño que Afectan a la Detonación

# Régimen

Al aumentar el régimen motor, aumenta la velocidad de combustión debido a una mayor turbulencia y por lo tanto el tiempo de combustión se reduce, Álvarez Flórez et al. (2005) asevera: "En general, este aumento del régimen disminuye el rendimiento volumétrico, por lo que la velocidad de combustión se reduce por haber menos masa de aire, y por lo tanto el tiempo de combustión crece" (p.159).

### Grado de carga

Al aumentar el grado de carga, aumenta la cantidad de masa que admite el motor, con lo que el tiempo de combustión se reduce; sin embargo, se produce un aumento importante de la presión y temperatura de la mezcla sin quemar que hace reducir el tiempo de retraso, lo que conduce a un aumento de la detonación. (Álvarez Flórez et al., 2005, p. 159)

91

Avance del encendido

En muchos casos, el punto de encendido óptimo para el buen rendimiento del

motor va acompañado de una tendencia a detonar, por lo que se hace necesario retrasar

el encendido, a costa del rendimiento del motor.

Dosado

Con dosados ligeramente ricos se alcanzan los valores de máxima potencia,

Álvarez Flórez et al. (2005) afirma:

Lo que equivale a decir que las temperaturas y presiones en el cilindro son

máximas, por lo que el tiempo de retraso se reduce y, a pesar de que la velocidad de

combustión aumenta, tiene mayor peso el primer tiempo y en consecuencia el motor

tiene una tendencia mayor a detonar. (p.160)

2.6. Rendimiento, Potencia y Par Motor

2.6.1. Presión Media Indicada (P<sub>i</sub>)

Ecuación 15

Presión media indicada

 $P_i = \varphi_t * P_t * n_t (1 - \varphi)$ 

Donde:

P<sub>i</sub>: Presión media indicada (MPa)

 $\varphi_t$ : (0,94 – 0,98)

 $\varphi$ : 0,307

 $P_t * n_t$ : Presión media indicada no redondeada.

# 2.6.2. Presión Media Indicada no Redondeada ( $P_t * n_t$ ).

### Ecuación 16

Presión media indicada no redondeada

$$P_t * n_t = P_a * \frac{\varepsilon^{n1}}{\varepsilon - 1}$$

Donde:

 $P_t * n_t$ : Presión media indicada no redondeada (MPa).

 $P_a$ : Presión en condiciones atmosféricas (MPa).

 $\varepsilon$  : Relación de compresión.

 $\eta_1$ : Coeficiente adiabático (1,3 – 1,37)  $\rightarrow$  Compilador Ing. Luis Mena (pag 25).

# 2.6.3. Potencia Indicada $(N_i)$

### Ecuación 17

Potencia indicada

$$N_i = \frac{P_i * V_H * n * i}{60}$$

Donde:

 $N_i$ : Potencia indicada para motor 2T (KW - hp).

P<sub>i</sub>: Presión media indicada (MPa).

 $V_H$ : Cilindrada total (Lt).

n: Revoluciones por minuto donde se obtiene la mejor potencia.

i: Número de cilindros.

# 2.6.4. Presión Media Correspondiente a Perdidas Mecánicas ( $P_m$ )

# Ecuación 18

Presión media correspondiente a pérdidas mecánicas

$$P_m = 0.04 + 0.0135 * v_p$$

Donde:

 $P_{
m m}$ : Presión media correspondiente a pérdidas mecánicas (MPa).

 $v_p$ : Velocidad media del pistón  $(\frac{m}{s})$ 

# 2.6.5. Presión Media Efectiva (P<sub>e</sub>)

# Ecuación 19

Presión media efectiva

$$P_e = P_i - P_m$$

Donde:

*P*<sub>e</sub>: Presión media efectiva (MPa).

 $P_i$ : Presión media indicada (MPa).

 $P_{
m m}$ : Presión media correspondiente a pérdidas mecánicas (MPa).

# 2.6.6. Rendimiento Mecánico ( $\eta_m$ )

# Ecuación 20

Rendimiento mecánico

$$\eta_m = \frac{P_e}{P_i}$$

Donde:

 $n_{\mathrm{m}}$ : Rendimiento mecánico  $(\eta_m)$ .

 $P_{\rm e}$ : Presión media efectiva (MPa).

P<sub>i</sub>: Presión media indicada (MPa).

# 2.6.7. Potencia Efectiva ( $N_e$ )

# Ecuación 21

Potencia efectiva

$$N_e = \eta_m * N_i$$

Donde:

 $N_{\rm e}$ : Potencia efectiva para motor 2T (KW - hp).

 $\eta_{\mathrm{m}}:$  Rendimiento mecánico.

 $N_i$ : Potencia indicada (KW - hp).

# 2.6.8. Par Efectivo $(M_e)$

# Ecuación 22

Par efectivo

$$M_e = \frac{N_e * 60}{2\pi * \omega}$$

Donde:

 $M_{\rm e}$ : Potencia efectiva para motor 2T (W)

 $N_{\rm e}$  : Par efectivo del motor 2T (N\*m).

 $\omega$ : Régimen de giro (rpm).

# 2.6.9. Caballos por Litros de Cilindrada $(\frac{Kw}{m^3})$

# Ecuación 23

Caballos por litros de cilindrada

$$N_1 = \frac{N_i}{i * V_H}$$

Donde:

 $N_1$ : Caballos por litro de cilindrada  $(\frac{KW}{m^3})$ .

 $N_i$ : Potencia indicada (KW - hp).

i: Número de cilindros

 $V_h$ : Cilindrada total.

# 2.6.10. Eficiencia Térmica $(\eta_t)$

# Ecuación 24

Eficiencia térmica

$$\eta_t = 1 - \frac{1}{\varepsilon^{k-1}}$$

Donde:

 $\eta_t$  : Eficiencia térmica.

 $\varepsilon'$ : Relación de compresión efectiva.

k: Coeficiente adiabático. (1,33 – 1,41)  $\rightarrow$  Jovaj (pg. 28)

# 2.6.11. Gasto Específico $(g_t)$

# Ecuación 25

Gasto específico

$$g_t = \frac{G_e * 10^3}{N_i}$$

Donde:

 $g_t$ : Gasto específico ( $\frac{g}{Kw*H}$ ).

 $G_e$ : Consumo de combustible  $(\frac{Kg}{h})$ .

 $N_i$ : Potencia indicada (Kw).

 $G_e$ : Consumo de combustible  $(\frac{Kg}{h})$ .

# 2.6.12. Rendimiento Indicado $(\eta_i)$

#### Ecuación 26

Rendimiento indicado

$$\eta_i = \frac{N_i}{B * Q_{in}^a}$$

Donde:

 $n_i$ : Rendimiento indicado.

 $N_i$ : Potencia indicada para motor 2T (KW).

B: Consumo de combustible  $(\frac{Kg}{s})$ .

 $Q_{in}^a$ : Poder calorífico inferior de combustible  $\binom{KJ}{Kg}$ .  $\rightarrow$  Gasolina Súper A93  $\rightarrow$  48  $\frac{MJ}{kg}$ 

# 2.7. Banco de Pruebas (Dinamómetro Inercial)

El dinamómetro inercial es el encargado de medir el par y potencia del motor a través de una carga conectada de manera directa a un piñón del motor y hacia una catalina del eje de masa.

Para (Santiago & Vladimir, 2012)

Un banco dinamométrico es el encargado de medir el par y la potencia de un motor de combustión interna a determinadas revoluciones por minuto (rpm). Para lo cual el banco dispone de un freno dinamométrico el cual genera un par resistente proporcionando carga al motor, es necesario indicar que, como característica primordial, esta carga debe ser variable. (p. 31)

El dinamómetro de motor es un equipo que permite obtener tanto el balance de

energía como las curvas características del motor, como son; par motor, potencia, consumo específico de combustible.

Por su disposición se acopla directamente al cigüeñal del motor, la masa inercial o la unidad de absorción de potencia y de allí toma los valores necesarios para el cálculo de la potencia según sea el principio de funcionamiento. Este tipo de dinamómetros son utilizados para realizar pruebas de motores en su etapa de investigación y desarrollo pues al estar el motor dentro de una sala de pruebas correctamente equipada, se pueden controlar de forma precisa las condiciones y parámetros en que se realizan las pruebas permitiendo así tener la posibilidad de repetir los ensayos con resultados iguales, lo que da validez a la información obtenida. Los resultados obtenidos de ensayos realizados en este dinamómetro solo reflejan los del motor y este al ser montado en una estructura deberá ser corregido por las pérdidas ocasionados por los elementos motrices. (caja de cambios, diferencial, pérdidas por rodaduras, etc.) (Ávila, 2016, p. 5)

Dinamómetro inercial MWD RK600i

Figura 25



Nota. Banco de pruebas que obtiene los parámetros característicos del motor reduciendo las pérdidas de potencia al estar conectado a una masa inercial. (Suasnavas et al., 2016)

#### Prueba inercial

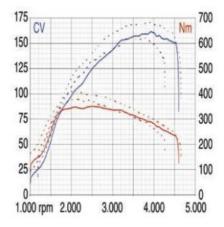
La prueba inercial suele utilizarse para obtener mediciones del máximo desempeño que puede alcanzar un motor dado, es decir, para calcular la potencia y par máximos alcanzados por el vehículo. (Ávila, 2016) Menciona: Esta prueba es muy sencilla y rápida y puede realizarse incluso con bancos de potencia desprovistos de cualquier tipo de freno (p. 39). Después de la fijación del vehículo al banco, el test transcurre así:

Primero, se introduce una relación de cambio en el software de control del dinamómetro. Se recomienda utilizar una relación lo más directa posible (1:1).

Segundo, se arranca el vehículo y se deja permanecer al ralentí hasta que el motor haya alcanzado la temperatura óptima de funcionamiento.

A continuación, se acelera el vehículo a plena carga (acelerador "a tope") hasta el corte de inyección. El software de control debe registrar el tiempo transcurrido durante dicho evento.

Finalmente, el operario suelta el acelerador y acciona el embrague del vehículo hasta que el rodillo de inercia del dinamómetro se detenga totalmente. El software también debe registrar el tiempo transcurrido durante esta acción.


Prueba a frenado constante (velocidad variable)

Este tipo de test es muy similar al inercial en muchos aspectos.

La única diferencia es que a las pérdidas mecánicas producidas ha de sumarse el par de frenado ejercido por el freno, el cual debe fijarse en el software de control antes de comenzar el ensayo. Estas pruebas suelen utilizarse para controlar la velocidad de los elementos rotativos del dinamómetro, así como para alargar el tiempo de medición y poder obtener resultados más fiables durante la realización del experimento. Además, tiene la ventaja de poder elegir la carga de frenado previamente, dependiendo del motor del vehículo bajo ensayo. En

ocasiones, este experimento suele utilizarse también para simular otras pérdidas de potencia durante la conducción real del vehículo. (Ávila, 2016, p.43)

Figura 26 Curvas de par y potencia obtenido en un dinamómetro inercial



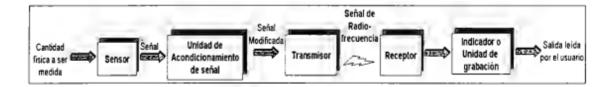
Nota. La curva de color azul indica la potencia en CV, mientras la curva roja muestra el par del motor en N.m.

### 2.8. Telemetría

Se entiende por telemetría a la tecnología de comunicación que permite medir magnitudes físicas. En el proceso se realiza un envió de las magnitudes a un centro de control, el cual puede encontrarse a una distancia considerable del lugar donde se está haciendo la toma de medidas, esta transmisión de datos se realiza por medio de una red inalámbrica.

(Garzón, 2018, p.16)

En la actualidad la telemetría es utilizada en varias partes del mundo por el aumento notable en la eficiencia y la reducción de los gastos de producción. La eficiencia se ve en la velocidad de recepción de datos, y la reducción de gastos es evidente. (Garzón, 2018, p.22)


Para las competencias automovilísticas es de vital trascendencia la telemetría ya que los equipos dependen de ella de gran manera pues los datos que reciben son in situ,

es decir que permiten evaluar el funcionamiento del vehículo ante situaciones no controladas ni planificadas. Al final estos datos sirven para mejorar las tácticas de entrenamiento simuladas y para el desarrollo de futuras tecnologías.

Muchos disfrutamos de las carreras de autos por televisión y hemos sido partícipes de los avances tecnológicos con los cuales el deporte del automovilismo se ha visto mejorado. Hoy en día una transmisión de este espectáculo viene siempre acompañada de varias tomas a bordo de los vehículos y sobre las cuales se superponen algunos datos como la velocidad y las revoluciones del motor, muy frecuentemente escucharemos a los comentaristas referirse a estos datos como "la telemetría" y es a través de estas tomas y datos superpuestos en el televisor, que nos transportamos al interior del vehículo, nos sentimos parte de la carrera y disfrutamos del espectáculo. Lo anterior es muestra de los avances tecnológicos que se han logrado desarrollar en este deporte. Por lo general, los sistemas de telemetría son empleados para realizar pruebas en vehículos tales como autos, aviones y misiles, la telemetría no se desarrolló en principio para mejorar la experiencia del televidente, sino como una herramienta de vital importancia para la escudería. (Ángulo, 2006, p.11)

#### 2.8.1. Componentes de un Sistema de Telemetría

Diagrama de un sistema de telemetría



Nota. (Angulo, 2006)

Figura 27

Los datos obtenidos antes, durante y después de una competencia son vitales para que los preparadores de los vehículos que buscan el máximo desempeño del motor y la puesta a punto logren la máxima potencia, velocidad y al final la victoria. Los sensores no sólo monitorean datos del vehículo, sino también del piloto.

La señal que nos genere el sensor será a continuación acondicionada, lo que significa que será modificada de su forma original a una forma más entendible. En caso de ser una señal eléctrica, tal vez requiera ser amplificada, o tal vez requiera ser convertida de su valor en corriente a un valor en voltaje, o de una serie de pulsos a un voltaje que pueda operar un dispositivo de medición; incluso, si se va a almacenar o a transmitir esa señal de forma digital, será necesario convertirla de su estado analógico a la digital por medio de un convertidor. Una vez acondicionada la señal será posible transmitirla por algún medio (generalmente se emplea la radiofrecuencia) hasta el lugar donde se desea emplear, donde mediante un receptor y una serie de indicadores, grabadoras o dispositivos diversos (gráficas en computadora, animaciones, representaciones gráficas, etc.) se podrá observar e interpretar la señal. (Angulo, 2006, p.16-17)

### 2.8.2. Mychron 5

MyChron5 en pocas palabras es un medidor diseñado para instalarse en un kart. Este dispositivo permite leer y registrar valores de temperatura de los gases de escape, bujía o temperatura del agua, además de otros parámetros físicos provenientes de GPS, como: velocidad, posición, aceleración lateral y hora del día con precisión de un milisegundo. (AiM Srl, s.f., p.2)

# Figura 28

# Mychron 5



*Nota.* Dispositivo que permite medir la telemetría, la instalación es sobre un soporte de volante, dispone de una pantalla de 5 in, contiene led que sirven como alarma de medidas sobredimensionadas de los parámetros del motor como temperatura.

MyChron5 utiliza los datos de GPS y Glonass para calcular el tiempo de vuelta. Posee una base de datos con una memoria interna de 4 GB que proporciona un reconocimiento automático de la pista a recorrer, con sus correspondientes puntos de división, punto de partida, entre otros. (AiM Srl, s.f., p.3)

Figura 29

Estructura del Mychron 5



Nota. Accesorios que permiten el funcionamiento del dispositivo de telemetría a ello se adjunta sensores como posición del timón, sensor de frenado, etc. (AiM Srl)

Este aparato permite monitorear los principales parámetros del kart a través de conexiones que se realizan a los principales sensores del vehículo, entre las principales funciones y características se encuentran:

Tabla 6

Características del Mychron 5

| CDC into and do      | 40 Uz CDC - Clamaca                   |
|----------------------|---------------------------------------|
| GPS integrado        | 10 Hz GPS + Glonass<br>Constellations |
|                      | Constellations                        |
|                      |                                       |
| rpm                  | Hasta 25000 rpm                       |
| Tomporatura matar    | Tormonor / Tormorrogistonois          |
| Temperatura motor    | Termopar / Termorresistencia          |
| Tiempo por vuelta    | Basado en GPS (incluido)              |
|                      | ,                                     |
| Conexión WIFI y PC   | sí                                    |
|                      |                                       |
| ,                    |                                       |
| Resolución Display   | 268x128 pxl                           |
| Alarmas              | 2 LED RGB libremente                  |
| 7 Harrido            | configurables                         |
|                      | 3                                     |
| Luces de cambio      | 5 LED RGB libremente                  |
|                      | configurables                         |
| 0                    | Ellere de cidais de codes             |
| Cuerpo               | Fibra de vidrio de nylon              |
| Software de análisis | Race Studio                           |
|                      |                                       |
|                      |                                       |
| Batería:             | Recargable de 3 amperios de           |
|                      | iones de litio                        |
|                      |                                       |

Nota. Especificaciones técnicas del Mychron 5, el dispositivo corresponde a la marca AIM. Las actualizaciones constantes del dispositivo se realizan a través de Race Studio 3, el cual ofrece firmware y software en cada actualización.

### 2.8.3. Race Studio 3

Es un software que permite actualizar el Mychron a través de descargas gratuitas. Consta de 2 programas uno de configuración y otro de análisis. El software debe ser instalado en la PC, la cual debe tener características iguales o superiores a las que pide la empresa; después de la PC, el programa, se lleva al dispositivo Mychron.

Después de una secuencia de vueltas desarrolladas por el kart el Race Studio permite observar gráficas de líneas de ruta, velocidad, velocidad angular del motor, potencia, tiempo de vuelta, entre otras variables.

Todas las variables permiten analizar el estado del motor, condiciones de manejo del piloto, estado del chasis y además comparar entre gráficas bases.

La primera página que ve al ejecutar RS3Analysys es la página de Base de datos, con datos y videos de las sesiones centrales, criterios de agrupación y colecciones a la izquierda y la vista previa a la derecha.

Figura 30

Logo Race Studio 3



Nota. (AiM Srl)

# 2.8.4. Parámetros de Telemetría

 Tiempo de vuelta: Tiempo que se demora el kart en dar una vuelta completa a la pista.

- Temperatura del agua: En los karts más evolucionados y modernos, se ve secciones de tubos distribuidos a lo largo de todo el sistema de refrigeración. Además, en situaciones de calor extremo, se hace necesaria la adopción de un radiador extra, para reducir la temperatura del agua a una más estable. "Esta se situaría en torno a los 50-52 grados en el caso de un TM 125" (Morales & Vargas, 2012, p.12).
- Rpm motor máxima y mínima: Velocidad angular máxima y mínima del motor a la que toma a entradas y salidas de las curvas.

Su cifra en comparación con la potencia máxima es importante porque, mientras la potencia máxima se consigue a alto régimen; el motor proporciona un empuje mayor a bajas velocidades.

- Velocidad máxima de vuelta: Es la capacidad real del kart para alcanzar la velocidad máxima en línea recta, por sus propios medios y sin la existencia de pendientes que favorezcan o se opongan a dicha capacidad.
- Potencia: Es la potencia real del motor del kart, equivalente a la potencia al freno.

#### 2.9. Software Ricardo Wave

Ricardo Wave es un simulador de sistemas que proporciona una integración termodinámica y dinámica de fluidos mediante una formulación unidimensional.

WAVE es el paquete de software de simulación de motores y dinámica de gases 1D, aprobado por ISO, líder en el mercado. Es un código de ingeniería asistido por computadora desarrollado por Ricardo Software para analizar la dinámica de las ondas de presión, los flujos de masa y las pérdidas de energía en conductos, plenums y los colectores de varios sistemas y máquinas. Proporciona un tratamiento totalmente integrado de la termodinámica y la dinámica de fluidos dependiente del tiempo mediante una formulación unidimensional que permite

realizar simulaciones de rendimiento basadas en prácticamente cualquier configuración del sistema de admisión, combustión y escape.

WAVE se utiliza en todo el mundo en sectores industriales que incluyen automóviles de pasajeros, motocicletas, camiones, locomotoras, deportes de motor, marinos y generación de energía. (Ricardo Software, 2019)

Figura 31

Logo de Ricardo WAVE



Nota. (Ricardo Software, 2019)

WaveBuild: es el preprocesador heredado que se utiliza para crear modelos WAVE y ejecutar análisis.

Dentro de la GUI de WaveBuild, el usuario define el sistema colocando elementos que representan el sistema en un lienzo. Se definen las condiciones límite (presiones y temperatura de entrada, temperaturas de la pared y condiciones de funcionamiento para maquinaria compleja, como cilindros de motor, turbinas / compresores y bombas), así como las condiciones iniciales para cada conducto / elemento. Los componentes (redes preempaquetadas) se pueden crear y agregar al modelo y la simulación completa se prepara para su análisis en el solucionador WAVE.

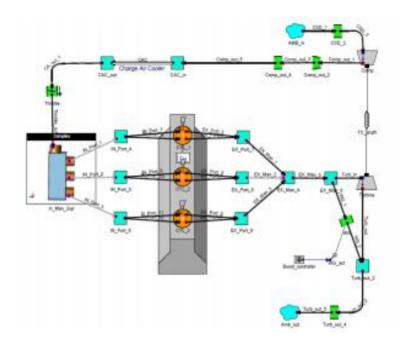
(Ricardo Software, 2019)

WaveBuild3D: es un preprocesador que permite al usuario generar rápidamente componentes WAVE usando plantillas preempaquetadas o construir su propio componente usando métodos de modelado de sólidos 3D. La guía de ayuda del software Ricardo Software (2019) menciona:

Puede crear múltiples componentes y permite al usuario visualizar el ensamblaje de los componentes conectados entre sí. Para geometrías más complejas existe el componente Complejo, que permite al usuario crear formas arbitrarias a partir de primitivas. La geometría final se malla automáticamente siguiendo algunas reglas sobre el tamaño del elemento. Este componente también admite la importación de geometría desde CAD.

(Ricardo Software, 2019) agrega que:

WAVE también incluye una biblioteca de elementos de maquinaria especial como cilindros de motor, compresores de pistón, turbocompresores / compresores y turbinas sobrealimentadores, y bombas. Estos elementos se pueden unir a las redes de tuberías para que sirvan como fuentes o absorbentes de flujos pulsantes. Estas características hacen de WAVE una herramienta excelente para simular el motor de combustión interna, así como otras redes complejas de flujo de fluidos compresibles.

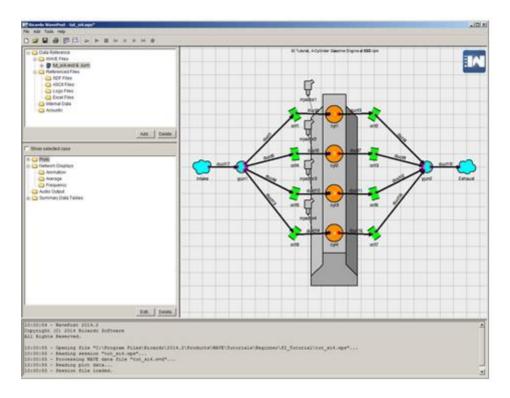

La metodología básica incorporada en WAVE ha sido ampliamente probada contra un conjunto de casos de referencia, que incluyen:

- Propagación de ondas de choque en un conducto
- Reflexión de la onda de presión de los extremos abiertos y cerrados de un conducto
- Flujo en estado estacionario a través de un conducto con un cambio abrupto del área de la sección transversal
- Fluir a través de un orificio

- Flujo de tubería con fricción
- Flujo de tubería con transferencia de calor
- Flujo a través de uniones de tres conductos.

Figura 32

Configuración de Ricardo WAVE del motor GTDI




Nota. El esquema representa los diferente recursos y componentes de simulación del motor.

WavePost: es el postprocesador gráfico unificado para las simulaciones WAVE, además permite la visualización de resultados y la generación de informes. Dentro de WavePost, el usuario puede ver los gráficos solicitados del análisis durante la configuración en WaveBuild, o crear nuevos gráficos de resultados generados por la simulación, junto con animaciones y pantallas de red, es decir puede crear gráficas de tiempo, de barrido, de animación, entre otras.

# Figura 33

# WavePost interfaz



Nota. Software que permite obtener los resultados y gráficas del funcionamiento del motor acorde a las configuraciones simuladas. (Lethwala, Sharma & Jain, 2019)

#### Capítulo III

# 3. Implementación, Optimización, Ajustes y Puesta a Punto del Sistema de Carburación y Encendido del Motor 2T 60cc

### 3.1. Equipos

El inciso describe los equipos de medición utilizados para el análisis de los parámetros característicos del motor Vortex 2T 60cc, así también, equipos de medición que permiten obtener datos en tiempo real en función de las mejoras en el sistema de carburación y encendido, por lo tanto se detalla la utilización de recursos: tecnológicos, humanos y físicos, teniendo como objetivo el optar por un motor con especificaciones personalizadas y así obtener más revoluciones en curvas lentas, y una mejor velocidad de punta en finales de rectas.

#### 3.1.1. Motor Combustión Interna Vortex 2T 60 cc

El motor utilizado para realizar el análisis de parámetros característicos en función de variables de carburación y encendido es un motor Vortex 60 cc dos tiempos, mono cilíndrico, como se puede observar en la Figura 34.

Figura 34

Motor Vortex 2T 60 cc



Acorde a la ficha técnica del fabricante a continuación se detalla la tabla de especificaciones del motor.

Tabla 7

Características del motor mini Vortex 2T 60 cc

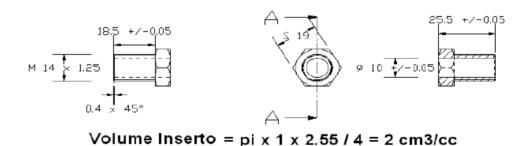
| Tipo de motor                 | Mini Rok Vortex 60cc                     |  |  |  |
|-------------------------------|------------------------------------------|--|--|--|
| Cilindrada.                   | 60cc.                                    |  |  |  |
| Diseño                        | Motor mono cilíndrico de 2 tiempos.      |  |  |  |
| Peso                          | 15 kg.                                   |  |  |  |
| Potencia rpm.                 | 10 hp / 11000 rpm.                       |  |  |  |
| Momento de giro rpm.          | 6,5 N.m / 9000 rpm.                      |  |  |  |
| Engranaje                     | Ninguno.                                 |  |  |  |
| Ralentí.                      | 1500 rpm a 2000 rpm.                     |  |  |  |
| Revoluciones máximas          | 15000 rpm.                               |  |  |  |
| Unidad de encendido.          | Encendido analógico Selettra             |  |  |  |
| Bujía.                        | NGK B10EĞ, M14                           |  |  |  |
| Calibración del electrodo     | 0,45 - 0,7 mm.                           |  |  |  |
| Combustible.                  | Súper.                                   |  |  |  |
| Lubricación del motor.        | Mezcla de aceite con combustible, aceite |  |  |  |
|                               | sintético Motul o ENI de 2 tiempos.      |  |  |  |
| Relación de mezcla.           | 1:25 (4% de aceite).                     |  |  |  |
| Lubricación del accionamiento | Aceite de motor SAE 10W30.               |  |  |  |
| del balanceador.              |                                          |  |  |  |
| Embrague.                     | Embrague en seco centrífugo.             |  |  |  |

Este motor dos tiempos es utilizado para conductores muy jóvenes entre 7 y 12 años de edad, su forma de enfriamiento es mediante aire, dispone de un sistema de arranque eléctrico, además consta de un carburador Dell 'Orto PHBG 18mm, bomba de combustible Dell 'Orto y escape con silenciador.

- a) Volumen de la Cámara de Combustión. Se mide el volumen de la cámara de combustión acorde al procedimiento que se menciona a continuación:
- Desmontar la culata y la bujía, la altura de la bujía debe ser de 18,5mm desde el asiento de la arandela.
- Atornillar el inserto en el lugar de la bujía, no debe sobrepasar la parte superior de la

cámara de combustión.

- Sellar la parte superior del pistón con respecto al cilindro utilizando grasa solida con el fin de evitar ingreso de aire o agua.
- Levantar el pistón al PMS y retirar el exceso de grasa, verificar que el motor se encuentre en una superficie plana.

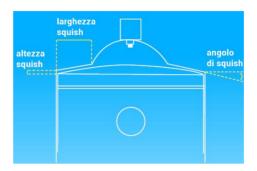

Colocar la culata y aplicar el par recomendado por el fabricante a los tornillos.

Llenar la cámara de combustión haciendo uso de una bureta graduada con mezcla de 50% combustible y 50% aceite hasta el borde superior del inserto.

El volumen medido de la cámara de combustión mínimo es: 4,8 cc + inserto 2cc, del cual el volumen de la cámara tiende a variar en pequeño porcentaje acorde al squish y otros factores como torque y grosor del empaque, el volumen del inserto se calcula acorde a la figura 35.

Figura 35

Volumen del inserto para colocar la bureta graduada




Nota. Reglamento técnico rock cup, 2020

**b) Squish.** Zona de la cabeza de culata que rodea la parte hemisférica de la cabeza del pistón, el squish dispone de tres puntos importantes, altura, longitud y ángulo, así lo indica la figura 36.

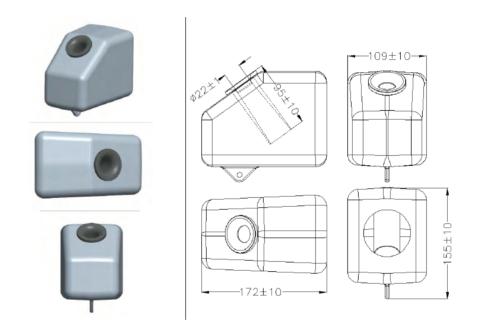
Figura 36

#### Dimensiones del squish



*Nota.* En la imagen se observa las dimensiones que hacen parte del squish, de gran importancia para la combustión.

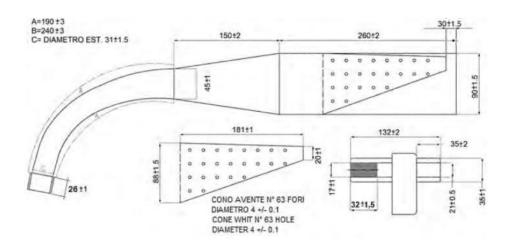
El funcionamiento del squish es sobre la fase de compresión cuando el pistón tiende a llegar al PMS a pocas décimas de milímetro de la rueda squish, así la mezcla aire – combustible comprimida, mediante el ángulo, se dirige al centro de la cámara donde llega el frente de llama reduciendo el tiempo de combustión y quemando la máxima cantidad de mezcla, el procedimiento para medir el squish se da acorde a los pasos que se mencionan a continuación:


- Desmontar la bujía y verificar el largo de la rosca 18,5mm
- Con una pieza de estaño de 1mm de diámetro dar la forma de L e introducir hacia la culata y el cilindro.
- Ascender al pistón hacia el PMS con el fin de que gire y marque el estaño
- Retirar el pedazo de estaño y con ayuda de un calibrador pie de rey medir la marca de estaño; el reglamento Rok Cup 2020 establece un mínimo de squish 0,8mm.

c) Geometría. Para la simulación se hace uso de dimensiones geométricas, es por eso importante referenciar mediante cotas diversos accesorios del motor 2T relacionado al sistema de admisión, sistema de escape y el tren alternativo.

El filtro de aire está construido de polímero sintético cuyo interior es hueco, dispone de un cornetín por donde ingresa el aire y un caucho que permite conectar el filtro con el diámetro del carburador, en la figura 37 se muestra las cotas.

Figura 37

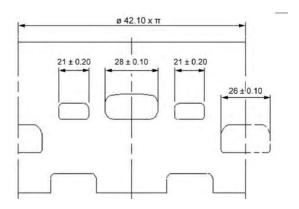

Filtro de aire



El escape está diseñado de acero 1020, en su interior dispone de una felpa para reducción de emisiones contaminantes, además dispone de una pipeta evitando que los gases se acumulen en el motor y se mejore el barrido, en el final del escape hay un silenciador; las cotas se observan en la figura 38.

Figura 38

## Escape motor Vortex




Nota. Extraído del reglamento técnico (Vortex, 2017)

El motor dispone de una lumbrera de admisión, una de escape y dos de transferencia, cada lumbrera es controlada por la carrera del pistón, encargado de abrir y cerrar las lumbreras acorde a su posición; a continuación, en la figura 39 se detalla las medidas de las lumbreras, y su posición respecto al PMS se observan en la tabla 8.

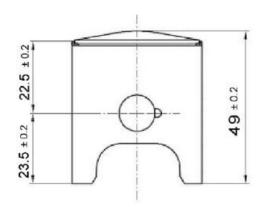
Figura 39

Cotas lumbreras del cilindro Vortex 2T



Nota. Extraído del reglamento técnico (Vortex, 2017)

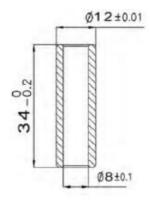
Tabla 8


Características de las lumbreras del motor mini Vortex 2T 60 cc

| Tipo de<br>Iumbrera | Altura(mm) | Ancho(mm) | Distancia desde el PMS(mm) | Área efectiva<br>(mm^2) |
|---------------------|------------|-----------|----------------------------|-------------------------|
| Admisión            | 26         | 15        | 50                         | 390                     |
| Escape              | 28         | 15        | 30                         | 420                     |
| Transferencia       | 21         | 9         | 36                         | 189                     |

El motor Vortex 2T tiene un tren alternativo disminuido el peso lo máximo posible, es por ello que dispone de un pistón de aluminio niquelado que tiene peso de 63 gr, el correspondiente bulón 15 gr, biela 94 gr y cigüeñal 1311 gr, siendo el peso total para el tren alternativo 1483 gr; en la figura 40 hasta la figura 44 se describen las cotas más importantes que a futuro se utilizan.

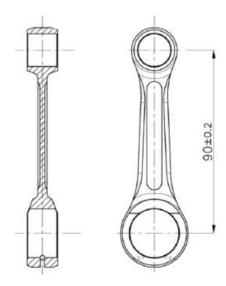
Figura 40


Cotas lumbreras del cilindro Vortex 2T



Nota. Extraído del reglamento técnico (Vortex, 2017)

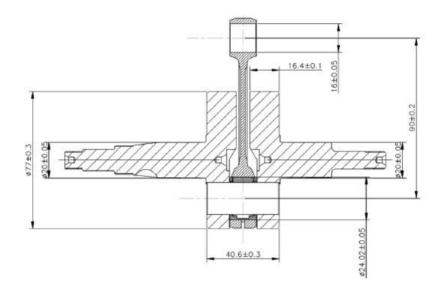
Figura 41


Cotas del bulón



Nota. Extraído del reglamento técnico (Vortex, 2017)

Figura 42


Cotas de la biela

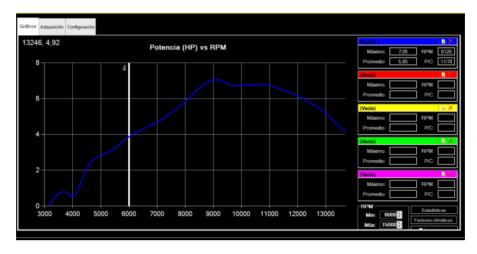


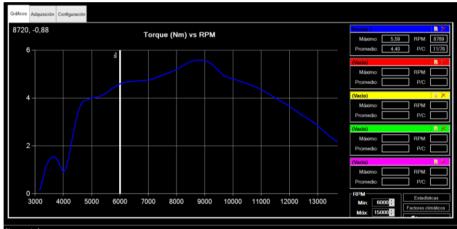
Nota. Extraído del reglamento técnico (Vortex, 2017)

Figura 43

# Cotas del cigüeñal




Nota. Extraído del reglamento técnico (Vortex, 2017)


# 3.1.2. Equipo de Medición Dinamómetro Inercial

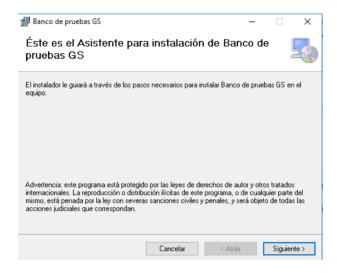
El dinamómetro inercial está ubicado en el kartodromo de Cotopaxi; este banco de pruebas permite obtener gráficas de potencia (hp), torque (Nm) y tiempo que demora en levantar rpm, figura 44.

Figura 44

Graficas de Potencia y Torque vs rpm






El banco de pruebas hace uso del software GS, el mismo que dispone de una central climatológica en tiempo real, por ello que el ajuste de condiciones climatológicas es de manera automática, el software es de fácil instalación a continuación se detalla dicho proceso:

- Destinar una computadora para la instalación del software extraíble, para ello se debe deshabilitar cualquier antivirus que se tenga corriendo.
- GS setup tiene dos archivos uno para la instalación y otro para desinstalar en caso de requerirlo, se selecciona el asistente de instalación, en la figura 45 se puede

observar el asistente del software GS.

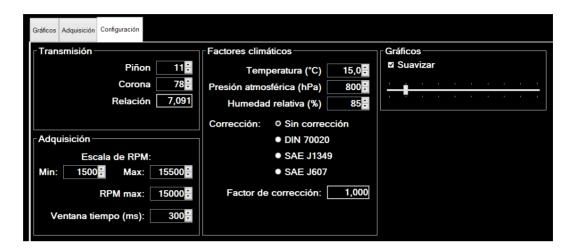
Figura 45

## Instalador software GS



 Prosigue presionar el botón siguiente y destinar una ubicación de instalación, un indicativo de la correcta instalación es el icono en el escritorio, como se observa en la figura 46

## Figura 46


Icono del software GS



 Instalado el software se prosigue a configurar los parámetros de calibración, acorde como se indica en la figura 47.

Figura 47

#### Configuración del software GS



Transmisión: El número de dientes del piñón y de la corona, por reglamento de Rok Cup Ecuador, la categoría mini utiliza piñón z1=11 y los dientes z2 de la corona es libre; en la relación de transmisión se cumple con un factor de seguridad mayor a 7 es por ello que se calcula acorde a la ecuación 27.

#### Ecuación 27

Factor de seguridad

$$FS = \frac{z2}{z1}$$

**Entonces** 

$$z2 = 7 * 11$$

$$z^2 = 77$$

Para mayor seguridad debido a que se intenta alcanzar las máximas rpm que el motor puede proveer se selecciona una corona de z2= 78 dientes

Adquisición: El banco de adquisición permite configurar los límites de rpm que se ven tanto en la gráfica de potencia o torque, el motor Vortex 2T 60cc como se describe anteriormente sus máximas rpm es de 15000, mientras que el ralentí va entre 1500 a 2000; la escala debe ser mayor a las máximas rpm y menor a las mínimas por ello se selecciona mínimas rpm 1500 y máximas 15500.

Factores climáticos: Los factores climáticos se configuran en función de la temperatura y la presión atmosférica de la ciudad de Latacunga y la ubicación donde se realiza la prueba, dichos parámetros climáticos son seleccionados de manera automática por la central climatológica que dispone el banco de pruebas, la temperatura promedio en la ciudad de Latacunga se encuentra entre 14 a 15 °C según el INHAMI y acorde a la semana en que se realiza las pruebas la humedad relativa no desciende del 85%, mientras tanto los factores de corrección para las pruebas a realizar se selecciona mediante la definición:

DIN 700200: Potencia medida en el eje de salida del motor, la prueba mide el motor instalado al vehículo en conjunto con accesorios.

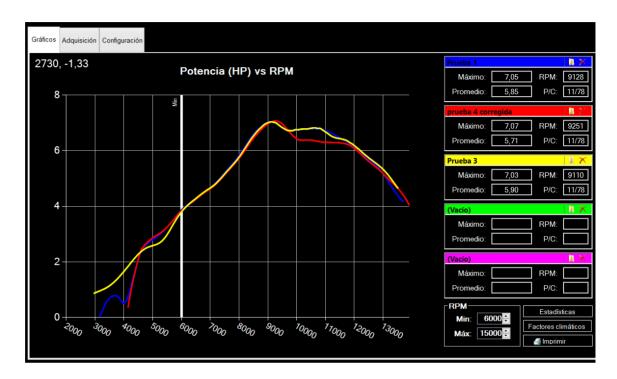
SAE J1349: Factor de corrección que funciona a temperatura de 77°F (25°C), 0% de humedad relativa y 1,02 atm presión barométrica.

SAE J607: Es el factor de corrección más antiguo el cuál menciona que el motor funciona en un día con temperatura de 60 °F (15°C), 0% de humedad relativa y 1,02 atm de presión barométrica.

Para el caso de que las pruebas se realizan el mismo día no se utiliza factores de corrección, no existen variantes climatológicas a gran medida; mientras que las pruebas realizadas en días diferentes utiliza la SAEJ607 que va acorde a la temperatura y presión barométrica del lugar.

 La interfaz de adquisición dispone de un tacómetro digital en tiempo real, en la parte inferior muestra Potencia, Torque y duración de la prueba en función de la gráfica que va diseñando; para cambiar el tipo de gráfica se da clic derecho en la parte derecha del tacómetro; a continuación, en la figura 48 se observa la interfaz de adquisición. Esta interfaz adjunta dos botones que permite guardar la prueba y la segunda opción permite borrar la gráfica con el fin de iniciar un nuevo ensayo.

Figura 48


Interfaz de adquisición



 La interfaz de gráficas permite analizar y comparar a mayor profundidad las gráficas, dispone de un panel donde indica el valor máximo y promedio de los parámetros acorde a la gráfica. Se puede comparar hasta 6 gráficas cada una cambiará de color, en la interfaz también se puede imprimir los resultados como se observa en la figura 49.

Figura 49

Interfaz de gráficas



El banco de pruebas permite obtener datos medidos directamente del motor sin influencia de otros elementos de transmisión; consta de un volante inercial de 60 Kg, que gira en conjunto con un eje sólido de 30 mm de diámetro reposando sobre tres chumaceras centrales fijadas a un estructura metálica, dispone de freno mediante palanca que asienta una banda de cuero sobre el volante inercial, al extremo del eje existe un volante dentado que gira alrededor de un sensor magnético que envía información a la central electrónica encargada de calcular y enviar los datos a la interfaz del computador. La estructura metálica del banco de pruebas permite instalar diversos accesorios como el arnés para el arranque del motor, el tanque de combustible, el cable de acelerador y finalmente el escape; para la pruebas y control de temperatura se dispone de un ventilador eléctrico que refrigera el motor evitando que se recaliente, además dispone de un extractor de

gases de escape hacia el exterior del habitáculo.

Tabla 9

Componentes del banco de pruebas

| Nombre                         | Observaciones       | Imagen |
|--------------------------------|---------------------|--------|
| Volante<br>inercial            | Peso 60 Kg          |        |
| Eje y<br>chumaceras            | Eje sólido 30mm     |        |
| Central<br>electrónica         | Desarrollado por GS |        |
| Volante<br>dentado y<br>sensor | Sensor magnético    |        |

| Nombre                | Observaciones                                                                                          | Imagen |
|-----------------------|--------------------------------------------------------------------------------------------------------|--------|
| Porta<br>Sprocket     | Conexión entre el eje y la corona.                                                                     |        |
|                       |                                                                                                        |        |
| Tablero de<br>control | Dispone de la palanca de freno, palanca aceleración, botones de activación del ventilador y extractor. |        |

# 3.1.3. Equipo de Medición Sistema de Encendido

Los datos del sistema de encendido se obtienen haciendo uso de un analizador de motor denominado GTC 505, dispositivo que permite obtener diversos datos tanto para motores 4T y 2T, a continuación, en la tabla 10 se muestra los modos, rango y apreciación de la medición.

Tabla 10

Datos específicos GTC 505

| Modos de<br>medición             | Rango de medición            | Apreciación  0,5% ± 1 ± 0,01KV |  |  |  |  |
|----------------------------------|------------------------------|--------------------------------|--|--|--|--|
| Tacómetro<br>Voltaje de la bujía | 120 a 19900 rpm<br>0 a 50 KV | ,                              |  |  |  |  |
| Tiempo de<br>quemado             | 0 a 12ms                     | ± 0,05 ms                      |  |  |  |  |
| Ángulo DWELL                     | 0 a 180° / 750 rpm           | ± 0,1°                         |  |  |  |  |

#### a) Descripción del Instrumento

## Figura 50

#### GTC 505 analizador de encendido



El dispositivo GTC 505 dispone de una pantalla de 3,5", un conector USB de carga rápida y mandos fáciles de manipular que se detallan a continuación:

- Clear / OF/ ON→ Permite encender el dispositivo con solo presionar el botón, al mantener presionado el botón, se apaga el dispositivo, y si se aplasta una sola vez este botón el dispositivo se reinician las pruebas y datos.
- Cycle > Permite seleccionar el número de tiempos acorde al motor de medición,
   4 tiempos, 2 tiempos y motores por chispa perdida (DIS).
- Mode→ Permite seleccionar los modos de medición acorde a la tabla 10.
- View-> Define como se observan los datos medidos: Datos digitales, datos de comparación o datos mediante gráfica.
- HOLD->Permite pausar la medición en un tiempo determinado y congelar los datos medidos.

## b) Descripción del Display

Figura 51

Display configuración de ciclos



Figura 52

Display de configuración de modos de operación



Modos de operación: El dispositivo GTC 505 permite obtener 4 datos:

 Burn Time → Tiempo de quemado: Corresponde a la medición del periodo desde el momento que inicia la chispa hasta el momento que termina, se puede decir que en los motores 2T es el tiempo que dura la combustión, esto puede variar acorde a varios factores, Gap de bujía, adelanto o retraso del tiempo de encendido, condiciones de la mezcla aire combustible, compresión del cilindro y el Squish.

- DWELL: Conocido como ángulo de permanencia, representa el ángulo de rotación del cigüeñal en el momento que el bobinado primario se encuentra energizado.
- Tacómetro: Determina rpm (revoluciones por minuto) en motores 2T y 4T.
- Voltaje: Indica los valores máximos de voltaje que alimentan a la bujía, útil para diagnosticar fallos entre cilindros, cables averiados, perdidas de corriente, etc.

#### 3.1.4. Equipo de medición de telemetría

Los datos de telemetría son mediciones en tiempo real del cual se puede obtener las rpm, velocidad, temperatura de motor, temperatura de escape, potencia, torque, entre otros datos en función de la distancia ,tiempo, trazado de pista, aceleración y frenado; todo esto mediante un dispositivo electrónico denominado Mychron 5 de la empresa AIM, que se conecta con un GPS, el cual mediante cálculos y matrices matemáticas obtienen los parámetros mencionados al principio del párrafo, para observar los datos medidos se hace uso del software Race Studio 3 que mediante WIFI se conecta y permite descargar los datos para ser analizados.

## a) Características Técnicas del Mychron 5

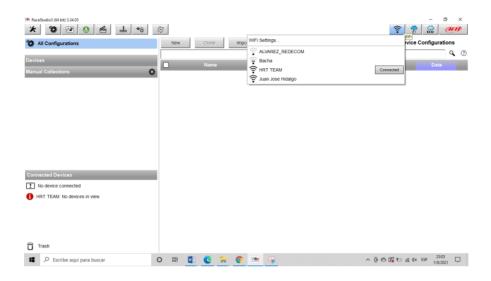
- Dispone de una pantalla LCD con 5 Leds RGB, el cual puede configurar un color a la pantalla.
- Posee 2 leds utilizados como alarma en exceso de temperatura de motor, o alarma en mejoras y pérdidas de tiempo.
- Tiene conexión WIFI que permite descargar datos del dispositivo, además permite cargar datos como pistas y líneas de carrera.
- La conexión para adquisición de datos es mediante GPS y 2 satélites, con una

- frecuencia de 25 Hz; del GPS se obtienen velocidad, aceleración lateral, tiempos por vuelta, parciales, posicionamiento en pista y línea de carrera.
- Para los datos de temperatura de motor, agua, gases de escape, presión de frenado, presión de aceleración, entre otros, se hace uso de sensores que permiten la adquisición de dichos valores.
- Dispone de memoria interna de 4 GB que permite tener un pre almacenamiento con más de 1500 pistas a nivel mundial y datos de telemetría acorde a las carreras.

Figura 53

Componentes de la Mychron 5

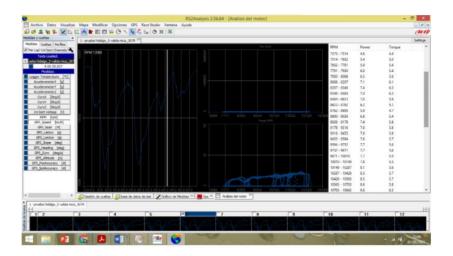



## b) Instalación y configuración del Mychron 5

- Sujetar la Mychron 5 al soporte instalado en el volante del conductor.
- Conectar el cable de rpm enrollando un extremo al cable de alta tensión de la bujía y el otro extremo al Mychron 5; del cable de rpm depende que la mychron 5 entre en funcionamiento, se desempeña como disparador de señal activando el GPS y la adquisición de datos.

- Conectar finalmente los sensores disponibles:
- Sensor de temperatura del motor, en caso del motor Vortex 2T 60 cc se conecta el extremo sobre el asiento de la bujía, la medición no debe superar los 130°C.
- Sensor de temperatura de los gases de escape, se conecta una toma entre la lumbrera y la pipeta de escape allí se aloja el sensor tipo NTC, la medición no debe superar los 650°C.
- Sensor de aceleración y frenado, se utiliza un potenciómetro instalado en cada pedal; mediante una unidad de expansión la Mychron 5 toma los datos y permite determinar puntos de frenado y puntos de aceleración en pista.
- Finalmente prosigue configurar lenguaje, Fecha, hora, unidades de medida, escala de medición y lo más importante, la pista; para ello el GPS se coloca en modo automático, el piloto debe recorrer de 3 a 4 vueltas para reconocer la pista, posterior a ello se hace uso del software Race Studio 3 y se crea la pista con parciales como se indica en el siguiente apartado.
- c) Race Studio 3. El software Race Studio 3 trabaja a la par con la Mychron 5 permitiendo descargar, cargar y analizar las gráficas, pictogramas y toda la adquisición de datos posibles obtenidos en pista, es por ello que se menciona los pasos fundamentales para el análisis de datos enfocados en el proyecto de titulación.
  - El primer paso es enlazar mediante wifi la Mychron 5 con el Race Studio como se indica en la figura 54 seleccionando el nombre de usuario para conectar en la brevedad posible.

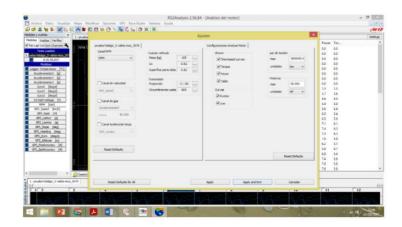
Figura 54


Conexión Race Studio a la Mychron 5



- Descargar los tests realizados, para ello se designa las vueltas y la carpeta de destino.
- A continuación, se reconoce la pista con GPS de manera automática, la cual toma un fragmento de todas las vueltas y la línea de carrera se transforma en la pista a cargar, configura donde inicia la contabilización del tiempo, además agrega entre 3 a 4 parciales y mediante el GPS determina la longitud de la pista a girar por carrera.
- Analizar los datos de rpm del motor, velocidad, aceleración, temperatura en función de la distancia recorrida o el tiempo, como se muestra en la figura 55.

Figura 55


Interfaz de análisis de parámetros de motor del Race Studio



 Para poder obtener datos a profundidad como son la potencia y torque, se ingresa de manera manual la relación piñón – corona, coeficiente aerodinámico, diámetro de la rueda y peso del piloto junto al chasis, como se observa en la figura 56. Mediante canales matemáticos que otorga el software Race Studio se obtiene las gráficas mencionadas en función de rpm.

Figura 56

Interfaz de ajustes del motor de Race Studio



#### 3.1.5. Software Ricardo Wave

Ricardo WAVE permitió desarrollar el motor a través de la selección de elementos mecánicos, eléctricos e hidráulicos. Existen distintas herramientas y funciones que hacen muy versátil al software, sin embargo, el carburador, esencial dispositivo de la simulación, no existe como tal, en su defecto fue estructurado con elementos simples como ductos, válvula de mariposa e inyector.

A continuación, se explica a detalle cada uno de los pasos esenciales para desarrollar la simulación del motor Mini Rok 2T 60 cc.

 Se debe seleccionar los elementos que se requieren en la simulación, los cuales son:

Ambiente de admisión y escape

Invector

Cilindro

Cárter

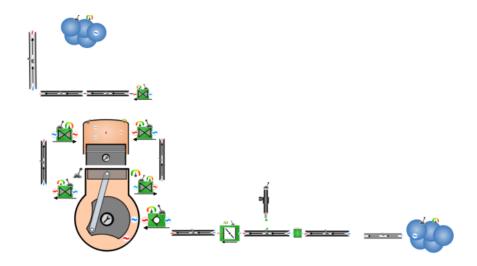
Válvula de mariposa

Válvula reed o flapera

Válvulas de transferencia

Válvulas de escape

Ductos de admisión (carburador, filtro y cauchos torque)


Ductos de transferencia

Ductos de escape

(Nota: los orificios se generan de manera automática entre ductos para permitir la unión de los mismos en caso de que no coincidan dimensiones)

Figura 57

Elementos de la simulación independientes



 Colocar el número de puertos que tendrán tanto el cárter como el cilindro, recordando que se tiene dos lumbreras de transferencia; en el cárter se necesitaría un puerto de admisión y dos de escape, los cuales conectan con el cilindro, del que se requerirán dos de admisión y uno de escape, y este último se uniría con el restrictor.

Puertos del cilindro y cárter

Figura 58

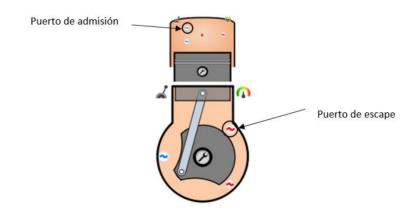
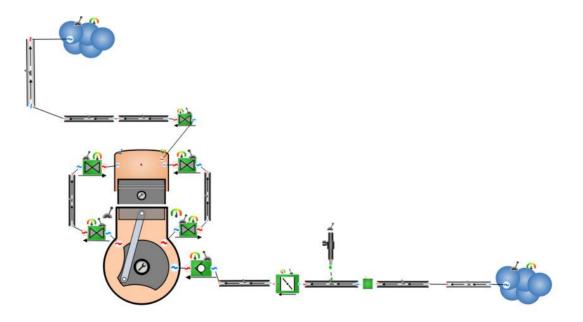



Figura 59

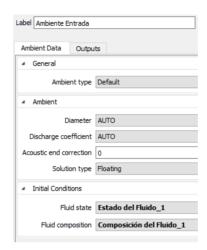

Configuración de los puertos del cilindro

| 4 | Ports                |    |                            |
|---|----------------------|----|----------------------------|
|   | Valve intakes count  | 2  |                            |
|   |                      | 1: | Válvula de transferencia 3 |
|   |                      | 2: | Válvula de transferencia 4 |
|   | Valve exhausts count | 1  |                            |
|   |                      | 1: | Válvula de escape          |

 Generar las respectivas uniones entre elementos según corresponda, como se ve en la figura 60, recordando que la orientación es importante.

Figura 60

Simulación con elementos conectados




• Editar los ambientes de entrada y escape, omitiendo todo excepto las condiciones

iniciales:

## Figura 61

Pestaña de configuración del ambiente de entrada



En el "Estado del Fluido\_1" se ingresan datos obtenidos por censos de condiciones atmosféricas de Latacunga, como se ve en la figura 61 y figura 62, que es donde se realizan las pruebas.

## Figura 62

Configuración del estado del fluido

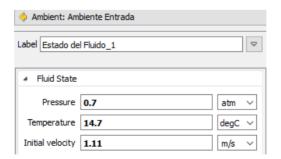



Figura 63

Estadísticas de temperatura de las principales estaciones de Ecuador

| <b>■</b> INAMHI |                                     | DIRECCI | ON DI | E ESTU | EST   | Α. | DIS | TICA | CLIM  |      |        |      | ON | IETE | OR | OLÓGIO   | :0 |     |   |  |
|-----------------|-------------------------------------|---------|-------|--------|-------|----|-----|------|-------|------|--------|------|----|------|----|----------|----|-----|---|--|
| M A R Z O 2021  |                                     |         |       |        |       |    |     |      |       |      |        |      |    |      |    |          |    |     |   |  |
|                 | PRECIPITACION (mm) TEMPERATURA (°C) |         |       |        |       |    |     |      |       |      |        |      | _  |      |    |          |    |     |   |  |
| ESTACION        | NORM.                               | ME      | S     | VAR.   | FEC   |    |     | RR.  | NORM. | MES  | ANOTE. |      |    | UTA  |    | ABSOLUTA |    |     |   |  |
| ESMERALDAS AER. | 118.8                               | NIL     |       | NIL    | NIL   | 1  | NIL | NIL  | 26.4  | NIL  | NIL    | NIL  | 1  | NIL  |    | NIL      | 1  | NIL |   |  |
| LA CONCORDIA    | 581.8                               | 575.8   |       | -1     | 88.9  | 1  | 27  | 29   | 26.1  | 25.3 | -0.8   | 31.9 | 1  | 6    |    | 19.5     | 1  | 30  | Ξ |  |
| SANTO DOMINGO   | 478.8                               | NIL     |       | NIL    | NIL   | 1  | NIL | NIL  | 24.3  | NIL  | NIL    | NIL  | 1  | NIL  |    | NIL      | 1  | NIL | Ξ |  |
| PUERTO ILA      | 493.3                               | 722.9   |       | 47     | 177.0 | 1  | 31  | 29   | 26.1  | 26.3 | 0.2    | 32.8 | 1  | 20   |    | 21.2     | 1  | 26  | Ī |  |
| PICHILINGUE     | 424.7                               | 465.3   |       | 10     | 122.3 | 1  | 4   | 27   | 27.0  | 26.8 | -0.2   | 33.5 | 1  | 20   |    | 21.5     | 1  | 26  |   |  |
| MILAGRO         | 357.3                               | 292.7   |       | -18    | 59.0  | 1  | 17  | 20   | 27.1  | NIL  | NIL    | NIL  | 1  | NIL  |    | NIL      | 1  | NIL |   |  |
| GUAYAQUIL AER.  | 301.8                               | 292.3   |       | -3     | 93.0  | 1  | 8   | 19   | 27.9  | NIL  | NIL    | NIL  | 1  | NIL  |    | NIL      | 1  | NIL |   |  |
| SANTA ROSA AER. | 92.3                                | 297.6   |       | 222    | 87.0  | 1  | 8   | 18   |       | NIL  | NIL    | NIL  | 1  | NIL  |    | NIL      | 1  | NIL | Ξ |  |
| SAN GABRIEL     | 111.6                               | 224.5   |       | 101    | 37.0  | 1  | 9   | 27   | 12.8  | 13.0 | 0.1    | 19.5 | 1  | 23   |    | 5.1      | 1  | 27  |   |  |
| INGUINCHO       | 181.5                               | 110.8   |       | -39    | 19.1  | 1  | 14  | 20   | 10.9  | NIL  | NIL    | NIL  | 1  | NIL  |    | NIL      | 1  | NIL |   |  |
| TOMALON         | 77.0                                | 89.5    |       | 16     | 11.5  | 1  | 24  | 24   | 15.3  | 15.3 | 0.0    | 24.5 | 1  | 26   |    | 5.9      | 1  | 28  |   |  |
| QUITO-IÑAQUITO  | 145.9                               | 294.9   |       | 102    | 35.7  | 1  | 3   | 24   | 15.4  | 15.2 | -0.2   | 24.2 | 1  | 30   |    | 8.4      | 1  | 24  |   |  |
| LA TOLA         | 120.4                               | 152.3   |       | 26     | 21.9  | 1  | 10  | 19   | 16.4  | 15.9 | -0.5   | 23.2 | I  | 28   |    | 8.0      | 1  | 6   |   |  |
| IZOBAMBA        | 180.8                               | 299.4   |       | 66     | 40.5  | 1  | 24  | 29   | 12.4  | 11.3 | -1.1   | 20.6 | 1  | 25   |    | 3.8      | 1  | 5   |   |  |
| LATACUNGA AER.  | 63.9                                | 62.9    |       | -2     | 22.0  | 1  | 24  | 15   | 14.7  | NIL  | NIL    | NIL  | 1  | NIL  |    | NIL      | 1  | NIL |   |  |

Nota. Extraído de la base de datos del (INAMHI, 2021)

Figura 64

Presión promedio de las principales provincias del Ecuador

| Ciudad      | Provincia  | Altitud (m) P (atm |            |  |  |  |
|-------------|------------|--------------------|------------|--|--|--|
| Tisaleo     | Tungurahua | 3254               | 0.66985751 |  |  |  |
| Cañar       | Cañar -    | 3125 0.680988      |            |  |  |  |
| Guamaote    | Chimborazo | 3060               | 0.68665329 |  |  |  |
| El Angel    | Carchi     | 3007               | 0.69130063 |  |  |  |
| Huaca       | Carchi     | 3000               | 0.69191633 |  |  |  |
| Pujilí      | Cotopaxi   | 2947               | 0.69659248 |  |  |  |
| Machachi    | Pichincha  | 2945               | 0.69676944 |  |  |  |
| Tulcán      | Carchi     | 2930               | 0.69809778 |  |  |  |
| Saquisilí   | Cotopaxi   | 2920               | 0.69898449 |  |  |  |
| San Gabriel | Carchi     | 2905               | 0.70031625 |  |  |  |
| Cevallos    | Tungurahua | 2892               | 0.70147211 |  |  |  |
| Tabacundo   | Pichincha  | 2877               | 0.70280771 |  |  |  |
| Quito       | Pichincha  | 2850               | 0.70521698 |  |  |  |
| Cayambe     | Pichincha  | 2830               | 0.70700593 |  |  |  |
| Riobamba    | Chimborazo | 2764               | 0.71293556 |  |  |  |
| Latacunga   | Cotopaxi   | 2750               | 0.71419853 |  |  |  |
| Salcedo     | Cotopaxi   | 2683               | 0.72026781 |  |  |  |
| Guaranda    | Bolivar    | 2668               | 0.72163231 |  |  |  |
| Cuenca      | Azuay      | 2550               | 0.73243955 |  |  |  |
| Azogues     | Cañar      | 2518               | 0.7353928  |  |  |  |
| Ambato      | Tungurahua | 2500               | 0.73705823 |  |  |  |
| Sangolquí   | Pichincha  | 2500               | 0.73705823 |  |  |  |
| Ibarra      | Imbabura   | 2228               | 0.76259889 |  |  |  |
| Loja        | Loja       | 224                | 0.97372633 |  |  |  |
| Esmeraldas  | Esmeraldas | 37                 | 0.99562103 |  |  |  |
| Portoviejo  | El Oro     | 36                 | 0.99573917 |  |  |  |
| Machala     | El Oro     | 4                  | 0.99952585 |  |  |  |
| Guayaquil   | Guayas     | 7                  | 0.99917035 |  |  |  |

Nota. Extraído de la base de datos del (Huaraca, 2019)

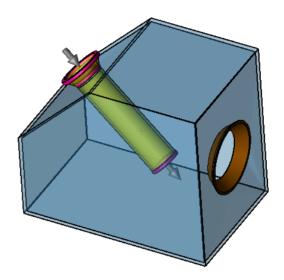
En la "Composición del Fluido\_1" se indica que circulará únicamente aire fresco por los elementos que usen esta composición, que son todos excepto el inyector.

 Utilizar el WAVE Build 3D para estructurar el filtro de aire y el tubo de escape de manera que las dimensiones de los mismos sean lo más posible parecidas a los reales.

Dibujar en la interfaz "complex", dos prismas rectangulares en la disposición que se muestra en la figura 65, recordando que uno de ellos debe estar en estado de corte para que de forma al filtro.

Prismas rectangulares parte del dibujo del filtro de aire

Figura 65




Insertar 3 tubos en la caja ya desarrollada. El primer tubo es la boca de la toma de aire del filtro, el segundo la continuación de la misma y el tercero es la salida del filtro

que iría conectado al carburador. Recuerda mallar cada que realices modificaciones en el diseño, de esta manera no se generan errores.

Figura 66

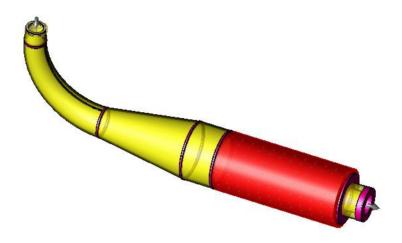
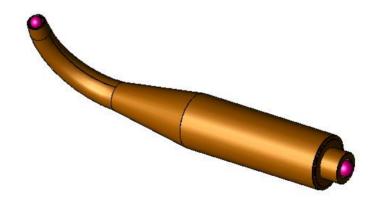
Filtro de aire final en interfaz complex

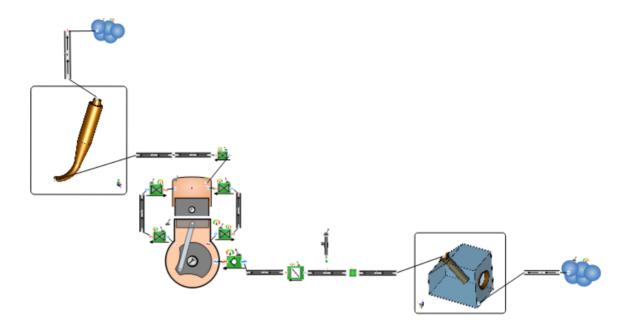


Dibujar el tubo de escape como un conjunto de tubos consecutivos en los que varían diámetros y longitudes, el penúltimo de los tubos, que se observa de color rojo en la figura 66, se lo debe crear como concéntrico con perforaciones que permitan dispersar el calor del elemento, de la misma forma que ocurre en el objeto real. Recuerda mallar para que la figura en el WAVE Build 3D aparezca con esas esferas púrpura que definen el flujo del objeto como se ve en la figura 68.

Tubo de escape en interfaz complex

Figura 67



Figura 68

Tubo de escape finalizado



 Insertar el filtro de aire y tubo de escape ilustrados en WAVE Build 3D (como componentes independientes) en los lugares correspondientes, teniendo presente el sentido de flujo de los mismos.

Simulación con componentes de WAVE Build 3D



 Insertar el título de la simulación en el lienzo y nombrar cada uno de los elementos que se encuentran allí, como se observa en la figura 70 hasta la figura 72.

Figura 70

Figura 69

# Conjunto carburador

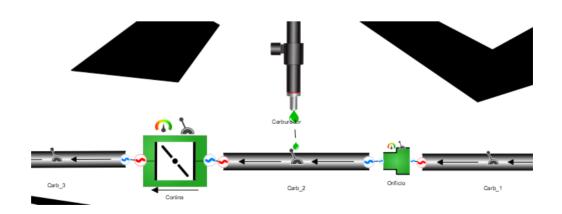



Figura 71

# Estructura del motor

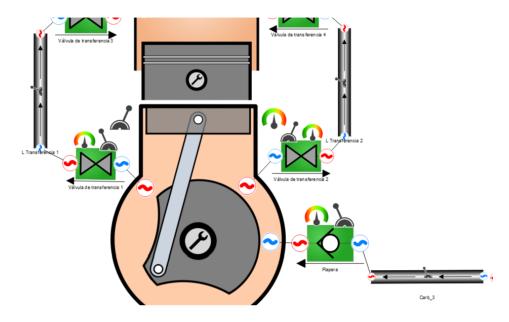
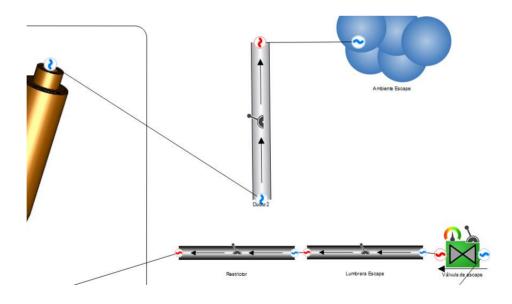
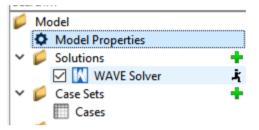




Figura 72

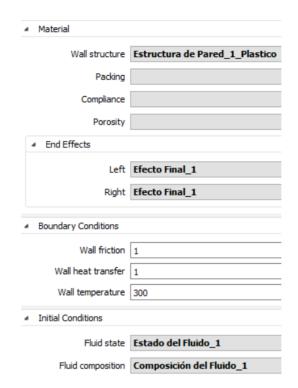
# Conjunto del sistema de escape




• Definir las "propiedades del modelo" colocando las propiedades del combustible

como gas ideal, y utilizando un archivo proporcionado por WAVE para la mezcla de combustible-aceite (indolene) de los motores 2 tiempos. La aceleración es de 9,8 m/s^2 y los "multiplicadores globales" son 1 en ambos casos.

Figura 73


#### Pestaña del modelo de simulación



 Modificar las dimensiones del Ducto 1 con los correspondientes datos; agregar en material una estructura tipo plástico, efectos finales iguales tanto en izquierda y derecha del ducto, condiciones de perímetro acorde al material y elemento, y las condiciones iniciales las mismas que se usan en el ambiente de admisión.

Figura 74

Pestaña de configuración del "Ducto 1"



La "estructura de pared" se desarrolla según el material de construcción y ambiente en el que se hacen las pruebas (hay que tener en cuenta que es una estructura homogénea ya que el elemento consta de solo un material en toda su longitud), para este caso se asume que todo se realiza en un entorno cerrado por lo tanto la temperatura del campo convectivo y radioactivo son de 287,3 K; la emisividad depende del material y para ello revisar la figura 75. Para la pestaña de "pared exterior" basarse en la figura 76; y el "espesor" es el que se mide desde el interior de la pared del ducto.

Figura 75

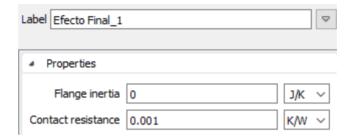
## Valores de emisividad

| Material          | Emisividad (ε) |
|-------------------|----------------|
| Cuerpo negro      | 1              |
| Piel humana       | 0.98           |
| Agua              | 0.98           |
| Amianto           | 0.95           |
| Cerámica          | 0.95           |
| Barro             | 0.95           |
| Cemento           | 0.95           |
| Tejido            | 0.95           |
| Grava             | 0.95           |
| Papel             | 0.95           |
| Plástico          | 0.95           |
| Goma              | 0.95           |
| Madera            | 0.95           |
| Cobre (oxidado)   | 0.68           |
| Acero inoxidable  | 0.1            |
| Cobre (pulido)    | 0.02           |
| Aluminio (pulido) | 0.05           |

Nota. Extraído del libro de (León, 2009)

Figura 76

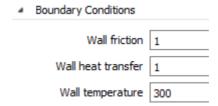
# Propiedades de los materiales


| Material                       | Heat Capacity [J/m³/K] | Conductivity [W/m/K] | Source                                   |
|--------------------------------|------------------------|----------------------|------------------------------------------|
| Aluminum                       | 2.43E+06               | 237                  | Bosch Automotive Handbook                |
| Gray cast iron                 | 3.63E+06               | 58                   | Bosch Automotive Handbook                |
| Steel, unalloyed and low-alloy | 3.87E+06               | 53                   | Bosch Automotive Handbook (average)      |
| Steel, stainless               | 4.03E+06               | 14                   | Bosch Automotive Handbook                |
| Zytel plastic                  | 3.14E+06               | 0.25                 | DuPont website (scattered) <sup>□*</sup> |
| Cordierite (catalyst monolith) | 2.07E+06               | 2.5                  | www.matweb.com <sup>™</sup>              |

Nota. Extraído de la base de datos del software (Ricardo Software, 2019)

La pestaña de "efecto final" consta de dos partes, por un lado, la inercia de la brida que va a tener un valor de 0 en todos los ductos excepto en el restrictor de escape que se considera brida, y la resistencia de contacto, que de igual forma va a ser de un valor ínfimo salvo en el elemento de escape ya mencionado.

Figura 77


Configuración del efecto final del "Ducto 1"



Las condiciones de perímetro son únicamente coeficientes donde el multiplicador de fricción de pared tiene un valor recomendado de 1, ya que un valor cero apagará la fricción de la pared por completo, lo mismo para el multiplicador de transferencia de calor de pared; finalmente la temperatura de pared se refiere a la temperatura ambiente de la pared a la que se someterá a convección con el gas interno, por lo que se selecciona 27 °C.

Figura 78

Configuración de las condiciones de perímetro del "Ducto 1"



149

Las condiciones iniciales son las mismas que se colocó en el ambiente de entrada.

Cabe recalcar que las modificaciones hechas aquí se desarrollan en todos los elementos

de admisión hasta llegar al cárter del motor, tomando en cuenta que lo que cambia es el

material (de plástico a aluminio).

Además, si no se modificó algún ítem es porque lo recomendable es dejarlo sin

cambios.

• Las lumbreras de transferencia se dimensionarán, y establecerán las condiciones,

tomando en cuenta que el material es aluminio y que las condiciones de perímetro

cambian por ser parte del bloque motor, al igual que las condiciones iniciales, ya que

toman papel los cambios bruscos de temperatura y presión (estos últimos datos se

obtuvieron en los cálculos).

Los ductos de transferencia serán rectangulares ya que esa es su forma física; para

obtener los diámetros referenciales de las válvulas de transferencia se hará un simple

cálculo de áreas con las dimensiones tomadas de estas lumbreras.

Ecuación 28

Diámetro referencial de las válvulas de área efectiva del cárter

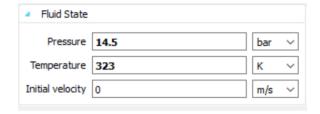
Medidas del área de la lumbrera 20,5x21,5 = 440,75

$$440,75 = \frac{\emptyset^2 \pi}{4}$$

$$\emptyset = 23,7$$

Ecuación 29

Diámetro referencial de las válvulas de área efectiva del cilindro


Medidas del área de la lumbrera 9x21 = 189

$$189 = \frac{\emptyset^2 \pi}{4}$$

$$\emptyset = 15,5$$

Figura 79

Configuración del estado del fluido de la lumbrera de transferencia



• En el sistema de escape el material es el aluminio excepto en el Ducto 2, que es acero; los efectos finales llevan un cambio, como se mencionó en pasos anteriores, donde la lumbrera a la izquierda tiene un efecto final de brida y el restrictor en cambio a la derecha. El "estado de fluido 2" guarda condiciones de un sistema de evacuación normal de motor, como se ve en la figura 79.

El Ducto 2 cambia de condiciones de perímetro, figura 3.49, y los efectos finales son los mismos que en la admisión, esto deducido por análisis del comportamiento del motor.

Figura 80

Configuración de las condiciones de perímetro del Ducto 2

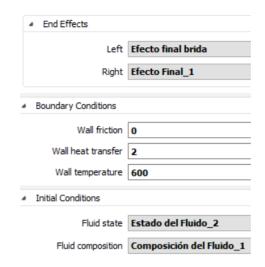



Figura 81

Configuración del estado de fluido del restrictor de escape

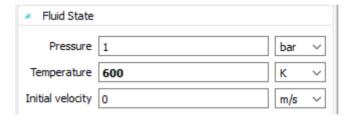
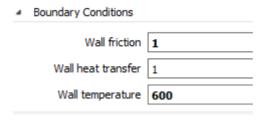
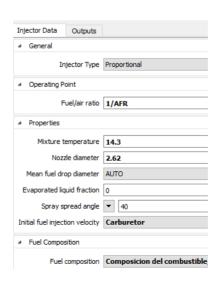



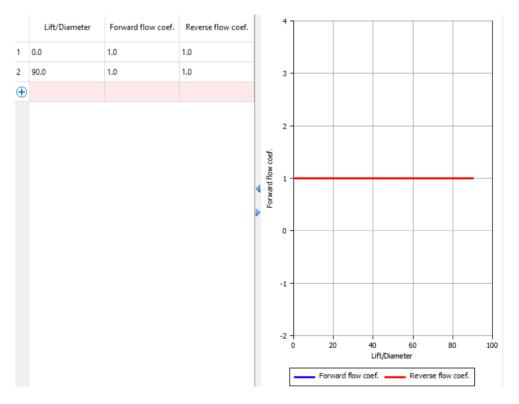

Figura 82


Configuración de las condiciones de perímetro del restrictor de escape



Definir los parámetros del inyector proporcional como se observa en la figura 83, donde la constante 1/AFR permite tener una relación de aire combustible que variará entre casos de la simulación (posteriormente se explicará, ya que tiene un valor constante en el caso que se desarrolla pero varía entre caso y caso; al igual que todas de las constantes que se denotan como expresiones alfanuméricas en la simulación); la "composición de combustible" se define con 1 solo en el ítem "combustible líquido".

Figura 83


Configuración del inyector



 Definir la válvula mariposa denominada "cortina", colocando dimensiones reales de la cortina del carburador Dell Orto. El "ángulo de placa" se define como una constante "Angulo\_acelerador" y el perfil del coeficiente de flujo de la válvula se define con datos calculados o conocidos como se divisa en la figura 84.

Figura 84

Configuración del perfil del coeficiente de flujo de la válvula mariposa



 Definir la válvula reed o flapera de la misma forma que los otros elementos, con dimensiones reales conocidas (diámetro referencial y geométrico en este caso son iguales). El perfil de masa y área de la válvula se define como en la figura 84, y el perfil de coeficiente de flujo con la figura 85.

Figura 85

# Configuración del perfil de área y masa de la válvula reed

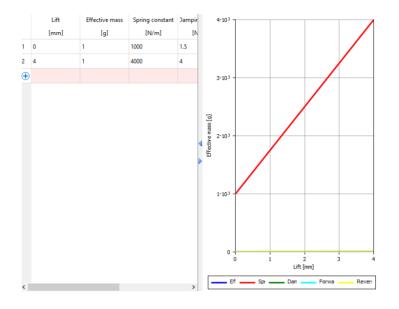
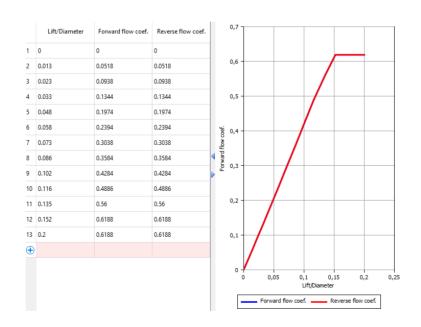
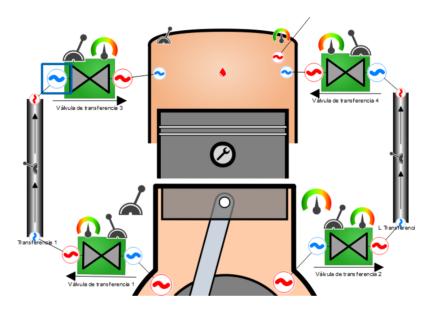




Figura 86

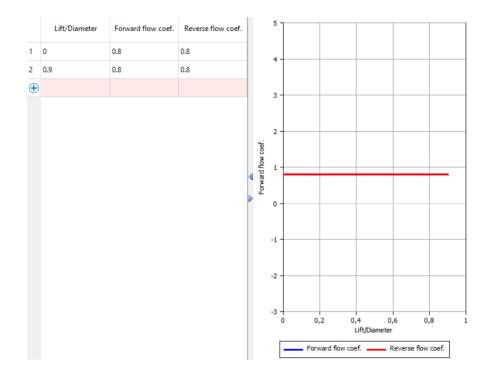

Configuración del perfil del coeficiente de flujo de la válvula reed



 Se definen las válvulas de transferencia como válvulas de área efectiva, aunque en el motor real no haya son necesarias para la simulación, las dimensiones son tomadas de las propias lumbreras del motor Mini Rok.

Estructura de conexión de las lumbreras de transferencia

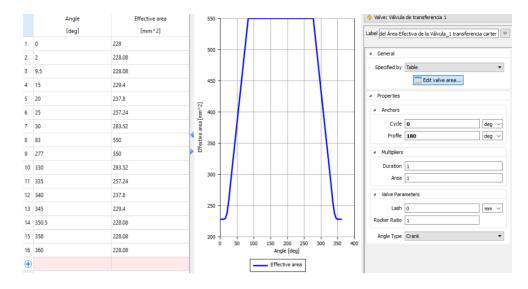
Figura 87




El perfil de coeficiente de flujo de las válvulas de transferencia es el mismo para las 4 por ser del mismo tipo, y se define por la figura 88, que se presenta a continuación.

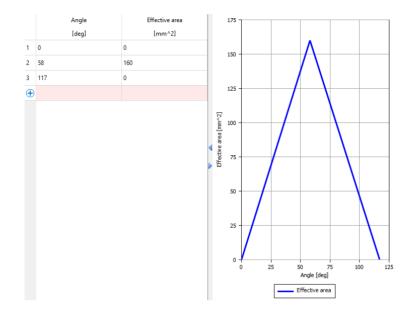
Considera que la relación elevación/diámetro debe ser la exacta ya que de ser menor o superior provocará errores, este valor va de la mano con el perfil de área efectiva de la válvula.

Figura 88


Configuración del perfil del coeficiente de flujo de la válvula de área



Las válvulas de transferencia 1 y 2 tienen los mismos datos por ir conectados al cárter motor; el perfil de área efectiva se define con el diagrama de mando ya que, de 83 a 277 grados de giro del cigüeñal, estas válvulas permanecen en su mayor apertura es decir el área efectiva máxima (este valor tiene que ser igual o mayor al calculado con el diámetro de referencia de la válvula). En la parte derecha de la figura 89, se observa la pestaña propiedades las cuales se definen arbitrariamente ya que son simples puntos de referencia para los cálculos.

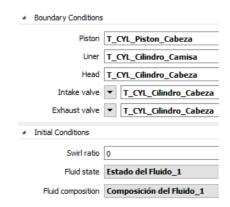

Figura 89

Configuración del perfil de área efectiva de las válvulas de transferencia 1



Las válvulas de transferencia 3 y 4 tienen su máxima apertura a los 58 grados del ángulo del cigüeñal y de la misma forma que en el anterior caso, la máxima área efectiva no puede ser menor al área calculada con el diámetro referencial de las válvulas.

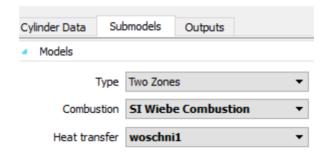
Configuración del perfil de área efectiva de las válvulas de transferencia 3 y 4




 El cilindro debe ser estructurado con 2 puertos de entrada y 1 de salida, con condiciones de perímetro como se ve en la figura 91, donde las temperaturas se nombrarán como constantes. Las condiciones iniciales son las mismas que en el ambiente de entrada.

Figura 91

Figura 90


Configuración del cilindro

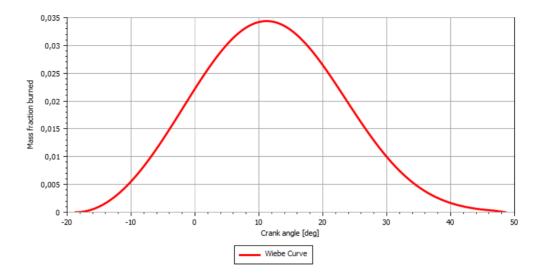


En este caso son necesarios submodelos de transferencia de calor y combustión que permitan mejor desempeño del motor.

Pestaña de configuración de los submodelos del cilindro

Figura 92




El tipo de combustión que se utilizará será el "SI Wiebe Combustion": "Simplemente usa una función de curva en S que representa la masa de combustible acumulada quemada en el cilindro, se usa con mucha frecuencia y representa bastante bien los eventos de combustión observados experimentalmente para la mayoría de las situaciones" (Ricardo Software, 2019).

La "duración de combustión" debe ser una constante al igual que la "localización del 50% de masa quemada" ya que éstas permitirán variar el tiempo de quemado y parámetros de combustión. La figura 93 muestra la curva que se genera con este tipo de combustión y con los datos colocados.

Figura 93

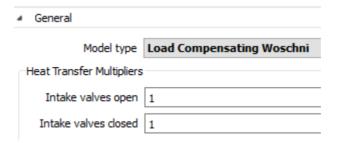

Gráfica de SI Wiebe Combustión

Figura 94



El submodelo de transferencia de calor más comúnmente aplicado es la correlación de Woschni para la transferencia de calor por convección o "load compensating woschni". Este submodelo asume una transferencia de calor simple desde un volumen confinado rodeado en todos lados por paredes que representan la culata, la camisa del cilindro, la cara del pistón y las áreas de la cabeza de la válvula expuestas a la cámara de combustión.

Configuración del submodelo de transferencia de calor por convección Woschni

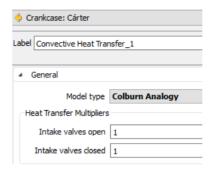


 El cárter debe ser estructurado con 2 puertos de salida y 1 de entrada, con condiciones de perímetro como se ve en la figura 95, donde las temperaturas se nombrarán como constantes. Las condiciones iniciales son las mismas que en el ambiente de entrada.

Figura 95

Configuración de las condiciones de perímetro del cárter

| Piston Underside | T_CRNK_Piston_Falda     |
|------------------|-------------------------|
| Crankcase Wall   | T_CRNK_Carter_Pared     |
| Cylinder Liner   | T_CYL_Cilindro_Camisa   |
| Intake valve     | T_CRNK_Admision_Valvula |
| Exhaust valve    | T_CRNK_Escape_Valvula   |


Para la geometría del cárter se usa la relación de compresión que se obtuvo en los cálculos; los multiplicadores de área son múltiplos del área del orificio entre cárter y pistón.

Como submodelo de transferencia de calor se elige el tipo "Colburn Analogy":

El submodelo de transferencia de calor de Colburn Analogy es un modelo simplista para el cálculo del coeficiente de transferencia de calor para flujo turbulento sobre una placa plana. Como tal, normalmente solo se aplica a los elementos del cárter. (Ricardo Software, 2019)

Figura 96

Configuración del submodelo de transferencia de calor "Colburn Analogy"



• Agregar un "bloque motor" que permita completarlo, uniendo las conexiones de cilindro y cárter en uno solo como se ve en la figura 97; la configuración será la de la figura 98, donde usará una mezcla homogénea y tendrá 2 carreras por ciclo, que es una de las características más importantes para ser motor 2 tiempos. En las condiciones de operación se usará las ambientales y la velocidad angular del motor será una constante.

Figura 97

Conexiones del "bloque motor"

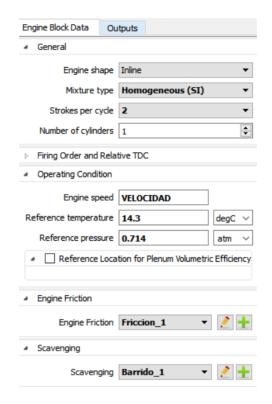




Figura 98

Configuración del "bloque motor"



El motor utiliza la correlación Chen-Flynn para modelar la fricción:

La correlación tiene un término constante (para la fricción accesoria), un término que varía con la presión máxima del cilindro (para la dependencia de la carga), un tercer término linealmente dependiente de la velocidad media del pistón (para la fricción hidrodinámica) y un cuarto término cuadrático con la velocidad media del pistón (para pérdidas por efecto del viento). (Ricardo Software, 2019)

En la figura 98 se muestra cada uno de los términos que se explica en el párrafo anterior para calcular la FMEP (presión efectiva media de fricción) del motor; para defecto de la simulación se usarán valores predeterminados de motores 2T otorgados por el software, los cuales se pueden ver en la figura 99.

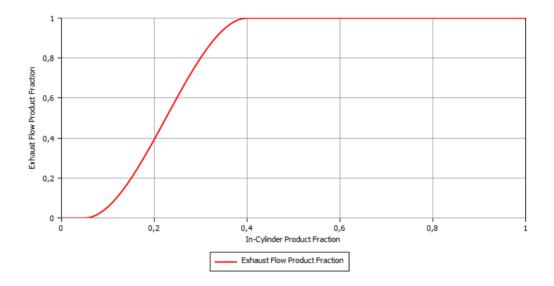
Figura 99

Fórmula de la correlación Chen-Flynn fricción del motor

Figura 100

Configuración de la correlación Chen-Flynn fricción del motor

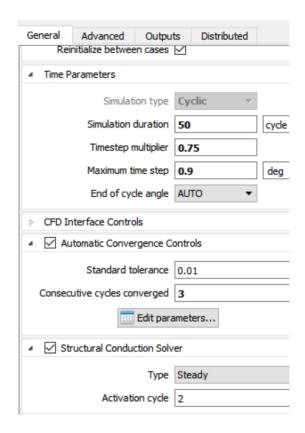
| Engine Friction (Chen-Flynn Correlation) |       |                |   |
|------------------------------------------|-------|----------------|---|
| ACF                                      | 0.25  | bar v          | , |
| BCF                                      | 0.003 |                |   |
| CCF                                      | 180   | Pa.min/m ∨     | , |
| QCF                                      | 0.2   | Pa.min^2/m^2 ~ | , |


El barrido es un proceso muy necesario en los motores de 2 tiempos, ya que permite la salida de los gases combustionados usando el flujo de la nueva mezcla:

El submodelo de barrido contiene un modelo de mezcla térmica que asume que el gas de la zona "nueva" se mezclará gradualmente con el gas de escape durante el evento de barrido. Está programado para calentar linealmente el gas de la zona "nueva" a la temperatura media del gas del cilindro a medida que la masa en la zona "nueva" alcanza el 100% del contenido del cilindro. (Ricardo Software, 2019)

Para este caso se usará un tipo de curva cúbica que es una función de la fracción del producto dentro del cilindro, que permitirá identificar la masa que sale del mismo.

Figura 101


Curva cúbica del barrido de motor



La configuración de los datos de simulación debe ir como lo muestra la figura 102, tomando en cuenta que la casilla "reinicializar entre casos" debe estar seleccionada, esto hará que WAVE comience la simulación desde las condiciones iniciales impuestas por el usuario para temperaturas de pared, temperaturas de gas, presiones, velocidades y concentraciones de especies en todos los casos posteriores cuando se definen varios casos. La duración de la simulación depende de cuánto se demore en converger y para ello el valor de 50 es arbitrario, al igual que los valores de las pestañas siguientes como son "controles de convergencia automática" y "Solucionador de la conducción estructural".

Figura 102

Configuración de las propiedades de la simulación



#### 3.2. Procedimiento de Puesta a Punto del Motor

Para un correcto funcionamiento del motor Vortex 2T 60cc se deben inspeccionar 2 cosas fundamentales:

Sistema de alimentación de combustible

Lo primero a tener en cuenta es el combustible a utilizar, al ser un motor 2 tiempos la lubricación del tren alternativo se realiza por la mezcla de gasolina Súper 92 octanos y la mezcla de aceite Motul 2T Kart.

1Galon de Combustible súper 92 octanos → 5 Oz de aceite Motul 2T kart

1 Galón combustible → 5% de aceite MOTUL

En caso de no realizar la mezcla en las proporciones mencionadas el motor presenta fallos que son de proporción Menor al 5% de aceite el motor se sobrecalienta y se pega el pistón al cilindro (Fundir motor) y mayor al 5% de aceite el motor tiende a realizar contra explosión, la combustión es ineficaz y la mezcla no se quema en su totalidad.

Verificado la mezcla de combustible - aceite prosigue limpiar el filtro de aire y sustituir el filtro de combustible que puede ser de papel filtrante u otro material, el cual se ve en la figura 103.

Figura 103

Filtro de combustible de un kart



Nota. Extraído del reglamento técnico (Vortex, 2017)

En el sistema de alimentación también se realiza la limpieza del carburador, tanto shiglores de alta o jet principal, ductos de mezcla, emulsores, difusores y cuba, haciendo uso de carb cleaner. Centrar de manera eficaz el carburador de ello depende la carburación tanto en niveles a bajas, medias y altas rpm.

Terminando de centrar el carburador prosigue purgar el sistema de admisión, para ello se sopla por la manguera de ingreso del tanque lo que provoca que por otra manguera salga combustible hacia la línea de admisión, llenando la cuba del carburador.

Verificar las conexiones de vacío para un correcto funcionamiento de la bomba de combustible caso contrario el carburador no tiene alimentación.

#### Sistema de encendido

En lo que corresponde al sistema de encendido en primer lugar se verifica que la bujía y la bobina de alta tensión proporcionen la tensión correcta para que se genera la chispa.

Se hace uso de un reloj palpador que permite identificar el tiempo o adelantamiento de la chispa, este parámetro va acorde a la tolerancia que designa el fabricante del motor.

Se limpia el embrague centrífugo y la campana, al ser un motor con marcha directa si estos accesorios tienen grasa tienden a patinar y por ende se pierde potencia.

Finalmente se da arranque al motor dejándolo 2 minutos en ralentí (1200 – 1500) rpm, a partir de ello acelerar a 6000 rpm en vació hasta alcanzar la temperatura de funcionamiento de 120°C, así el motor entra en condiciones de funcionamiento optimas y se puede realizar pruebas dinamométricas.

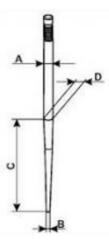
Recuerda que el motor Vortex 2T 60 cc no dispone de engranajes, balanceadores u otros sistemas que necesiten de un lubricante particular al de motor.

# 3.3. Sistema de Carburación Motor Vortex 2T 60 cc

Dispone de un carburador de tipo motocicleta, utilizado para competición de gama media, perteneciente a la compañía Dell Orto, tiene un difusor variable el cual consta de una guillotina que sube o baja acorde a los requerimientos del motor, al ser de difusor variable se puede mencionar que casi el 75% de las revoluciones permiten el ingreso de aire a  $90 \frac{m}{s}$  en condiciones óptimas.

La mezcla aire – combustible se forma a través de la corriente de aire que atraviesa el difusor y el rocío de pequeñas gotas de combustible que se suministra entre la boquilla del emulsor y el área efectiva del bastón o aguja cónica.

Los límites de inflamabilidad para que la mezcla pueda encenderse depende de la relación mezcla aire – combustible; los límites para el combustible comercial Súper son desde 7:1 (límite rico) hasta 20:1 (límite pobre), siendo una combustión óptima la que se encentra entre 14,5 – 15 kg de aire por 1 kg de combustible, la relación de mezcla estequiométrica es la que garantiza una combustión completa casi perfecta.


#### 3.3.1. Análisis y Requerimientos del Sistema

## Aguja cónica

El carburador Dell Orto requiere de una aguja cónica de la serie W 23 la cual hace que la mezcla sea más fina, a continuación, en la figura 104 y figura 105 se mencionan las cotas requeridas para este elemento.

Figura 104

Aguja cónica Serie W23

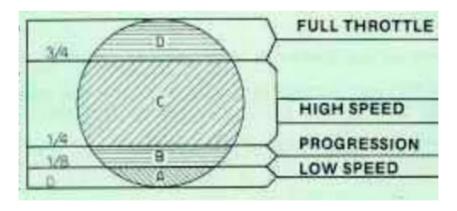


Nota. Extraído del libro (Savage, 2008)

Tabla 11

Dimensiones de la aguja cónica Serie W23

| Denominación de cota | Valor  | Descripción                            |
|----------------------|--------|----------------------------------------|
| Α                    | 2,5 mm | Diámetro máximo de aguja               |
| В                    | 0,6 mm | Diámetro mínimo o de la punta de aguja |
| С                    | 26mm   | Longitud efectiva o de uso de la aguja |


Nota. Extraído del libro (Savage, 2008)

## Émbolo o guillotina

Figura 105

El carburador Dell Orto hace uso de un embolo cilíndrico 40 x 64 con 4mm de altura de bisel y 6,4 mm en altura del bisel posterior; para afinar la carburación se hace uso de la posición o apertura de la guillotina como se muestra en la figura 105.

Rango de funcionamiento acorde a la apertura de la guillotina

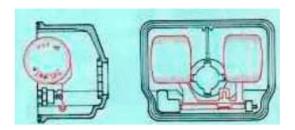


Nota. Extraído del libro (Savage, 2008)

Tabla 12

Dimensiones de la aguja cónica Serie W23

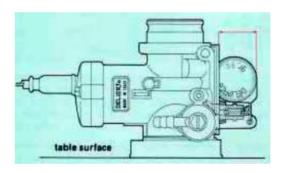
| Etapa | Denominación                   | Regulación                                                                                                                                                                      |
|-------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A     | Etapa de inactividad           | El suministro de combustible se realiza<br>por el orificio de ralentí, el ajuste de<br>inactividad se regula por tornillo de<br>mezcla y el tornillo de velocidad de<br>ralentí |
| В     | Etapa de progresión            | El suministro de combustible se realiza<br>por el orificio de progresión, se extrae y<br>regula la mezcla de emulsión del circuito<br>o shiglor de baja, altura de bisel.       |
| С     | Etapa de alta velocidad        | El suministro de la mezcla proviene del circuito principal, se debe seleccionar y regular el emulsor, también la posición de la aguja cónica y diámetro de la aguja cónica      |
| D     | Etapa de máxima<br>aceleración | Con el funcionamiento correcto de las etapas antes mencionadas finalmente se selecciona el tamaño del chorro principal o caudal del shiglor principal.                          |


#### Flotador

El carburador Dell Orto PHBG 18 BS utiliza flotadores dobles conectados entre sí mediante una horquilla que hace de pivote, el peso del flotador es importante, un flotador ligero permite obtener un nivel bajo mientras un flotador pesado permite obtener un nivel alto. Para motores dos tiempos es óptimo utilizar el flotador ligero obteniendo un nivel más bajo, cabe recordar que al ser un motor 2T la velocidad media del pistón es mayor que un motor 4T, por ende, existe mayor depresión en el venturi y se necesita menor suministro de combustible para obtener lo más cercano a la mezcla estequiometrica.

Los flotadores del carburador PHBG 18BS tiene peso de 4gr por cada flotador, al ser un flotador unido mediante horquilla tiene un peso total de 8gr.

Figura 106


Flotador 8gr para carburador PHBG 18 BS

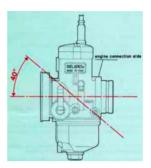


Nota. Extraído del manual técnico del carburador Dell Orto (Vortex, 2019)

Figura 107

Forma de medir nivel de flotadores




Nota. Extraído del manual técnico del carburador Dell Orto (Vortex, 2019)

Ángulos de instalación

Los carburadores que poseen guillotina con aguja cónica disponen de un difusor variable que se considera un cañón horizontal, el cuál puede tener como máximo una inclinación de 40° en condiciones óptimas y para competencias un ángulo de hasta 30° cómo se observa en la figura 108.

Figura 108

Ángulo de instalación del carburador



Nota. Extraído del manual técnico del carburador Dell Orto (Vortex, 2019)

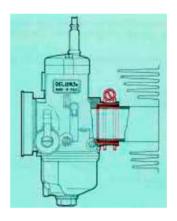
Emulsores o atomizadores

Para motores dos tiempos los emulsores se fabrican de dos tipos: emulsores de parte superior larga y de parte superior corta.

Los atomizadores con parte superior larga causan empobrecimiento de la mezcla en bajas rpm mientras que el otro tipo de atomizadores generan un leve enriquecimiento de la mezcla, es por ello que para competición se utiliza emulsores con parte superior corta, el diámetro del emulsor AN 266 corresponde a 2,66mm.

Figura 109

Emulsor AN266 del carburador PHBG 18 BS




#### • Sujeción del carburador

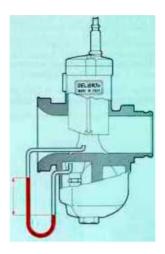
El motor Vortex 2T 60 cc se sujeta mediante una abrazadera hembra a una brida fija denominado caucho torque, esta conexión sirve para evitar vibraciones fuertes, además de evitar tener corrientes de aire parasito que varíen los parámetros de carburación, a continuación, en la figura 110 se muestra la forma de sujeción.

Figura 110

Conexión carburador – motor



Nota. Extraído del manual técnico del carburador Dell Orto (Vortex, 2019)


#### 3.3.2. Descripción del Sistema

#### • Efecto venturi

El carburador Dell Orto dispone de un diámetro de carburador de 28 mm mientras que el tubo venturi tiene un diámetro de 18mm, esta diferencia de secciones hace que el aire aumente la velocidad y disminuya la presión al pasar por la sección menor, lo que origina una depresión haciendo que el combustible suba pulverizado por el área efectiva que existe entre el emulsor y la aguja cónica, en bajas rpm o ralentí el combustible circula por los orificios de progresión.

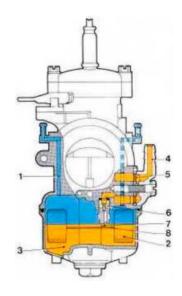
Efecto venturi carburador Dell Orto

Figura 111



Nota. Extraído del manual técnico del carburador Dell Orto (Vortex, 2019)

#### • Sistema de combustible (Nivel constante)


El motor Vortex 2T 60 cc dispone de una bomba de vació la cual transporta el combustible del tanque hacia el carburador, todo empieza ingresando el fluido por la válvula de entrada (4) donde opera una aguja o punzuar (7) controlando la apertura o cierre por el flotador (2), la válvula dispone de un asiento tipo inserto fabricado de bronce (6) donde la válvula de aguja (7) regula el paso de combustible mediante el nivel del flotador el cual consta de una horquilla (8) que hace de pivote hasta alcanzar el nivel adecuado.

Durante el funcionamiento del motor, el flotador (2) permite tener un nivel constante en la cuba (3), así la distancia que debe ascender el combustible desde la cámara hasta llegar al venturi por los diferentes circuitos, es constante.

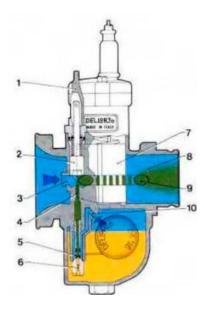
La depresión en el venturi por lo general va a ser constante, por ello un aumento en el nivel de la cuba causa un aumento en el suministro de combustible, lo que enriquece la mezcla, por lo contrario, una disminución en el nivel de la cuba disminuye el flujo de combustible, lo que empobrece la mezcla; la presión en la cuba está siempre a presión atmosférica debido a los orificios de desfogue de exceso de combustible (1).

Figura 112

Carburador Dell Orto PHBG 18BS



Nota. Extraído del manual técnico del carburador Dell Orto (Vortex, 2019)


#### Circuito de arrangue en frío

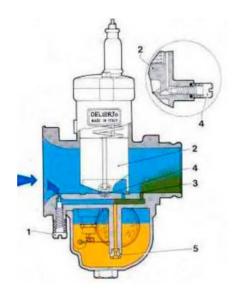
El motor al arrancar necesita una mezcla rica, mucho combustible pulverizado se condensa en las paredes del carburador, cárter o cilindro empobreciendo la mezcla estequiométrica, es por ello que el carburador PHBG 18BS dispone de un circuito de arranque independiente, se llama así porque dispone de un circuito de chorro de arranque, que es básicamente un tubo de emulsión para bajas rpm y una válvula de arranque (2), el funcionamiento del circuito empieza a partir del vacío que se genera por el venturi el cual extrae la mezcla que se entrega por el orificio (9) desde el orificio (4), el aire principal ingresa por el orificio (3),la mezcla depende del chorro de arranque (6) el

mismo que mezcla combustible con aire extraído del emulsor (5), dicho aire ingresa por el canal (10); para que entre en funcionamiento el circuito de arranque en frío se debe levantar el émbolo (2) tirando de la palanca (1).

Figura 113

Circuito de arranque independiente en frío carburador PHBG 18 BS




Nota. Extraído del manual técnico del carburador Dell Orto (Vortex, 2019)

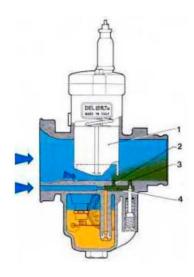
#### Circuito del sistema de ralentí

El embolo o guillotina (2) se encuentra en la posición de ralentí, regulado por el tornillo de ajuste del ralentí (4), en esta posición la mezcla circula por el orificio (3), el combustible es suministrado por el chorro de arranque (5) y el aire es regulado por el tornillo de aire o mezcla (1), además una pequeña cantidad de aire pasa por el bisel que tiene la guillotina.

Figura 114

Circuito de ralentí carburador PHBG 18 BS




Nota. Extraído del manual técnico del carburador Dell Orto (Vortex, 2019)

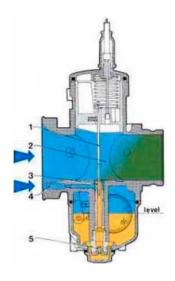
### Circuito de progresión

El circuito comienza a entregar combustible por el orificio de progresión (2), cuando la corriente de aspiración o el vacío generado en el venturi sea suficiente, el combustible será extraído del circuito de ralentí (4), colocándose aguas arriba de la corredera para satisfacer la necesidad de combustible por el aumento de la corriente de aire. El orificio de progresión tiene doble misión en el carburador, cuando se encuentra en ralentí la corriente de aire que atraviesa el venturi pasa por el orificio de progresión con el fin de empobrecer la mezcla y cuando se abre la guillotina la mezcla pasa por el orificio de progresión al venturi.

Figura 115

Circuito de progresión Dell Orto PHBG 18 BS




Nota. Extraído del manual técnico del carburador Dell Orto (Vortex, 2019)

### • Circuito de aceleración máxima

En la apertura adicional de la guillotina entra en funcionamiento el circuito de aceleración máxima; el vacío en el venturi es superior para aspirar el combustible fuera de la boquilla del atomizador, el combustible es suministrado del jet principal (5) controlado por el área efectiva entre la posición de la aguja cónica (1) y el emulsor o atomizador (3), dicho combustible es mezclado con aire que ingresa por el orificio (4) y el aire que ingresa por el venturi (2).

Figura 116

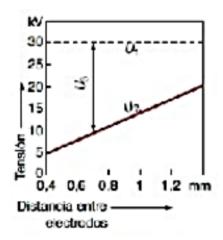
#### Circuito de aceleración máxima



Nota. Extraído del manual técnico del carburador Dell Orto (Vortex, 2019)

### 3.4. Sistema de encendido motor Vortex 2T 60 cc

El sistema de encendido se encarga de la producción y entrega de la chispa de alta tensión necesaria en la bujía para originar el encendido provocado en el motor de gasolina 2T, además la función primordial es aportar la energía calorífica necesaria para desarrollar los ciclos del motor. El motor Vortex 2T 60cc dispone de un encendido analógico Selettra conformado por un estator, rotor y bobina de alta tensión, la cual otorga un voltaje entre 5KV a 8 KV dependiendo de las revoluciones de funcionamiento del motor; el avance al encendido es fijo y de manera manual se puede variar en un rango de 2mm a 5 mm entre PMS y carrera recorrida, lo que equivale entre 8,5° a 21° APMS.


### 3.4.1. Análisis y requerimientos del sistema

Separación de electrodos de bujía (GAP)

El gap de la bujía tiene influencia en la velocidad de propagación de la llama, a mayor apertura del Gap se obtiene un mayor adelanto en la propagación de la llama, por ende el final de la combustión es menor con respecto al PMS, a menor Gap de la bujía se obtiene un menor adelanto en la propagación de la llama es por ello que el final de la combustión es mayor con respecto al PMS, el sistema de encendido del motor Vortex 2T 60 cc genera alta tensión entre 5 KV a 8KV y de acuerdo a la figura 117 el Gap de bujía permisible para utilizar está entre (0,4 y 0,75) mm

Figura 117

Influencia de la separación de electrodos con respecto a la tensión



Nota. Extraído del manual técnico del encendido (Selettra, 2017)

Prueba de resistencia para bobina de alta tensión

La prueba de resistencia se realiza para comprobar un correcto funcionamiento de la bobina de alta tensión caso contrario se debe realizar el cambio, el fabricante recomienda un cambio de bobina a 60 horas de funcionamiento del motor, la medición se

realiza a temperatura ambiente en el cable de tensión, en la tabla 13 se muestra la identidad del estator, resistencia de correcto funcionamiento y rpm de medición.

Tabla 13

Características del estator del sistema Selettra

| Ident estator. No.                                                                                                                                            | El valor medido<br>(Medición con tensión<br>de CC a aprox. 20 ° C)  | Número de vueltas |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------|
| 1050, 1051, 1055, 1056,<br>1062, 1064, 1070, 1071,<br>1076, 1079, 1081, 1093,<br>1099, 1414, 1415, 1416,<br>1418, 1419, 1420, 1421,<br>1422, 1423, 1424, 1425 | <b>50 Ohm</b> ± 10% aprox. 47,5-52,5 ohmios                         | 1850 vueltas      |
| 1013, 1068, 1074, 1075, 1077, 1086, 1413,                                                                                                                     | <b>90 Ohm</b> ± 10% aprox. 84,55-93,45 Ohm                          | 3000 vueltas      |
| 1052, 1054, 1057, 1058, 1061, 1063, 1065, 1066, 1072, 1078, 1082, 1083, 1085, 1088, 1089, 1094, 1096, 1411, 1417, 1427                                        | 171 Ohm ± 10%<br>aprox. 162,45-179,55<br>Ohm                        | 4000 vueltas      |
| 1067, 1084, 1098                                                                                                                                              | <b>185 Ohm</b> ± 10% aprox. 172,19-191,90 Ohm                       | 4250 vueltas      |
| 1087, 1410                                                                                                                                                    | <b>200 Ohm</b> ± 10% aprox. 180-220 ohmios                          | 4500 vueltas      |
| 1095, 1097, 1426, 1429                                                                                                                                        | 230 Ohm ± 10%<br>aprox. 216,6-239,4 Ohm<br>Fuente: (Selettra, 2017) | 5000 vueltas      |

# • Análisis de bujía usada

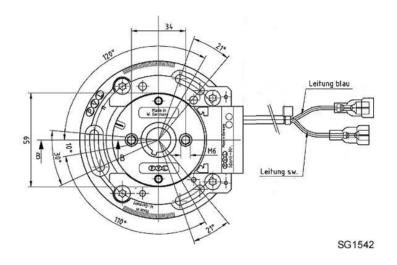
Análisis de bujía usada

Tabla 14

| Estado                | Foto | Descripción                                                                              | Consecuenci                                                                     | Causa                                                                                                                                                   |
|-----------------------|------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |      |                                                                                          | а                                                                               |                                                                                                                                                         |
| Normal                |      | Gris claro o<br>depósitos<br>amarillo<br>oscuro y ligera<br>erosión del<br>electrodo     |                                                                                 |                                                                                                                                                         |
| Depósito de<br>carbón |      | Carbono seco<br>sobre aislante<br>y sobre<br>electrodo                                   | Problema de<br>arranque, fallo<br>de encendido<br>y problemas<br>en aceleración | Posible mezcla<br>aire –<br>combustible<br>demasiado<br>rica, posible<br>sincronización<br>de encendido<br>retardado,<br>bujía de bajo<br>grado térmico |
| Sobrecalentam iento   |      | Aislante extremadamen te blanco con pequeños puntos negros, erosión de electrodo central | Pérdida de<br>potencia a<br>altas<br>velocidades                                | Excesivo calentamiento del motor, ignición prematura, golpeteo en el motor                                                                              |

Fuente: (Selettra, 2017)

# 3.4.2. Descripción del sistema


Estator

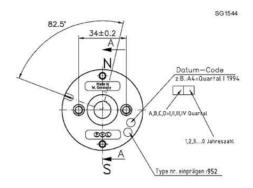
El estator debe tener las siguientes consideraciones para su elección:

- El Sentido de giro del cigüeñal, el motor Vortex 2T 60cc realiza un giro horario.
- Número de vueltas en la bobina de carga. El número de devanados determina las características de arranque del motor. En principio, cuantas más vueltas, menor es la velocidad de arranque (importante con el pedal de arranque).

Figura 118

Dimensiones del estator PVL




Nota. Extraído del manual técnico del encendido (Selettra, 2017)

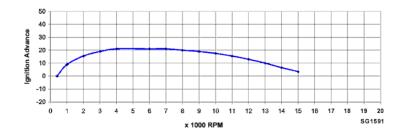
### Rotor

El rotor tiene dos imanes, el polo norte permite cargar la bobina mientras el polo sur es de saturación; la ranura que tiene el rotor es una marca que dispara la tensión e indica el inicio de chispa.

Figura 119

Dimensiones del rotor




Nota. Extraído del manual técnico del carburador Dell Orto (Selettra, 2017)

#### Bobina

Es la parte más importante del sistema de encendido. La electrónica con la que está conformada controla la temporización de la descarga a través de la curva de encendido almacenada. La curva decide la potencia, velocidad máxima y características de respuesta del motor. La curva de encendido debe corresponder a las características del motor, la curva del motor mini Vortex 2T 60 cc se puede observar en la figura 120.

Figura 120

Curva de avance de encendido motor Vortex 2T 60 cc



Nota. Extraído del manual técnico del encendido (Selettra, 2017)

## 3.5. Matematización de optimización

El presente trabajo pretende realizar cálculos basado en el libro de Motores Jovaj, el cual obtiene presiones, temperaturas, pérdidas, potencia y rendimientos de motores 2T. Los cálculos de carburación están basados en el libro de Carburadores de Miguel de Castro y el libro Dell Orto del fabricante del carburador, para ello se hace uso de los datos que se mencionan en la tabla 15.

Tabla 15

Datos de motor Vortex 60 cc

| Datos de motor                                 | Magnitud y unidad       |
|------------------------------------------------|-------------------------|
| Diámetro mínimo del cilindro $\emptyset_{min}$ | 41,96 mm                |
| Diámetro máximo del cilindro $\phi_{max}$      | 42,1 mm                 |
| Carrera s                                      | $43 \pm 0.1 \text{ mm}$ |
| Potencia rpm.                                  | 10 hp / 11000 rpm.      |
| Momento de giro rpm.                           | 6,5 Nm / 9000 rpm.      |
| Peso de la biela                               | 94 gr ± 2gr             |
| Peso del pistón                                | 59 gr ± 3gr             |
| Peso del bulón                                 | 15 gr                   |
| Peso del cigüeñal                              | 1312 gr ± 5gr           |
| Revoluciones máximas                           | 15500 rpm               |
| Piñón z                                        | 10 – 11 - 12            |
| Combustible                                    | Súper                   |
| Fuen                                           | te: (Vortex, 2017)      |

#### 3.5.1. Sistema Carburación

Con el fin de aumentar la succión, se halla un estrechamiento del tubo de paso de aire llamado difusor, la parte más estrecha del difusor es conocido como Venturi y es por esta región que el aire pasa a mayor velocidad; diversa bibliografía recomienda que la velocidad optima a la que transcurre el aire debe ser  $90 \frac{m}{s}$ , por ello se menciona las siguientes ecuaciones que permiten obtener cálculos de la velocidad del difusor y a partir de ello las dimensiones.

Velocidad en el difusor  $(v_d)$ 

$$v_{\rm d} = v_{\rm p} * \frac{\emptyset^2}{d^2}$$

Donde:

 $v_d$ : Velocidad en el difusor  $(\frac{m}{s})$ .

 $v_p$ : Velocidad media en el pistón ( $\frac{m}{s}$ ).

Ø: Diámetro del cilindro (m).

d: Diámetro del difusor (m).

$$v_{\rm d} = v_{\rm p} * \frac{\emptyset^2}{d^2}$$

$$v_{\rm d} = 15.76 \frac{m}{s} * \frac{(0.04196 \, m)^2}{(0.018 \, m)^2}$$

 $v_d = 85,65 \frac{m}{s}$  Velocidad real y utilizada

#### Ecuación 31

Velocidad media en el pistón ( $v_p$ )

$$v_p = \frac{s.n}{30}$$

Donde:

 $v_p$ : Velocidad media en el pistón  $(\frac{m}{s})$ .

s: Carrera del motor (m).

n: Revoluciones donde se obtiene potencia nominal (rpm).

$$v_p = \frac{s.n}{30}$$

$$v_p = \frac{0,043m.\,11000}{30}$$

$$v_p=15,76\frac{m}{s}$$

Diámetro del difusor optimo (d)

Lo que cambia en la ecuación posterior es la velocidad del aire optima de  $90 \, \frac{m}{s} \,$  lo cual resulta en otro diámetro de difusor.

### Ecuación 32

Diámetro del difusor optimo

$$d = \emptyset * \sqrt{\frac{v_p}{v_d}}$$

Donde:

d: Diámetro del difusor (mm).

Ø: Diámetro del cilindro (mm).

 $v_d$ : Velocidad en el difusor  $(\frac{m}{s})$ .

 $v_p$ : Velocidad media en el pistón ( $\frac{m}{s}$ ).

$$d = 0.04196 \, m * \sqrt{\frac{15.76 \frac{m}{s}}{90 \frac{m}{s}}}$$

$$d = 17,55 mm$$

#### Ecuación 33

Revoluciones de funcionamiento óptimo (rpm)

$$n_{\text{optima}} = 30 * \frac{v_{d.opt}. d^2}{s. \emptyset^2}$$

#### Donde:

 $n_{opt}$ : Revoluciones de funcionamiento óptimo (rpm).

 $v_{d.opt}$ : Velocidad en el difusor optimo  $(\frac{m}{s})$ .

s: Carrera del motor (m).

Ø: Diámetro del cilindro (m).

d: Diámetro del difusor (m).

$$n_{\text{optima}} = 30 * \frac{v_{d.opt}. d^2}{s. \emptyset^2}$$

$$n_{\text{optima}} = 30 * \frac{90 \frac{m}{s}. (0.018m)^2}{0.043m. (0.04196m)^2}$$

$$n_{optima} = 11555 rpm$$

#### Ecuación 34

Diámetro del carburador (mm)

$$\emptyset_{\text{carburador}} = \left[ (V_c)^{\frac{1}{3.55}} * \left( \sqrt{\frac{4. rpm. v_h'}{94,25. v_{opt}}} \right) * \frac{1}{2,65} \right] * Fc$$

#### Donde:

 $V_c$ : Cilindrada total (cc).

rpm: Máxima revoluciones del motor (rpm).

 $v_h'$ : Cilindrada efectiva (cc).

 $v_{opt}$ : Velocidad optima en el difusor  $(\frac{m}{s})$ .

Fc: Factor de corrección. → Obtenido del libro Miguel de Castro (pg. 206)

$$\emptyset_{\text{carburador}} = \left[ (60cc)^{\frac{1}{3.55}} * \left( \sqrt{\frac{4 * 15500rpm * 41,5cc}{94,25 * 90\frac{m}{s}}} \right) * \frac{1}{2,65} \right] * 1,15$$

$$\emptyset_{carburador} = 28,32 \ mm \approx 28 \ mm$$

Calibre del surtidor principal o shiglor de alta ( $\emptyset_{surtidor}$ )

$$\emptyset_{\text{surtidor}} = \emptyset_{difusor} * \frac{5}{100}$$

Donde:

 $\emptyset_{\text{surtidor}}$ : Diámetro del surtidor  $(\frac{mm}{100})$ .

Ø<sub>difusor</sub>: Diámetro del difusor calculado (mm).

$$\emptyset_{\text{surtidor}} = 18mm * \frac{5}{100}$$

$$\emptyset_{\text{surtidor}} = 90 \frac{mm}{100} \rightarrow Aproximado$$

Miguel de Castro en el libro de carburadores (pg. 209) menciona que esta es la forma más simple de calcular el surtidor principal, eso quiere decir que a partir de este surtidor se puede buscar la relación aire / combustible correcta aumentando o disminuyendo como máximo  $5 \frac{mm}{100}$  en la medida. Otra de las formas para el cálculo del surtidor principal se basa en el área efectiva tanto del emulsor, área efectiva de la punta de aguja y área efectiva del agujero del surtidor principal.

Calibre del surtidor principal

$$\left(\frac{D_m}{2}\right)^2 * \pi \le \left(\frac{D_p}{2}\right)^2 * \pi - \left(\frac{D_s}{2}\right)^2 * \pi$$

$$(D_m)^2 \le \left(D_p\right)^2 - (D_s)^2$$

Donde:

 $\mathbf{D}_m$ : Diámetro del surtidor principal  $(\frac{mm}{100})$ .

 $D_p$ : Diámetro del emulsor  $(\frac{mm}{100})$ .

 $D_s$ : Diámetro de la punta de aguja cónica  $(\frac{mm}{100})$ .

$$(D_m)^2 \le (D_p)^2 - (D_s)^2$$

El carburador permite colocar diferentes emulsores por ello se realiza la prueba con dos emulsores con diferentes medidas.

Emulsor AN 266

$$D_m \le \sqrt{(266)^2 - (250)^2}$$

$$D_m \le 91 \frac{mm}{100}$$

Emulsor AN 262

$$D_m \le \sqrt{(262)^2 - (250)^2}$$

$$D_m \le 78 \frac{mm}{100}$$

Altura del flotador

La altura del flotador no es recomendable variar acorde a lo que menciona el fabricante, sin embargo, la tolerancia máxima es de 0,5 mm sabiendo que mientras

aumenta la altura se enriquece la mezcla y disminuyendo la altura se empobrece la mezcla.

Tabla 16

Tipos de flotadores

| Significado | Valor   | Descripción                                                                                                                                                  |
|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PHBG 4 gr   | 16,5 mm | El peso del flotador es de 4 gr la mezcla se enriquece en una cantidad mínima debido que el recorrido del punzar es menor, mayor área efectiva.              |
| PHBG 4gr    | 16 mm   | El peso del flotador es de 4 gr el fabricante recomienda la altura del flotador mencionado con el objetivo que la mezcla sea lo más estequiométrica posible. |
| PHBG 4gr    | 15,5 mm | El peso del flotador es de 4 gr la mezcla se empobrece en una cantidad mínima debido que el recorrido del punzar es mayor por ende el área efectiva es menor |

#### 3.5.2. Sistema Encendido

#### Ecuación 37

Velocidad de quemado relación A/F  $(W_{A/F})$ 

$$W_{A/F} = A * \rho^{n_t} * \varepsilon^{-\frac{E}{RTc}}$$

Donde:

 $W_{A/F}$ : Velocidad de quemado  $(mol * \frac{m^3}{s})$ .

A: Factor constante o Depende del combustible o Composición Súper A-93 .

 $\rho$ : Densidad del aire.

 $\eta_t$ : Orden de la reacción

E: Energía de activación

R: Constante universal de la tesis.

T<sub>c</sub>: Temperatura de compresión

$$W_{A/F} = A * \rho^{n_t} * \varepsilon^{-\frac{E}{RTc}}$$

$$W_{A/F} = 93 * (1,38)^2 * \varepsilon^{-\frac{47,97*10^3}{8,914*961,64}}$$

$$W_{A/F} = 0,65 \frac{mol * m^3}{s}$$

### Ecuación 38

Volumen de combustión ideal (Vz)

$$V_z = \frac{V_b}{\varepsilon'}$$

Donde:

 $V_{\rm z}$ : Volumen de combustión (cc).

 $V_{\rm b}$ : Volumen al inicio de escape (cc).

 $\varepsilon'$ : Relación de compresión efectiva.

$$V_z = \frac{V_b}{\varepsilon'}$$

$$V_z = \frac{35,5}{9,65}$$

$$V_z = 3,69 \, cc$$

### Ecuación 39

Grados de finalización de la combustión ideal ( $\theta_z$ )

$$\theta_z = \frac{V_z * 180^{\circ}}{V_h}$$

Donde:

 $\theta_{z}$  : Grados de finalización de la combustión (°).

 $V_z$ : Volumen de combustión (cc).

 $V_{\rm h}$ : Volumen del cilindro (cc).

$$\theta_z = \frac{V_z * 180^{\circ}}{V_h}$$

$$\theta_z = \frac{3,69 * 180^{\circ}}{60}$$

$$\theta_z = 11^\circ$$

#### 3.5.3 Parámetros del motor

### Ecuación 40

Volumen efectivo del cilindro  $(v_{H'})$ 

$$v_{H'} = \pi * \frac{\emptyset^2}{4} * L'$$

Donde:

 $v_{H^{'}}$ : Volumen efectivo del cilindro (cc).

Ø: Diámetro del cilindro (cm).

L': Carrera útil cerrada lumbrera de escape (cm).

$$v_{H'} = \pi * \frac{\emptyset^2}{4} * L'$$

$$v_{H'} = \pi * \frac{4,196^2}{4} * 3$$

$$v_{H'} = 41,5cc$$

### **Ecuación 41**

Volumen del cilindro ( $v_H$ )

$$v_H = \pi * \frac{\emptyset^2}{4} * s$$

#### Donde:

 $v_{H}$ : Volumen efectivo del cilindro (cc).

Ø: Diámetro del cilindro (cm).

s: Carrera total (cm).

$$v_{H} = \pi * \frac{\emptyset^{2}}{4} * s$$

$$v_{\rm H} = \pi * \frac{4,196^2}{4} * 4,3$$

$$v_{H} = 59,46cc$$

## Ecuación 42

Relación de compresión efectivo ( $R_{c'} \rightarrow \epsilon'$ )

$$R_{c'} = \varepsilon' = \frac{V_{H'} + V_{cc}}{V_{cc}}$$

Donde:

 $R_{c^{'}}$ : Relación de compresión efectivo.

 $V_{H}'$ : Volumen efectivo del cilindro (cc).

 $V_{cc}$ : Volumen de la cámara de combustión (cc).

$$R_{c'} = \varepsilon' = \frac{V_{H'} + V_{cc}}{V_{cc}}$$

$$R_{c'} = \varepsilon' = \frac{41,5 + 4,8}{4,8}$$

$$R_{c'} = \varepsilon' = 9,65:1$$

Relación de compresión  $(R_c \rightarrow \varepsilon)$ 

$$R_{c} = \varepsilon = \frac{V_{H}' + V_{cc}}{V_{cc}}$$

Donde:

R<sub>c</sub>: Relación de compresión.

 $V_H$ : Volumen del cilindro (cc).

 $V_{cc}$ : Volumen de la cámara de combustión (cc).

$$R_{c} = \varepsilon = \frac{V_{H} + V_{cc}}{V_{cc}}$$

$$R_c = \varepsilon = \frac{59,46 + 4,8}{4,8}$$

$$R_c = \varepsilon = 13, 4:1$$

Diagrama de mando Motor 2T

Tabla 17

Características de los tiempos del motor mini Vortex 2T 60 cc

| Ciclo         | Altura<br>Iumbrera | Altura desde el PMS |  |
|---------------|--------------------|---------------------|--|
| Admisión      | 16mm               | 16 mm               |  |
| Transferencia | 9mm                | 36 mm               |  |
| Escape        | 15mm               | 30 mm               |  |

## Ecuación 44

Ángulo del cigüeñal

$$\theta = \frac{x * 180^{\circ}}{s}$$

Donde:

 $\theta$ : Ángulo de cigüeñal acorde al ciclo (°).

x: Altura desde el PMS acorde al ciclo (mm).

s: Carrera del motor (mm).

Apertura y cierre de admisión

$$\theta = \frac{x * 180^{\circ}}{s}$$

$$\theta = \frac{16 * 180^{\circ}}{43}$$

 $\theta = 67^{\circ} \Rightarrow$  Antes y después del PMS

$$\theta = 134^{\circ} \Rightarrow Total admisión$$

• Apertura y cierre de transferencia

$$\theta = \frac{x * 180^{\circ}}{s}$$

$$\theta = \frac{36 * 180^{\circ}}{43}$$

 $\theta = 150,7^{\circ} \Rightarrow Después y antes del PMS$ 

$$\theta = 58.6^{\circ} \Rightarrow Total transferencia$$

Apertura y cierre de escape

$$\theta = \frac{x * 180^{\circ}}{s}$$

$$\theta = \frac{30 * 180^{\circ}}{43}$$

 $\theta = 125,58^{\circ} \Rightarrow Después y antes del PMS$ 

$$\theta = 108,85^{\circ} \rightarrow Total escape$$

- Avance al encendido
  - → Para x= 2,8 mm

$$\theta = \frac{x * 180^{\circ}}{s}$$

$$\theta = \frac{2.8 * 180^{\circ}}{43}$$

 $\theta = 11,72^{\circ} \Rightarrow Antes del PMS$ 

→ Para x= 3 mm

$$\theta = \frac{x * 180^{\circ}}{s}$$

$$\theta = \frac{3 * 180^{\circ}}{43}$$

 $\theta = 12,5^{\circ} \rightarrow Antes del PMS$ 

→ Para x= 3,2 mm

$$\theta = \frac{x * 180^{\circ}}{s}$$

$$\theta = \frac{3.2 * 180^{\circ}}{43}$$

 $\theta = 13.4^{\circ} \rightarrow Antes del PMS$ 

Compresión

Tabla 18

Detalles del adelanto al encendido

| Х      | AE     |
|--------|--------|
| 2,8 mm | 11,72° |
| 3 mm   | 12,55° |
| 3,2 mm | 13,4°  |

$$\theta = 180^{\circ} - AE - \frac{\theta escape}{2}$$

→ Para x= 2,8 mm

$$\theta = 180^{\circ} - 11,72^{\circ} - \frac{108,85}{2}$$

$$\theta = 113,85^{\circ}$$

→ Para x= 3 mm

$$\theta = 180^{\circ} - 12,55^{\circ} - \frac{108,85}{2}$$
 $\theta = 113^{\circ}$ 

→ Para x= 3,2 mm

$$\theta = 180^{\circ} - 13,4^{\circ} - \frac{108,85}{2}$$
 $\theta = 112,18^{\circ}$ 

Expansión

$$\theta = 360^{\circ} - \theta escape - \theta compresi\'{o}n$$

→ Para x= 2,8 mm

$$\theta = 360^{\circ} - 108,85^{\circ} - 113,85$$
 $\theta = 137,3^{\circ}$ 

→ Para x= 3 mm

$$\theta = 180^{\circ} - 108,85^{\circ} - 113$$
 $\theta = 138,15^{\circ}$ 

→ Para x= 3,2 mm

$$\theta = 180^{\circ} - 108,85^{\circ} - 112,18$$

$$\theta = 138,97^{\circ}$$

• Compresión en el cárter - Depresión

$$\theta = 180^{\circ} - \frac{\theta admisi\acute{n}}{2} - \frac{\theta transferencia}{2}$$
 
$$\theta = 180^{\circ} - \frac{58,6}{2} - \frac{134}{2}$$
 
$$\theta = 83,7^{\circ}$$

Figura 121

Diagrama de mando Motor Vortex 2T 60 cc

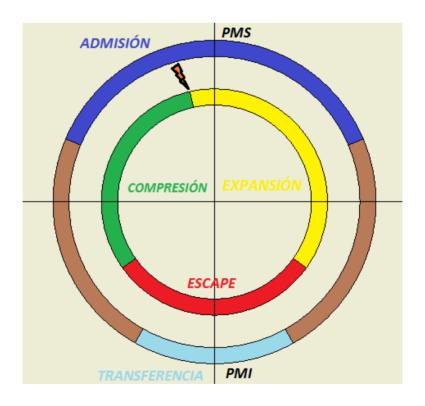



Tabla 19

Explicación del diagrama de mando del Motor Vortex 2T 60 cc

| Ciclo                          | Color        | Duració<br>n | Apertura      | Cierre                |
|--------------------------------|--------------|--------------|---------------|-----------------------|
| ADMISIÓN                       | AZUL         | 134°         | 67°<br>APMS   | 67°<br>DPMS           |
| TRANSFER<br>ENCIA O<br>BARRIDO | CELESTE      | 58,6°        | 29,3<br>APMI  | 29,3°<br>DPMI         |
| COMPRESI<br>ÓN DEL<br>CÁRTER   | CAFÉ         | 83,7         | 67°<br>DPMS   | 29,3°<br>APMI         |
| DEPRESIÓN<br>CÁRTER            | CAFÉ         | 83,7         | 29,3°<br>DPMI | 67°<br>APMS           |
| COMPRESI<br>ÓN                 | VERDE        | 113°         | 54,4°<br>DPMI | 12,55<br>APMS =<br>AE |
| EXPANSIÓN                      | AMARILL<br>O | 138,2°       | 12,55<br>APMS | 54,42<br>APMI         |
| ESCAPE                         | ROJO         | 108,8        | 54,42<br>APMI | 54,42<br>DPMI         |

## **Admisión**

## Ecuación 45

Densidad de la carga de admisión  $ho_o$ 

$$\rho_{\rm o} = \frac{P_o}{R * T_o}$$

Donde:

 $\rho_{0}$  : Densidad de la carga de admisión  $(\frac{Kg}{m^{3}}).$ 

 $P_o$ : Presión inicial o atmosférica (Pa).

 $T_o$ : Temperatura inicial o atmosférica (°K).

R: Constante universal de los gases  $(\frac{Pa*m^3}{Kg*K})$ .

$$\rho_{\rm o} = \frac{72346,05}{286,9 * 287,6}$$

$$\rho_0 = 0.876 \frac{Kg}{m^3}$$

### Ecuación 46

Presión al final de la admisión Pa

$$P_{\rm a} = P_{\rm o} - (\beta^2 + \xi) * \frac{w_{ad}^2}{2} * \rho_{\rm o} * 10^{-6}$$

Donde:

 $P_a$ : Presión al final de admisión (Pa).

 $P_o$ : Presión inicial o atmosférica (Pa).

 $\beta^2 + \xi$ : Coeficiente de amortiguación y de resistencia (adimensional).

 $W_{ad}$ : Velocidad del aire en la entrada de admisión  $\left(\frac{m}{s}\right) \rightarrow$  85,64.

 $ho_o$  : Densidad de la carga de admisión  $\left(\frac{Kg}{m^3}\right)$ .

$$(\beta^2 + \xi) * \frac{w_{ad}^2}{2} * \rho_0 * 10^{-6} \rightarrow \text{Valor despreciable}.$$

$$P_{\rm a} = P_{\rm o}$$

$$P_a = 72346,05 Pa$$

### Ecuación 47

Coeficiente de barrido ( $\eta_s$ )

$$\eta_s = \frac{1}{1 + \gamma_r}$$

Donde:

 $\eta_s$ : Coeficiente de barrido.

 $\gamma_r$ : Cantidad de gases residuales.

$$P_{\rm r}$$
: (1,1 – 1,25) (Pa).

$$T_r: (900 - 1000) (°K).$$

 $\gamma_r: (0,4-1) \rightarrow \text{Jovaj Motor 2T}$ 

$$\eta_s = \frac{1}{1 + 0.4}$$

$$\eta_s = 0.71$$

### Ecuación 48

Temperatura al terminar admisión (T<sub>a</sub>)

$$T_a = \frac{T_o + \Delta T + \gamma_r * T_r}{1 + \gamma_r}$$

Donde:

 $T_a$ : Temperatura al terminar admisión (°K).

 $T_{o}$ : Temperatura en condiciones ambientales (°K).

 $\Delta T$ : Variación de temperatura en el cilindro.

 $\gamma_r$ : Cantidad de gases residuales.

$$T_a = \frac{T_o + \Delta T + \gamma_r * T_r}{1 + \gamma_r}$$

$$T_a = \frac{287 + 55 + 0.4 * 950}{1 + 0.4}$$

$$T_a = 487, 14^{\circ}K$$

Coeficiente de llenado ( $\eta_v$ )

$$n_{v} = \frac{V_{h}'}{V_{h}}$$

Donde:

 $n_{\rm v}$ : Coeficiente de llenado.

 $V_{h}'$ : Volumen efectivo del cilindro (cc).

 $V_h$ : Volumen total del cilindro (cc).

$$n_{v} = \frac{V_{h}'}{V_{h}}$$

$$n_v = \frac{41,56}{60}$$

$$n_v = 0.69 \rightarrow 69\%$$

## Compresión

### Ecuación 50

Presión de compresión

$$P_c = P_a * \varepsilon^{n1}$$

Donde:

P<sub>c</sub>: Presión de compresión (MPa).

P<sub>a</sub>: Presión al final de admisión (MPa).

 $\varepsilon$ : Relación de compresión efectivo.

 $\eta_1$ : Exponente politrópico. (1,3 – 1,37)  $\Rightarrow$  Depende de temperatura - relación de compresión

$$\eta_1: 1,3-1,37 \rightarrow \text{Jovaj Tabla 11 (pag. 119)}$$

$$P_c = P_a * \varepsilon^{n1}$$

$$P_c = 0.0723 * 9.65^{1.3}$$

$$P_c = 1,38 MPa$$

Temperatura de compresión

$$T_c = T_a * \varepsilon^{n1-1}$$

Donde:

 $T_{c}$ : Temperatura de compresión (°K).

 $T_a$ : Temperatura de admisión (°K).

 $\varepsilon$ : Relación de compresión efectivo.

 $\eta_1$ : Exponente politrópico. (1,3 – 1,37)  $\Rightarrow$  Depende de temperatura - relación de compresión

$$η1: 1,3 – 1,37 → Jovaj Tabla 11 (pag. 119)$$

$$T_c = T_a * \varepsilon^{n1-1}$$

$$T_c = 487,14 * 9,65^{1,3-1}$$

$$T_c = 961,64 \,{}^{\circ}K$$

### Combustión

### Ecuación 52

Presión de combustión

$$P_z = \lambda * P_c$$

Donde:

 $P_{\rm z}$ : Presión de combustión (MPa).

P<sub>c</sub>: Presión de compresión (MPa).

 $\lambda$ : Coeficiente de elevación de presión  $\Rightarrow$  (3 a 4) $\Rightarrow$  Compilador Ing. Luis Mena (pg. 24).

$$P_z = \lambda * P_c$$

$$P_z = (3 \ o \ 4) * (1,38)$$

Para  $\lambda = 3$ 

$$P_z = 4$$
, 14  $MPa$ 

Para  $\lambda = 4$ 

$$P_z = 5,52 MPa$$

## Ecuación 53

Presión máxima del ciclo ( $P_z$ )

$$P_z' = P_z * 0.85$$

Donde:

 $P_{z}'$ : Presión máxima del ciclo (MPa).

P<sub>z</sub>: Presión de combustión (MPa).

$$P_z' = P_z * 0.85$$

Para  $\lambda = 3$ 

$$P_{z'} = 4.14 * 0.85$$

$$P_{z'} = 3,52 MPa$$

Para  $\lambda = 4$ 

$$P_{z'} = 5,52 * 0,85$$

$$P_{z'} = 4,7 MPa$$

Temperatura de combustión (Tz)

$$T_z = T_c * (\frac{P_z}{P_c})$$

Donde:

 $T_z$ : Temperatura de combustión (°K).

 $T_c$ : Temperatura de compresión (°K).

 $P_{\rm z}$ : Presión de combustión (MPa).

 $P_c$ : Presión de compresión (MPa).

$$T_z = T_c * (\frac{P_z}{P_c})$$

Para  $\lambda = 3$ 

$$T_z = 961,65 * (\frac{4,14}{1,38})$$

$$T_z = 2884,92 \,{}^{\circ}K$$

Para  $\lambda = 4$ 

$$T_z = 961,65 * (\frac{5,52}{1,38})$$

$$T_z = 3846, 56 \, {}^{\circ}K$$

Tabla 20

Valores de presión y temperatura de combustión a distintos lambdas

| λ | $P_z$    | $P_{z}^{'}$ | $T_z$     |
|---|----------|-------------|-----------|
| 3 | 4,14 MPa | 3,52 MPa    | 2884,92°K |
| 4 | 5,52 MPa | 4,7MPa      | 3846,56°K |

# Expansión

## Ecuación 55

Presión al finalizar expansión ( $P_b$ )

$$P_b = \frac{P_z}{\delta^k}$$

Donde:

*P*<sub>b</sub> : Presión al finalizar expansión (MPa).

 $P_z$ : Presión de combustión (MPa).

 $\delta$ : Grado de expansión  $\Rightarrow \frac{V_b}{V_z} = \varepsilon' = 9,65 \Rightarrow$  Jovaj (pg. 301).

k : Coeficiente politrópico.

$$P_b = \frac{P_z}{\delta^k}$$

Para  $P_z = 4,15$ 

$$P_b = \frac{4,15}{9,65^{1,33}}$$

$$P_b = 0, 2 MPa$$

Para  $P_z = 5,52$ 

$$P_b = \frac{5,52}{9,65^{1,33}}$$

$$P_b = 0,225 MPa$$

Temperatura de expansión  $(T_h)$ 

$$T_b = T_Z \left(\frac{V_z}{V_h}\right)^{k-1}$$

Donde:

 $T_{\rm b}$ : Temperatura de expansión (°K).

 $T_z$ : Temperatura de combustión (°K).

 $V_{\rm b}$ : Volumen inicio de escape (cc).

 $V_z$ : Volumen de combustión (cc).

$$T_b = T_Z \left(\frac{V_Z}{V_b}\right)^{k-1}$$

Para  $T_z = 2884,92 \, {}^{\circ}K$ 

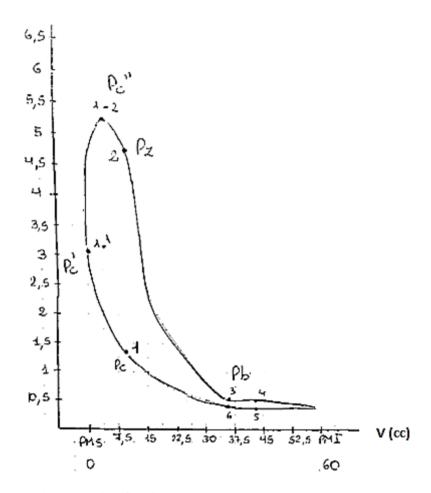
$$T_b = 2884,92(9,65)^{1,33-1}$$

$$T_b = 1365, 33 \, {}^{\circ}K$$

Para  $T_z = 2884,92 \, {}^{\circ}K$ 

$$T_b = 3846,56(9,65)^{1,33-1}$$

$$T_h = 1820,44 \,{}^{\circ}K$$


 Tabla 21

 Presión y temperatura de combustión y expansión a distintos grados de elevación de presión

| λ | $P_{z}$  | $P_{z}^{'}$ | $T_{z}$   | $P_b$     | $T_b$      |
|---|----------|-------------|-----------|-----------|------------|
| 3 | 4,14 MPa | 3,52 MPa    | 2884,92°K | 0,2 MPa   | 1365,33 °K |
| 4 | 5,52 MPa | 4,7MPa      | 3846,56°K | 0,225 MPa | 1820,44°K  |

Figura 122

Diagrama de Presión vs Volumen Motor Vortex 2T 60 cc



Nota: Cada número tiene su significado:

1 =Pc= Inicia la chispa= Salto de chispa (27,1-28,5) ° APMS(Combustión)

1.1 = Combustión fase 2

1.2 = Presión máxima= Fin de chispa= Tiempo de quemado

2 = Inicia expansión

3 = Inicia apertura lumbrera de escape

4 = Inicia el barrido= Abre lumbrera transferencia

5 = Fin barrido= Cierra lumbrera transferencia

6 = Fin de escape= Cierra lumbrera escape=Inicia compresión

### Ecuación 57

Presión media indicada (P<sub>i</sub>)

$$P_i = \varphi_t * P_t * n_t (1 - \varphi)$$

Donde:

 $P_i$ : Presión media indicada (MPa).

 $\varphi_t$ : (0,94 – 0,98).

 $\varphi$ : 0,307.

 $P_t * n_t :$  Presión media indicada no redondeada.

$$P_i = \varphi_t * P_t * n_t (1 - \varphi)$$
  
 $P_i = 0.98 * 0.762 (1 - 0.307)$   
 $P_i = 0.521 MPa$ 

### Ecuación 58

Presión media indicada no redondeada ( $P_t * n_t$ ).

$$P_t * n_t = P_a * \frac{\varepsilon^{n1}}{\varepsilon - 1}$$

Donde:

 $P_t * n_t$ : Presión media indicada no redondeada (MPa).

 $P_a$ : Presión en condiciones atmosféricas (MPa).

 $\varepsilon$ : Relación de compresión.

 $\eta_1$ : Coeficiente adiabático (1,3 – 1,37)  $\rightarrow$  Compilador Ing. Luis Mena (pag 25).

$$P_t * n_t = P_a * \frac{\varepsilon^{n1}}{\varepsilon - 1}$$

$$P_t * n_t = 0,72346 * \frac{13,5^{1,3}}{13,5-1}$$

$$P_t * n_t = 0,767 MPa$$

## Ecuación 59

Potencia indicada (N<sub>i</sub>)

$$N_i = \frac{P_i * V_H * n * i}{60}$$

Donde:

 $N_i$ : Potencia indicada para motor 2T (KW - hp).

 $P_i$ : Presión media indicada (MPa).

 $V_H$ : Cilindrada total (Lt).

n: Revoluciones por minuto donde se obtiene la mejor potencia.

i: Número de cilindros.

$$N_i = \frac{P_i * V_H * n * i}{60}$$

$$N_i = \frac{0,521 * 0,06 * 11500 * 1}{60}$$

$$N_i = 6 Kw \rightarrow 8.05 \text{ hp}$$

Presión media correspondiente a perdidas mecánicas ( $P_m$ )

$$P_m = 0.04 + 0.0135 * v_p$$

Donde:

 $P_{\mathrm{m}}$ : Presión media correspondiente a pérdidas mecánicas (MPa).

 $v_p$  : Velocidad media del pistón  $(\frac{m}{s})$ 

$$P_m = 0.04 + 0.0135 * v_p$$

$$P_m = 0.04 + 0.0135 * 15.76$$

$$P_m = 0,02527 MPa$$

### Ecuación 61

Presión media efectiva ( $P_e$ )

$$P_e = P_i - P_m$$

Donde:

 $P_{\rm e}$ : Presión media efectiva (MPa).

P<sub>i</sub>: Presión media indicada (MPa).

 $P_{\mathrm{m}}$ : Presión media correspondiente a pérdidas mecánicas (MPa).

$$P_e = P_i - P_m$$

$$P_e = 0.521 - 0.02577$$

$$P_e = 0,495 MPa$$

Rendimiento mecánico ( $\eta_m$ )

$$\eta_m = \frac{P_e}{P_i}$$

Donde:

 $n_{\rm m}$ : Rendimiento mecánico  $(\eta_m)$ .

 $P_{\rm e}$ : Presión media efectiva (MPa).

P<sub>i</sub>: Presión media indicada (MPa).

$$\eta_m = \frac{P_e}{P_i}$$

$$\eta_m = \frac{0,495}{0,521}$$

$$\eta_m = 0,95$$

## Ecuación 63

Potencia efectiva ( $N_e$ )

$$N_e = \eta_m * N_i$$

Donde:

 $N_{\rm e}$  : Potencia efectiva para motor 2T (KW - hp).

 $\eta_{\mathrm{m}}$ : Rendimiento mecánico.

 $N_i$ : Potencia indicada (KW - hp).

$$N_e = \eta_m * N_i$$

$$N_e = 0.949 * 6$$

$$N_e = 5,7 \, KW \rightarrow 7,65 \, hp$$

Par efectivo ( $M_e$ )

$$M_e = \frac{N_e * 60}{2\pi * \omega}$$

Donde:

 $M_{\rm e}:$  Potencia efectiva para motor 2T (W)

 $N_{\rm e}$ : Par efectivo del motor 2T (N\*m).

 $\omega$ : Régimen de giro (rpm).

$$M_e = \frac{N_e * 60}{2\pi * \omega}$$

$$M_e = \frac{5700 * 60}{2\pi * 9000}$$

$$M_e = 6 N * m$$

### Ecuación 65

Caballos por litros de cilindrada  $\left(\frac{Kw}{m^3}\right)$ 

$$N_1 = \frac{N_i}{i * V_H}$$

Donde:

 $N_1$ : Caballos por litro de cilindrada  $(\frac{KW}{m^3})$ .

 $N_i$ : Potencia indicada (KW - hp).

i: Número de cilindros

 $V_h$ : Cilindrada total.

$$N_1 = \frac{N_i}{i * V_H}$$

$$N_1 = \frac{5.7}{1 * \frac{60}{100000}}$$

$$N_1 = 95 \frac{KW}{lt}$$

Eficiencia térmica ( $\eta_t$ )

$$\eta_t = 1 - \frac{1}{\varepsilon^{k-1}}$$

Donde:

 $\eta_t$  : Eficiencia térmica.

 $\varepsilon'$ : Relación de compresión efectiva.

k: Coeficiente adiabático. (1,33 – 1,41)  $\rightarrow$  Jovaj (pg. 28)

$$\eta_t = 1 - \frac{1}{\varepsilon^{k-1}}$$

$$\eta_t = 1 - \frac{1}{9,65^{1,33-1}}$$

$$\eta_t = extbf{0}$$
, 525 $o$  52,5%

## Ecuación 67

Gasto específico  $(g_t)$ 

$$g_t = \frac{G_e * 10^3}{N_i}$$

Donde:

 $g_t$ : Gasto específico  $(\frac{g}{Kw*H})$ .

 $G_e$ : Consumo de combustible  $(\frac{Kg}{h})$ .

 $N_i$ : Potencia indicada (Kw).

 $G_e$ : Consumo de combustible  $(\frac{Kg}{h})$ .

El consumo de combustible se realiza de manera práctica teniendo en cuenta una pista de 1800m, por lo que se realiza 3 giros a la pista, con el motor 120 ° de temperatura de funcionamiento medidos en la culata y a 11500 rpm. El peso del combustible para un motor 2T con 5% de mezcla de aceite corresponde  $0.82 \frac{Kg}{lt}$ 

$$G_e: 1 \left(\frac{Kg}{h}\right).$$
 
$$g_t = \frac{G_e * 10^3}{N_i}$$
 
$$g_t = \frac{1 * 10^3}{6}$$
 
$$g_t = 166, 5 \frac{g}{Kw * H}$$

#### Ecuación 68

Rendimiento indicado ( $\eta_i$ )

$$\eta_i = \frac{N_i}{B * Q_{in}^a}$$

Donde:

 $n_i$ : Rendimiento indicado.

 $N_i$ : Potencia indicada para motor 2T (KW).

B: Consumo de combustible  $(\frac{Kg}{s})$ .

 $Q_{in}^a$ : Poder calorífico inferior de combustible  $\binom{KJ}{Kg}$ .  $\rightarrow$  Gasolina Súper A93  $\rightarrow$  48  $\frac{MJ}{kg}$ 

$$\eta_i = \frac{N_i}{B * Q_{in}^a}$$

$$\eta_i = \frac{6}{\frac{1}{3600} * 48000}$$

$$\eta_i = \mathbf{0}, \mathbf{45} \rightarrow \mathbf{45\%}$$

# 3.6. Implementación y Ajustes

En la búsqueda de la mejor potencia aplicada al motor mini Vortex 60 cc, se modificaron una serie de elementos y parámetros tanto en el sistema de carburación como en el de encendido, utilizando siempre como referencia los parámetros estándares ya que de aquí se identifican las tolerancias de cambio.

# 3.6.1. Sistema Carburación

Tabla 22

Cambios desarrollados en el sistema de carburación

| Parámetro           | Descripción                                                                                   | Tipo     | Unidad             | Observación                                                                       | Gráfico                        |
|---------------------|-----------------------------------------------------------------------------------------------|----------|--------------------|-----------------------------------------------------------------------------------|--------------------------------|
| Jet Shiglor         | Jet Shiglor Pieza que<br>distribuye el<br>paso de<br>combustible,<br>de la cuba al<br>venturi |          | mm<br>(x10^-<br>2) | Son<br>físicamente<br>parecidos, el<br>diámetro<br>interno es lo<br>único que se  | AN AND AND AND AND AND AND AND |
|                     | ventun                                                                                        | 93<br>94 |                    | altera en cada<br>uno de ellos                                                    |                                |
|                     |                                                                                               | 96       |                    |                                                                                   |                                |
| Tubo de<br>emulsión | Elemento<br>metálico con<br>un agujero<br>interno<br>central y<br>varios                      | AN262    | mm<br>(x10^-<br>2) | Existen una<br>gama de estos<br>elementos<br>para cada<br>motor que<br>funcione a |                                |

| Parámetro             | Descripción                                                                                                    | Tipo     | Unidad | Observación                                                                                                                                                 | Gráfico |
|-----------------------|----------------------------------------------------------------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                       | laterales, su<br>diseño<br>ayuda e<br>crear la<br>mezcla ideal<br>de aire y<br>combustible                     | AN266    |        | carburador, sin embargo, para este caso solo se usó dos de igual número y posición de agujeros laterales; el diámetro central interior difiere uno del otro |         |
| Tornillo de<br>mezcla | Tornillo que<br>regula el<br>paso de aire<br>y por ende<br>varía la<br>mezcla                                  | 1/2      | vuelta | Para contar el número de vueltas se aprieta el tornillo al máximo y a partir del punto de referencia en el que queda se empieza a aflojar y contar          |         |
| Altura de             | Altura a la                                                                                                    | 2<br>P1  |        | las vueltas  Mientras el P                                                                                                                                  |         |
| aguja                 | que se eleva<br>la aguja y<br>permite,<br>mediante el<br>cable del<br>acelerador,<br>el paso de<br>combustible | P2<br>P3 |        | tenga un número más alto, la base de la aguja se colocará más abajo y por ende saldrá más combustible al momento de acelerar                                |         |

# 3.6.2. Sistema Encendido

Tabla 23

Cambios desarrollados en el sistema de encendido

| Parámetro             | Descripción                                        | Tipo | Unidad | Observación                                                               | Gráfica |
|-----------------------|----------------------------------------------------|------|--------|---------------------------------------------------------------------------|---------|
| Adelanto al encendido | Distancia<br>medida<br>desde el<br>punto<br>muerto | 2,8  | mm     | En el<br>momento<br>que tengas la<br>distancia<br>correcta                |         |
|                       | superior a la<br>cabeza del<br>pistón              | 3    |        | medida con<br>un palpador,<br>se alinea la<br>ranura de<br>referencia del |         |
|                       |                                                    | 3,2  |        | rotor con la<br>de la bobina                                              |         |
| Gap de<br>bujía       | Distancia<br>entre<br>electrodos<br>de la bujía    | 0,55 | mm     | El estándar<br>de 0,55 se<br>colocó la<br>bujía sin                       |         |
|                       | de la bujia                                        | 0,65 |        | arandela                                                                  |         |
|                       |                                                    | 0,75 |        |                                                                           |         |
|                       |                                                    | 0,85 |        |                                                                           |         |

# Capítulo IV

4. Pruebas, Simulación y Análisis Comparativo de la Investigación

# 4.1. Protocolo de pruebas

# 4.1.1. Mecánicas

 Montar: el motor mini Vortex 60 cc, carburador, filtro, arnés y batería, en el dinamómetro inercial y realizar la conexión de la manguera de combustible al tanque del mismo.

Figura 123

Motor mini Vortex 2T embancado en el dinamómetro inercial



 Alinear la catalina con el piñón de salida del motor, agregando la respectiva cadena de transmisión.

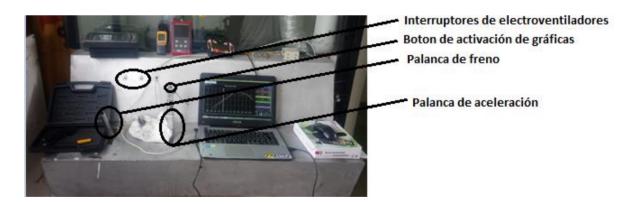
- Conectar el cable de rpm junto con el de temperatura de culata a la Mychron 5. El
  cable del acelerador, el switch de encendido del motor y la Mychron 5 se deben dirigir
  hacia el panel de control del dinamómetro. Además, comprobar el funcionamiento del
  freno y los electroventiladores del equipo.
- Verificar el buen estado y funcionamiento de los cables, botones, equipos, motor, software, y llenar el tanque con el combustible, llevando un registro de la cantidad con la que inicia y termina, utilizando una probeta de ensayos.

Figura 124

Motor mini Vortex 2T montado con sus elementos complementarios



Figura 125


Panel de control del dinamómetro inercial



 Dar arranque, con el botón del panel de control, acelerando al máximo y encendiendo el electroventilador de los gases de escape.

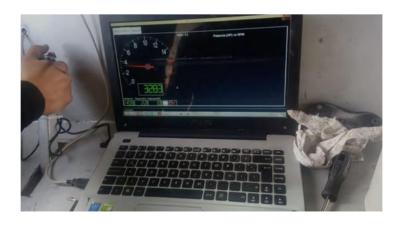
Figura 126

Partes del panel de control del dinamómetro inercial



 Mantener el motor a aproximadamente 3500 rpm hasta llevarlo a la temperatura adecuada de 115 °C, y a partir de allí oprimir simultáneamente el botón de activación de gráficas con la palanca de aceleración al máximo. Se observará como se crea la gráfica potencia-rpm en la interfaz de la computadora mientras rpm aumentan; se permite que máximo 13500 rpm llegue la prueba, a partir de este punto se debe activar la palanca de freno y el electro ventilador de refrigeración ya que la temperatura de culata asciende hasta los 130 °C recalentando el motor.

Figura 127


Datos latentes del motor vistos en la Mychron 5



 Se conserva el motor a bajas revoluciones, máximo 3500 rpm, observando que la Mychron 5 muestre la temperatura adecuada, siendo este valor el detonante del siguiente ensayo con el mismo paso explicado en el párrafo anterior.

Figura 128

Tacómetro del software dinamométrico



- Recordar que los parámetros de carburación estándares del carburador son: P3
  aguja, ajuste de tornillo de mezcla 2 vueltas, jet shiglor 97 y tubo de emulsión
  AN266A.
- Implementar las modificaciones en pro de la potencia en la carburación:
  - Cambiando jet shiglor: 96, 94, 93, 92, 91 y 89; donde el más bajo restringe el paso de combustible hacia el tubo de emulsión.
  - Tubo de emulsión: AN262 y AN266; este último tiene un diámetro interno mucho mayor, lo que permite el ingreso de más combustible.
  - Ajuste del tornillo de mezcla: ½ vuelta, 1 ½ o 1 ¼
  - Altura de la aguja: P1, P2 y P3; este último permite que la aguja se eleve más y por ende la mezcla se enriquezca y el flujo másico de combustible aumente.
- En cada uno de los cambios que se detalla en el anterior punto, se obtiene una gráfica potencia-rpm para determinar la mejor; además se considera el consumo de combustible y flujo de aire (uso de anemómetro) a 3000, 6000 y 9000 rpm.

Figura 129

Gráfica potencia-rpm en la interfaz del software dinamométrico



# 4.1.2. Eléctricas

Montar el motor y todos los componentes que permiten que este funcione en su

pleno desempeño.

- Recordar los parámetros de encendido estándares: adelanto al encendido de 3,00
   mm y gap de bujía 0,55 mm.
- Dar arranque, con el botón del panel de control, acelerando al máximo y encendido el electro ventilador de los gases de escape.
- Revisar y preparar el equipo GTC-505; la pinza va sobre el cable de bujía y de esta manera recibe los pulsos que denotan el tiempo de quemado y tensión de ruptura.

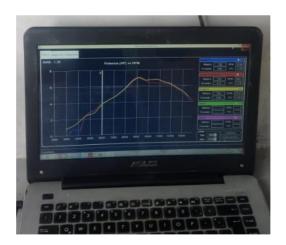
Figura 130

Medición del tiempo de quemado con el GTC -505



- Implementar las modificaciones en pro de la potencia en el encendido, recordando que se utilizaron los mejores parámetros de carburación para estas pruebas (tubo de emulsión An266A, tornillo de mezcla ½ vuelta, jet shiglor 91 y altura de aguja P2):
  - Adelanto al encendido: 3,2, 3,0 y 2,8 mm
  - Gap de bujía: 0,55 mm sin arandela, 0,65 mm, 0,75 mm y 0,85 mm

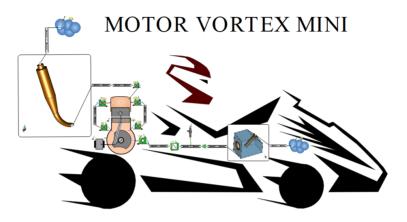
Figura 131


Adelanto al encendido reflejado en el reloj comparador



 En cada uno de los cambios que se detalla en el anterior punto, se obtiene una gráfica potencia-rpm y se considera el tiempo de quemado y tensión de ruptura a 3000 y 6000 rpm.

Figura 132


Comparación entre curvas potencia-rpm de distintos ensayos



# 4.1.3. Protocolo de pruebas de simulación

# Figura 133

Simulación final



El conjunto de pruebas se realiza en 2 simulaciones en las que hay 11 casos en cada una. La primera posee los valores estándares de motor y la segunda con las modificaciones correspondientes que ayudan a elevar la potencia del motor.

# a) Valores Estándar

Los cálculos son la referencia de la mayoría de datos presentes en la tabla 24; "AFR" es un dato empírico del motor al igual que todas las temperaturas de motor; la "VELOCIDAD" son las revoluciones que mejor potencia resultó en los cálculos. "BDUR" y "CA50" se obtuvo de igual forma en la matematización de parámetros y el "Angulo\_acelerador" es de 90 ya que es necesario un flujo total en la mariposa, es decir, totalmente abierta.

Tabla 24

Parámetros de la simulación estándar

| Nombre                      | Tipo | Unid<br>ad | Comentario                                                    | Valor |
|-----------------------------|------|------------|---------------------------------------------------------------|-------|
| AFR                         | Real |            | Relación aire /combustible                                    | 15.5  |
| VELOCIDAD                   | Real | rpm        | Velocidad angular del motor                                   | 11500 |
| T_CYL_Cilindro<br>_Cabeza   | Real | K          | °T cámara de combustión                                       | 620   |
| T_CYL_Cilindro<br>_Camisa   | Real | K          | °T camisa del cilindro                                        | 595   |
| T_CYL_Piston_<br>Cabeza     | Real | K          | °T cabeza del pistón                                          | 580   |
| T_CRNK_Carter<br>_Pared     | Real | K          | °T paredes del cárter                                         | 351   |
| T_CRNK_Escap<br>e_Valvula   | Real | K          | °T lumbrera de escape                                         | 450   |
| T_CRNK_Admis<br>ion_Valvula | Real | K          | °T lumbrera de admisión                                       | 400   |
| T_CRNK_Piston<br>_Falda     | Real | K          | °T falda del pistón                                           | 350   |
| BDUR                        | Real | deg        | Duración de la combustión                                     | 31    |
| CA50                        | Real | deg        | Punto en el que se encuentra el 50% de la masa combustionada  | 13.8  |
| Angulo_acelera<br>dor       | Real | deg        | Posición de la mariposa(simula la cortina d<br>el carburador) | 90    |

Como se ve en la tabla 25, existen 11 casos que se juntan de 3 en 3, donde la "VELOCIDAD" enlaza el trío con valores tan altos porque es allí donde se encuentran las mayores potencias; los dos últimos valores del caso 10 y 11 respectivamente, son bajos y se colocan para dinamizar las gráficas de barrido posteriores.

"AFR", "BDUR" y" CA50" son los únicos que cambian de manera creciente en los tríos, el valor medio siempre es el mismo en estas constantes ya que es el valor estándar de la simulación solo se afecta décimas arriba y abajo para diferenciar la mejor potencia.

Las temperaturas posee valores arbitrarios ya que su efecto es ínfimo, estos datos los proporciona el software de manera predeterminada en sus tutoriales y para defecto de la simulación se variaron en un rango de  $\pm 60~K$ , entre cada caso.

La constante "Angulo\_acelerador" permanece idéntica ya que es a máxima aceleración la toma de datos y pruebas que se realizan, puesto que con la cortina en su máxima apertura es como el motor alcanza mejor potencia.

Tabla 25

Casos de la simulación estándar

| Nombre                      | Ca        | Cas      | Cas      |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|
|                             | so        | o 10     | o 11     |
|                             | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         |          |          |
| AFR                         | 15.<br>3  | 15.<br>5  | 15.<br>7  | 15.<br>2  | 15.<br>5  | 15.<br>8  | 15.<br>1  | 15.<br>5  | 15.<br>9  | 15.5     | 15.5     |
| VELOCIDAD                   | 132<br>00 | 132<br>00 | 132<br>00 | 120<br>00 | 120<br>00 | 120<br>00 | 115<br>50 | 115<br>50 | 115<br>50 | 900<br>0 | 220<br>0 |
| T_CYL_Cilindr<br>o_Cabeza   | 620       | 587       | 618       | 599       | 596       | 616       | 612       | 609       | 607       | 605      | 602      |
| T_CYL_Cilindr<br>o_Camisa   | 595       | 560       | 592       | 572       | 569       | 590       | 587       | 584       | 580       | 578      | 575      |
| T_CYL_Piston<br>_Cabeza     | 580       | 555       | 578       | 563       | 561       | 577       | 574       | 572       | 570       | 567      | 565      |
| T_CRNK_Cart er_Pared        | 351       | 327       | 349       | 335       | 333       | 347       | 345       | 343       | 340       | 339      | 337      |
| T_CRNK_Esca<br>pe_Valvula   | 450       | 413       | 448       | 425       | 422       | 445       | 441       | 437       | 434       | 431      | 428      |
| T_CRNK_Admi<br>sion_Valvula | 400       | 368       | 398       | 380       | 377       | 396       | 393       | 391       | 388       | 386      | 383      |

| Nombre                  | Ca<br>so<br>1 | Ca<br>so<br>2 | Ca<br>so<br>3 | Ca<br>so<br>4 | Ca<br>so<br>5 | Ca<br>so<br>6 | Ca<br>so<br>7 | Ca<br>so<br>8 | Ca<br>so<br>9 | Cas<br>o 10 | Cas<br>o 11 |
|-------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------|-------------|
| T_CRNK_Pisto<br>n_Falda | 350           | 310           | 347           | 322           | 319           | 344           | 340           | 335           | 332           | 328         | 325         |
| BDUR                    | 30.<br>5      | 31            | 31.<br>5      | 30.<br>5      | 31            | 31.<br>5      | 30.<br>8      | 31            | 31.<br>2      | 31          | 31          |
| CA50                    | 13.<br>3      | 13.<br>8      | 14.<br>3      | 13.<br>5      | 13.<br>8      | 14.<br>1      | 13.<br>6      | 13.<br>8      | 14            | 13.8        | 13.8        |
| Angulo_aceler ador      | 90            | 90            | 90            | 90            | 90            | 90            | 90            | 90            | 90            | 90          | 90          |

# b) Valores Modificados

La constante "VELOCIDAD" y las temperaturas del motor son las mismas que las estándar.

"AFR" de 14,7 es la mezcla ideal, es decir por cada 14,7 partes de aire habrá 1 de combustible.

"BDUR" y "CA50" son valores que empíricamente se modificaron sabiendo que dichos cambios se sustentan con los ajustes de los parámetros de carburación y encendido que se defiende en la presente tesis.

Tabla 26

Parámetros de la simulación mejorada

| Nombre                    | Tipo | Unid<br>ad | Comentario                  | Valor |
|---------------------------|------|------------|-----------------------------|-------|
| AFR                       | Real |            | Relación aire /combustible  | 14.7  |
| VELOCIDAD                 | Real | rpm        | Velocidad angular del motor | 11500 |
| T_CYL_Cilindro<br>_Cabeza | Real | K          | °T cámara de combustión     | 620   |
| T_CYL_Cilindro<br>_Camisa | Real | K          | °T camisa del cilindro      | 595   |

| Nombre                      | Tipo | Unid<br>ad | Comentario                                                   | Valor |
|-----------------------------|------|------------|--------------------------------------------------------------|-------|
| T_CYL_Piston_<br>Cabeza     | Real | K          | °T cabeza del pistón                                         | 580   |
| T_CRNK_Carter<br>_Pared     | Real | K          | °T paredes del cárter                                        | 351   |
| T_CRNK_Escap<br>e_Valvula   | Real | K          | °T lumbrera de escape                                        | 450   |
| T_CRNK_Admis<br>ion_Valvula | Real | K          | °T lumbrera de admisión                                      | 400   |
| T_CRNK_Piston<br>_Falda     | Real | K          | °T falda del pistón                                          | 350   |
| BDUR                        | Real | deg        | Duración de la combustión                                    | 24    |
| CA50                        | Real | deg        | Punto en el que se encuentra el 50% de la masa combustionada | 12    |
| Angulo_acelera<br>dor       | Real | deg        | Posición de la mariposa(simula la cortina d el carburador)   | 90    |

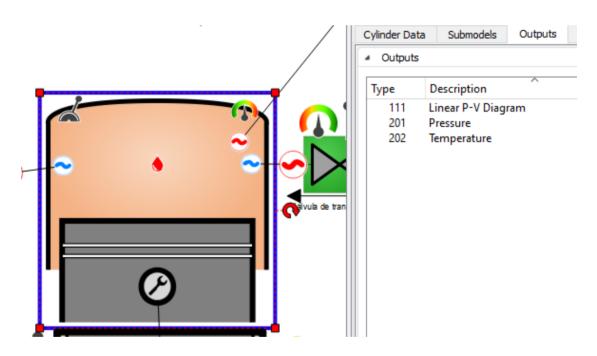
De la misma forma que la tabla 24, la tabla 26 se reúne en tríos por la constante "VELOCIDAD", donde los valores cambian de forma creciente y el valor intermedio es el mismo en todos los tríos ya que es el que en teoría genera mayor potencia, sin embargo, esto no ocurre en todos los casos ya que a diferentes rpm es necesario configuraciones distintas.

Tabla 27

Casos de la simulación mejorada

| Nombre                          | Ti           | Са        | Ca        | Са        | Ca        | Са        | Са        | Са        | Са        | Ca        | Cas      | Cas      |
|---------------------------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|
| 110111510                       | p            | so        | 01       | o 1      |
|                                 | 0            | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         | 0        | 1        |
| AFR                             | R<br>e<br>al | 14.<br>5  | 14.<br>7  | 14.<br>9  | 14.<br>6  | 14.<br>7  | 14.<br>8  | 14.<br>4  | 14.<br>7  | 15        | 14.7     | 14.7     |
| VELOCIDAD                       | R<br>e<br>al | 132<br>00 | 132<br>00 | 132<br>00 | 120<br>00 | 120<br>00 | 120<br>00 | 115<br>00 | 115<br>00 | 115<br>00 | 900<br>0 | 220<br>0 |
| T_CYL_Cilind<br>ro_Cabeza       | R<br>e<br>al | 620       | 587       | 618       | 599       | 596       | 616       | 612       | 609       | 607       | 605      | 602      |
| T_CYL_Cilind ro_Camisa          | R<br>e<br>al | 595       | 560       | 592       | 572       | 569       | 590       | 587       | 584       | 580       | 578      | 575      |
| T_CYL_Pisto<br>n_Cabeza         | R<br>e<br>al | 580       | 555       | 578       | 563       | 561       | 577       | 574       | 572       | 570       | 567      | 565      |
| T_CRNK_Car<br>ter_Pared         | R<br>e<br>al | 351       | 327       | 349       | 335       | 333       | 347       | 345       | 343       | 340       | 339      | 337      |
| T_CRNK_Esc<br>ape_Valvula       | R<br>e<br>al | 450       | 413       | 448       | 425       | 422       | 445       | 441       | 437       | 434       | 431      | 428      |
| T_CRNK_Ad<br>mision_Valvul<br>a | R<br>e<br>al | 400       | 368       | 398       | 380       | 377       | 396       | 393       | 391       | 388       | 386      | 383      |
| T_CRNK_Pist<br>on_Falda         | R<br>e<br>al | 350       | 310       | 347       | 322       | 319       | 344       | 340       | 335       | 332       | 328      | 325      |
| BDUR                            | R<br>e<br>al | 23.<br>8  | 24        | 24.<br>2  | 23.<br>72 | 24        | 24.<br>18 | 23.<br>9  | 24        | 24.<br>1  | 24       | 24       |
| CA50                            | R<br>e<br>al | 11.<br>9  | 12        | 12.<br>1  | 11.<br>8  | 12        | 12.<br>2  | 11.<br>96 | 12        | 12.<br>04 | 12       | 12       |
| Angulo_aceler ador              | R<br>e<br>al | 90        | 90        | 90        | 90        | 90        | 90        | 90        | 90        | 90        | 90       | 90       |

# c) Selección de gráficas


Gráficas de tiempo

El cilindro es el único elemento utilizado para extraer gráficas de tiempo para la presente investigación. Las gráficas se observan en el WAVE Post y se seleccionan en la pestaña "Outputs", de cada elemento en la interfaz de Ricardo WAVE.

El cilindro de motor posee las siguientes gráficas: 111 Diagrama lineal P-V, 201 Presión y 202 Temperatura.

Figura 134

Cilindro con sus gráficas seleccionadas



#### Gráficas de barrido

Son gráficos de resultados promediados por ciclo de todos los casos en el análisis, utilizando la salida que se encuentra en el archivo .sum. Se desarrollarán únicamente en el bloque motor a través del WAVE Post y se observan en la figura 135.

# Figura 135

Selección de gráficas de barrido para el bloque

Sweep Plots

Sweep Plots

Rake Power vs. Engine speed

Rotal Indicated Power vs. Engine speed

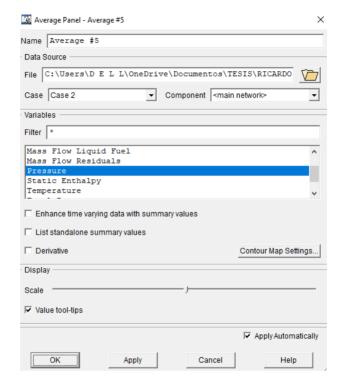
Rotal Indicated Torque vs. Engine speed

Rotal Lambda vs. Engine speed

Rotal BSFC vs. Engine speed

Total delivered efficiency vs. Engine speed

# Gráficas promedio


Estas son gráficas muy dinámicas que a través de una paleta de colores ponen en evidencia la variable a considerar, reflejado en los elementos de la simulación. Se desarrollan con el WAVE Post.

Para estas gráficas únicamente se usará la presión y temperatura en los casos de mayor importancia de la simulación.

La configuración de estas gráficas se observa en la figura 136.

Figura 136

# Configuración de las gráficas promedio



#### d) Selección de casos

En la tabla 28 y tabla 29 se puede observar la potencia indicada de los 11 casos de la simulación estándar y mejorada respectivamente, de los cuales, como se mencionó anteriormente, se reúnen en 3 tríos con referencia a la velocidad angular; los dos últimos casos son complemento. La mejor potencia indicada mostrará que conjunto de datos se elegirá para las gráficas de barrido.

El caso 2, caso 5 y caso 8 son los seleccionados para la simulación final de los gráficos de barrido ya que tienen la configuración de estandareidad del motor y como lo indica la tabla 28 poseen la mayor potencia indicada.

Tabla 28

Potencia indicada de los 11 casos de la simulación estándar

| Caso            | rpm                | Hp Indicada              |
|-----------------|--------------------|--------------------------|
| 1               | 13200              | 7,39955807               |
| 2               | 13200              | <mark>7,51099777</mark>  |
| 3               | 13200              | 7,1876421                |
| 4               | 12000              | 6,84832621               |
| <mark>5</mark>  | 12000              | 6,7362852 <mark>1</mark> |
| 6               | 12000              | 6,5448699                |
| 7               | 11550              | 6,45680523               |
| 8               | <mark>11550</mark> | 6,35692501               |
| 9               | 11550              | 6,24950409               |
| <mark>10</mark> | 9000,00293         | 5,60867882               |
| 11              | <mark>2200</mark>  | <mark>1,15100706</mark>  |

El caso 2, caso 5 y caso 8 son los seleccionados para la simulación de parámetros modificados en los gráficos de barrido, ya que tienen la configuración de mejores cambios del motor y como lo indica la tabla 29 poseen la mayor potencia indicada.

Tabla 29

Potencia indicada de los 11 casos de la simulación mejorada

| Caso            | rpm        | Hp Indicada             |
|-----------------|------------|-------------------------|
| 1               | 13199,9199 | 8,91891193              |
| <mark>2</mark>  | 13199,9199 | 9,07085323              |
| 3               | 13199,9199 | 8,69703865              |
| 4               | 11999,9697 | 8,07676888              |
| <mark>5</mark>  | 11999,9697 | <mark>8,05183315</mark> |
| 6               | 11999,9697 | 7,867733                |
| 7               | 11499,9697 | 7,62189198              |
| 8               | 11499,9697 | <mark>7,56898499</mark> |
| 9               | 11499,9697 | 7,48877716              |
| <mark>10</mark> | 8999,99512 | <mark>6,71064901</mark> |
| <mark>11</mark> | 2200,00098 | 1,38999295              |

#### 4.1.4. De Telemetría

- Montar el motor mini Vortex 60 cc, el restrictor de escape mini y carburador en el kart, con las especificaciones de la categoría, incluyendo todos los demás elementos que permiten el correcto funcionamiento del vehículo.
- Definir el número de vueltas y ruta de pista, explicándole al piloto que utilice los mismos puntos de referencia en las dos pruebas que se harán (1 con los mejores parámetros de carburación y encendido y otra con los de menor desempeño), para igualar condiciones.
- Preparar las mejores modificaciones de encendido y carburación para el motor:

#### Carburación

- Tubo de emulsión AN266
- Jet 91
- Ajuste de ½ vuelta del tornillo de mezcla
- Altura de aguja P1

#### Encendido

- Adelanto al encendido de 3,0 mm
- Gap de 0,65 mm
- Enviar al piloto a recorrer pista percatándose que no tenga ningún inconveniente.
- Preparar las modificaciones de encendido y carburación de menor desempeño para el motor:

#### Carburación

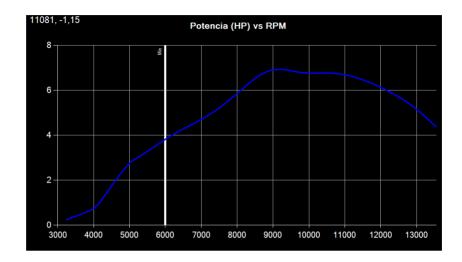
- Tubo de emulsión AN262
- Jet 97
- Ajuste de 2 vuelta del tornillo de mezcla

- Altura de aguja P3

Encendido

- Adelanto al encendido de 3,2 mm
- Gap de 0,85 mm
- Bajar la data de cada ensayo de la Mychron 5 al Race Studio para generar gráficas
   y poder realizar un mejor análisis de los parámetros característicos del motor.
- Comparar resultados de tiempo de vuelta, potencia, aceleración, máxima velocidad angular del motor, velocidad lineal, entre otras.

#### 4.2. Curvas Características


Las curvas características definen el comportamiento del motor. Para poder definir el comportamiento del motor en condiciones de funcionamiento normal se necesita de tres curvas: curva de potencia, curva de par del motor y curva de consumo específico del combustible; para motores de competencia no es necesario evaluar la curva de consumo específico de combustible, no existe algún reglamento que evalué dicho parámetro.

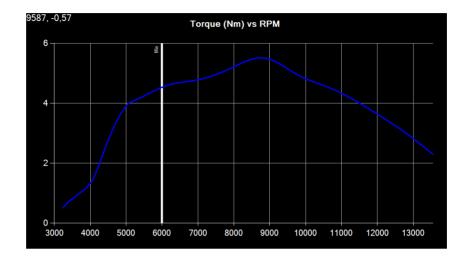
Curva de potencia del motor

A medida que aumenta el régimen de giro de manera lineal también se incrementa la potencia al freno, pero solo hasta ciertas revoluciones ya que por seguridad el motor es limitado, en caso del motor 2T por un limitador de velocidad en el CDI para que no supere 15500 rpm. A partir del régimen máximo alcanzado, la potencia al freno disminuye hasta concluir con la curva de potencia.

Curva de potencia motor Vortex 2T 60cc

Figura 137




La potencia obtenida en el banco de pruebas dinamométrico es conocida como potencia efectiva  $(N_e)$ , siendo la potencia útil en el cigüeñal.

# Curva de par del motor

El par del motor medido con un banco de pruebas dinamométricas se considera par efectivo del motor, es producto de una fuerza perpendicular sobre el codo del cigüeñal que se encuentra a una distancia del eje de bancada.

Figura 138

Curva de par del motor Vortex 2T 60 cc



# 4.2.1. Curvas Características Motor 2T 60 cc

El motor mini Vortex posee un carburador Dell Orto PHBG 18BS el cual cuenta con una serie de parámetros que se mencionan en la tabla 30, además de otros datos del sistema de encendido.

# a) Prueba N° 1

Tabla 30

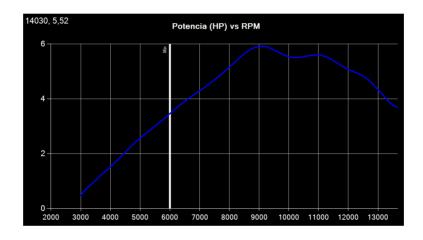
Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc en condiciones estándar

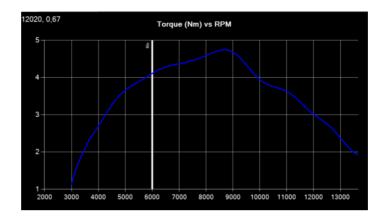
| Parámetro            | Magnitud   | Unidad |
|----------------------|------------|--------|
|                      | Carburador |        |
| Diámetro del Venturi | 18         | Mm     |
| Tornillo de mezcla   | 720        | 0      |
| Nivel de Flotadores  | 16         | mm     |
| Peso de flotadores   | 4          | gr     |
| Emulsor              | AN 266     | mm     |

| Parámetro              | Magnitud  | Unidad   |
|------------------------|-----------|----------|
|                        | 3         | Posición |
| Pin de aguja           |           |          |
| Jet principal          | 97        | mm/100   |
|                        | Encendido |          |
| Gap de bujía           | 0,55      | Mm       |
| Tiempo de<br>encendido | 3         | Mm       |

Figura 139

Curva de potencia Prueba N°1





Tabla 31

Potencia vs rpm prueba N°1

| Potencia (hp) |                |  |
|---------------|----------------|--|
| Rpm           | Curva 1 – azul |  |
| 3000          | 0,43           |  |
| 4000          | 1,47           |  |
| 6000          | 3,46           |  |
| 7000          | 4,3            |  |
| 8000          | 5,2            |  |
| 9064          | 5,91           |  |
| 10000         | 5,5            |  |
| Máxima        | 5,91           |  |
| Promedio      | 5              |  |

Figura 140

Curva de par motor prueba N° 1



**Tabla 32**Par motor vs rpm prueba N°1

| Par motor (N.m) |                |  |
|-----------------|----------------|--|
| rpm             | Curva 1 – azul |  |
| 3000            | 1,1            |  |
| 4000            | 2,66           |  |
| 6000            | 4,1            |  |
| 7000            | 4,3            |  |
| 8000            | 4,6            |  |
| 8691            | 4,75           |  |
| 10000           | 3,9            |  |
| Máxima          | 4,75           |  |
| Promedio        | 3,78           |  |

# 4.2.2. Curvas Características Motor 2T 60 Cc Variando Parámetros de Carburación

# b) Prueba N° 2

En la prueba N°2 se mantuvieron parámetros de encendido, mientras que de carburación se varía la apertura de la aguja o tornillo de mezcla con el fin de verificar la mejor calibración, este procedimiento se realiza en la prueba 2, 3 y 4.

Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador - Prueba N° 2

| Parámetro            | Magnitud   | Unidad   |
|----------------------|------------|----------|
|                      | Carburador |          |
| Diámetro del Venturi | 18         | mm       |
| Aguja de mezcla      | 540        | 0        |
| Nivel de Flotadores  | 16         | mm       |
| Peso de flotadores   | 4          | gr       |
| Emulsor              | AN 266     | mm       |
| Pin de aguja         | 3          | Posición |
| Jet principal        | 97         | mm/100   |
| Encendido            |            |          |
| Gap de bujía         | 0,55       | Mm       |
| Tiempo de            | 3          | Mm       |
| encendido            |            |          |
|                      |            |          |

Figura 141

Curva de potencia Prueba N°2

Tabla 33

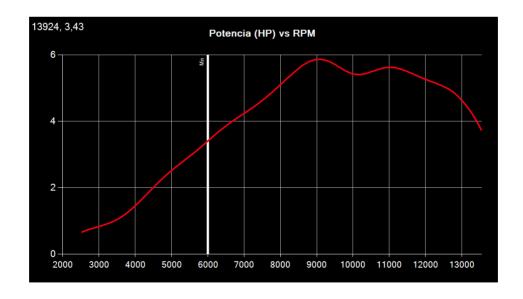



Tabla 34

Potencia vs rpm Prueba N°2

| Potencia (hp) |                |  |
|---------------|----------------|--|
| rpm           | Curva 1 - Rojo |  |
| 3000          | 0,78           |  |
| 4000          | 1,47           |  |
| 6000          | 3,4            |  |
| 7000          | 4,25           |  |
| 8000          | 5,1            |  |
| 9088          | 5,86           |  |
| 10000         | 5,43           |  |
| Máxima        | 5,86           |  |
| Promedio      | 5,04           |  |

Figura 142

Curva de par motor Prueba N° 2

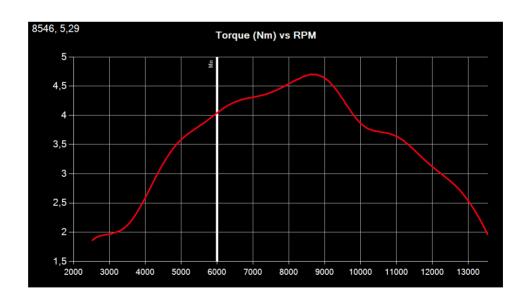



Tabla 35

Par motor vs rpm Prueba N°2

| Par motor (N.m) |           |  |
|-----------------|-----------|--|
| rpm             | Curva 1 – |  |
|                 | Rojo      |  |
| 3000            | 1,98      |  |
| 4000            | 2,6       |  |
| 6000            | 4,05      |  |
| 7000            | 4,3       |  |
| 8000            | 4,55      |  |
| 8600            | 4,7       |  |
| 10000           | 3,9       |  |
| Máxima          | 4,7       |  |
| Promedio        | 3,81      |  |

# c) Prueba N° 3

En la prueba N° 3 se ajusta la aguja o tornillo de mezcla a 360° de apertura, así disminuyendo el ingreso de aire en bajas rpm.

Tabla 36

Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador - Prueba N° 3

| Parámetro            | Magnitud   | Unidad   |  |
|----------------------|------------|----------|--|
|                      | Carburador |          |  |
| Diámetro del Venturi | 18         | mm       |  |
| Aguja de mezcla      | 360        | 0        |  |
| Nivel de Flotadores  | 16         | mm       |  |
| Peso de flotadores   | 4          | gr       |  |
| Emulsor              | AN 266     | mm       |  |
| Pin de aguja         | 3          | Posición |  |
| Jet principal        | 97         | mm/100   |  |
| Encendido            |            |          |  |
| Gap de bujía         | 0,55       | mm       |  |
| Tiempo de            | 3          | mm       |  |
| encendido            |            |          |  |
|                      |            |          |  |

Figura 143

Curva de potencia Prueba N° 3

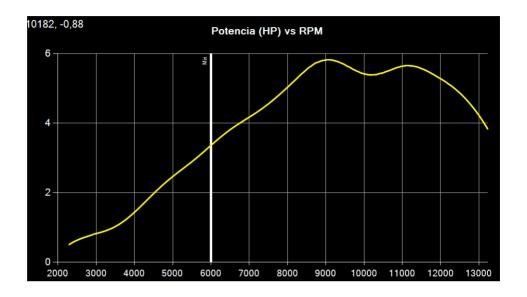



Tabla 37

Potencia vs rpm Prueba N° 3

| Potencia (hp)             |      |  |
|---------------------------|------|--|
| rpm Curva 2 -<br>Amarillo |      |  |
| 3000                      | 0,8  |  |
| 4000                      | 1,47 |  |
| 6000                      | 3,35 |  |
| 7000                      | 4,2  |  |
| 8000                      | 5,05 |  |
| 9070                      | 5,82 |  |
| 10000                     | 5,43 |  |
| Máxima                    | 5,82 |  |
| Promedio                  | 5,02 |  |

Figura 144

Curva de par motor prueba N° 3

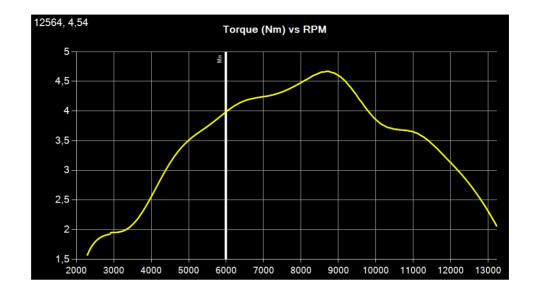



Tabla 38

Par motor vs rpm Prueba N° 3

| Par motor (N.m)         |      |  |
|-------------------------|------|--|
| rpm Curva 2<br>Amarille |      |  |
| 3000                    | 1,94 |  |
| 4000                    | 2,54 |  |
| 6000                    | 3,98 |  |
| 7000                    | 4,25 |  |
| 8000                    | 4,45 |  |
| 8710                    | 4,7  |  |
| 10000                   | 3,85 |  |
| Máxima                  | 4,67 |  |
| Promedio                | 3,84 |  |

# d) Prueba N° 4

En la prueba N° 4 se ajusta el tornillo de mezcla a 180° de apertura, así disminuyendo el ingreso de aire en bajas rpm.

Tabla 39

Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 4

| Parámetro     | Magnitud   | Unidad   |
|---------------|------------|----------|
|               | Carburador |          |
| Diámetro del  | 18         | mm       |
| Venturi       |            |          |
| Aguja de      | 180        | 0        |
| mezcla        |            |          |
| Nivel de      | 16         | mm       |
| Flotadores    |            |          |
| Peso de       | 4          | gr       |
| flotadores    |            |          |
| Emulsor       | AN 266     | mm       |
| Pin de aguja  | 3          | Posición |
| Jet principal | 97         | mm/100   |
|               | Encendido  |          |
| Gap de bujía  | 0,55       | mm       |
| Tiempo de     | 3          | mm       |
| encendido     |            |          |
|               |            |          |

Figura 145

Curva de potencia Prueba N° 4

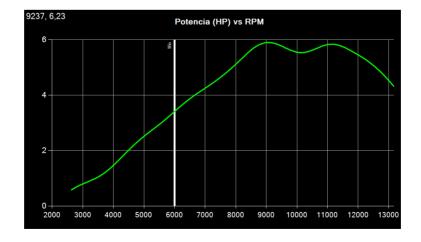



Tabla 40

Potencia vs rpm Prueba N° 4

| Potencia (hp) |           |  |
|---------------|-----------|--|
| rpm           | Curva 3 – |  |
|               | Verde     |  |
| 3000          | 0,8       |  |
| 4000          | 1,44      |  |
| 6000          | 3,41      |  |
| 7000          | 4,23      |  |
| 8000          | 5,12      |  |
| 9097          | 5,90      |  |
| 10000         | 5,54      |  |
| Máxima        | 5,9       |  |
| Promedio      | 5,16      |  |

Figura 146

Curva de par motor prueba N° 4

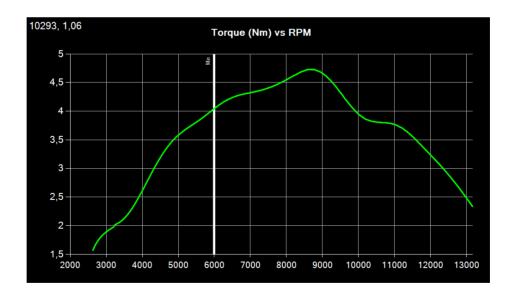



Tabla 41

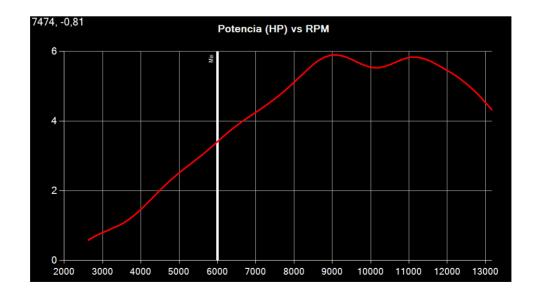
Par motor vs rpm Prueba N° 4

| Par motor (N.m) |           |  |
|-----------------|-----------|--|
| rpm             | Curva 3 – |  |
|                 | Verde     |  |
| 3000            | 1,87      |  |
| 4000            | 2,6       |  |
| 6000            | 4,03      |  |
| 7000            | 4,32      |  |
| 8000            | 4,54      |  |
| 8640            | 4,73      |  |
| 10000           | 3,93      |  |
| Máxima          | 4,73      |  |
| Promedio        | 3,95      |  |

En la prueba N° 2 hasta la prueba N° 4 se ha evaluado la apertura correcta de la aguja de mezcla, así probando apertura entre 180° a 540°; en la de tabulación y análisis de datos se determina la apertura correcta donde se obtiene la mejor curva de potencia y torque.

# e) Prueba N° 5

En la prueba N° 5 se mantuvieron los parámetros de encendido y se varía la altura de la aguja o bastón de la guillotina con el fin de verificar la mejor calibración en el sistema de progresión del carburador; este procedimiento se realiza en la prueba 5, 6 y 7.

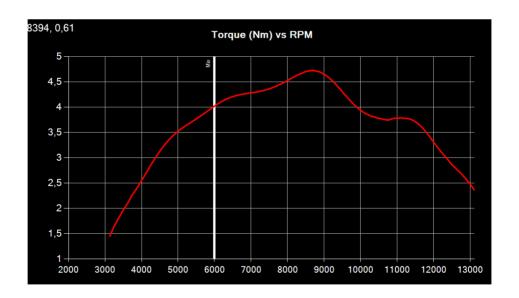

Tabla 42

Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 5

| Parámetro            | Magnitud   | Unidad   |
|----------------------|------------|----------|
|                      | Carburador |          |
| Diámetro del Venturi | 18         | Mm       |
| Aguja de mezcla      | 180        | ٥        |
| Nivel de Flotadores  | 16         | mm       |
| Peso de flotadores   | 4          | gr       |
| Emulsor              | AN 266     | mm       |
| Pin de aguja         | 3          | Posición |
| Jet principal        | 97         | mm/100   |
|                      | Encendido  |          |
| Gap de bujía         | 0,55       | Mm       |
| Tiempo de            | 3          | Mm       |
| encendido            |            |          |

Figura 147

Curva de potencia Prueba N° 5




**Tabla 43**Potencia vs rpm Prueba N° 5

| Potencia (hp) |           |  |
|---------------|-----------|--|
| rpm           | Curva 1 – |  |
|               | Rojo      |  |
| 3000          | 0,61      |  |
| 4000          | 1,39      |  |
| 6000          | 3,4       |  |
| 7000          | 4,18      |  |
| 8000          | 5,11      |  |
| 9000          | 5,87      |  |
| 11402         | 5,43      |  |
| Máxima        | 6         |  |
| Promedio      | 5,17      |  |

Figura 148

Curva de par motor prueba N° 5

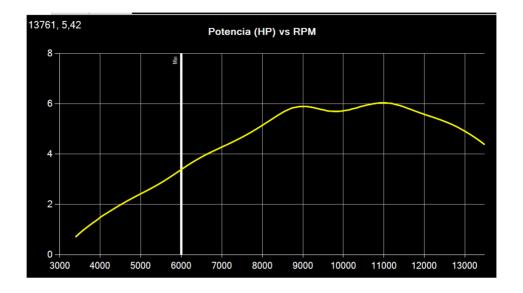


**Tabla 44**Par motor vs rpm Prueba N° 5

| Par motor (N.m) |           |  |
|-----------------|-----------|--|
| rpm             | Curva 1 – |  |
|                 | Rojo      |  |
| 3000            | 1,33      |  |
| 4000            | 2,54      |  |
| 6000            | 4,02      |  |
| 7000            | 4,28      |  |
| 8000            | 4,52      |  |
| 8683            | 4,73      |  |
| 10000           | 3,93      |  |
| Máxima          | 4,73      |  |
| Promedio        | 3,95      |  |

## f) Prueba N° 6

En la prueba N° 6 la altura de la aguja de guillotina baja a la muesca 2, así disminuye el área efectiva entre la aguja y el emulsor, el sistema de progresión se empobrece con respecto a la prueba N°5.


Tabla 45

Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 6

| Parámetro              | Magnitud   | Unidad   |
|------------------------|------------|----------|
|                        | Carburador |          |
| Diámetro del Venturi   | 18         | mm       |
| Aguja de mezcla        | 180        | 0        |
| Nivel de Flotadores    | 16         | mm       |
| Peso de flotadores     | 4          | gr       |
| Emulsor                | AN 266     | mm       |
| Pin de aguja           | 2          | Posición |
| Jet principal          | 97         | mm/100   |
|                        | Encendido  |          |
| Gap de bujía           | 0,55       | mm       |
| Tiempo de<br>encendido | 3          | mm       |

Figura 149

Curva de potencia Prueba N° 6



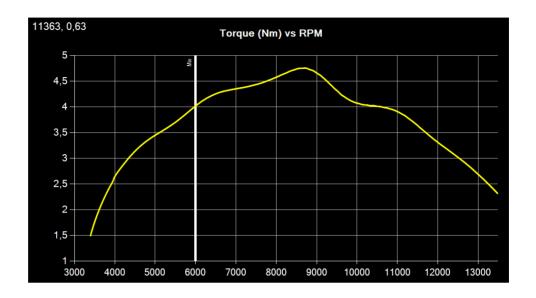

Potencia vs rpm Prueba N° 6

Tabla 46

| Potencia (hp) |                       |  |
|---------------|-----------------------|--|
| rpm           | Curva 2 –<br>Amarillo |  |
| 3000          | 0,48                  |  |
| 4000          | 1,5                   |  |
| 6000          | 3,37                  |  |
| 7000          | 4,29                  |  |
| 8000          | 5,07                  |  |
| 9000          | 5,87                  |  |
| 10963         | 6,03                  |  |
| Máxima        | 6,03                  |  |
| Promedio      | 5,24                  |  |

Figura 150

Curva de par motor prueba N° 6

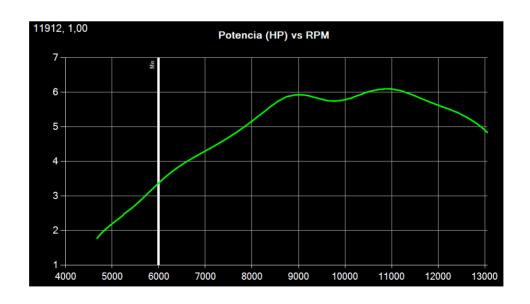


**Tabla 47**Par motor vs rpm Prueba N° 6

| Par motor (N.m) |           |  |
|-----------------|-----------|--|
| rpm             | Curva 2 – |  |
|                 | Amarillo  |  |
| 3000            | 1,00      |  |
| 4000            | 2,63      |  |
| 6000            | 4,00      |  |
| 7000            | 4,34      |  |
| 8000            | 4,58      |  |
| 8722            | 4,75      |  |
| 10000           | 4,06      |  |
| Máxima          | 4,75      |  |
| Promedio        | 3,95      |  |

# g) Prueba N° 7

En la prueba N° 7 la altura de la aguja de guillotina baja a la muesca 1, así disminuye el área efectiva entre la aguja y el emulsor, el sistema de progresión se empobrece con respecto a la prueba N°6.

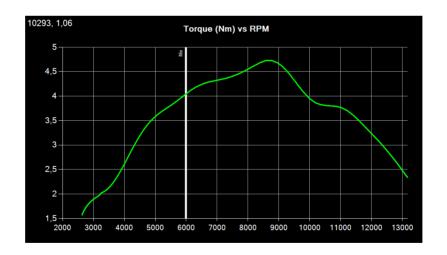

Tabla 48

Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 7

| Parámetro            | Magnitud   | Unidad   |
|----------------------|------------|----------|
|                      | Carburador |          |
| Diámetro del Venturi | 18         | mm       |
| Aguja de mezcla      | 180        | o        |
| Nivel de Flotadores  | 16         | mm       |
| Peso de flotadores   | 4          | gr       |
| Emulsor              | AN 266     | mm       |
| Pin de aguja         | 1          | Posición |
| Jet principal        | 97         | mm/100   |
|                      | Encendido  |          |
| Gap de bujía         | 0,55       | mm       |
| Tiempo de            | 3          | mm       |
| encendido            |            |          |
|                      |            |          |

Figura 151

Curva de potencia Prueba N°7




**Tabla 49**Potencia vs rpm Prueba N° 7

| Potencia (hp) |                    |  |
|---------------|--------------------|--|
| rpm           | Curva 3 –<br>Verde |  |
| 3000          | 0,5                |  |
| 4000          | 1,00               |  |
| 6000          | 3,33               |  |
| 7000          | 4,27               |  |
| 8000          | 5,14               |  |
| 9000          | 5,90               |  |
| 10922         | 6,09               |  |
| Máxima        | 6,09               |  |
| Promedio      | 5,31               |  |

Figura 152

Curva de par motor prueba N° 7



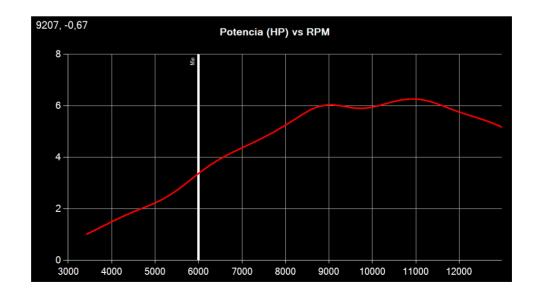
**Tabla 50**Par motor vs rpm Prueba N° 7

| Par motor (N.m) |          |  |
|-----------------|----------|--|
| rpm             | Curva 3– |  |
|                 | Verde    |  |
| 3000            | 1,87     |  |
| 4000            | 2,6      |  |
| 6000            | 4,00     |  |
| 7000            | 4,37     |  |
| 8000            | 4,60     |  |
| 8718            | 4,78     |  |
| 10000           | 4,12     |  |
| Máxima          | 4,78     |  |
| Promedio        | 4,07     |  |

Desde la prueba N° 5 hasta la prueba N° 7 se ha evaluado la altura correcta de la aguja de la guillotina, así probando en la muesca 1,2 y 3, en la parte de tabulación y análisis de datos se determina la altura correcta donde se obtiene la mejor curva de potencia y torque.

## h) Prueba N° 8

En la prueba N°8 se mantuvieron los parámetros de encendido y se varía el jet de alta, con el fin de verificar la mejor calibración en el sistema de aceleración del carburador; este procedimiento se realiza en la prueba 8, 9 y 10

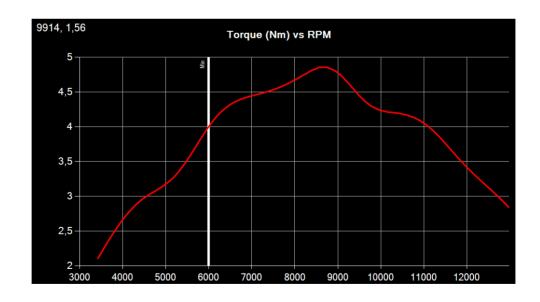

Tabla 51

Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 8

| Parámetro            | Magnitud   | Unidad   |
|----------------------|------------|----------|
|                      | Carburador |          |
| Diámetro del Venturi | 18         | Mm       |
| Aguja de mezcla      | 180        | ٥        |
| Nivel de Flotadores  | 16         | mm       |
| Peso de flotadores   | 4          | gr       |
| Emulsor              | AN 266     | mm       |
| Pin de aguja         | 1          | Posición |
| Jet principal        | 93         | mm/100   |
|                      | Encendido  |          |
| Gap de bujía         | 0,55       | Mm       |
| Tiempo de            | 3          | Mm       |
| encendido            |            |          |

Figura 153

Curva de potencia Prueba N°8




**Tabla 52**Potencia vs rpm Prueba N° 8

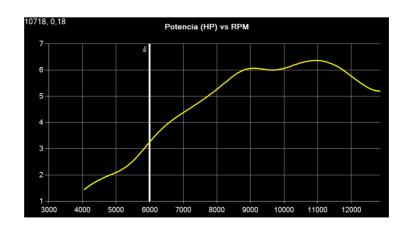
| Potencia (hp) |           |  |
|---------------|-----------|--|
| rpm           | Curva 1 – |  |
|               | Rojo      |  |
| 3000          | 0,83      |  |
| 4000          | 1,46      |  |
| 6000          | 3,44      |  |
| 7000          | 4,4       |  |
| 8000          | 5,24      |  |
| 9000          | 6,05      |  |
| 10906         | 6,26      |  |
| Máxima        | 6,26      |  |
| Promedio      | 5,43      |  |

Figura 154

Curva de par motor prueba N° 8



**Tabla 53**Par motor vs rpm Prueba N° 8

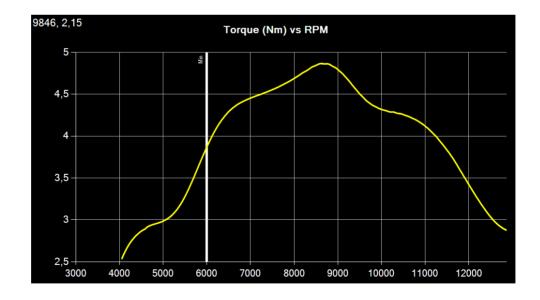

| Par motor (N.m) |                |  |
|-----------------|----------------|--|
| rpm             | Curva 1 – Rojo |  |
| 3000            | 1,67           |  |
| 4000            | 2,65           |  |
| 6000            | 4,01           |  |
| 7000            | 4,44           |  |
| 8000            | 4,66           |  |
| 8607            | 4,86           |  |
| 10000           | 4,24           |  |
| Máxima          | 4,86           |  |
| Promedio        | 4,17           |  |

## i) Prueba N° 9

En la prueba N° 9 la medida del jet o shiglor principal disminuye, así la entrega de combustible por el emulsor hacia el venturi es menor, empobreciendo la mezcla con respecto a la prueba N° 8.

Figura 155

Curva de potencia Prueba Nº 9




**Tabla 54**Potencia vs rpm Prueba N° 9

| Potencia (hp)             |      |  |
|---------------------------|------|--|
| rpm Curva 2 -<br>Amarillo |      |  |
| 3000                      |      |  |
|                           | 0,84 |  |
| 4000                      | 1,41 |  |
| 6000                      | 3,25 |  |
| 7000                      | 4,39 |  |
| 8000                      | 5,23 |  |
| 9000                      | 6,09 |  |
| 10954                     | 6,36 |  |
| Máxima                    | 6,36 |  |
| Promedio                  | 5,47 |  |

Figura 156

Curva de par motor prueba N° 9



**Tabla 55**Par motor vs rpm Prueba N° 9

| Par motor (N.m) |                    |  |
|-----------------|--------------------|--|
| rpm             | Curva 2 – Amarillo |  |
| 3000            | 1,23               |  |
| 4000            | 2,5                |  |
| 6000            | 3,86               |  |
| 7000            | 4,44               |  |
| 8000            | 4,67               |  |
| 8624            | 4,87               |  |
| 10000           | 4,33               |  |
| Máxima          | 4,87               |  |
| Promedio        | 4,21               |  |

## j) Prueba N° 10

En la prueba N° 10 la medida del jet o shiglor principal disminuye, así la entrega de combustible por el emulsor hacia el venturi es menor, empobreciendo la mezcla con respecto a la prueba N° 9.

Tabla 56

Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 10

| Parámetro              | Magnitud   | Unidad   |
|------------------------|------------|----------|
|                        | Carburador |          |
| Diámetro del Venturi   | 18         | mm       |
| Aguja de mezcla        | 180        | 0        |
| Nivel de Flotadores    | 16         | mm       |
| Peso de flotadores     | 4          | gr       |
| Emulsor                | AN 266     | mm       |
| Pin de aguja           | 1          | Posición |
| Jet principal          | 89         | mm/100   |
|                        | Encendido  |          |
| Gap de bujía           | 0,55       | mm       |
| Tiempo de<br>encendido | 3          | mm       |

Figura 157

Curva de potencia Prueba N°10

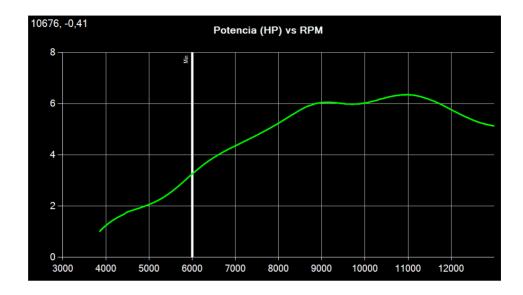



Tabla 57

Potencia vs rpm Prueba N° 10

| Potencia (hp) |           |  |
|---------------|-----------|--|
| rpm           | Curva 3 - |  |
|               | Verde     |  |
| 3000          | 0,5       |  |
| 4000          | 1,24      |  |
| 6000          | 3,24      |  |
| 7000          | 4,33      |  |
| 8000          | 5,22      |  |
| 9000          | 6,01      |  |
| 10972         | 6,34      |  |
| Máxima        | 6,34      |  |
| Promedio      | 5,44      |  |

Figura 158

Curva de par motor prueba N° 10

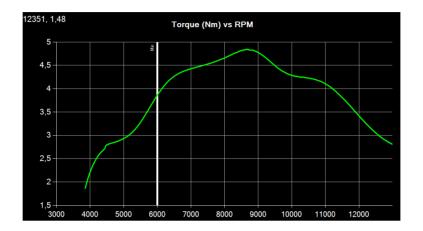



Tabla 58

Par motor vs rpm Prueba N° 10

| Par motor (N.m) |       |  |
|-----------------|-------|--|
| rpm Curva 3-    |       |  |
|                 | Verde |  |
| 3000            | 1,87  |  |
| 4000            | 2,18  |  |
| 6000            | 3,86  |  |
| 7000            | 4,44  |  |
| 8000            | 4,65  |  |
| 8674            | 4,84  |  |
| 10000           | 4,28  |  |
| Máxima          | 4,84  |  |
| Promedio        | 4,17  |  |

Desde la prueba N° 8 hasta la prueba N° 10 se ha evaluado la medida del jet o shiglor principal, así probando la medida 93, 91 y 89; en la parte de tabulación y análisis de datos se determina la medida correcta tanto del emulsor como del jet principal, donde se obtiene la mejor curva de potencia y torque.

## k) Prueba N° 11

En la prueba N°11 se mantuvieron los parámetros de encendido, mientras en parámetros de carburación se reemplaza el emulsor AN 266 por el AN 262, además se varía jet de alta con el fin de verificar la mejor calibración en el sistema de aceleración del carburador, este procedimiento se realiza en la prueba 11, 12 y 13

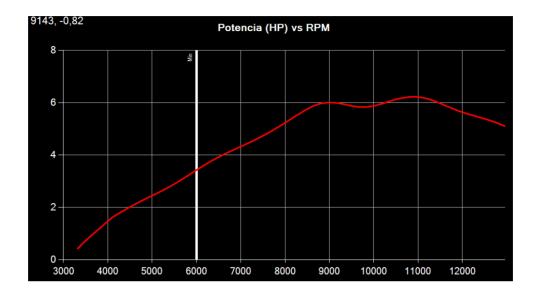
Tabla 59

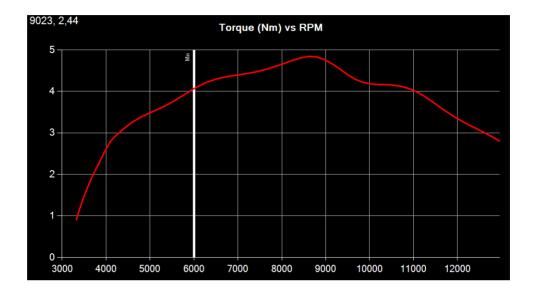
Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 11

| Parámetro            | Magnitud   | Unidad   |
|----------------------|------------|----------|
|                      | Carburador |          |
| Diámetro del Venturi | 18         | Mm       |
| Aguja de mezcla      | 180        | 0        |
| Nivel de Flotadores  | 16         | mm       |
| Peso de flotadores   | 4          | gr       |
| Emulsor              | AN 262     | mm       |
| Pin de aguja         | 1          | Posición |
| Jet principal        | 96         | mm/100   |
|                      | Encendido  |          |
| Gap de bujía         | 0,55       | Mm       |
| Tiempo de encendido  | 3          | Mm       |

Figura 159

Curva de potencia Prueba N°11





Tabla 60

Potencia vs rpm Prueba N° 11

| Potencia (hp) |           |  |
|---------------|-----------|--|
| rpm           | Curva 1 – |  |
|               | Rojo      |  |
| 3000          | 0,64      |  |
| 4000          | 1,46      |  |
| 6000          | 3,46      |  |
| 7000          | 4,31      |  |
| 8000          | 5,2       |  |
| 9000          | 6,01      |  |
| 10907         | 6,22      |  |
| Máxima        | 6,22      |  |
| Promedio      | 5,39      |  |

Figura 160

Curva de par motor prueba N° 11



**Tabla 61**Par motor vs rpm Prueba N° 11

| Par motor (N.m) |                |  |
|-----------------|----------------|--|
| rpm             | Curva 1 – Rojo |  |
| 3000            | 1,67           |  |
| 4000            | 2,6            |  |
| 6000            | 4,04           |  |
| 7000            | 4,37           |  |
| 8000            | 4,64           |  |
| 8629            | 4,84           |  |
| 10000           | 4,2            |  |
| Máxima          | 4,84           |  |
| Promedio        | 4,13           |  |

# I) Prueba N° 12

En la prueba N° 12 la medida del jet principal disminuye manteniendo el emulsor AN 262, así la entrega de combustible por el emulsor hacia el venturi es menor, empobreciendo la mezcla con respecto a la prueba N° 11.

Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 12

| Parámetro              | Magnitud   | Unidad   |
|------------------------|------------|----------|
|                        | Carburador |          |
| Diámetro del Venturi   | 18         | mm       |
| Aguja de mezcla        | 180        | 0        |
| Nivel de Flotadores    | 16         | mm       |
| Peso de flotadores     | 4          | gr       |
| Emulsor                | AN 262     | mm       |
| Pin de aguja           | 1          | Posición |
| Jet principal          | 94         | mm/100   |
|                        | Encendido  |          |
| Gap de bujía           | 0,55       | mm       |
| Tiempo de<br>encendido | 3          | mm       |

Figura 161

Curva de potencia Prueba N° 12

Tabla 62

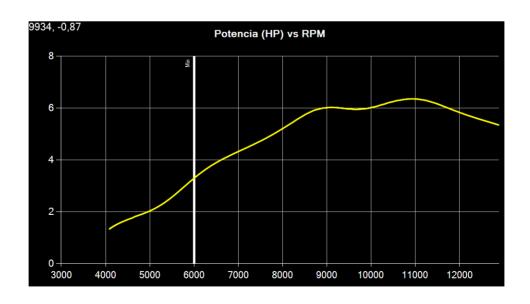



Tabla 63

Potencia vs rpm Prueba N° 12

| Potencia (hp) |                       |  |
|---------------|-----------------------|--|
| rpm           | Curva 2 –<br>Amarillo |  |
| 3000          | 0,64                  |  |
| 4000          | 1,3                   |  |
| 6000          | 3,3                   |  |
| 7000          | 4,33                  |  |
| 8000          | 5,2                   |  |
| 9000          | 6,01                  |  |
| 10915         | 6,35                  |  |
| Máxima        | 6,35                  |  |
| Promedio      | 5,46                  |  |

Figura 162

Curva de par motor prueba N° 12

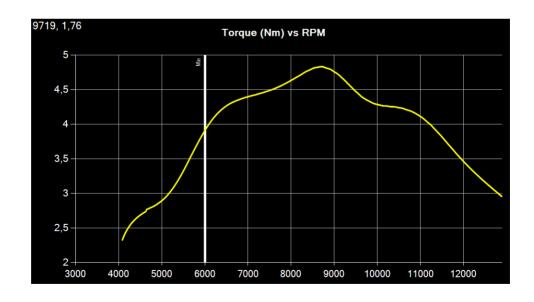



Tabla 64

Par motor vs rpm Prueba N° 12

| Par motor (N.m) |                    |  |
|-----------------|--------------------|--|
| rpm             | Curva 2 – Amarillo |  |
| 3000            | 1,67               |  |
| 4000            | 2,3                |  |
| 6000            | 3,92               |  |
| 7000            | 4,39               |  |
| 8000            | 4,63               |  |
| 8719            | 4,83               |  |
| 10000           | 4,29               |  |
| Máxima          | 4,83               |  |
| Promedio        | 4,19               |  |

# m) Prueba N° 13

En la prueba  $N^\circ$  13 la medida del jet principal disminuye, así la entrega de combustible por el emulsor hacia el venturi es menor, empobreciendo la mezcla con respecto a la prueba  $N^\circ$  12.

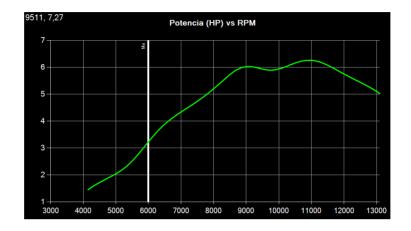
Tabla 65

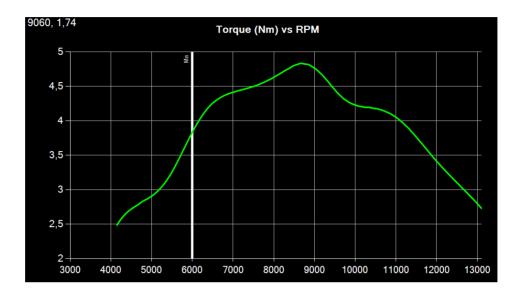
Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 13

| Parámetro              | Magnitud   | Unidad   |
|------------------------|------------|----------|
|                        | Carburador |          |
| Diámetro del Venturi   | 18         | mm       |
| Aguja de mezcla        | 180        | 0        |
| Nivel de Flotadores    | 16         | mm       |
| Peso de flotadores     | 4          | gr       |
| Emulsor                | AN 262     | mm       |
| Pin de aguja           | 1          | Posición |
| Jet principal          | 92         | mm/100   |
|                        | Encendido  |          |
| Gap de bujía           | 0,55       | mm       |
| Tiempo de<br>encendido | 3          | mm       |
|                        |            |          |

Figura 163

Curva de potencia Prueba N°13





Tabla 66

Potencia vs rpm Prueba N° 13

| Potencia (hp) |                    |  |
|---------------|--------------------|--|
| rpm           | Curva 3 –<br>Verde |  |
| 3000          | 0,5                |  |
| 4000          | 1,36               |  |
| 6000          | 3,22               |  |
| 7000          | 4,33               |  |
| 8000          | 5,2                |  |
| 9000          | 6,04               |  |
| 10962         | 6,26               |  |
| Máxima        | 6,26               |  |
| Promedio      | 5,4                |  |

Figura 164

Curva de par motor prueba N° 13



**Tabla 67**Par motor vs rpm Prueba N° 13

| Par motor (N.m) |          |  |
|-----------------|----------|--|
| rpm             | Curva 3- |  |
|                 | Verde    |  |
| 3000            | 1,87     |  |
| 4000            | 2,39     |  |
| 6000            | 3,82     |  |
| 7000            | 4,39     |  |
| 8000            | 4,64     |  |
| 8651            | 4,83     |  |
| 10000           | 4,24     |  |
| Máxima          | 4,83     |  |
| Promedio        | 4,12     |  |

Desde la prueba N° 11 hasta la prueba N° 13 se ha evaluado la medida del jet principal haciendo uso del emulsor AN 262, así probando la medida 96, 94 y 92, mientras el emulsor sea de menor medida empobrecerá la mezcla, entregando menor cantidad de

combustible al venturi; en la parte de tabulación y análisis de datos se determina la medida correcta tanto del emulsor como del jet principal.

#### 4.2.3. Curvas Características Motor 2T 60 Cc Variando Parámetros de Encendido

## n) Prueba N° 14

Tabla 68

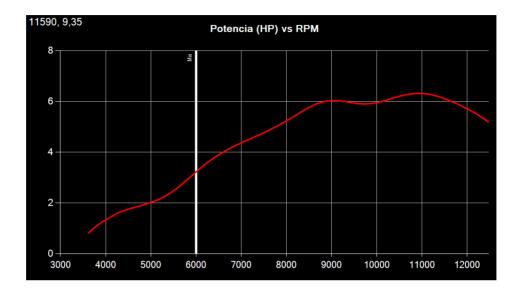
En la prueba N° 14 se varían los parámetros del sistema de encendido comenzando por el adelanto de chispa, que se incrementa 1 °. Los parámetros de carburación utilizados son los que brindan mejor rendimiento del motor.

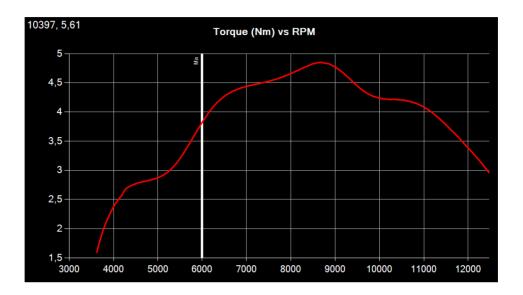
Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 14

| Parámetro            | Magnitud   | Unidad   |
|----------------------|------------|----------|
|                      | Carburador |          |
| Diámetro del Venturi | 18         | Mm       |
| Aguja de mezcla      | 180        | 0        |
| Nivel de Flotadores  | 16         | mm       |
| Peso de flotadores   | 4          | gr       |
| Emulsor              | AN 266     | mm       |
| Pin de aguja         | 1          | Posición |
| Jet principal        | 91         | mm/100   |
|                      | Encendido  |          |
| Gap de bujía         | 0,55       | mm       |
| Tiempo de            | 3,2        | mm       |
| encendido            |            |          |
|                      |            |          |

Curva de potencia Prueba N° 14

Figura 165





Tabla 69

Potencia vs rpm Prueba N° 14

| Potencia (hp) |           |  |
|---------------|-----------|--|
| rpm           | Curva 1 – |  |
|               | Rojo      |  |
| 3000          | 0,64      |  |
| 4000          | 1,39      |  |
| 6000          | 3,2       |  |
| 7000          | 4,38      |  |
| 8000          | 5,24      |  |
| 9000          | 6,01      |  |
| 10903         | 6,31      |  |
| Máxima        | 6,31      |  |
| Promedio      | 5,43      |  |

Figura 166

Curva de par motor prueba N° 14

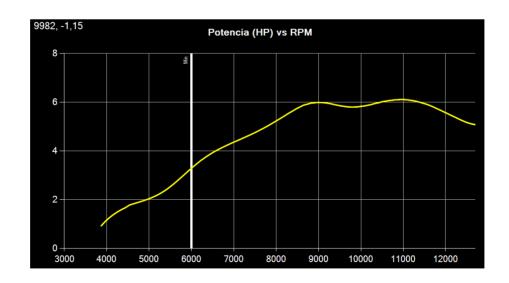


**Tabla 70**Par motor vs rpm Prueba N° 14

| Par motor (N.m) |           |  |
|-----------------|-----------|--|
| rpm             | Curva 1 – |  |
|                 | Rojo      |  |
| 3000            | 1,67      |  |
| 4000            | 2,37      |  |
| 6000            | 3,82      |  |
| 7000            | 4,45      |  |
| 8000            | 4,67      |  |
| 8667            | 4,85      |  |
| 10000           | 4,24      |  |
| Máxima          | 4,85      |  |
| Promedio        | 4,25      |  |

# o) Prueba N° 15

En la prueba N° 15 el adelanto al encendido disminuye, por ende, la duración de la combustión aumenta.

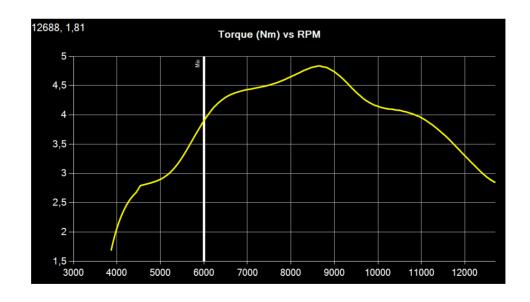

Tabla 71

Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 15

| Magnitud   | Unidad                                                                       |
|------------|------------------------------------------------------------------------------|
| Carburador |                                                                              |
| 18         | mm                                                                           |
| 180        | 0                                                                            |
| 16         | mm                                                                           |
| 4          | gr                                                                           |
| AN 266     | mm                                                                           |
| 1          | Posición                                                                     |
| 91         | mm/100                                                                       |
| Encendido  |                                                                              |
| 0,55       | mm                                                                           |
| 3,2        | mm                                                                           |
|            | Carburador<br>18<br>180<br>16<br>4<br>AN 266<br>1<br>91<br>Encendido<br>0,55 |

Figura 167

Curva de potencia Prueba N° 15




**Tabla 72**Potencia vs rpm Prueba N° 15

| Potencia (hp) |                       |  |
|---------------|-----------------------|--|
| rpm           | Curva 2 –<br>Amarillo |  |
| 3000          | 0,64                  |  |
| 4000          | 1,14                  |  |
| 6000          | 3,27                  |  |
| 7000          | 4,38                  |  |
| 8000          | 5,16                  |  |
| 9000          | 5,96                  |  |
| 10969         | 6,11                  |  |
| Máxima        | 6,11                  |  |
| Promedio      | 5,35                  |  |

Figura 168

Curva de par motor prueba N° 15



**Tabla 73**Par motor vs rpm Prueba N° 15

| Par motor (N.m) |           |  |
|-----------------|-----------|--|
| Rpm             | Curva 2 – |  |
|                 | Amarillo  |  |
| 3000            | 1,67      |  |
| 4000            | 2,00      |  |
| 6000            | 3,92      |  |
| 7000            | 4,42      |  |
| 8000            | 4,66      |  |
| 8644            | 4,84      |  |
| 10000           | 4,14      |  |
| Máxima          | 4,84      |  |
| Promedio        | 4,15      |  |

# p) Prueba N° 16

Tabla 74

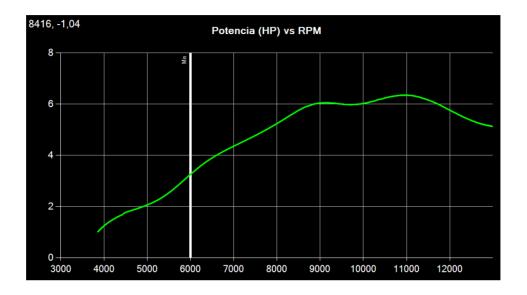
En la prueba N° 16 el adelanto al encendido disminuye, por ende, la duración de la combustión aumenta.

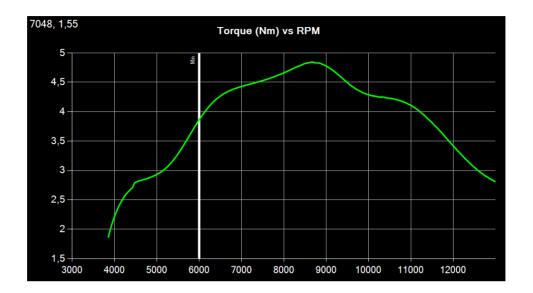
Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 16

| Parámetro            | Magnitud   | Unidad   |
|----------------------|------------|----------|
|                      | Carburador |          |
| Diámetro del Venturi | 18         | mm       |
| Aguja de mezcla      | 180        | o        |
| Nivel de Flotadores  | 16         | mm       |
| Peso de flotadores   | 4          | gr       |
| Emulsor              | AN 266     | mm       |
| Pin de aguja         | 1          | Posición |
| Jet principal        | 91         | mm/100   |
|                      | Encendido  |          |
| Gap de bujía         | 0,55       | mm       |
| Tiempo de            | 2,8        | mm       |
| encendido            |            |          |
|                      |            |          |

Figura 169

# Curva de potencia Prueba N°16





Tabla 75

Potencia vs rpm Prueba N° 16

| Potencia (hp) |                    |  |
|---------------|--------------------|--|
| rpm           | Curva 3 –<br>Verde |  |
| 3000          | 0,5                |  |
| 4000          | 1,26               |  |
| 6000          | 3,29               |  |
| 7000          | 4,35               |  |
| 8000          | 5,25               |  |
| 9000          | 6,09               |  |
| 10972         | 6,34               |  |
| Máxima        | 6,34               |  |
| Promedio      | 5,44               |  |

Curva de par motor prueba N° 16

Figura 170



**Tabla 76**Par motor vs rpm Prueba N° 16

| Par motor (N.m) |          |  |
|-----------------|----------|--|
| rpm             | Curva 3- |  |
|                 | Verde    |  |
| 3000            | 1,26     |  |
| 4000            | 2,19     |  |
| 6000            | 3,86     |  |
| 7000            | 4,43     |  |
| 8000            | 4,66     |  |
| 8674            | 4,84     |  |
| 10000           | 4,32     |  |
| Máxima          | 4,84     |  |
| Promedio        | 4,17     |  |

Desde la prueba N° 14 hasta la prueba N° 16 se ha evaluado el adelanto al encendido, disminuyéndolo y por ende aumentando la duración de la combustión. En la

parte de tabulación y análisis de datos se determina la medida correcta del tiempo de encendido obteniendo la mejor curva de potencia y torque.

# q) Prueba N° 17

Tabla 77

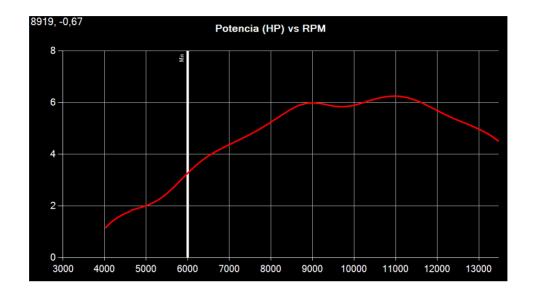
En la prueba N° 17 se varía parámetros de encendido haciendo pruebas del gap de electrodos de la bujía.

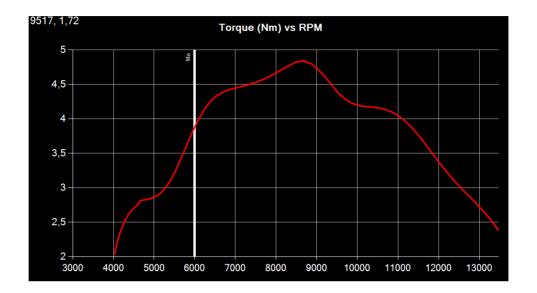
Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 17

| Parámetro            | Magnitud   | Unidad   |
|----------------------|------------|----------|
|                      | Carburador |          |
| Diámetro del Venturi | 18         | Mm       |
| Aguja de mezcla      | 180        | 0        |
| Nivel de Flotadores  | 16         | mm       |
| Peso de flotadores   | 4          | gr       |
| Emulsor              | AN 266     | mm       |
| Pin de aguja         | 1          | Posición |
| Jet principal        | 91         | mm/100   |
|                      | Encendido  |          |
| Gap de bujía         | 0,65       | mm       |
| Tiempo de encendido  | 3,0        | mm       |

Figura 171

Curva de potencia Prueba N°17





Tabla 78

Potencia vs rpm Prueba N° 17

| Potencia (hp) |           |  |
|---------------|-----------|--|
| rpm           | Curva 1 – |  |
|               | Rojo      |  |
| 3000          | 0,64      |  |
| 4000          | 1,13      |  |
| 6000          | 3,26      |  |
| 7000          | 4,37      |  |
| 8000          | 5,22      |  |
| 9000          | 6,01      |  |
| 10975         | 6,25      |  |
| Máxima        | 6,25      |  |
| Promedio      | 5,35      |  |

Figura 172

Curva de par motor prueba N° 17



**Tabla 79**Par motor vs rpm Prueba N° 17

| Par motor (N.m) |           |  |  |
|-----------------|-----------|--|--|
| rpm             | Curva 1 – |  |  |
|                 | Rojo      |  |  |
| 3000            | 1,67      |  |  |
| 4000            | 2,04      |  |  |
| 6000            | 3,85      |  |  |
| 7000            | 4,44      |  |  |
| 8000            | 4,67      |  |  |
| 8639            | 4,84      |  |  |
| 10000           | 4,20      |  |  |
| Máxima          | 4,84      |  |  |
| Promedio        | 4,03      |  |  |

# r) Prueba N° 18

En la prueba N° 18 se varía el gap de electrodos de bujía aumentándolo en 1mm.

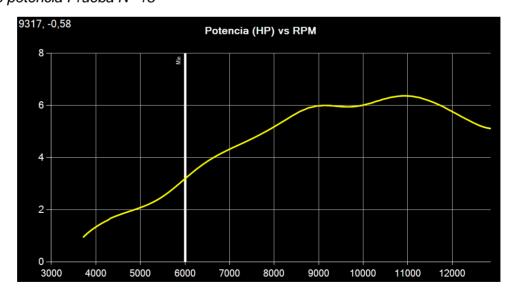
Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 18

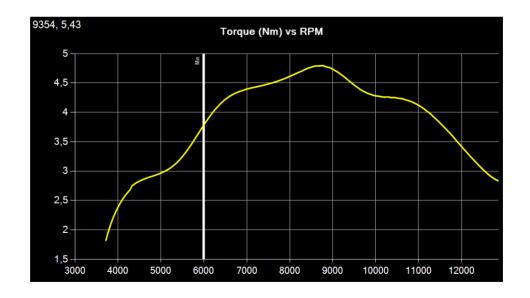
| Parámetro            | Magnitud   | Unidad   |  |
|----------------------|------------|----------|--|
|                      | Carburador |          |  |
| Diámetro del Venturi | 18         | mm       |  |
| Aguja de mezcla      | 180        | o        |  |
| Nivel de Flotadores  | 16         | mm       |  |
| Peso de flotadores   | 4          | gr       |  |
| Emulsor              | AN 266     | mm       |  |
| Pin de aguja         | 1          | Posición |  |
| Jet principal        | 91         | mm/100   |  |
| Encendido            |            |          |  |
| Gap de bujía         | 0,75       | mm       |  |
| Tiempo de            | 3,0        | mm       |  |
| encendido            |            |          |  |
|                      |            |          |  |

Curva de potencia Prueba N° 18

Figura 173

Tabla 80





Tabla 81

Potencia vs rpm Prueba N° 18

| Potencia (HP) |           |  |  |
|---------------|-----------|--|--|
| rpm           | Curva 2 – |  |  |
|               | Amarillo  |  |  |
| 3000          | 0,64      |  |  |
| 4000          | 1,31      |  |  |
| 6000          | 3,2       |  |  |
| 7000          | 4,31      |  |  |
| 8000          | 5,18      |  |  |
| 9000          | 5,98      |  |  |
| 10938         | 6,36      |  |  |
| Máxima        | 6,36      |  |  |
| Promedio      | 5,42      |  |  |

Figura 174

Curva de par motor prueba N° 18

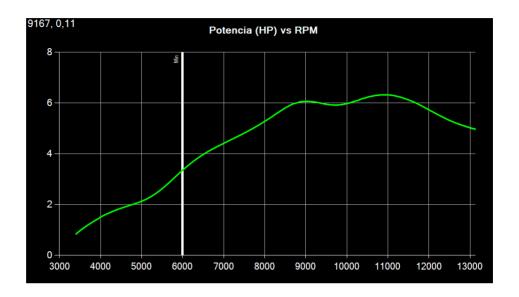


**Tabla 82**Par motor vs rpm Prueba N° 18

| Par motor (N.m) |                       |  |
|-----------------|-----------------------|--|
| rpm             | Curva 2 –<br>Amarillo |  |
| 3000            | 1,67                  |  |
| 4000            | 2,39                  |  |
| 6000            | 3,77                  |  |
| 7000            | 4,39                  |  |
| 8000            | 4,62                  |  |
| 8749            | 4,79                  |  |
| 10000           | 4,29                  |  |
| Máxima          | 4,79                  |  |
| Promedio        | 4,17                  |  |

# s) Prueba N° 19

En la prueba N° 19 se varía el gap de electrodos de bujía aumentándolo 1mm.

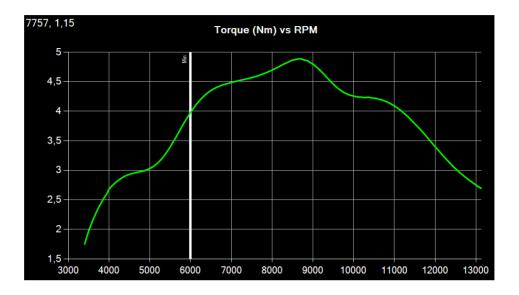

Tabla 83

Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc con variación en el carburador – Prueba N° 19

| Parámetro            | Magnitud | Unidad   |  |  |
|----------------------|----------|----------|--|--|
| Carburador           |          |          |  |  |
| Diámetro del Venturi | 18       | mm       |  |  |
| Aguja de mezcla      | 180      | o        |  |  |
| Nivel de Flotadores  | 16       | mm       |  |  |
| Peso de flotadores   | 4        | gr       |  |  |
| Emulsor              | AN 266   | mm       |  |  |
| Pin de aguja         | 1        | Posición |  |  |
| Jet principal        | 91       | mm/100   |  |  |
| Encendido            |          |          |  |  |
| Gap de bujía         | 0,85     | mm       |  |  |
| Tiempo de            | 3,0      | mm       |  |  |
| encendido            |          |          |  |  |
|                      |          |          |  |  |

Figura 175

Curva de potencia Prueba N°19




**Tabla 84**Potencia vs rpm Prueba N° 19

| Potencia (hp) |                    |  |  |
|---------------|--------------------|--|--|
| rpm           | Curva 3 –<br>Verde |  |  |
| 3000          | 0,5                |  |  |
| 4000          | 1,55               |  |  |
| 6000          | 3,42               |  |  |
| 7000          | 4,47               |  |  |
| 8000          | 5,31               |  |  |
| 9000          | 6,09               |  |  |
| 10900         | 6,32               |  |  |
| Máxima        | 6,32               |  |  |
| Promedio      | 5,44               |  |  |

Figura 176

Curva de par motor prueba N° 19



**Tabla 85**Par motor vs rpm Prueba N° 19

| Par motor (N.m) |          |  |  |
|-----------------|----------|--|--|
| rpm             | Curva 3- |  |  |
|                 | Verde    |  |  |
| 3000            | 1,26     |  |  |
| 4000            | 2,69     |  |  |
| 6000            | 4,00     |  |  |
| 7000            | 4,5      |  |  |
| 8000            | 4,7      |  |  |
| 8685            | 4,89     |  |  |
| 10000           | 4,25     |  |  |
| Máxima          | 4,89     |  |  |
| Promedio        | 4,15     |  |  |

Desde la prueba N° 17 hasta la prueba N° 19 se ha evaluado el gap a la bujía. Aumentando el gap de bujía, la curva de rendimiento crece hasta 8000 rpm, a mayores rpm la curva de rendimiento disminuye.

# 4.3. Obtención Relación Aire - Combustible (A/F)

La relación A/F (aire – combustible) se calcula mediante las fórmulas que se detallan a continuación y con valores experimentales como el caudal de combustible y caudal del aire que se obtuvieron utilizando una probeta graduada y un anemómetro digital respectivamente.

#### Ecuación 69

Flujo másico de combustible  $(\frac{kg}{s})$ 

$$m_c = \rho_c * Q_c$$

Donde:

 $m_c$  : Flujo másico de combustible  $(\frac{kg}{s})$ 

 $\rho_c: \text{Densidad del combustible } (\frac{kg}{m^3}) \to \text{Combustible A} - 93 \to 85 - 93 \text{ octanos} \to 739,3 \frac{kg}{m^3}$ 

 $Q_c$ : Caudal de combustible  $(\frac{m^3}{s})$ 

#### Ecuación 70

Flujo másico de aire  $(\frac{kg}{s})$ 

$$m_a = \rho_a * Q_a$$

Donde:

 $m_a$ : Flujo másico de aire  $(\frac{kg}{s})$ 

 $\rho_a:$  Densidad del aire  $(\frac{kg}{m^3}) \xrightarrow{} 0,87 \frac{kg}{m^3}$ 

$$Q_a$$
: Caudal de aire  $(\frac{m^3}{s})$ 

# Ecuación 71

Caudal de aire  $(\frac{m^3}{s})$ 

$$Q_a = v_a * A_a$$

Donde:

 $Q_a$ : Caudal del aire  $(\frac{m^3}{s})$ 

 $v_a$ : Velocidad del aire  $(\frac{m}{s})$ 

 $A_a:$  Área efectiva  $(m^2) \rightarrow 3.8 \times 10^{-5} \rightarrow$  Diámetro efectivo de la corneta del filtro

$$Q_a = v_a * 3.8x10^5$$

Tabla 86

Velocidad del aire  $(\frac{m}{s})$ 

| N° | Revolución<br>promedio<br>(rpm) | v <sub>a</sub><br>Prueba<br>1 | v <sub>a</sub><br>Prueba<br>2 | v <sub>a</sub><br>Prueba<br>3 | v <sub>a</sub><br>Prueba<br>4 |
|----|---------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| 1  | 3000                            | 3,1                           | 3,1                           | 2,8                           | 2,65                          |
| 2  | 6000                            | 6,1                           | 6,6                           | 5,1                           | 5,0                           |
| 3  | 9000                            | 8,3                           | 8,4                           | 7,2                           | 7,0                           |

Tabla 87  $Resultados \ del \ caudal \ de \ aire \ (\frac{m^3}{s})$ 

| N° | Revolución<br>promedio<br>(rpm) | Q <sub>a</sub><br>Prueba 1 | Q <sub>a</sub><br>Prueba 2 | Q <sub>a</sub><br>Prueba 3 | Q <sub>a</sub><br>Prueba 4 |
|----|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 1  | 3000                            | 1,18x10 <sup>-4</sup>      | 1,18x10 <sup>-4</sup>      | 1,06x10 <sup>-4</sup>      | $1,01x10^{-4}$             |
| 2  | 6000                            | $2,32x10^{-4}$             | $2,51x10^{-4}$             | $1,94 \times 10^{-4}$      | $1,9x10^{-4}$              |
| 3  | 9000                            | $3,15x10^{-4}$             | $3,19x10^{-4}$             | $2,74 \times 10^{-4}$      | $2,66x10^{-4}$             |

| N° | Revolución<br>promedio<br>(rpm) | $Q_c$ Prueba 1 | $Q_c$ Prueba 2 | Q <sub>c</sub><br>Prueba 3 | Q <sub>c</sub><br>Prueba 4 |
|----|---------------------------------|----------------|----------------|----------------------------|----------------------------|
| 1  | 3000                            | $1,45x10^{-7}$ | $1,41x10^{-7}$ | $1,25x10^{-7}$             | $1,1x10^{-7}$              |
| 2  | 6000                            | $2,91x10^{-7}$ | $2,99x10^{-7}$ | $2,27x10^{-7}$             | $2,06x10^{-7}$             |
| 3  | 9000                            | $3,85x10^{-7}$ | $3,81x10^{-7}$ | $3,23x10^{-7}$             | $2,91x10^{-7}$             |

| N° | Revolución<br>promedio<br>(rpm) | $m_a$ Prueba    | m <sub>a</sub> Prueba<br>2 | m <sub>a</sub><br>Prueba 3 | m <sub>a</sub><br>Prueba 4 |
|----|---------------------------------|-----------------|----------------------------|----------------------------|----------------------------|
| 1  | 3000                            | $1,026x10^{-4}$ | $1,026x10^{-4}$            | $0.92x10^{-4}$             | $0.88x10^{-4}$             |
| 2  | 6000                            | $2,03x10^{-4}$  | $2,18x10^{-4}$             | $1,68x10^{-4}$             | $1,65x10^{-4}$             |
| 3  | 9000                            | $2,74x10^{-4}$  | $2,77x10^{-4}$             | $2,38x10^{-4}$             | $2,31x10^{-4}$             |

Resultado de flujo másico de combustible  $(\frac{kg}{s})$ 

| N° | Revolución<br>promedio<br>(rpm) | $m_c$ Prueba 1        | $m_c$ Prueba 2 | $m_c$ Prueba 3        | m <sub>c</sub><br>Prueba 4 |
|----|---------------------------------|-----------------------|----------------|-----------------------|----------------------------|
| 1  | 3000                            | $1,07x10^{-4}$        | $1,04x10^{-4}$ | $0,924x10^{-4}$       | $0.81x10^{-4}$             |
| 2  | 6000                            | $2,15x10^{-4}$        | $2,21x10^{-4}$ | $1,68 \times 10^{-4}$ | $1,52x10^{-4}$             |
| 3  | 9000                            | $2,84 \times 10^{-4}$ | $2,81x10^{-4}$ | $2,38x10^{-4}$        | $2,15x10^{-4}$             |

# 4.3.1. Relación Aire - Combustible en Carburación Estándar y Mejorada

#### Ecuación 72

Tabla 90

Relación aire – combustible (A/F)

$$\frac{A}{F} = \frac{m_a}{m_c}$$

Donde:

A/F: Relación aire - combustible

 $m_a$  : Flujo másico de aire  $(\frac{kg}{s})$ 

 $m_c$ : Flujo másico de combustible  $(\frac{kg}{s})$ 

Tabla 91

Relación aire – combustible (A/F)

| N° | Revolución<br>promedio (rpm) | Prueba | A/F Prueba 2 | A/F Prueba 3 | A/F Prueba 4 |
|----|------------------------------|--------|--------------|--------------|--------------|
| 1  | 3000                         | 0,958  | 0,986        | 1,01         | 1,086        |
| 2  | 6000                         | 0,944  | 0,986        | 1,003        | 1,085        |
| 3  | 9000                         | 0,964  | 0,985        | 1,00         | 1,074        |

Prueba 1 → Motor con carburador estándar sin modificaciones.

Prueba 2 → Motor con parámetros de carburación modificada, mejora en tornillo de ajuste de mezcla y muesca de aguja de guillotina.

Prueba 3 → Motor con componentes y parámetros de carburación modificada, donde se obtiene los mejores resultados con emulsor AN 266.

Prueba 4 → Motor con componentes y parámetros de carburación modificada, donde se obtiene resultados muy parecidos a la prueba 3 con emulsor AN 262.

#### 4.4. Tabulación de Resultados

#### 4.4.1. Tabulación Curvas de Rendimiento

La tabulación permite elegir la mejor calibración en carburación mediante la potencia máxima y promedio (la máxima aparece entre 9500 a 10000 rpm). Mientras el máximo par motor se obtiene entre 8500 a 9000 rpm.

#### a) Tabulación de Resultados Variando Aguja de Mezcla

Potencia

Figura 177

Comparación de potencia de la prueba 2, prueba 3 y prueba 4 vs rpm

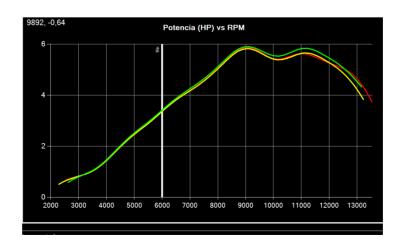



Figura 178

Resultados de potencia de la prueba 2, prueba 3 y prueba 4

|          | Potencia (hp)              |                                   |                                |  |  |
|----------|----------------------------|-----------------------------------|--------------------------------|--|--|
| rpm      | Curva 1 –<br>Prueba 2 Rojo | Curva 2 –<br>Prueba 3<br>Amarillo | Curva 3 –<br>Prueba 4<br>Verde |  |  |
| 3000     | 0,78                       | 0,8                               | 0,8                            |  |  |
| 4000     | 1,47                       | 1,47                              | 1,44                           |  |  |
| 6000     | 3,4                        | 3,35                              | 3,41                           |  |  |
| 7000     | 4,25                       | 4,2                               | 4,23                           |  |  |
| 8000     | 5,1                        | 5,05                              | 5,12                           |  |  |
| 9097     | 5,86                       | 5,82                              | 5,90                           |  |  |
| 10000    | 5,43                       | 5,43                              | 5,54                           |  |  |
| Máxima   | 5,86                       | 5,82                              | 5,9                            |  |  |
| Promedio | 5,04                       | 5,02                              | 5,16                           |  |  |

Figura 179

Resultados comparativos de potencia variando aguja de mezcla

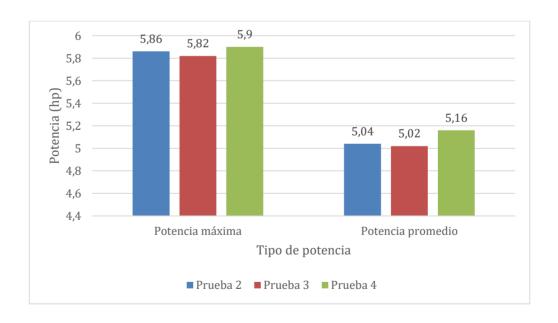
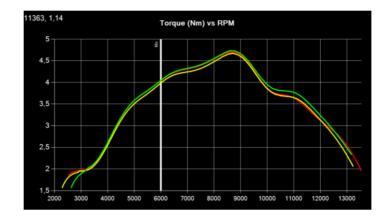
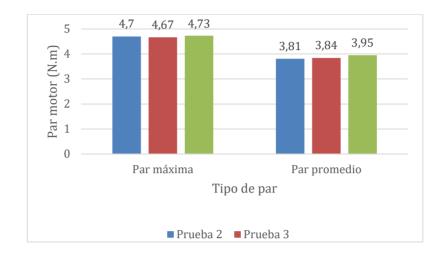



Figura 180

Comparación del par motor de la prueba 2, prueba 3 y prueba 4 vs rpm





Tabla 92

Resultados de par motor de la prueba 2, prueba 3 y prueba 4

|       | Par motor (N.m) |              |              |  |  |  |
|-------|-----------------|--------------|--------------|--|--|--|
| rpm   | Curva           | Curva        | Curva        |  |  |  |
|       | 1 – Prueba 2    | 2 - Prueba 3 | 3 – Prueba 4 |  |  |  |
|       | Rojo            | Amarillo     | Verde        |  |  |  |
| 3000  | 1,98            | 1,94         | 1,87         |  |  |  |
| 4000  | 2,6             | 2,54         | 2,6          |  |  |  |
| 6000  | 4,05            | 3,98         | 4,03         |  |  |  |
| 7000  | 4,3             | 4,25         | 4,32         |  |  |  |
| 8000  | 4,55            | 4,45         | 4,54         |  |  |  |
| 9097  | 4,7             | 4,7          | 4,73         |  |  |  |
| 10000 | 3,9             | 3,85         | 3,93         |  |  |  |
| Máxim | 4,7             | 4,67         | 4,73         |  |  |  |
| а     |                 |              |              |  |  |  |
| Prome | 3,81            | 3,84         | 3,95         |  |  |  |
| dio   |                 |              |              |  |  |  |

Figura 181

Resultados comparativos de par motor variando aguja de mezcla



# b) Tabulación de Resultados Variando Altura de Aguja de Guillotina

Potencia

Figura 182

Comparación de potencia de la prueba 5, prueba 6 y prueba 7 vs rpm

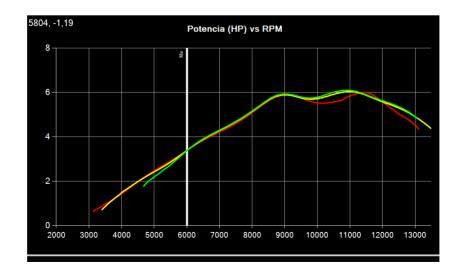



Tabla 93

Resultados de potencia de la prueba 5, prueba 6 y prueba 7

|          | Potencia (hp)              |                                   |                                |  |  |
|----------|----------------------------|-----------------------------------|--------------------------------|--|--|
| rpm      | Curva 1 –<br>Prueba 5 Rojo | Curva 2 –<br>Prueba 6<br>Amarillo | Curva 3 –<br>Prueba 7<br>Verde |  |  |
| 3000     | 0,61                       | 0,48                              | 0,5                            |  |  |
| 4000     | 1,39                       | 1,5                               | 1,00                           |  |  |
| 6000     | 3,4                        | 3,37                              | 3,33                           |  |  |
| 7000     | 4,18                       | 4,29                              | 4,27                           |  |  |
| 8000     | 5,11                       | 5,07                              | 5,14                           |  |  |
| 9000     | 5,87                       | 5,87                              | 5,90                           |  |  |
| 10000    | 5,43                       | 6,03                              | 6,09                           |  |  |
| Máxima   | 6                          | 6,03                              | 6,09                           |  |  |
| Promedio | 5,17                       | 5,24                              | 5,31                           |  |  |

Figura 183

Resultados comparativos de potencia variando aguja de guillotina

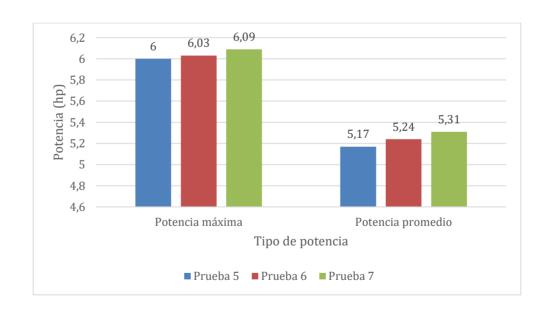
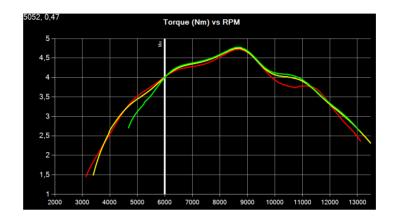
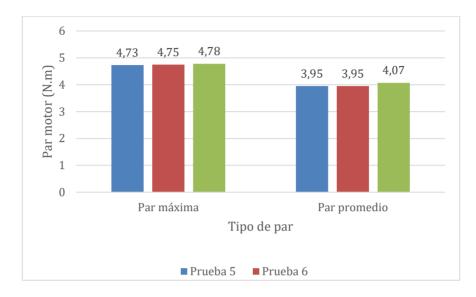




Figura 184

Tabla 94


Comparación del par motor de la prueba 5, prueba 6 y prueba 7 vs rpm



Resultados de par motor de la prueba 5, prueba 6 y prueba 7

|          | Par motor (N.m)            |                                   |                                |  |  |
|----------|----------------------------|-----------------------------------|--------------------------------|--|--|
| rpm      | Curva 1 –<br>Prueba 5 Rojo | Curva 2 –<br>Prueba 6<br>Amarillo | Curva 3 –<br>Prueba 7<br>Verde |  |  |
| 3000     | 1,33                       | 1,00                              | 1,87                           |  |  |
| 4000     | 2,54                       | 2,63                              | 2,6                            |  |  |
| 6000     | 4,02                       | 4,00                              | 4,00                           |  |  |
| 7000     | 4,28                       | 4,34                              | 4,37                           |  |  |
| 8000     | 4,52                       | 4,58                              | 4,60                           |  |  |
| 9097     | 4,73                       | 4,75                              | 4,78                           |  |  |
| 10000    | 3,93                       | 4,06                              | 4,12                           |  |  |
| Máxima   | 4,73                       | 4,75                              | 4,78                           |  |  |
| Promedio | 3,95                       | 3,95                              | 4,07                           |  |  |

Resultados comparativos de par motor variando aguja de guillotina



- c) Tabulación de Resultados Variando Jet Principal con Emulsor AN 266
- Potencia

Figura 185

Figura 186

Comparación de potencia de la prueba 8, prueba 9 y prueba 10 vs rpm

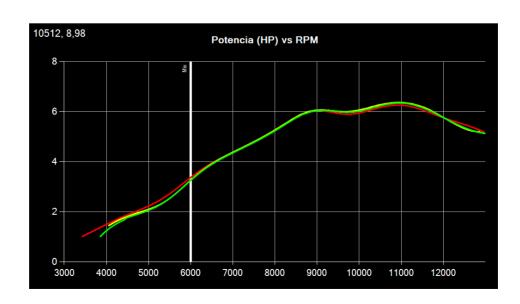



Tabla 95

Resultados de potencia de la prueba 8, prueba 9 y prueba 10

|          | Potencia (hp)              |                                   |                                 |  |  |  |  |  |
|----------|----------------------------|-----------------------------------|---------------------------------|--|--|--|--|--|
| rpm      | Curva 1 –<br>Prueba 8 Rojo | Curva 2 –<br>Prueba 9<br>Amarillo | Curva 3 –<br>Prueba 10<br>Verde |  |  |  |  |  |
| 3000     | 0,83                       | 0,84                              | 0,5                             |  |  |  |  |  |
| 4000     | 1,46                       | 1,41                              | 1,24                            |  |  |  |  |  |
| 6000     | 3,44                       | 3,25                              | 3,24                            |  |  |  |  |  |
| 7000     | 4,4                        | 4,39                              | 4,33                            |  |  |  |  |  |
| 8000     | 5,24                       | 5,23                              | 5,22                            |  |  |  |  |  |
| 9000     | 6,05                       | 6,09                              | 6,01                            |  |  |  |  |  |
| 10000    | 6,26                       | 6,36                              | 6,34                            |  |  |  |  |  |
| Máxima   | 6,26                       | 6,36                              | 6,34                            |  |  |  |  |  |
| Promedio | 5,43                       | 5,47                              | 5,44                            |  |  |  |  |  |

Figura 187

Resultados comparativos de potencia variando jet principal

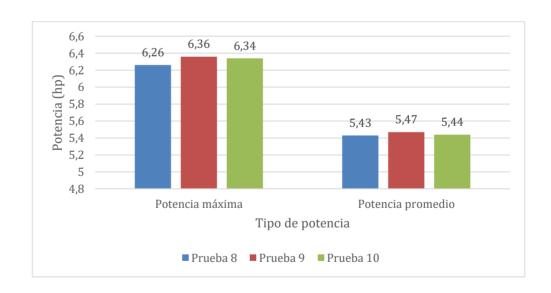



Figura 188

Comparación del par motor de la prueba 8, prueba 9 y prueba 10 vs rpm

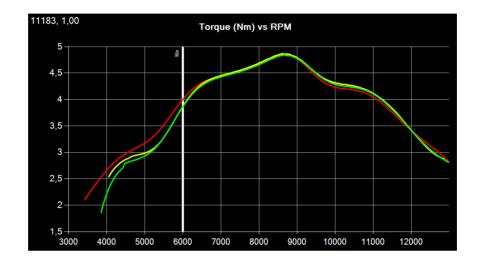
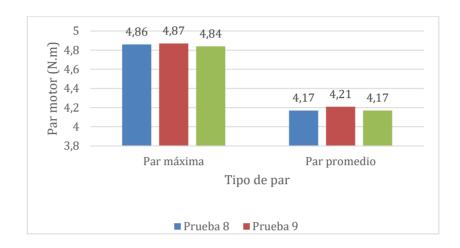




Tabla 96

Resultados de par motor de la prueba 8, prueba 9 y prueba 10

|          | Par motor (N.m)            |                                   |                              |  |  |  |  |  |
|----------|----------------------------|-----------------------------------|------------------------------|--|--|--|--|--|
| rpm      | Curva 1 –<br>Prueba 8 Rojo | Curva 2 –<br>Prueba 9<br>Amarillo | Curva 3 –<br>Prueba 10 Verde |  |  |  |  |  |
| 3000     | 1,67                       | 1,23                              | 1,87                         |  |  |  |  |  |
| 4000     | 2,65                       | 2,5                               | 2,18                         |  |  |  |  |  |
| 6000     | 4,01                       | 3,86                              | 3,86                         |  |  |  |  |  |
| 7000     | 4,44                       | 4,44                              | 4,44                         |  |  |  |  |  |
| 8000     | 4,66                       | 4,67                              | 4,65                         |  |  |  |  |  |
| 9097     | 4,86                       | 4,87                              | 4,84                         |  |  |  |  |  |
| 10000    | 4,24                       | 4,33                              | 4,28                         |  |  |  |  |  |
| Máxima   | 4,86                       | 4,87                              | 4,84                         |  |  |  |  |  |
| Promedio | 4,17                       | 4,21                              | 4,17                         |  |  |  |  |  |

Resultados comparativos de par motor variando jet principal



### d) Tabulación de Resultados Variando Jet Principal con Emulsor AN 262

Potencia

Figura 189

Figura 190

Comparación de potencia de la prueba 11, prueba 12 y prueba 13 vs rpm

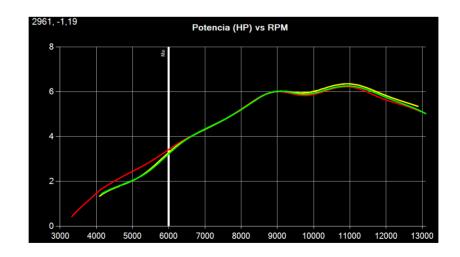



Tabla 97

Resultados de potencia de la prueba 11, prueba 12 y prueba 13

|          | Potencia (hp)                  |                                    |                                 |  |  |  |  |  |
|----------|--------------------------------|------------------------------------|---------------------------------|--|--|--|--|--|
| rpm      | Curva 1 –<br>Prueba 11<br>Rojo | Curva 2 –<br>Prueba 12<br>Amarillo | Curva 3 –<br>Prueba 13<br>Verde |  |  |  |  |  |
| 3000     | 0,64                           | 0,64                               | 0,5                             |  |  |  |  |  |
| 4000     | 1,46                           | 1,3                                | 1,24                            |  |  |  |  |  |
| 6000     | 3,46                           | 3,3                                | 3,24                            |  |  |  |  |  |
| 7000     | 4,31                           | 4,33                               | 4,33                            |  |  |  |  |  |
| 8000     | 5,2                            | 5,2                                | 5,22                            |  |  |  |  |  |
| 9000     | 6,01                           | 6,01                               | 6,01                            |  |  |  |  |  |
| 10000    | 6,22                           | 6,35                               | 6,34                            |  |  |  |  |  |
| Máxima   | 6,22                           | 6,35                               | 6,34                            |  |  |  |  |  |
| Promedio | 5,39                           | 5,46                               | 5,44                            |  |  |  |  |  |

Figura 191

Resultados comparativos de potencia emulsor AN 262 variando jet

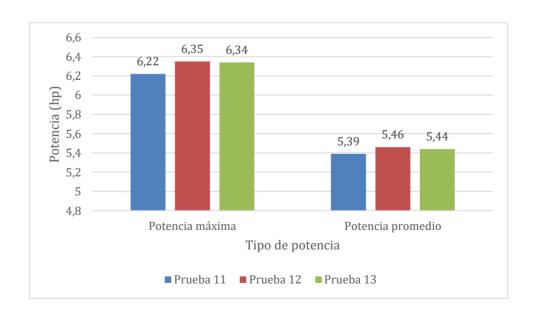
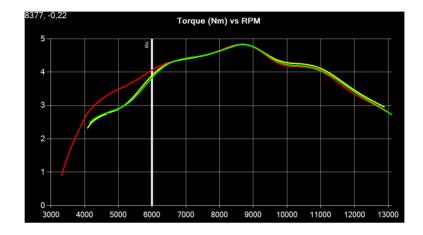
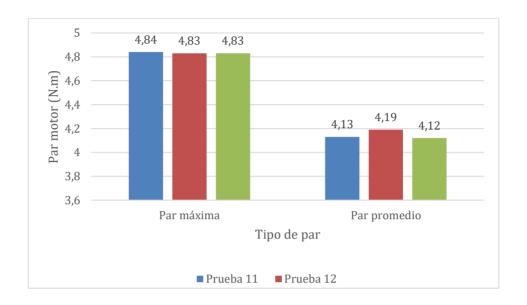



Figura 192

Comparación del par motor de la prueba 11, prueba 12 y prueba 13 vs rpm





Tabla 98

Resultados de par motor de la prueba 11, prueba 12 y prueba 13

|          | Par motor (N.m)             |                                    |                                 |  |  |  |  |
|----------|-----------------------------|------------------------------------|---------------------------------|--|--|--|--|
| rpm      | Curva 1 –<br>Prueba 11 Rojo | Curva 2 –<br>Prueba 12<br>Amarillo | Curva 3 –<br>Prueba 13<br>Verde |  |  |  |  |
| 3000     | 1,67                        | 1,67                               | 1,87                            |  |  |  |  |
| 4000     | 2,6                         | 2,3                                | 2,39                            |  |  |  |  |
| 6000     | 4,04                        | 3,92                               | 3,82                            |  |  |  |  |
| 7000     | 4,37                        | 4,39                               | 4,39                            |  |  |  |  |
| 8000     | 4,64                        | 4,63                               | 4,64                            |  |  |  |  |
| 9097     | 4,84                        | 4,83                               | 4,83                            |  |  |  |  |
| 10000    | 4,2                         | 4,29                               | 4,24                            |  |  |  |  |
| Máxima   | 4,84                        | 4,83                               | 4,83                            |  |  |  |  |
| Promedio | 4,13                        | 4,19                               | 4,12                            |  |  |  |  |

Figura 193

Resultados comparativos de par motor emulsor AN 262 variando jet principal



# e) Tabulación de Resultados Variando el Tiempo de Encendido

Potencia

Figura 194

Comparación de potencia de la prueba 14, prueba 15 y prueba 16 vs rpm

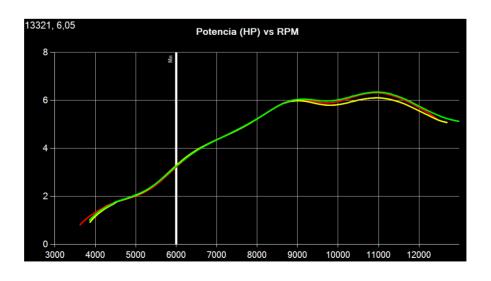



Tabla 99

Resultados de potencia de la prueba 14, prueba 15 y prueba 16

|          | Potencia (hp)                  |                                    |                                 |  |  |  |  |
|----------|--------------------------------|------------------------------------|---------------------------------|--|--|--|--|
| rpm      | Curva 1 –<br>Prueba 14<br>Rojo | Curva 2 –<br>Prueba 15<br>Amarillo | Curva 3 –<br>Prueba 16<br>Verde |  |  |  |  |
| 3000     | 0,64                           | 0,64                               | 0,5                             |  |  |  |  |
| 4000     | 1,39                           | 1,14                               | 1,26                            |  |  |  |  |
| 6000     | 3,2                            | 3,27                               | 3,29                            |  |  |  |  |
| 7000     | 4,38                           | 4,38                               | 4,35                            |  |  |  |  |
| 8000     | 5,24                           | 5,16                               | 5,25                            |  |  |  |  |
| 9000     | 6,01                           | 5,96                               | 6,09                            |  |  |  |  |
| 10000    | 6,31                           | 6,11                               | 6,34                            |  |  |  |  |
| Máxima   | 6,31                           | 6,11                               | 6,34                            |  |  |  |  |
| Promedio | 5,43                           | 5,35                               | 5,44                            |  |  |  |  |

Figura 195

Resultados comparativos de potencia variando tiempo de encendido

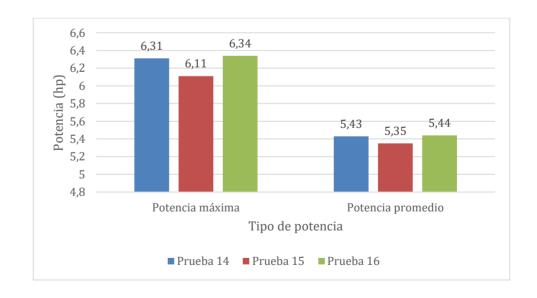
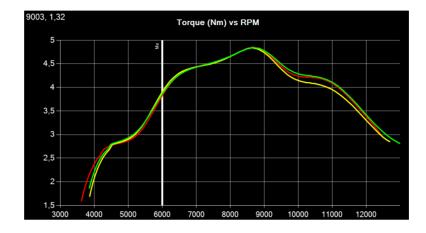
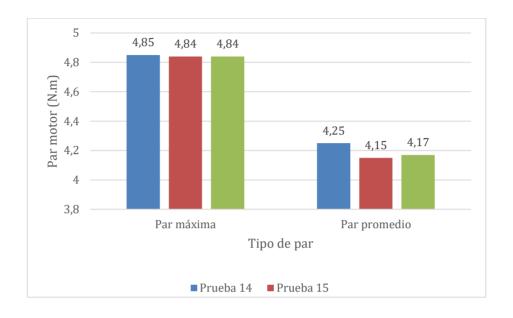



Figura 196

Comparación del par motor de la prueba 14, prueba 15 y prueba 16 vs rpm





Tabla 100

Resultados de par motor de la prueba 14, prueba 15 y prueba 16

|          | Par motor (N.m)             |                                    |                                 |  |  |  |  |
|----------|-----------------------------|------------------------------------|---------------------------------|--|--|--|--|
| rpm      | Curva 1 –<br>Prueba 14 Rojo | Curva 2 –<br>Prueba 15<br>Amarillo | Curva 3 –<br>Prueba 16<br>Verde |  |  |  |  |
| 3000     | 1,67                        | 1,67                               | 1,26                            |  |  |  |  |
| 4000     | 2,37                        | 2,00                               | 2,19                            |  |  |  |  |
| 6000     | 3,82                        | 3,92                               | 3,86                            |  |  |  |  |
| 7000     | 4,45                        | 4,42                               | 4,43                            |  |  |  |  |
| 8000     | 4,67                        | 4,66                               | 4,66                            |  |  |  |  |
| 9097     | 4,85                        | 4,84                               | 4,84                            |  |  |  |  |
| 10000    | 4,24                        | 4,14                               | 4,32                            |  |  |  |  |
| Máxima   | 4,85                        | 4,84                               | 4,84                            |  |  |  |  |
| Promedio | 4,25                        | 4,15                               | 4,17                            |  |  |  |  |

Figura 197

Resultados comparativos de par motor variando tiempo de encendido



# f) Tabulación de Resultados Variando el Gap de Bujía

Potencia

Figura 198

Comparación de potencia de la prueba 17, prueba 18 y prueba 19 vs rpm

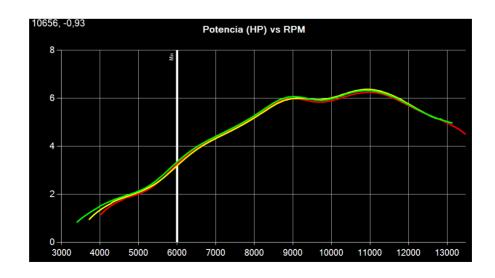



Tabla 101

Resultados de potencia de la prueba 17, prueba 18 y prueba 19

|          | Potencia (hp)                  |                                    |                                 |  |  |  |  |
|----------|--------------------------------|------------------------------------|---------------------------------|--|--|--|--|
| rpm      | Curva 1 –<br>Prueba 17<br>Rojo | Curva 2 –<br>Prueba 18<br>Amarillo | Curva 3 –<br>Prueba 19<br>Verde |  |  |  |  |
| 3000     | 0,64                           | 0,64                               | 0,5                             |  |  |  |  |
| 4000     | 1,13                           | 1,31                               | 1,55                            |  |  |  |  |
| 6000     | 3,26                           | 3,2                                | 3,42                            |  |  |  |  |
| 7000     | 4,37                           | 4,31                               | 4,47                            |  |  |  |  |
| 8000     | 5,22                           | 5,18                               | 5,31                            |  |  |  |  |
| 9000     | 6,01                           | 5,98                               | 6,09                            |  |  |  |  |
| 10000    | 6,25                           | 6,36                               | 6,32                            |  |  |  |  |
| Máxima   | 6,25                           | 6,36                               | 6,32                            |  |  |  |  |
| Promedio | 5,35                           | 5,42                               | 5,44                            |  |  |  |  |

Figura 199

Resultados comparativos de potencia variando gap de bujía

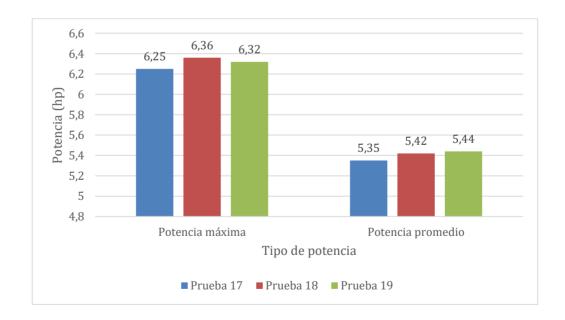
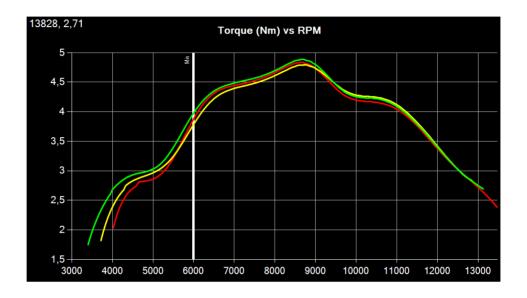
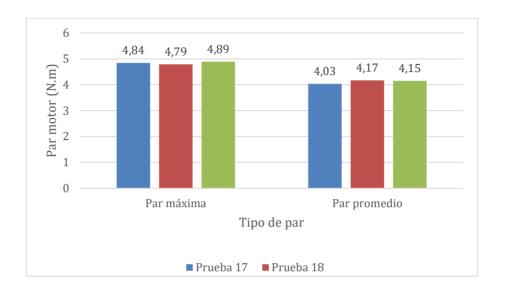



Figura 200

Comparación del par motor de la prueba 17, prueba 18 y prueba 19 vs rpm





Tabla 102

Resultados de par motor de la prueba 17, prueba 18 y prueba 19

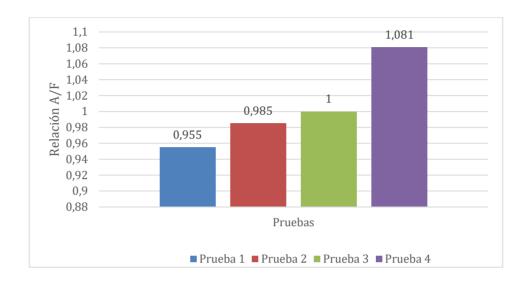
|          | Par motor (N.m)             |                                    |                                 |  |  |  |  |
|----------|-----------------------------|------------------------------------|---------------------------------|--|--|--|--|
| rpm      | Curva 1 –<br>Prueba 17 Rojo | Curva 2 –<br>Prueba 18<br>Amarillo | Curva 3 –<br>Prueba 19<br>Verde |  |  |  |  |
| 3000     | 1,67                        | 1,67                               | 1,26                            |  |  |  |  |
| 4000     | 2,04                        | 2,39                               | 2,69                            |  |  |  |  |
| 6000     | 3,85                        | 3,77                               | 4,00                            |  |  |  |  |
| 7000     | 4,44                        | 4,39                               | 4,5                             |  |  |  |  |
| 8000     | 4,67                        | 4,62                               | 4,7                             |  |  |  |  |
| 9097     | 4,84                        | 4,79                               | 4,89                            |  |  |  |  |
| 10000    | 4,20                        | 4,29                               | 4,25                            |  |  |  |  |
| Máxima   | 4,84                        | 4,79                               | 4,89                            |  |  |  |  |
| Promedio | 4,03                        | 4,17                               | 4,15                            |  |  |  |  |

Figura 201

Resultados comparativos de par motor variando gap de bujía



# g) Tabulación relación aire - combustible


Tabla 103

Relación aire - combustible promedio

| Relación A/F | $\frac{A}{F}$ Prueba 1 | $\frac{A}{F}$ Prueba 2 | $\frac{A}{F}$ Prueba 3 | $\frac{A}{F}$ Prueba 4 |
|--------------|------------------------|------------------------|------------------------|------------------------|
| Promedio     | 0,955                  | 0,985                  | 1                      | 1,081                  |
| Tipo mezcla  | Rica                   | Rica                   | Estequiométrica        | Pobre                  |

Figura 202

Relación aire – combustible promedio



### 4.5. Simulación de Obtención

Tabla 104

## 4.5.1. Simulación del Motor 2T 60 cc con Software Ricardo Wave

Resultados de la simulación del motor estándar

| Velocidad del motor          | rpm           | 13200          | 12000          | 11550          | 9000           | 2200           |
|------------------------------|---------------|----------------|----------------|----------------|----------------|----------------|
| Caso                         | -             | 2              | 5              | 8              | 10             | 11             |
| Subcaso                      | -             | 0              | 0              | 0              | 0              | 0              |
| Título del caso              | -             | Case<br>2      | Case<br>5      | Case<br>8      | Case<br>10     | Case<br>11     |
| EstequiométricaA/F           | -             | 14.55<br>69    | 14.556<br>9    | 14.556<br>9    | 14.55<br>69    | 14.55<br>69    |
| Mezcla A/F                   | -             | 15.5           | 15.5           | 15.5           | 15.5           | 15.49<br>76    |
| Flujo másico de aire         | kg/hr         | 23.92<br>08    | 21.684<br>8    | 20.835         | 20.09<br>69    | 6.353<br>66    |
| Eficiencia pseudovolumétrica | kg/hr<br>/rpm | 0.001<br>81218 | 0.0018<br>0706 | 0.0018<br>0389 | 0.002<br>23299 | 0.002<br>88803 |
| Potencia auxiliar            | kW            | 0              | 0              | 0              | 0              | 0              |

| Velocidad del motor                  | rpm       | 13200        | 12000        | 11550        | 9000         | 2200         |
|--------------------------------------|-----------|--------------|--------------|--------------|--------------|--------------|
|                                      | bar       | 3.232        | 3.2487       | 3.1934       | 3.881        | 3.478        |
| BMEP (Presión efectiva media         |           | 93           | 2            | 8            | 02           | 22           |
| del freno)                           |           |              |              |              |              |              |
| Potencia al freno                    | kW        | 4.257        | 3.8892       | 3.6797       | 3.484        | 0.763        |
|                                      |           | 37           | 4            | 4            | 65           | 398          |
| Emisiones de CO específicas al       | g/kW      | 0            | 0            | 0            | 0            | 0            |
| freno                                | /hr       | · ·          | · ·          | •            |              | · ·          |
| BSFC (Consumo de                     | kg/k      | 0.362        | 0.3597       | 0.3652       | 0.372        | 0.536        |
| combustible específico al freno)     | W/hr      | 496          | 15           | 95           | 081          | 959          |
| Emisiones de combustible no          | g/kW      | 33.75        | 33.939       | 37.720       | 67.13        | 213.5        |
| quemado específicas al freno         | /hr       | 7            | 5            | 6            | 75           | 33           |
| Emisiones de NO2 específicas         | g/kW      | 0            | 0            | 0            | 0            | 0            |
| al                                   | /hr       | U            | U            | U            | U            | U            |
| aı<br>Eficiencia de carga            | /III<br>- | 0.599        | 0.5842       | 0.5693       | 0.613        | 0.562        |
| Lifeticia de Carga                   | -         | 0.599<br>679 | 0.5642<br>68 | 24           | 469          | 0.562<br>712 |
| Eficioneia entregada                 |           |              | 0.6448       | 24<br>0.6345 | 469<br>0.748 | 0.933        |
| Eficiencia entregada                 | -         | 0.660<br>927 | 14           | 0.6345<br>64 |              |              |
| Total de eficiencia entregada        |           | 927<br>0.660 | 0.6443       | 0.6342       | 158<br>0.748 | 901<br>0.933 |
| Total de eficiencia entregada        | -         |              |              |              |              |              |
| Decaleramiente combinado             | A 2       | 937          | 95<br>5 0050 | 76           | 128          | 897<br>5.005 |
| Desplazamiento combinado             | m^3       | 5.985        | 5.9858       | 5.9858       | 5.985        | 5.985        |
| Edition to the control of control of | 0/        | 8e-05        | e-05         | e-05         | 8e-05        | 8e-05        |
| Eficiencia del motor térmico al      | %         | 22.99        | 23.177       | 22.823       | 22.40        | 15.52        |
| freno                                |           | 94           | 2            | 2            | 69           | 67           |
| EGR                                  | -         | 1.522        | -            | -            | -            | -            |
|                                      |           | 84e-         | 0.0006       | 0.0004       | 3.990        | 3.977        |
|                                      |           | 05           | 49979        | 54432        | 13e-         | 33e-         |
|                                      | _         |              |              |              | 05           | 06           |
| FMEP (Presión media efectiva         | bar       | 1.020        | 0.9472       | 0.9204       | 0.777        | 0.432        |
| de fricción)                         |           | 28           | 49           | 62           | 106          | 419          |
| Energía perdida por fricción         | %         | 7.258        | 6.7579       | 6.5783       | 4.486        | 1.930        |
|                                      |           | 36           | 3            | 7            | 59           | 31           |
| Torque de fricción                   | N*m       | 0.971        | 0.9024       | 0.8769       | 0.740        | 0.411        |
|                                      |           | 991          | 2            | 01           | 329          | 955          |
| Flujo másico de combustible          | kg/hr     | 1.543        | 1.3990       | 1.3441       | 1.296        | 0.409        |
|                                      |           | 28           | 2            | 9            | 57           | 913          |
| Flujo volumétrico de                 | L/hr      | 2.257        | 2.0460       | 1.9659       | 1.896        | 0.599        |
| combustible                          |           | 80           | 9            | 1            | 27           | 508          |
| Flujo másico de CO                   | g/s       | 0            | 0            | 0            | 0            | 0            |
| GMEP (Presión bruta media            | bar       | 4.811        | 4.7546       | 4.6643       | 5.273        | 4.425        |
| efectiva indicada)                   |           | 11           | 2            | 3            | 53           |              |
| GMEP desde el punto de cruce         | bar       | 4.811        | 4.7546       | 4.6643       | 5.273        | 4.425        |
| -                                    |           | 11           | 2            | 3            | 53           |              |
| Flujo de combustible sin             | g/s       | 0.039        | 0.0366       | 0.0385       | 0.064        | 0.045        |
| quemar fuera del motor               | -         | 9211         | 663          | 562          | 9863         | 2807         |
| Flujo másico de NO2 fuera del        | g/s       | 0            | 0            | 0            | 0            | 0            |
| motor                                | J         |              |              |              |              |              |
| Transferencia de calor nominal       | W         | 2552.        | 2383.0       | 2310.4       | 1928.        | 779.3        |
|                                      |           | 65           | 1            | 4            | 67           | 69           |
|                                      |           |              | •            | •            | <u> </u>     |              |

| Velocidad del motor              | rpm   | 13200        | 12000        | 11550        | 9000                   | 2200         |
|----------------------------------|-------|--------------|--------------|--------------|------------------------|--------------|
|                                  | %     | 13.79        | 14.201       | 14.330       | 12.40                  | 15.85        |
| Pérdida de transferencia de      |       | 01           | 2            | 2            | 17                     | 15           |
| calor                            | la sa | 7.544        | 0.7000       | 0.0500       | F 000                  | 4 454        |
| Potencia Indicada                | hp    | 7.511        | 6.7362<br>9  | 6.3569<br>3  | 5.608<br>68            | 1.151<br>01  |
| IMEP (Presión media efectiva     | bar   | 4.253        | 4.1959       | 4.1139       | 4.658                  | 3.910        |
| neta indicada)                   | Dai   | 21           | 7            | 4.1133       | 12                     | 64           |
| ISAC (Consumo de aire            | kg/k  | 4.270        | 4.3168       | 4.3952       | 4.805                  | 7.402        |
| específico neto indicado)        | W/hr  | 85           | 8            | 3            | 12                     | 56           |
| ISFC (Consumo de combustible     | kg/k  | 0.275        | 0.2785       | 0.2835       | 0.310                  | 0.477        |
| específico neto indicado)        | W/hr  | 539          | 08           | 63           | 008                    | 584          |
| Torque indicado                  | N*m   | 4.051        | 3.9973       | 3.9192       | 4.437                  | 3.725        |
| ·                                |       | 92           | 9            | 4            | 67                     | 57           |
| Lambda                           | -     | 1.064        | 1.0647       | 1.0647       | 1.064                  | 1.064        |
|                                  |       | 79           | 9            | 9            | 79                     | 62           |
| Valor mínimo de calefacción      | J/kg  | 4.318        | 4.318e       | 4.318e       | 4.318                  | 4.318        |
| <b>5</b>                         |       | e+07         | +07          | +07          | e+07                   | e+07         |
| Presión de referencia            | bar   | 0.723        | 0.7234       | 0.7234       | 0.723                  | 0.723        |
| Droción del nuerto de econo      | bor   | 46           | 6            | 6            | 46                     | 46           |
| Presión del puerto de escape     | bar   | 0.805<br>235 | 0.8055<br>05 | 0.8105<br>23 | 0.803<br>458           | 0.800<br>925 |
| Tasa de equivalencia atrapada    | _     | 0.939        | 0.9391       | 0.9391       | 0.939                  | 0.939        |
| rasa de equivalencia atrapada    |       | 152          | 51           | 51           | 152                    | 3            |
| Presión del puerto de admisión   | bar   | 0.916        | 0.9409       | 0.9615       | 0.991                  | 0.978        |
| r rooton doi puorto do daniioton | - Cai | 848          | 39           | 27           | 277                    | 897          |
| PMEP (Presión media efectiva     | bar   | 0            | 0            | 0            | 0                      | 0            |
| de bombeo)                       |       |              |              |              |                        |              |
| PMEP desde el punto de cruce     | bar   | 0            | 0            | 0            | 0                      | 0            |
| CO                               | ppm   | 0            | 0            | 0            | 0                      | 0            |
| HC                               | ppm   | 11757        | 11917.       | 13047.       | 22916                  | 50987        |
|                                  |       | .5           | 4            | 7            | .1                     | .3           |
| NOx                              | ppm   | 0            | 0            | 0            | 0                      | 0            |
| Torque de bombeo                 | N*m   | 0            | 0            | 0            | 0                      | 0            |
| Eficiencia volumétrica plena     | -     | 0.620        | 0.6053       | 0.5958       | 0.702                  | 0.877        |
| •                                |       | 878          | 01           | 02           | 778                    | 293          |
| Eficiencia volumétrica plena     | -     | 0.620        | 0.6057       | 0.5961       | 0.702                  | 0.877        |
| (aire-solo)                      |       | 871          | 34           | 06           | 815                    | 301          |
| Fracción de gases residuales     | %     | 14.32        | 15.94        | 16.991       | 10.63                  | 10.11        |
| Eficiencia de bereide            |       | 34           | 0.0400       | 9            | 92                     | 99           |
| Eficiencia de barrido            | -     | 0.856        | 0.8406       | 0.8300       | 0.893                  | 0.898        |
| Poloción do borrido              |       | 766<br>0.044 | 0.9271       | 81           | 608                    | 801          |
| Relación de barrido              | -     | 0.944<br>286 | 0.9271       | 0.9247<br>82 | 1.089<br>76            | 1.491<br>68  |
| Temperatura ambiente de          | K     | ∠86<br>287.4 | 287.45       | 8∠<br>287.45 | 76<br>287.4            | 08<br>287.4  |
| referencia                       | 17    | 207.4<br>5   | 207.40       | 201.40       | 207. <del>4</del><br>5 | 207.4<br>5   |
| Temperatura de gases de          | K     | 1318.        | 1317.2       | 1309.9       | 1236.                  | 918.4        |
| escape                           |       | 7            | 7            | 2            | 56                     | 63           |
|                                  |       | •            | •            |              |                        |              |

| Velocidad del motor                              | rpm | 13200 | 12000  | 11550  | 9000  | 2200  |
|--------------------------------------------------|-----|-------|--------|--------|-------|-------|
|                                                  | K   | 391.4 | 393.06 | 395.97 | 388.8 | 370.5 |
| Temperatura de gases en el<br>puerto de admisión |     | 62    | 4      | 4      | 15    | 76    |
| Torque al freno                                  | N*m | 3.079 | 3.0949 | 3.0423 | 3.697 | 3.313 |
|                                                  |     | 93    | 7      | 4      | 34    | 61    |
| Relación de captura o atrapada                   | -   | 0.907 | 0.9061 | 0.8971 | 0.819 | 0.602 |
|                                                  |     | 33    | 03     | 89     | 972   | 54    |
| Relación de captura o atrapada                   | -   | 0.907 | 0.9061 | 0.8971 | 0.819 | 0.602 |
| (aire-solo)                                      |     | 33    | 03     | 89     | 972   | 534   |
| Eficiencia volumétrica del aire                  | -   | 0.524 | 0.5220 | 0.516  | 0.583 | 0.554 |
| atrapado                                         |     | 23    | 42     |        | 767   | 801   |
| Eficiencia volumétrica total                     | -   | 0.577 | 0.5761 | 0.5751 | 0.711 | 0.920 |
|                                                  |     | 772   | 4      | 29     | 936   | 78    |

Tabla 105

Resultados de la simulación del motor modificado

| Velocidad del<br>motor                        | rpm      | 13200       | 12000       | 11550       | 9000        | 2200         |
|-----------------------------------------------|----------|-------------|-------------|-------------|-------------|--------------|
| Caso                                          | -        | 2           | 5           | 8           | 10          | 11           |
| Subcaso                                       | -        | 0           | 0           | 0           | 0           | 0            |
| Título del caso                               | -        | Case 2      | Case 5      | Case 8      | Case<br>10  | Case<br>11   |
| Estequiométri<br>caA/F                        | -        | 14.556<br>9 | 14.556<br>9 | 14.556<br>9 | 14.556<br>9 | 14.556<br>9  |
| Mezcla A/F                                    | -        | 14.7        | 14.7        | 14.7        | 14.7        | 14.695<br>5  |
| Flujo másico<br>de aire                       | kg/hr    | 27.178<br>9 | 24.228<br>6 | 23.270<br>4 | 22.285<br>6 | 7.0425<br>5  |
| Eficiencia                                    | kg/hr/rp | 0.0020      | 0.0020      | 0.0020      | 0.0024      | 0.0032       |
| pseudovolumé<br>trica                         | m        | 5902        | 1905        | 2352        | 7618        | 0116         |
| Potencia<br>auxiliar                          | kW       | 0           | 0           | 0           | 0           | 0            |
| BMEP (Presión<br>efectiva media<br>del freno) | bar      | 4.0946<br>5 | 4.0464<br>2 | 3.9808<br>8 | 4.7725<br>8 | 4.2678<br>8  |
| Potencia al<br>freno                          | kW       | 5.3921<br>1 | 4.8442      | 4.5671<br>7 | 4.2851<br>5 | 0.9367<br>14 |
| Emisiones de<br>CO específicas<br>al freno    | g/kW/hr  | 0           | 0           | 0           | 0           | 0            |

| Velocidad del<br>motor                                               | rpm          | 13200                  | 12000                  | 11550                  | 9000                   | 2200                  |
|----------------------------------------------------------------------|--------------|------------------------|------------------------|------------------------|------------------------|-----------------------|
| BSFC<br>(Consumo de                                                  | kg/kW/h<br>r | 0.3428<br>91           | 0.3402<br>42           | 0.3466<br>1            | 0.3537<br>85           | 0.5114<br>51          |
| combustible<br>específico al<br>freno)                               |              |                        |                        |                        |                        |                       |
| Emisiones de<br>combustible<br>no quemado<br>específicas al<br>freno | g/kW/hr      | 34.872<br>3            | 33.274<br>9            | 37.972                 | 62.336<br>1            | 198.10<br>7           |
| Emisiones de NO2                                                     | g/kW/hr      | 0                      | 0                      | 0                      | 0                      | 0                     |
| específicas al<br>Eficiencia de<br>carga                             | -            | 0.6079<br>75           | 0.5815<br>64           | 0.5682                 | 0.6153<br>98           | 0.5728<br>43          |
| Eficiencia<br>entregada<br>Total de                                  | -            | 0.6764<br>69<br>0.6765 | 0.6442<br>82<br>0.6438 | 0.6378<br>11<br>0.6376 | 0.7466<br>47<br>0.7466 | 0.9348<br>2<br>0.9348 |
| eficiencia<br>entregada<br>Desplazamient                             | m^3          | 55<br>5.9858           | 53<br>5.9858           | 61<br>5.9858           | 34<br>5.9858           | 45<br>5.9858          |
| o combinado<br>Eficiencia del<br>motor térmico                       | %            | e-05<br>24.314<br>4    | e-05<br>24.503<br>7    | e-05<br>24.053<br>6    | e-05<br>23.565<br>7    | e-05<br>16.301<br>1   |
| al freno<br>EGR                                                      | -            | 0.0001<br>26644        | -<br>0.0006<br>65282   | -<br>0.0002<br>35177   | -<br>1.7927<br>2e-05   | 2.7074<br>1e-05       |
| FMEP (Presión<br>media efectiva<br>de fricción)                      | bar          | 1.0418<br>8            | 0.9690<br>06           | 0.9387<br>69           | 0.8007<br>58           | 0.4547<br>31          |
| Energía<br>perdida por<br>fricción                                   | %            | 6.1868                 | 5.8679<br>7            | 5.6723                 | 3.9539<br>3            | 1.7368<br>3           |
| Torque de fricción                                                   | N*m          | 0.9925<br>74           | 0.9231<br>47           | 0.8943<br>41           | 0.7628<br>61           | 0.4332<br>1           |
| Flujo másico<br>de<br>combustible                                    | kg/hr        | 1.8489<br>1            | 1.6482                 | 1.5830<br>2            | 1.5160<br>2            | 0.4790<br>83          |
| Flujo<br>volumétrico de<br>combustible                               | L/hr         | 2.7040<br>7            | 2.4105<br>3            | 2.3152<br>1            | 2.2172<br>2            | 0.7006<br>7           |
| Flujo másico<br>de CO                                                | g/s          | 0                      | 0                      | 0                      | 0                      | 0                     |
| GMEP<br>(Presión bruta                                               | bar          | 5.7697<br>1            | 5.6386<br>3            | 5.5353                 | 6.2565<br>5            | 5.2907<br>2           |

| Valasidad dal           |         | 40000        | 40000        | 44550        | 0000         | 0000         |
|-------------------------|---------|--------------|--------------|--------------|--------------|--------------|
| Velocidad del<br>motor  | rpm     | 13200        | 12000        | 11550        | 9000         | 2200         |
| media efectiva          |         |              |              |              |              |              |
| indicada)               |         |              |              |              |              |              |
| GMEP desde              | bar     | 5.7697       | 5.6386       | 5.5353       | 6.2565       | 5.2907       |
| el punto de             |         | 1            | 3            |              | 5            | 2            |
| cruce                   | ,       |              |              |              |              |              |
| Flujo de                | g/s     | 0.0522       | 0.0447       | 0.0481       | 0.0741       | 0.0515       |
| combustible             |         | 321          | 75           | 734          | 999          | 472          |
| sin quemar<br>fuera del |         |              |              |              |              |              |
| motor                   |         |              |              |              |              |              |
| Flujo másico            | g/s     | 0            | 0            | 0            | 0            | 0            |
| de NO2 fuera            | 9,0     | Ŭ            | · ·          | Ū            | Ū            | ŭ            |
| del motor               |         |              |              |              |              |              |
| Transferencia           | W       | 2941.5       | 2763.7       | 2670.0       | 2267.2       | 963.36       |
| de calor                |         | 6            | 3            | 3            | 9            | 3            |
| nominal                 |         |              |              |              |              |              |
| Pérdida de              | %       | 13.264       | 13.98        | 14.062       | 12.468       | 16.764       |
| transferencia           |         | 2            |              |              | 7            | 8            |
| de calor<br>Potencia    | hn      | 9.0708       | 8.0518       | 7.5689       | 6.7106       | 1.3899       |
| Indicada                | hp      | 9.0708<br>5  | 3            | 7.5009<br>8  | 5            | 9            |
| IMEP (Presión           | bar     | 5.1365       | 5.0154       | 4.9196       | 5.5733       | 4.7226       |
| media efectiva          |         | 3            | 2            | 5            | 3            | 1            |
| neta indicada)          |         |              |              |              |              |              |
| ISAC                    | kg/kW/h | 4.0180       | 4.0352       | 4.1229       | 4.4534       | 6.7944       |
| (Consumo de             | r       | 9            | 3            |              | 3            | 3            |
| aire específico         |         |              |              |              |              |              |
| neto indicado)<br>ISFC  | kg/kW/h | 0.2733       | 0.2745       | 0.2804       | 0.3029       | 0.4622       |
| (Consumo de             | r r     | 0.2733<br>4  | 0.2745       | 69           | 0.3029<br>55 | 0.4622       |
| combustible             | •       | 7            | 00           | 00           | 00           | 04           |
| específico              |         |              |              |              |              |              |
| neto indicado)          |         |              |              |              |              |              |
| Torque                  | N*m     | 4.8934       | 4.7780       | 4.6868       | 5.3095       | 4.4991       |
| indicado                |         | 4            | 6            | 2            | 7            | 1            |
| Lambda                  | -       | 1.0098<br>3  | 1.0098<br>4  | 1.0098<br>3  | 1.0098<br>3  | 1.0095<br>2  |
| Valor mínimo            | J/kg    | 4.318e       | 4.318e       | 4.318e       | 4.318e       | 4.318e       |
| de calefacción          |         | +07          | +07          | +07          | +07          | +07          |
| Presión de              | bar     | 0.7234       | 0.7234       | 0.7234       | 0.7234       | 0.7234       |
| referencia              | L = ::  | 6            | 6            | 6            | 6            | 6            |
| Presión del             | bar     | 0.8951<br>58 | 0.8996<br>85 | 0.9078<br>47 | 0.8969<br>95 | 0.8922<br>18 |
| puerto de<br>escape     |         | 30           | 00           | 41           | 90           | 10           |
| Tasa de                 | _       | 0.9902       | 0.9902       | 0.9902       | 0.9902       | 0.9905       |
| equivalencia            |         | 64           | 61           | 63           | 63           | 66           |
| atrapada                |         |              |              |              |              |              |
| -                       |         |              |              |              |              |              |

| Velocidad del motor         | rpm | 13200       | 12000       | 11550  | 9000   | 2200   |
|-----------------------------|-----|-------------|-------------|--------|--------|--------|
|                             | bar | 1.029       | 1.0629      | 1.0841 | 1.1123 | 1.0910 |
| Presión del                 |     |             | 9           | 7      | 9      | 3      |
| puerto de                   |     |             |             |        |        |        |
| admisión                    | l   | 0           | 0           | 0      | 0      | 0      |
| PMEP (Presión               | bar | 0           | 0           | 0      | 0      | 0      |
| media efectiva              |     |             |             |        |        |        |
| de bombeo)<br>PMEP desde el | hor | 0           | 0           | 0      | 0      | 0      |
|                             | bar | U           | U           | U      | U      | U      |
| punto de cruce<br>CO        | nnm | 0           | 0           | 0      | 0      | 0      |
|                             | ppm |             |             | _      |        | -      |
| HC                          | ppm | 13508.      | 12990.      | 14556. | 23509. | 52217. |
| Nov                         |     | 9           | 6           | 8      | 6      | 6      |
| NOx .                       | ppm | 0           | 0           | 0      | 0      | 0      |
| Torque de<br>bombeo         | N*m | 0           | 0           | 0      | 0      | 0      |
| Eficiencia                  | _   | 0.6334      | 0.6028      | 0.5970 | 0.6990 | 0.8752 |
| volumétrica                 |     | 69          | 0.0020      | 13     | 7      | 97     |
| plena                       |     |             |             |        | -      |        |
| Eficiencia                  | _   | 0.6333      | 0.6032      | 0.5971 | 0.6990 | 0.8752 |
| volumétrica                 |     | 82          | 45          | 86     | 9      | 77     |
| plena (aire-                |     |             |             |        |        |        |
| solo)                       |     |             |             |        |        |        |
| Fracción de                 | %   | 13.346      | 15.999      | 16.744 | 10.373 | 9.5880 |
| gases                       |     | 6           | 8           | 6      |        | 3      |
| residuales                  |     |             |             |        |        |        |
| Eficiencia de               | -   | 0.8665      | 0.8400      | 0.8325 | 0.8962 | 0.9041 |
| barrido                     |     | 34          | 02          | 55     | 7      | 2      |
| Relación de                 | -   | 0.9642      | 0.9299      | 0.9342 | 1.0874 | 1.4754 |
| _ barrido                   |     | 79          | 73          | 97     |        | 7      |
| Temperatura                 | K   | 287.45      | 287.45      | 287.45 | 287.45 | 287.45 |
| ambiente de                 |     |             |             |        |        |        |
| referencia                  | 1/  | 4040.0      | 4045.7      | 4000.0 | 4000.4 | 004.57 |
| Temperatura                 | K   | 1342.8<br>3 | 1345.7<br>7 | 1333.9 | 1268.4 | 934.57 |
| de gases de<br>escape       |     | 3           | 1           | 5      | 8      | 4      |
| Temperatura                 | K   | 394.46      | 395.79      | 398.74 | 391.38 | 371.76 |
| de gases en el              | IX  | 7           | 595.79      | 2      | 4      | 4      |
| puerto de                   |     | ,           | 3           | 2      | 7      | 7      |
| admisión                    |     |             |             |        |        |        |
| Torque al                   | N*m | 3.9008      | 3.8549      | 3.7924 | 4.5467 | 4.0659 |
| freno                       | . • | 7           | 2           | 8      | 1.0407 |        |
| Relación de                 | -   | 0.8987      | 0.9026      | 0.8908 | 0.8242 | 0.6127 |
| captura o                   |     | 48          | 55          | 93     | 15     | 85     |
| atrapada                    |     | -           | -           | -      | -      | -      |
| Relación de                 | -   | 0.8987      | 0.9026      | 0.8908 | 0.8242 | 0.6127 |
| captura o                   |     | 48          | 54          | 93     | 15     | 73     |
| atrapada (aire-             |     |             |             |        |        |        |
| solo)                       |     |             |             |        |        |        |

| Velocidad del motor                               | rpm | 13200        | 12000        | 11550        | 9000         | 2200         |
|---------------------------------------------------|-----|--------------|--------------|--------------|--------------|--------------|
| Eficiencia<br>volumétrica<br>del aire<br>atrapado | -   | 0.5900<br>01 | 0.5810<br>63 | 0.5747<br>62 | 0.6506<br>93 | 0.6254<br>04 |
| Eficiencia<br>volumétrica<br>total                | -   | 0.6564<br>7  | 0.6437<br>27 | 0.6451<br>52 | 0.7894<br>7  | 1.0206<br>1  |

# 4.5.2. Curvas Características del Motor 2T 60 cc Estándar Obtenido de Simulación

Para las gráficas de tiempo y promedio se usará como referencia el caso 2 porque es éste el que posee la mayor potencia indicada y al freno, que es lo que al final se quiere encontrar.

## a) Gráficas de tiempo

Figura 203

Diagrama P-V del cilindro de la simulación estándar

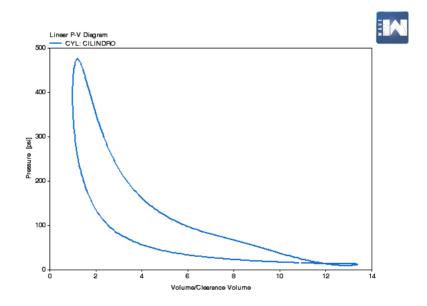



Figura 204

Temperatura del cilindro vs ángulo del cigüeñal de la simulación estándar

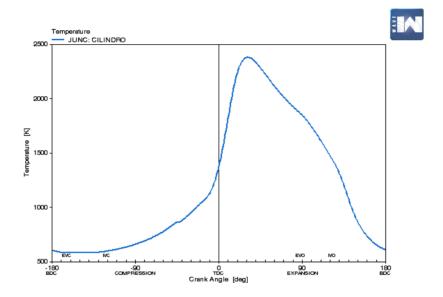
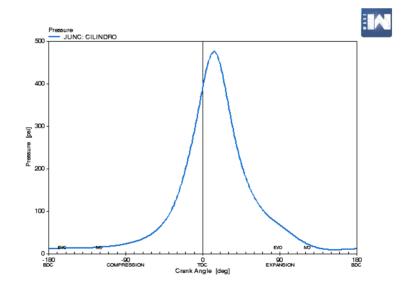
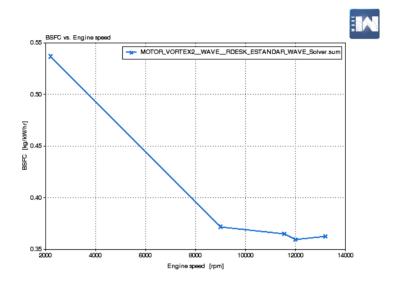




Figura 205

Presión del cilindro vs ángulo del cigüeñal de la simulación estándar




# b) Gráficas de barrido

Figura 206

Figura 207

Consumo de combustible al freno vs velocidad angular del motor de la simulación estándar



Eficiencia total entregada vs velocidad angular del motor de la simulación

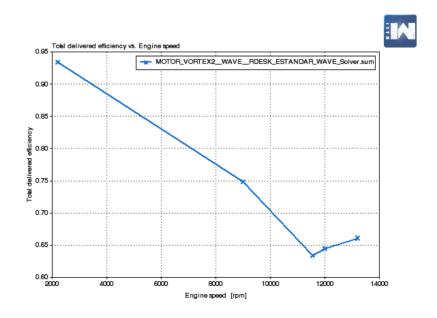



Figura 208

Potencia al freno vs velocidad angular del motor de la simulación estándar

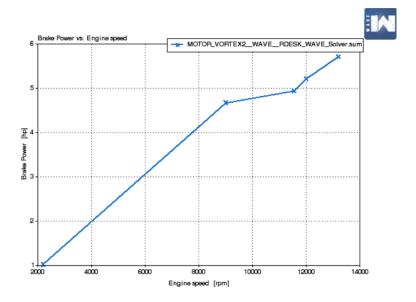



Figura 209

Torque al freno vs velocidad angular del motor de la simulación estándar

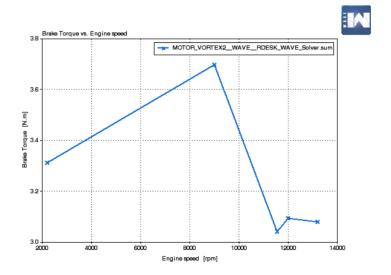



Figura 210

Potencia indicada vs velocidad angular del motor de la simulación

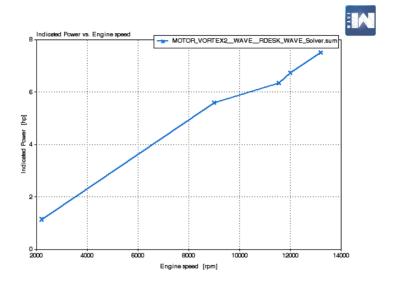



Figura 211

Torque indicado vs velocidad angular del motor de la simulación estándar

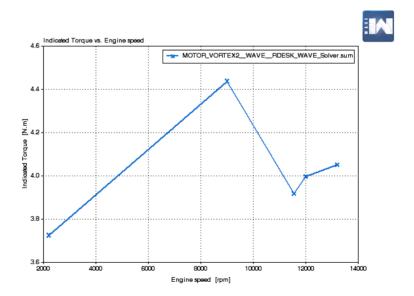
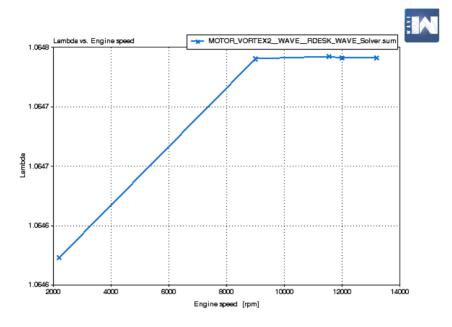




Figura 212

Lambda vs velocidad angular del motor de la simulación estándar



# c) Gráficas de promedio

Figura 213

Estructura de la ruta a tomar por las variantes en las gráficas promedio

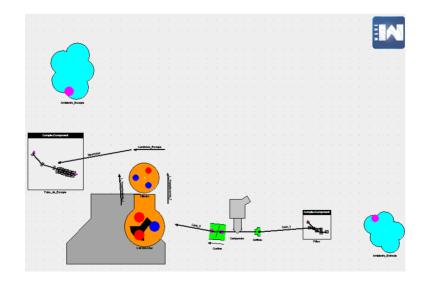



Figura 214

Presión de la simulación estándar

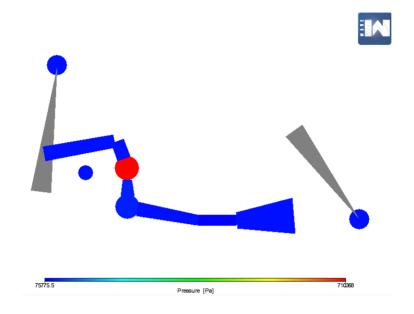
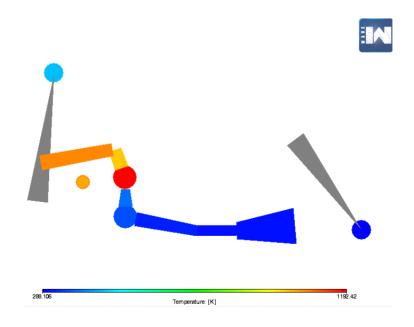




Figura 215

Temperatura de la simulación estándar



# 4.5.3. Curvas Características del Motor 2T 60 cc con Mejoras en Carburación y Encendido Obtenido de Simulación

Para las gráficas de tiempo y promedio se usará como referencia el caso 2 porque es el que posee la mayor potencia indicada y al freno, que es lo que al final se busca.

#### a) Gráficas de tiempo

Figura 216

Diagrama P-V del cilindro de la simulación modificada

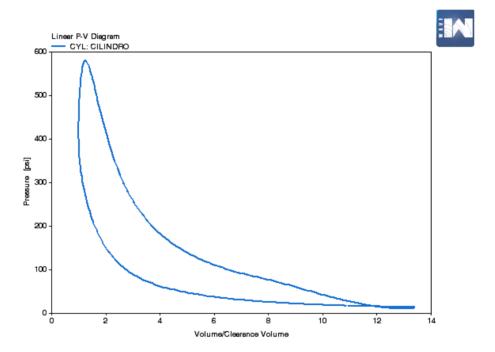



Figura 217

Temperatura del cilindro vs ángulo del cigüeñal de la simulación

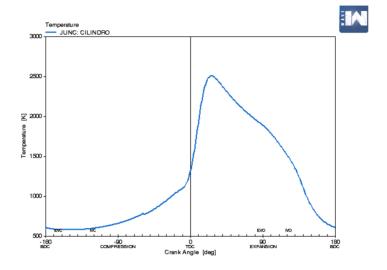
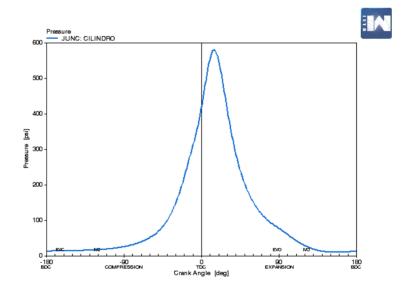




Figura 218

Presión del cilindro vs ángulo del cigüeñal de la simulación modificada



### b) Gráficas de barrido

Figura 219

Consumo de combustible al freno vs velocidad angular del motor de la simulación modificada

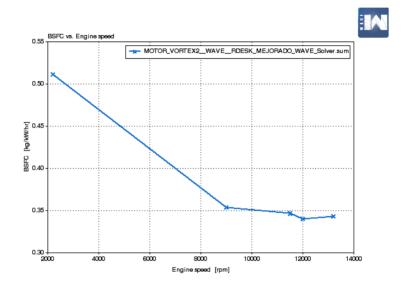



Figura 220

Eficiencia total entregada vs velocidad angular del motor de la simulación modificada




Figura 221

Potencia al freno vs velocidad angular del motor de la simulación modificada

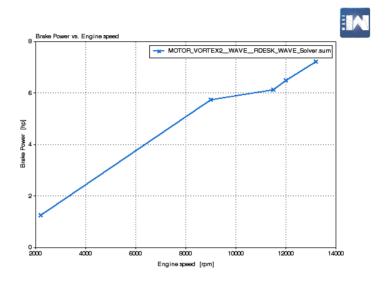



Figura 222

Torque al freno vs velocidad angular del motor de la simulación modificada

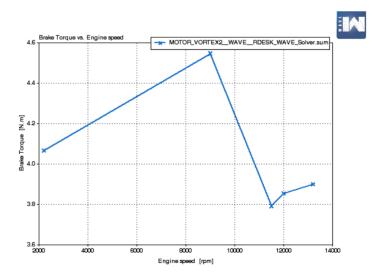



Figura 223

Potencia indicada vs velocidad angular del motor de la simulación modificada

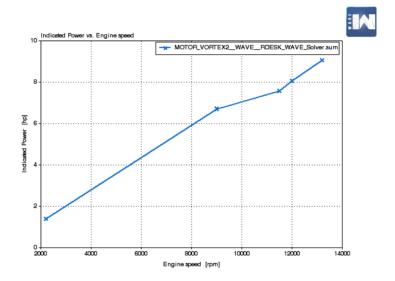



Figura 224

Torque indicado vs velocidad angular del motor de la simulación modificada

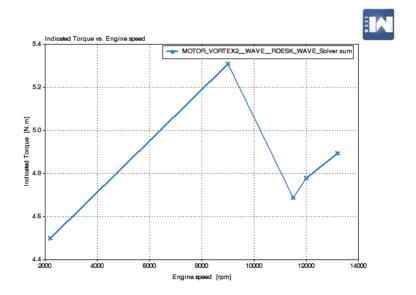
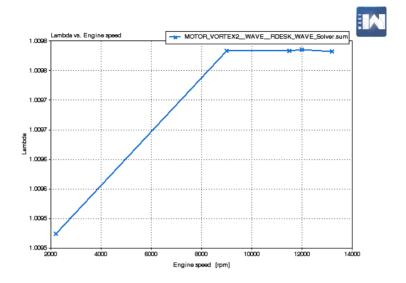




Figura 225

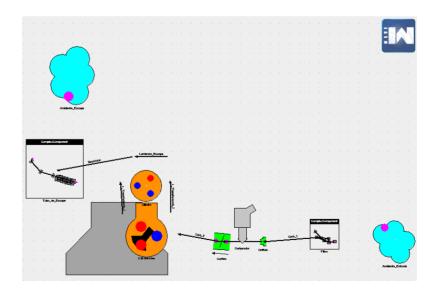
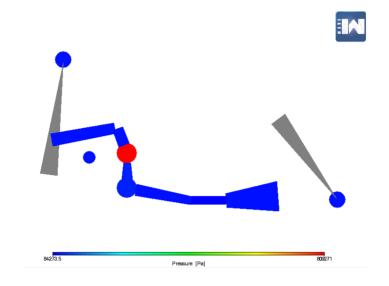
Lambda vs velocidad angular del motor de la simulación modificada

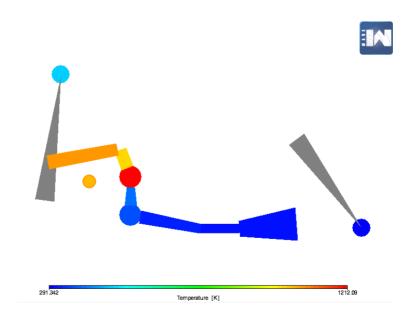


# c) Gráficas de promedio

Figura 226

Estructura de la ruta a tomar por las variantes en las gráficas promedio



Figura 227

Presión de la simulación modificada



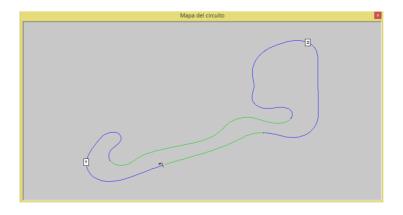
Temperatura de la simulación modificada

Figura 228



#### 4.6. Parametrización de telemetría

La telemetría permite obtener magnitudes físicas en tiempo real, para así analizar el rendimiento del motor en un circuito definido, verificando mejoras de tiempo, rpm, velocidad, potencia y torque del motor, acorde a la situación de pista y condiciones de carburación y encendido. El piloto que ayudará al presente trabajo de investigación reanalizará dos mangas, cada una de 10 vueltas, la primera manga se realiza con el motor en condiciones estándar mientras la segunda manga se utiliza el motor con las mejoras de carburación y encendido; cabe aclarar que de cada manga se evalúa la vuelta con mejor tiempo.


EL tiempo por vuelta y parámetro de funcionamiento del motor son medidos en la Mychron 5 del piloto, luego se utiliza el software Rae Studio 3 para visualizar y analizar.

#### 4.6.1. Trazado de Pista

El circuito establecido para la prueba tiene una longitud de 1030 metros y 10 metros de ancho, el cuál fue utilizado para la 5ta valida del campeonato nacional Rok Cup Ecuador, este circuito tiene 7 curvas, 4 curvas hacia la derecha y 3 curvas hacia la izquierda.

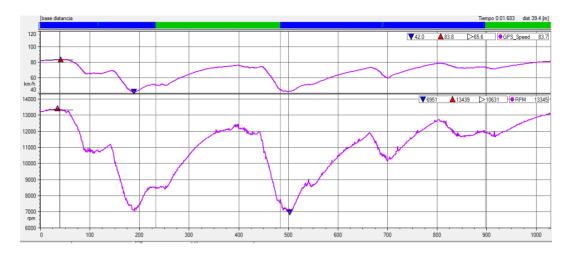
Figura 229

Circuito de pruebas telemétricas



#### 4.6.2. Obtención Telemetría con Motor 2T 60 cc Estándar

Figura 230


Tiempo acorde a la manga N° 1

| Idx         |    | Tiempo    | % en re    | Tiempo del principio de la |
|-------------|----|-----------|------------|----------------------------|
| <b>X</b> 1  | 1  | 00.52.918 |            | Tue, 22 Jun, 2021 12:47:15 |
| <b>X</b> 2  | 2  | 01.04.501 | 114.34 %   | 00.52.918                  |
| <b>8</b> 3  | 3  | 00.58.418 | 103.56 %   | 01.57.419                  |
| <b>8</b> 4  | 4  | 00.56.556 | 100.26 %   | 02.55.837                  |
| <b>⅓</b> 5  | 5  | 00.56.412 | Referencia | 03.52.393                  |
| <b>B</b> 6  | 6  | 00.56.496 | 100.15 %   | 04.48.805                  |
| <b>B</b> 7  | 7  | 00.56.550 | 100.24 %   | 05.45.301                  |
| <b>8</b> 🖁  | 8  | 00.58.525 | 103.75 %   | 06.41.851                  |
| <b>8</b> 9  | 9  | 00.56.459 | 100.08 %   | 07.40.376                  |
| <b>B</b> 10 | 10 | 00.57.009 | 101.06 %   | 08.36.835                  |
| <b>8</b> 11 | 11 | 00.56.432 | 100.04 %   | 09.33.844                  |
| X 12        | 12 | 01.31.289 |            | 10.30.276                  |
|             |    |           |            |                            |

Para la primera manga se tomaron 12 tiempos de los cuales 3 se deshabilitan por salida e ingreso de pre grilla y otra por fallo de conducción; el menor tiempo medido fue 56,412 segundos, a partir de este tiempo se obtiene la gráfica de rpm, velocidad, torque y potencia.

En la parte superior de la figura 231 se observa la curva de velocidad mientras en la parte inferior se observa las revoluciones del motor en tiempo real, es así que en la tabla 106 se menciona los valores máximos, mínimos y promedio acorde a la prueba con el motor estándar.

Velocidad (km/h) y revoluciones del motor (rpm) – Manga N° 1



Parámetros obtenidos de la Manga Nº 1

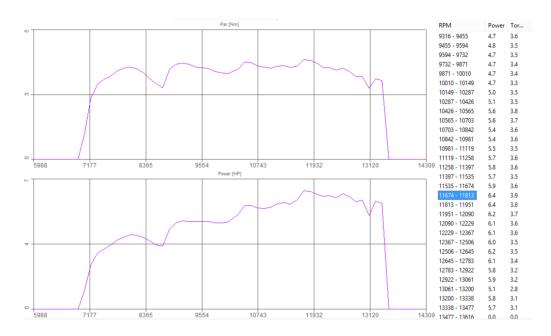

Figura 231

Tabla 106

| N<br>° | Revolució<br>n<br>promedio<br>(rpm) | Velocida<br>d<br>promedi<br>o (Km/h) | Revolucione<br>s máximas<br>(rpm) | Revolucione<br>s mínimas<br>(rpm) | Velocida<br>d<br>máxima<br>(km/h) | Velocida<br>d mínima<br>(km/h) |
|--------|-------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------|
| 1      | 10631                               | 65,6                                 | 13439                             | 6951                              | 83,8                              | 42,0                           |

Figura 232

Curva de potencia y par motor en tiempo de vuelta – Manga N° 1



Para la vuelta de 56,412 segundos, la potencia máxima que desarrollo el motor es 6,4 hp, entre las 11674 a 11813 rpm, y el torque máximo es de 3,9 N.m ubicado entre las mismas rpm de potencia. En la curva superior se da el par del motor mientras en la curva inferior la potencia; además se puede observar que el motor al tener embrague centrífugo o embrague directo, solo a partir de 6900 rpm genera par y potencia; la potencia promedio es 4,87 hp mientras el par promedio es 3,4 N.m.

# 4.6.3. Obtención Telemetría con Motor 2T 60 cc con Mejoras en Carburación y Encendido.

A continuación, se mencionan los parámetros de carburación y encendido con las mejoras respectivas, a partir de ello se adjunta la gráfica de rpm del motor y la gráfica de velocidad (km/h).

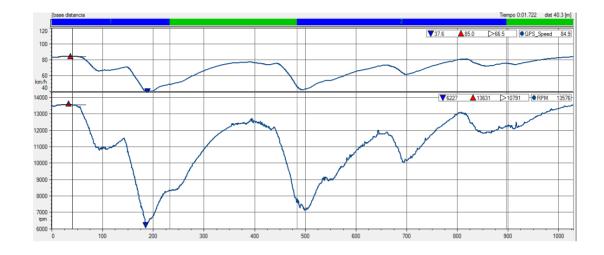
Datos del Sistema de carburación y encendido para el motor Vortex 2T 60 cc en condiciones mejoradas

| Parámetro              | Magnitud   | Unidad   |
|------------------------|------------|----------|
|                        | Carburador |          |
| Diámetro del Venturi   | 18         | mm       |
| Aguja de mezcla        | 180        | 0        |
| Nivel de Flotadores    | 16         | Mm       |
| Peso de flotadores     | 4          | gr       |
| Emulsor                | AN 266     | Mm       |
| Pin de aguja           | 1          | Posición |
| Jet principal          | 91         | mm/100   |
|                        | Encendido  |          |
| Gap de bujía           | 0,65       | Mm       |
| Tiempo de<br>encendido | 3,2        | Mm       |

Figura 233

Tiempos acordes a la manga N° 2

Tabla 107


| _          |   |           |            |                            |
|------------|---|-----------|------------|----------------------------|
| <b>8</b> 1 | 1 | 00.42.909 |            | Tue, 22 Jun, 2021 15:20:57 |
| <b>2</b>   | 2 | 01.01.824 | 110.86 %   | 00.42.909                  |
| \rm 3      | 3 | 00.58.962 | 105.73 %   | 01.44.733                  |
| 8 4        | 4 | 00.56.161 | 100.70 %   | 02.43.695                  |
| <b>B</b> 5 | 5 | 00.56.263 | 100.89 %   | 03.39.856                  |
| <b>8</b> 6 | 6 | 00.55.769 | Referencia | 04.36.119                  |
| 8 7        | 7 | 00.58.515 | 104.92 %   | 05.31.888                  |
| 8 📳        | 8 | 01.28.184 |            | 06.30.403                  |
|            |   |           |            |                            |

Para la segunda manga se tomaron 8 tiempos, siendo el mejor el de 55,769 segundos, a partir de este tiempo se obtiene la gráfica de rpm, velocidad, torque y potencia.

En la parte superior de la figura 234 se observa la curva de velocidad, mientras en la parte inferior se observa las revoluciones del motor en tiempo real; es así que en la

tabla 108 se menciona los valores máximos, mínimos y promedio acorde a la prueba con el motor en condiciones mejoradas.

Velocidad (km/h) y revoluciones del motor (rpm) – Manga N° 2



Parámetros obtenidos de la Manga N° 2

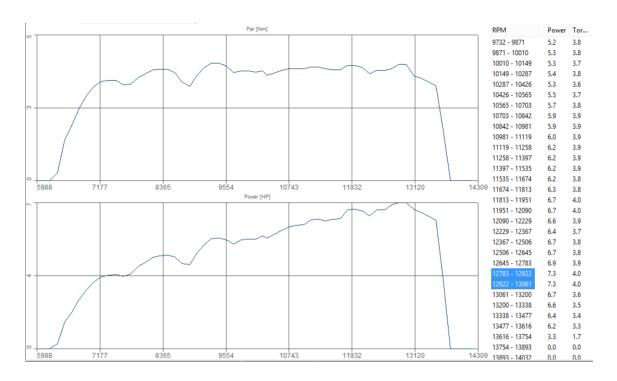

Figura 234

Tabla 108

| N<br>° | Revolució<br>n<br>promedio<br>(rpm) | Velocida<br>d<br>promedi<br>o (Km/h) | Revolucione<br>s máximas<br>(rpm) | Revolucione<br>s mínimas<br>(rpm) | Velocida<br>d<br>máxima<br>(km/h) | Velocida<br>d mínima<br>(km/h) |
|--------|-------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------|
| 1      | 10791                               | 66,5                                 | 13631                             | 6227                              | 85,5                              | 47,6                           |

Figura 235

Curva de potencia y par motor en tiempo de vuelta – Manga N° 2



Para la vuelta de 55,769 segundos la potencia máxima que desarrolló el motor es de 7,3 hp entre las 12783 a 13063 rpm, y el torque máximo es de 4,1 N.m ubicado entre las mismas rpm de potencia. En la curva superior se da el par del motor mientras en la curva inferior la potencia; además se puede observar que el motor, al tener embrague centrífugo y con las mejoras de carburación y encendido, solo a 6265 rpm genera par y potencia; la potencia promedio es 5,96 hp mientras el par promedio es 4,06 N.m

#### 4.7. Análisis de Resultados

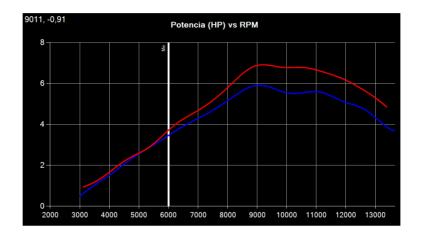
Para el análisis de resultados se hace uso de las tabulaciones antes mencionadas, se analiza los cambios que se obtiene en las curvas de potencia real, simulada y mediante telemetría; el análisis se basa de manera fundamental en los cambios realizados tanto en carburación como en encendido.

Tabla 109

Parámetros de motor utilizados en la tesis

| Parámetro              | Motor estándar | Motor con<br>variación | Unidad   |
|------------------------|----------------|------------------------|----------|
|                        |                | Carburador             |          |
| Diámetro del Venturi   | 18             | 18                     | Mm       |
| Aguja de mezcla        | 720            | 180                    | 0        |
| Nivel de Flotadores    | 16             | 16                     | Mm       |
| Peso de flotadores     | 4              | 4                      | gr       |
| Emulsor                | AN 266         | AN 266                 | Mm       |
| Pin de aguja           | 3              | 1                      | Posición |
| Jet principal          | 97             | 91                     | mm/100   |
|                        |                | Encendido              |          |
| Gap de bujía           | 0,55           | 0,65                   | Mm       |
| Tiempo de<br>encendido | 3              | 3,2                    | Mm       |

#### 4.7.1. Curvas Características


En las curvas características se menciona los cambios realizados entre el motor estándar y el motor con variaciones, a partir de ello se analiza la curva de potencia y torque, identificando la influencia de los cambios acorde a las curvas.

• Curva de potencia

Figura 236

Tabla 110

Curva dinamométrica comparativa entre potencia del motor estándar y motor con variación de carburación y encendido



Potencia del motor estándar y del motor modificado

| Potencia motor (hp) |           |           |  |  |  |
|---------------------|-----------|-----------|--|--|--|
| rpm                 | Curva 1 – | Curva 2 – |  |  |  |
|                     | Azul      | Rojo      |  |  |  |
| 3000                | 0,5       | 0,96      |  |  |  |
| 4000                | 1,53      | 1,72      |  |  |  |
| 6000                | 3,42      | 3,74      |  |  |  |
| 7000                | 4,26      | 4,66      |  |  |  |
| 8000                | 5,14      | 5,77      |  |  |  |
| 9000                | 5,92      | 6,91      |  |  |  |
| 10000               | 5,57      | 6,81      |  |  |  |
| Máxima              | 5,92      | 6,91      |  |  |  |
| Promedio            | 5,00      | 5,91      |  |  |  |

En la figura 236 se observa la curva del motor en condición estándar representado por el color azul con potencia máxima de 5,92 hp mientras que la potencia promedio es de 5 hp. En lo que respecta a la curva del motor mejorado, representado por el color rojo,

la potencia máxima es 6,91 hp, mientras que la potencia promedio es de 5,91 hp. En bajas rpm, aproximadamente a 3000 rpm, la variación de carburación aumenta la potencia en 48%, mientras tanto en el sistema de progresión comprendido entre 4000 rpm a 8000 rpm la potencia tuvo un aumento progresivo de entre 9 a 10 %; finalmente en altas revoluciones, mayor a 9000, se evidencia una ganancia de potencia de 15%; el incremento de potencia promedio es de 15,4%.

La carburación estándar utiliza el jet principal de 0,97mm, para obtener mayor velocidad final lo que se busca es empobrecer la mezcla hasta encontrar el punto de equilibrio, siendo el jet principal a utilizar el de 0,91m. Para el sistema de progresión se necesita que el motor tenga una respuesta inmediata al momento de pasar de bajas revoluciones a intermedias y altas, por ello se busca que la mezcla no sea rica ni pobre, el punto de equilibrio se encontró en la muesca 1 de la aguja de guillotina.

Finalmente, en el sistema de bajas revoluciones el tornillo de mezcla se ajusta a 180° obteniendo mejor respuesta del motor.

• Curva de par motor

Figura 237

Curva dinamométrica comparativa entre torque del motor estándar y motor con variación de carburación y encendido

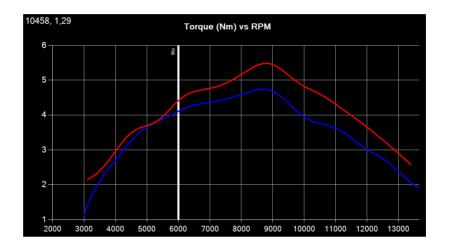



Tabla 111

Torque del motor estándar y del motor modificado

|          | Par motor (N.m)   |                   |  |  |  |  |  |
|----------|-------------------|-------------------|--|--|--|--|--|
| rpm      | Curva 1 –<br>Azul | Curva 2 –<br>Rojo |  |  |  |  |  |
| 3000     | 1,13              | 2,13              |  |  |  |  |  |
| 4000     | 2,7               | 3,00              |  |  |  |  |  |
| 6000     | 4,1               | 4,43              |  |  |  |  |  |
| 7000     | 4,38              | 4,78              |  |  |  |  |  |
| 8000     | 4,6               | 5,18              |  |  |  |  |  |
| 9000     | 4,75              | 5,48              |  |  |  |  |  |
| 10000    | 3,97              | 4,81              |  |  |  |  |  |
| Máxima   | 4,75              | 5,48              |  |  |  |  |  |
| Promedio | 3,78              | 4,47              |  |  |  |  |  |

En la figura 237 se observa la curva del motor en condición estándar representado por el color azul con par máximo de 4,75 N.m mientras que el par promedio es 3,78 N.m.

En lo que respecta a la curva del motor mejorado, representado por el color rojo, el par máximo es 5,48 N.m, mientras que el par promedio es 4,47 N.m. En bajas rpm, aproximadamente a 3000 rpm, la variación de carburación aumenta el par en 46,9%, mientras tanto en el sistema de progresión comprendido entre 4000 rpm a 8000 rpm, la potencia tuvo un aumento progresivo de entre 10 a 12 %; finalmente a altas revoluciones, mayor a 9000 rpm, se evidencia una ganancia de par de motor de 13,3% y par motor promedio de 15,5%.

El par motor es bastante influenciado por la carburación y encendido; de manera estándar el gap de la bujía es 0,55mm, para aumentar la velocidad final lo que se busca es disminuir el gap, y para un mayor par motor se prueba con un gap mayor, por ello que la mejor configuración del gap es 0,65 mm. El adelanto al encendido permite obtener mayor velocidad final siempre y cuando este sea menor al estándar, como en carburación se afino la velocidad final, el adelanto al encendido se aumentó a 3,2 mm para obtener mayor par motor.

Tabla 112

Porcentaje de mejora en potencia y torque del motor

| N°                       | Aumento potencia hp | % de mejora | Aumento torque N.m | % de mejora. |
|--------------------------|---------------------|-------------|--------------------|--------------|
| Sistema arranque         | 0,46                | 48%         | 1                  | 46,9         |
| Sistema de<br>progresión | 0,52                | 10,9        | 0,69               | 10 – 12      |
| Sistema de aceleración   | 0,99                | 14,3        | 0,73               | 13,3         |

#### 4.7.2. Análisis de Resultados Relación Aire – Combustible

Una relación A/F menor a 1 se considera mezcla rica, igual a 1 es considerada mezcla estequiométrica (14,7 partes de aire, medido en masa, y 1 parte de combustible,

medido en masa), mayor a 1 se considera mezcla pobre es por ello que a continuación se define la cantidad de masa con respecto a la relación A/F de las pruebas realizadas.

Tabla 113

Cantidad de masa de cada parte de aire y combustible

| Relación<br>A/F                  | $\frac{\frac{A}{F}}{F}$ Prueba 1 | Frueba | A/F Prueba 3    | Prueba |
|----------------------------------|----------------------------------|--------|-----------------|--------|
| Promedio                         | 0,955                            | 0,985  | 1               | 1,081  |
| Tipo mezcla                      | Rica                             | Rica   | Estequiométrica | Pobre  |
| Partes de                        | 14,04                            | 14,48  | 14,7            | 15,89  |
| aire<br>Partes de<br>combustible | 1                                | 1      | 1               | 1      |

Prueba 1 → Motor con carburador estándar sin modificaciones.

El carburador en condición estándar utiliza un jet principal de 0,97 mm lo que hace que el sistema de aceleración sea rico y la muesca de altura de guillotina está en la posición 3 lo que hace que el área efectiva entre la aguja y el emulsor aumente entregando mayor cantidad de combustible al Venturi, es por ello que un carburador sin modificaciones tiene una relación A/F enriquecida, ya que el propósito del fabricante es mantener mayor vida útil del motor dos tiempos y esto lo logra porque el combustible refrigera y lubrica el motor, entonces a mayor entrega de combustible se reduce la fricción, así disminuye la temperatura y el desgaste del pistón – cilindro.

Prueba 2 → Motor con parámetros de carburación modificada, mejora en tornillo de ajuste de mezcla y muesca de aguja de guillotina.

El tornillo de mezcla se ajusta a 180° enriqueciendo el sistema de ralentí y bajas revoluciones, mientras la muesca de la aguja cónica está en la posición 1 lo que baja la altura de la aguja y el área efectiva entre la aguja – emulsor, empobreciendo la entrega

de combustible en el sistema de progresión, mientras tanto el sistema de aceleración o altas revoluciones mantiene un Jet intermedio de 0,94 mm empobreciendo la mezcla en una pequeña cantidad, es por ello que la relación A/F tiende asemejarse a la estequiométrica, aun así no es la relación aire combustible ideal.

Prueba 3 → Motor con componentes y parámetros de carburación modificada, donde se obtiene los mejores resultados con emulsor AN 266.

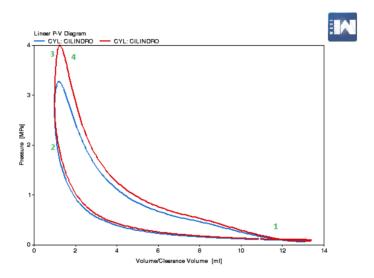
La configuración del carburador en la prueba 3 se asemeja a la prueba N° 2 el cambio principal es el jet principal se disminuye a 0,91 lo que empobrece la mezcla entregando menor combustible en el sistema de aceleración, así se llega a obtener una mezcla estequiométrica donde hay 14,7 partes de aire medido en masa y 1 parte de combustible medido en masa.

Prueba 4 → Motor con componentes y parámetros de carburación modificada, se utiliza emulsor AN 262.

La configuración del carburador varía en la medida del emulsor el cuál disminuye a 2,62 mm y aumentando la medida del jet principal a 0,92 mm; al disminuir la medida del emulsor se entrega menor cantidad de combustible en el sistema de progresión, es por ello que se debe aumentar la medida del jet principal para no exceder el límite de empobrecimiento en el sistema de aceleración, resultando en una relación A/F pobre.

#### 4.7.3. Simulación Final Software Ricardo Wave

Las curvas de color azul pertenecen a la simulación estándar y las de color rojo a la simulación con las modificaciones en pro de la potencia. Para las gráficas de tiempo se toma como base el caso de mayor potencia que es el 2, de la misma forma que se hizo anteriormente.


En el diagrama P-V real de la figura 238, se observa el aumento de la presión durante la compresión (1-2) y durante la primera parte de la combustión (2-3), ya que

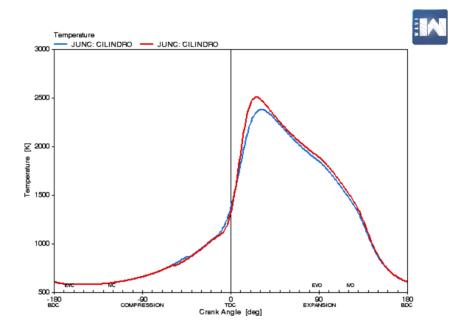
llega hasta aproximadamente los 600 psi, mientras que en la simulación estándar llega hasta aproximadamente los 500 psi. La expansión de los gases de la combustión (4-1) es relativamente parecida con un pequeño aumento en el volumen en la curva mejorada.

Del punto 3 al 4 se ve la continuación de la combustión, la curva azul estándar muestra que tiene una distancia mayor a la de curva mejorada y esto se modificó con la BDUR que es la duración de la combustión en sí.

Diagrama P-V de las dos simulaciones

Figura 238



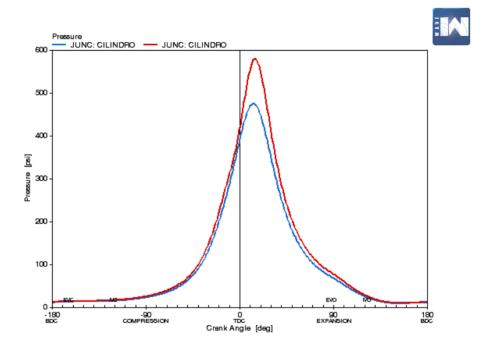

Si la presión aumenta la temperatura en el motor también lo hará; específicamente en el cilindro se divisa que el pico de temperatura se da a unos 30° aproximadamente después del punto muerto superior (máxima temperatura justo después del encendido) y esto ocurre porque la pendiente ascendente crece antes del TDC aproximadamente a unos -10° de giro del cigüeñal (avance al encendido).

La simulación mejorada es superior a la estándar por la constante CA50 ya que esta posee un valor menor a la estándar, provocando que se combustiona de mejor manera la mezcla en la cámara. Además, la constante BDUR al tener un valor menor en

la simulación mejorada, eleva la temperatura por la concentración de calor en bajos grados de giro del motor.

Temperatura del cilindro vs ángulo del cigüeñal de las dos simulaciones

Figura 239




La presión al igual que la temperatura es mayor en la curva mejorada por la constante CA50 y también por la duración de la combustión (BDUR) ya que la concentración de calor en un corto recorrido angular produce un aumento de temperatura y presión.

La presión no depende de la chispa y por eso las curvas son uniformes en su creciente pendiente (parecidas), solo dependen del movimiento y posición del pistón, mas no se quiere decir que no es afectado por aspectos no mecánicos como chispa y mezcla estequiometrica.

Figura 240

Presión del cilindro vs ángulo del cigüeñal de las dos simulaciones



Si el motor genera alta potencia, también altas velocidades las cuales requieren de mezclas pobres, por ende, consumo de combustible menor, que se refleja en la figura 245 y tabla 114, disminuye para la simulación mejorada.

En la tabla 114 se muestra el consumo de combustible para los casos a consideración de las 2 simulaciones; se observa que en todos los casos la simulación mejorada tiene un consumo menor y esto se da también por la constante BDUR y la AFR ya que al tener una duración de combustión menor se necesita un flujo másico de combustible bajo, pero con una mezcla más rica, para lo cual la AFR también disminuye.

Consumo de combustible al freno vs velocidad angular del motor de las dos simulaciones

Figura 241

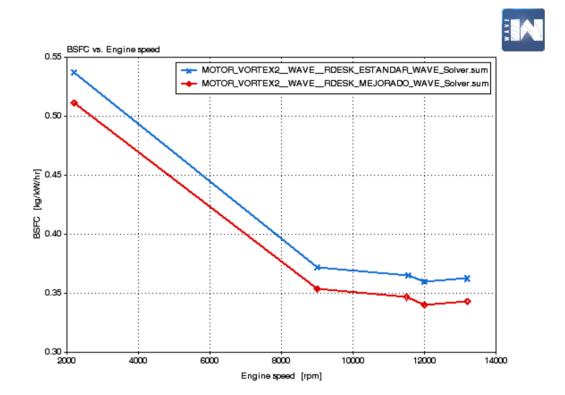



Tabla 114

Consumo de combustible al freno de los motores de las dos simulaciones

| Velo<br>cida<br>d<br>Moto<br>r | BSFC MOTOR_VORTEX2WAVER DESK_ESTANDAR_WAVE_Solv er.sum | Velo<br>cida<br>d<br>Moto<br>r | BSFC MOTOR_VORTEX2_WAVE_R DESK_MEJORADO_WAVE_Sol ver.sum |
|--------------------------------|--------------------------------------------------------|--------------------------------|----------------------------------------------------------|
| rpm                            | kg/kW/hr                                               | rpm                            | kg/kW/hr                                                 |
| 1320                           | 0,36249569                                             | 1319                           | 0,3428908                                                |
| 0                              |                                                        | 9,91                           |                                                          |
|                                |                                                        | 99                             |                                                          |

| Velo<br>cida<br>d<br>Moto<br>r | BSFC MOTOR_VORTEX2WAVER DESK_ESTANDAR_WAVE_Solv er.sum | Velo<br>cida<br>d<br>Moto<br>r | BSFC MOTOR_VORTEX2_WAVE_R DESK_MEJORADO_WAVE_Sol ver.sum |
|--------------------------------|--------------------------------------------------------|--------------------------------|----------------------------------------------------------|
| 1200<br>0                      | 0,3597149                                              | 1199<br>9,96                   | 0,34024161                                               |
| · ·                            |                                                        | 97                             |                                                          |
| 1155                           | 0,3652949                                              | 1149                           | 0,34660959                                               |
| 0                              |                                                        | 9,96<br>97                     |                                                          |
| 9000                           | 0,3720814                                              | 8999                           | 0,35378519                                               |
| ,002<br>93                     |                                                        | ,995<br>12                     |                                                          |
| 2200                           | 0,53695852                                             | 2200<br>,000<br>98             | 0,51145089                                               |

Las curvas de la figura 237 son las que más coincidencias han tenido en toda la simulación ya que a lo largo de las bajas revoluciones la eficiencia entregada solo cambia en milésimas y diezmilésimas sus valores; sin embargo, a partir de las altas rpm, en 11500, se ve un punto de inflexión en el que la simulación estándar se queda por debajo de la mejorada y esto ocurre por el crecimiento de la potencia en mayor medida en estas revoluciones.

Figura 242

Eficiencia total entregada vs velocidad angular del motor de las dos simulaciones

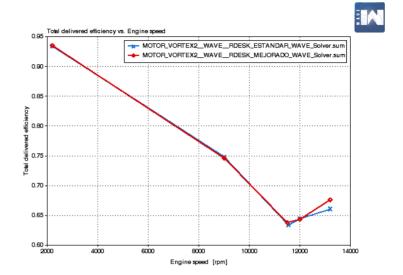



Tabla 115

Eficiencia total entregada de los motores de las dos simulaciones

| Velo<br>cida<br>d<br>Moto<br>r | EFICIENCIA TOTAL ENTREGADA MOTOR_VORTEX2_WAVE_R DESK_ESTANDAR_WAVE_Solv er.sum | Velo<br>cida<br>d<br>Moto<br>r | EFICIENCIA TOTAL ENTREGADA MOTOR_VORTEX2_WAVE_R DESK_MEJORADO_WAVE_Sol ver.sum |
|--------------------------------|--------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------|
| rpm                            |                                                                                | rpm                            |                                                                                |
| 1320                           | 0,66093719                                                                     | 1319                           | 0,67655462                                                                     |
| 0                              |                                                                                | 9,91                           |                                                                                |
|                                |                                                                                | 99                             |                                                                                |
| 1200                           | 0,64439499                                                                     | 1199                           | 0,64385349                                                                     |
| 0                              |                                                                                | 9,96                           |                                                                                |
| 4455                           | 0.00407507                                                                     | 97                             | 0.02700400                                                                     |
| 1155                           | 0,63427567                                                                     | 1149                           | 0,63766122                                                                     |
| 0                              |                                                                                | 9,96<br>97                     |                                                                                |
| 9000                           | 0,74812818                                                                     | 8999                           | 0,74663359                                                                     |
| ,002                           | 0,74012010                                                                     | ,995                           | 0,74003339                                                                     |
| 93                             |                                                                                | ,333                           |                                                                                |
| 2200                           | 0,9338969                                                                      | 2200                           | 0,93484509                                                                     |
|                                | 3,333000                                                                       | ,000                           | 3,33.13.1000                                                                   |
|                                |                                                                                | 98                             |                                                                                |

La figura 243 es la más importante de la simulación pues la potencia al freno es la real, la que se mediría en un dinamómetro inercial; en bajas revoluciones esta potencia es muy parecida entre simulaciones, no obstante, la pendiente de la estándar es menos pronunciada.

La mayor potencia se da a 13200 rpm en las dos simulaciones, la diferencia es de 1,53 hp lo cual es un gran aporte en un motor de baja potencia. Este aumento se logró enriqueciendo un poco la mezcla (AFR), disminuyendo la duración de combustión y por ende aumentando presión y temperatura (BDUR), y corrigiendo el adelanto al encendido (CA50).

A partir de 13200 rpm la potencia desciende, por eso no se ha graficado mayores revoluciones, además de que el motor genera máximo 14500 rpm por lo que sería improductivo continuar el análisis con mayor velocidad angular.

Figura 243

Potencia al freno vs velocidad angular del motor de las dos simulaciones

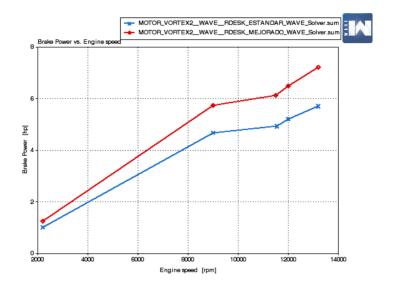



Tabla 116

Potencia al freno de los motores de las dos simulaciones

| Velo<br>cida<br>d<br>Moto<br>r | POTENCIA AL FRENO<br>MOTOR_VORTEX2WAVER<br>DESK_ESTANDAR_WAVE_Sol<br>ver.sum | Velo<br>cidad<br>Moto<br>r | POTENCIA AL FRENO<br>MOTOR_VORTEX2WAVER<br>DESK_MEJORADO_WAVE_Sol<br>ver.sum |
|--------------------------------|------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------|
| rpm                            | hp                                                                           | rpm                        | hp                                                                           |
| 1320<br>0                      | 5,7092309                                                                    | 1319<br>9,919<br>92        | 7,230944157                                                                  |
| 1200<br>0                      | 5,215554237                                                                  | 1199<br>9,969<br>73        | 6,496179581                                                                  |
| 1155<br>0                      | 4,934612751                                                                  | 1149<br>9,969<br>73        | 6,124670506                                                                  |
| 9000<br>,002<br>93             | 4,672995567                                                                  | 8999,<br>9951<br>17        | 5,746486187                                                                  |

| Velo<br>cida<br>d<br>Moto<br>r | POTENCIA AL FRENO<br>MOTOR_VORTEX2WAVER<br>DESK_ESTANDAR_WAVE_Sol<br>ver.sum | Velo<br>cidad<br>Moto<br>r | POTENCIA AL FRENO<br>MOTOR_VORTEX2WAVER<br>DESK_MEJORADO_WAVE_Sol<br>ver.sum |
|--------------------------------|------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------|
| 2200                           | 1,023734093                                                                  | 2200,<br>0009<br>77        | 1,256153941                                                                  |

El torque al freno tiene una diferencia aproximada de 1 N.m entre simulación y es obvio que el mayor torque se de en bajas revoluciones (9000 rpm); al igual que con la potencia, el torque crece por las modificaciones desarrolladas ya que se aprovecha en gran medida el poder calórico y octanaje del combustible en conjunto con el aire (mezcla), también al reducir el tiempo en el que la mezcla se combustiona y enriqueciéndola a la vez provocando que el motor desarrolle antes al calentarse más rápido.

Figura 244

Torque al freno vs velocidad angular del motor de las dos simulaciones

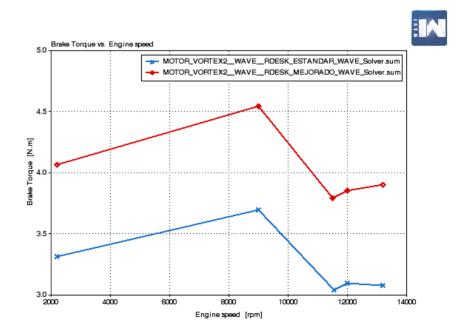



Tabla 117

Torque al freno de los motores de las dos simulaciones

| Velo<br>cida<br>d<br>Moto<br>r | TORQUE AL FRENO MOTOR_VORTEX2WAVER DESK_ESTANDAR_WAVE_Solv er.sum | Velo<br>cida<br>d<br>Moto<br>r | TORQUE AL FRENO MOTOR_VORTEX2_WAVE_R DESK_MEJORADO_WAVE_Sol ver.sum |
|--------------------------------|-------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------|
| rpm                            | N*m                                                               | rpm                            | N*m                                                                 |
| 1320<br>0                      | 3,07993007                                                        | 1319<br>9,91<br>99             | 3,90086508                                                          |
| 1200<br>0                      | 3,09496903                                                        | 1199<br>9,96<br>97             | 3,85491705                                                          |
| 1155<br>0                      | 3,0423429                                                         | 1149<br>9,96<br>97             | 3,79247904                                                          |
| 9000<br>,002<br>93             | 3,69734311                                                        | 8999<br>,995<br>12             | 4,54671001                                                          |
| 2200                           | 3,31361103                                                        | 2200<br>,000<br>98             | 4,06590319                                                          |

La potencia y torque indicado son datos teóricos que tienen igual comportamiento que los reales (al freno), pero menos trascendencia que estos últimos.

Figura 245

Potencia indicada vs velocidad angular del motor de las dos simulaciones

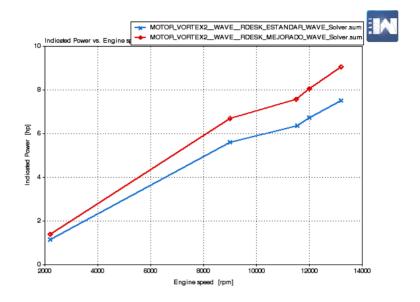
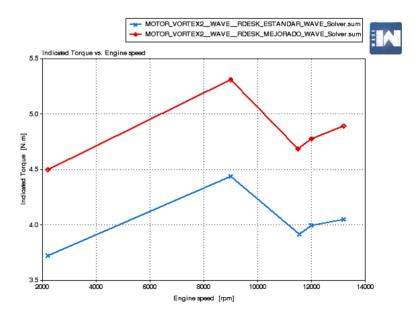




Figura 246

Torque indicado vs velocidad angular del motor de las dos simulaciones



Al haber cambiado la constante AFR(reduciéndola) en la simulación mejorada, tenemos una mezcla mucho más rica que la estándar, y esto se ve reflejado en el sensor

de oxígeno (Lambda) ya que la curva mejorada muestra valores menores de oxígeno, siendo más cercanos a la unidad que a la final es lo que se recomienda por los fabricantes.

Figura 247

Lambda vs velocidad angular del motor de las dos simulaciones

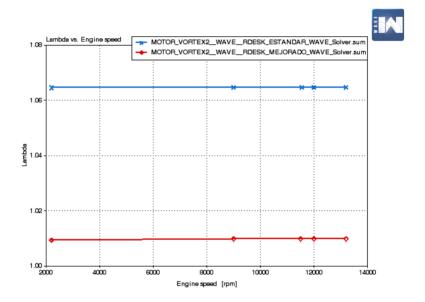



Tabla 118

Sensor de oxígeno de los motores de las dos simulaciones

| Velo<br>cida<br>d<br>Moto<br>r | LAMBDA MOTOR_VORTEX2WAVER DESK_ESTANDAR_WAVE_Solv er.sum | Velo<br>cida<br>d<br>Moto<br>r | LAMBDA MOTOR_VORTEX2WAVER DESK_MEJORADO_WAVE_Sol ver.sum |
|--------------------------------|----------------------------------------------------------|--------------------------------|----------------------------------------------------------|
| rpm                            |                                                          | rpm                            |                                                          |
| 1320                           |                                                          | 1319                           |                                                          |
| 1320<br>N                      | 1,06479096                                               | 9,91                           | 1,00983202                                               |
|                                |                                                          | 99                             |                                                          |

| Velo<br>cida<br>d<br>Moto<br>r | LAMBDA MOTOR_VORTEX2WAVER DESK_ESTANDAR_WAVE_Solv er.sum | Velo<br>cida<br>d<br>Moto<br>r | LAMBDA<br>MOTOR_VORTEX2WAVER<br>DESK_MEJORADO_WAVE_Sol<br>ver.sum |
|--------------------------------|----------------------------------------------------------|--------------------------------|-------------------------------------------------------------------|
| 1200<br>0                      | 1,06479096                                               | 1199<br>9,96<br>97             | 1,009835                                                          |
| 1155<br>0                      | 1,06479204                                               | 1149<br>9,96<br>97             | 1,00983298                                                        |
| 9000<br>,002<br>93             | 1,06479001                                               | 8999<br>,995<br>12             | 1,00983298                                                        |
| 2200                           | 1,064623                                                 | 2200<br>,000<br>98             | 1,00952399                                                        |

## 4.7.4. Parametrización de Telemetría

En lo que respecta a telemetría se analiza la velocidad, revoluciones, potencia y torque del motor, en función del tiempo de giro por vuelta en una pista determinada, identificando la influencia de los cambios acorde a las curvas.

Figura 248

Curva telemétrica comparativa de velocidad y rpm de la manga N° 1 y 2

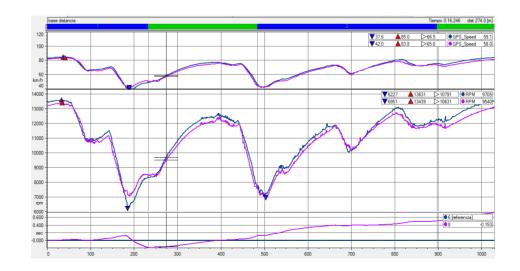



Tabla 119

Velocidad y rpm en pruebas telemétricas de la manga N° 1 y 2

| N<br>° | Revolució<br>n<br>promedio<br>(rpm) | Velocida<br>d<br>promedi<br>o (Km/h) | Revolucione<br>s máximas<br>(rpm) | Revolucione<br>s mínimas<br>(rpm) | Velocida<br>d<br>máxima<br>(km/h) | Velocida<br>d mínima<br>(km/h) |
|--------|-------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------|
| 1      | 10631                               | 65,6                                 | 13439                             | 6951                              | 83,8                              | 42,0                           |
| _2     | 10791                               | 66,5                                 | 13631                             | 6227                              | 85,5                              | 47,6                           |

En la figura 248 la curva de color azul representa el motor con parámetros modificados, es evidente el aumento de velocidad a altas revoluciones siendo así que se tiene una mejora de 1,7 Km/h lo que representa 2%; en revoluciones, el motor levanta 192 más en un minuto, siendo 1,5% la mejora. En velocidad intermedia se mejora 1 Km/h equivalente a 1,4%, y se aumenta 160 revoluciones por minuto equivalente a 1,5% de mejora. La velocidad a bajas rpm aumenta en 5,6 Km/h, así la mejora es de 11,75% y la respuesta del motor inicia a 6227 rpm.

Tabla 120

Porcentaje de mejora en velocidad lineal y angular del motor

| N°                     | Aumento<br>velocidad<br>Km/h | % de mejora | Aumento<br>revoluciones<br>rpm | % de mejora |
|------------------------|------------------------------|-------------|--------------------------------|-------------|
| Sistema arranque       | 5,6                          | 11,75       | -724                           |             |
| Sistema de progresión  | 1                            | 1,4         | 160                            | 1,5         |
| Sistema de aceleración | 1,7                          | 2           | 192                            | 1,5         |

Figura 249

Curva telemétrica comparativa de par motor y potencia de la manga N° 1 y 2

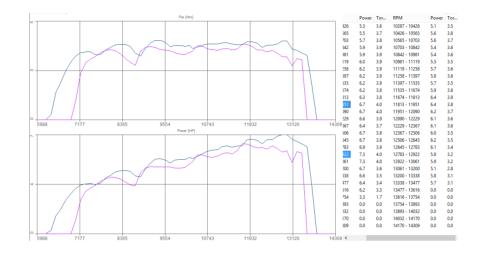



Tabla 121

Par motor y potencia en pruebas telemétricas de la manga N° 1 y 2

| F        | Potencia motor (hp | Par mot   | or (N.m)       |              |
|----------|--------------------|-----------|----------------|--------------|
| rpm      | Curva 1 – Lila     | Curva 2 – | Curva 1 – Lila | Curva 2 Azul |
|          |                    | Azul      |                |              |
| 6500     | 1                  | 2,9       | 1              | 2,9          |
| 7000     | 2,4                | 3,5       | 2,4            | 3,4          |
| 8000     | 4                  | 4,4       | 3,6            | 3,8          |
| 9000     | 4,8                | 5         | 3,7            | 3,9          |
| 10000    | 4,7                | 5,3       | 3,3            | 3,7          |
| 11000    | 5,4                | 6,2       | 3,6            | 3,9          |
| 11500    | 6,4                | 6,7       | 3,9            | 4            |
| 12000    | 6,1                | 6,4       | 3,6            | 3,7          |
| 13000    | 5,1                | 7,3       | 2,8            | 4            |
| Máxima   | 6,4                | 7,3       | 3,9            | 4            |
| Promedio | 4,87               | 5,96      | 3,48           | 3,7          |

En la figura 249 se observa la curva del motor en condición estándar representado por el color lila con una potencia máxima de 6,4 hp y potencia promedio de 4,87 hp; la

curva del motor con variación de carburación y encendido, representado por el color azul, tiene una potencia máxima de 7,3 hp y potencia promedio de 5,96 hp. En bajas rpm, aproximadamente 3000 rpm, la variación de carburación aumenta la potencia en 48%, mientras tanto en el sistema de progresión, entre 4000 a 8000 rpm, la potencia tuvo un aumento de entre 9 a 11 %, y finalmente en altas revoluciones, mayor a 9000 rpm, la potencia aumenta 12,3%, la ganancia de potencia promedio es 18,3%.

EL par del motor máximo en condición estándar es 3,9 N.m y el par promedio 3,48 N.m, mientras que el motor modificado aumenta el torque máximo a 4 N.m y en promedio a 3,7 N.m, evidenciando mejora de 2,5% en altas revoluciones y en promedio mejora 5,9%.

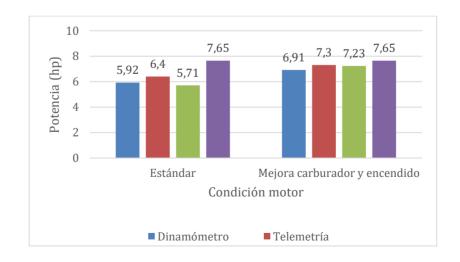
Tabla 122

Porcentaje de mejora en potencia y torque del motor

| N°               | Aumento     | % de mejora | Aumento    | % de    |
|------------------|-------------|-------------|------------|---------|
|                  | potencia hp |             | torque N.m | mejora. |
| Sistema arranque | -           | -           | -          | -       |
| Sistema de       | 0,4         | 11,3        | 0,4        | 10 – 12 |
| progresión       |             |             |            |         |
| Sistema de       | 0,9         | 12,3        | 0,1        | 2,5     |
| aceleración      |             |             |            |         |

## 4.8. Comparación entre Valores Experimentales, Indicativos y Calculados

En la tabla 123 se compara los valores máximos de potencia y torque en los diferentes tipos de pruebas (dinamométrica, telemétrica y la de software) con el objetivo de comparar resultados y acercarse a los resultados ideales que se calcularon durante el proyecto.


Tabla 123

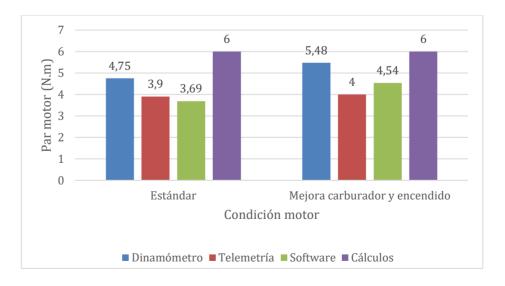
Parámetros característicos en las distintas pruebas realizadas

| N°                      | Configuración                        | Potencia<br>(hp) | Torque<br>(N.m) | Revoluciones (rpm) | % de<br>mejora. |
|-------------------------|--------------------------------------|------------------|-----------------|--------------------|-----------------|
| Experimental prueba     | Estándar                             | 5,92             | 4,75            | 9000 – 8763        | 14,3 –<br>13,3  |
| dinamométrica           | Mejoras<br>carburador y<br>encendido | 6,91             | 5,48            | 9153 – 8894        | ,               |
| Experimental            | Estándar                             | 6,4              | 3,9             | 11674              | 12,3 - 2,5      |
| prueba<br>telemétrica   | Mejoras<br>carburador y<br>encendido | 7,3              | 4,00            | 12783              |                 |
| Indicativo              | Estándar                             | 5,71             | 3,69            | 13200 -9000        | 21 - 18,7       |
| software<br>Ricardo     | Mejoras<br>carburador y<br>encendido | 7,23             | 4,54            | 13200 – 9000       |                 |
| Cálculos<br>matemáticos | Valor Ideal                          | 7,65             | 6               | 11500-900          |                 |

Figura 250

Resultados de potencia en los distintos tipos de pruebas realizados




El motor en condición estándar tiene en promedio una potencia de 6,01 hp, promediando la prueba dinamométrica, telemétrica y la de software, este valor es equivalente a 78,5% de la potencia ideal de 7,65 hp. La prueba de telemetría estándar es la más cercana a la potencia ideal calculada, con un 83,5%.

Haciendo promedio entre las tres pruebas en condiciones mejoradas se obtiene 7,15 hp equivalente a 93,5% de la potencia ideal y la prueba que más se acerca a la condición ideal es la prueba telemétrica y la de software (en condiciones mejoradas) con un 95,5% de similitud.

La potencia en general aumento aproximadamente 10% lo que se traduce en una posibilidad de mejorar en pista 1 segundo, y aumentar la velocidad por encima de 5Km/h en bajas revoluciones y en altas mejorar más de 2 Km/h. En lo que respecta a los valores evaluados por las diferentes pruebas existe un desfase de entre 3 a 5 %.

Resultados de par motor en los distintos tipos de pruebas realizados

Figura 251



El motor en condición estándar de carburación y encendido tiene en promedio un par motor de 4,11 N.m entre la prueba dinamométrica, telemétrica y de software,

equivalente al 68,5% del par ideal de 6 N.m. La prueba dinamométrica estándar es la más cercana al par ideal con un 79,2%; con las mejoras en carburador y encendido entre las tres pruebas se obtiene en promedio se obtiene 4,67 N.m equivalente a 77,9% de lo ideal. La prueba con las mejoras de motor que más se acerca a la condición ideal es la dinamométrica con un 91,3%.

El par motor en general aumento en 10,7%, siendo un gran aporte para mejorar en pista 1 segundo y aumentar la velocidad por encima de 5Km/h en bajas revoluciones, y en altas mejorar más de 2 Km/h. En lo que respecta a los valores evaluados por las diferentes pruebas de par motor existe un desfase de entre 10 a 15 %.

## Capítulo V

#### 5. Marco Administrativo

## 5.1. Recursos

Los medios que se utilizaron para el correcto desarrollo del presente trabajo de investigación se explican a continuación:

#### 5.1.1. Recursos Humanos

Durante el desarrollo de este proyecto "ANÁLISIS DE PARÁMETROS CARACTERÍSTICOS DEL MOTOR 2T UTILIZADOS EN KARTING VARIANDO LOS PARÁMETROS DE CARBURACIÓN Y ENCENDIDO, VERIFICADOS POR TELEMETRÍA Y SOFTWARE ESPECIALIZADO" existen miembros importantes que permitieron llevarlo a cabo. Nosotros como investigadores Jefferson Asanza e Israel Romero, con el apoyo y asesoramiento del Ing. Germán Erazo como director y el Ing. José Quiróz como colaborador científico.

Tabla 124

Recursos humanos

| Ord. | Descripción                         | Cantidad | Función                |
|------|-------------------------------------|----------|------------------------|
| 1.   | Asanza Suquillo Jefferson Alexander | 1        | Investigador           |
| 2.   | Romero Pereira Israel Alejandro     | 1        | Investigador           |
| 3.   | Ing. Erazo Laverde Germán           | 1        | Colaborador Científico |
| 4.   | Ing. José Quiroz E.                 | 1        | Colaborador Científico |

## 5.1.2. Recursos Tecnológicos

En la elaboración de este proyecto se cuenta con herramientas tecnológicas importantes como el software de simulación Ricardo WAVE, computadoras, libros digitales, cámaras digitales, internet, equipos de medición como anemómetro, pirómetro, etc. que permitieron la realización del mismo.

Tabla 125

Recursos tecnológicos

| Ord.   | Detalle              | Cantidad | Costo Unitario       | Costo           |  |
|--------|----------------------|----------|----------------------|-----------------|--|
| 1      | Horas de internet    | 200      | \$0,30               | \$ 60           |  |
| 2<br>3 | Copias e impresiones | 200      | \$0,05               | \$ 10           |  |
| 4      | Pirómetro            | 1        | \$ 30,00             | \$ 30           |  |
| 5      | GTC-505              | 1        | \$300,00<br>\$ 30,00 | \$ 300<br>\$ 30 |  |
| 3      | Anemómetro           | 1        | φ 30,00              | ψ 30            |  |
| 6      | Calculadora          | 1        | \$10,00              | \$10            |  |
| TOTAL  |                      |          |                      |                 |  |

### 5.1.3. Recursos Materiales

Para el desarrollo de la investigación es necesario establecer los materiales principales y los vehículos a utilizar, los cuales se detallan en la tabla 126.

Tabla 126

Recursos materiales

| Ord. | Cantidad | Detalle                                                   | Costos<br>unitarios | Costo total<br>USD |
|------|----------|-----------------------------------------------------------|---------------------|--------------------|
| 1.   | 1        | Herramientas                                              | \$ 70               | \$ 70              |
| 4.   | 1        | Kit Carburador Dell Orto                                  | \$ 50,00            | \$ 50              |
| 5.   | 5        | Jet o shiglor principal de diversos calibres              | \$6,00              | \$30               |
| 5.   | 4        | Bujía NGK B10EG                                           | \$16,00             | \$64               |
| 9.   | 1        | Reloj comparador tipo palpador                            | \$ 85,00            | \$ 85              |
| 10.  | 1        | Galgas tipo aguja para medir diámetros interiores métrico | \$ 30,00            | \$ 30              |
| 11.  | 1        | Galgas de láminas métrico                                 | \$5,00              | \$5                |
| 12.  | 10       | Galones de combustible súper                              | \$3,07              | \$30,7             |
| 13.  | 2        | Aceite 2T ENI                                             | \$16,00             | \$32               |
|      |          | TOTAL                                                     |                     | \$ 396,7           |

# 5.2. Presupuesto y financiamiento

# 5.2.1. Costos de pruebas de laboratorio

Los costos de las pruebas de laboratorio realizadas en el dinamómetro y el alquiler del motor a analizar, son especificados en la Tabla 127.

Tabla 127

Costos de pruebas de laboratorio

| Orden | Cantidad | Descripción                       | Costo<br>unitario | Costo total<br>USD |
|-------|----------|-----------------------------------|-------------------|--------------------|
| 1.    | 1        | Uso del dinamómetro               | \$300,00          | \$300,00           |
| 2.    | 1        | Alquiler motor Vortex 2T<br>60 cc | \$ 200,00         | \$ 200             |
| Total |          |                                   |                   | \$500,00           |

### 5.2.2. Costos de Pruebas de Pista

Costo de pruebas de pista

Tabla 128

| Orden       | Cantidad | Descripción                            | Costo<br>unitario | Costo<br>total USD |
|-------------|----------|----------------------------------------|-------------------|--------------------|
| 1.          | 2        | Días de uso de pista del<br>Kartódromo | 25,00             | 50,00              |
| 2.<br>Total | 2        | Equipo de seguridad                    | 20,00             | 40,00<br>90,00     |

# 5.2.3. Costo Total de la Investigación

El costo total del proyecto titulado como: "ANÁLISIS DE PARÁMETROS CARACTERÍSTICOS DEL MOTOR 2T UTILIZADOS EN KARTING VARIANDO LOS PARÁMETROS DE CARBURACIÓN Y ENCENDIDO, VERIFICADOS POR TELEMETRÍA Y SOFTWARE ESPECIALIZADO", resulta de la suma total de los recursos a utilizar, movilidad y costos.

Tabla 129

Costo total del proyecto

| Descripción                      | Costo total USD |
|----------------------------------|-----------------|
| Recursos tecnológicos            | \$ 440          |
| Recursos materiales              | \$ 396,7        |
| Costos de pruebas de laboratorio | \$500           |
| Costos de pruebas de pista       | \$90            |
| Movilidad                        | \$ 10,00        |
| TOTAL                            | \$ 1436,70      |

Para defecto de precisión se suma un 10% de incidentes al valor total de los costos de investigación, dando como resultado \$1580,37

El financiamiento del proyecto se realizó por parte de los investigadores: Jefferson Alexander Asanza Suquillo e Israel Alejandro Romero Pereira.

### Capítulo VI

## 6. Conclusiones y Recomendaciones

### 6.1. Conclusiones

- El consumo específico de combustible en la curva mejorada del Ricardo WAVE
  muestra una diferencia de 0,01960489 kg/kW/hr que son resultado de una
  disminución de la duración de combustión y de la relación de mezcla
  estequiométrica, traducidas en utilizar un ajuste del tornillo de mezcla menor y
  un gap mayor al estándar.
- La mayor potencia se da a 13200 rpm, según el Ricardo WAVE, teniendo una diferencia de 1,53 hp en la curva modificada o mejorada fruto de utilizar una mezcla más rica, aumentar el adelanto al encendido y reducir la duración de combustión, lo que se traduce en una concentración de presión y temperatura reflejados en el diagrama de P-V con 100 psi de diferencia, y en la gráfica LAMBDA con 0,05496 de diferencia en la cantidad de oxígeno.
- Según la simulación del Ricardo WAVE, 14,7 es la mejor relación
   estequiométrica puesto que disminuirla ahoga el motor y aumentarla empobrece
   reduciendo la potencia; un adelanto al encendido más pronunciado mejora la
   potencia del motor puesto que con la curva estándar teniendo un mayor valor de
   CA50 retrasaba el encendido y uno menor lo adelantaba más.
- Los cambios de parámetros de carburación y encendido incrementaron en 10%
  la potencia del motor 2T; en el banco de pruebas la potencia es 6,92 hp,
  verificado por telemetría 7,3 hp y mediante software 7,23 hp; en promedio la
  potencia máxima alcanzada es de 7,15 hp.
- Los cambios de parámetros de carburación y encendido incrementaron en 12%
   el par del motor 2T, en el banco de pruebas el par motor es 5,48 N.m, verificado

- por telemetría 4 N.m y mediante software 4,54 N.m; en promedio el par máximo alcanzado es de 4,67 N.m.
- El libro de carburadores de Castro, manual del carburador Dell Orto y libro de motores de combustión de Jovaj, permitieron sustentar cálculos matemáticos para el carburador, mientras que para el sistema de encendido Selettra y parámetros característicos del motor dos tiempos Vortex 60 cc fueron los pioneros del presente, además de otros libros que fueron complementarios a los ya mencionados.
- La potencia y el par máximo en condiciones iniciales del motor Vortex 2T se midió mediante el banco de pruebas, siendo estas de 5,92 hp la potencia y 4,75
   N.m el par, lo que representa aproximadamente el 60 % de los parámetros, que, en teoría, el fabricante asegura que genera el motor.
- Los parámetros ideales del motor son resultado de cálculos matemáticos en condiciones casi perfectas, es así que la Potencia indicada del motor mini Vortex
   2T es de 8,05 hp y la Potencia efectiva 7,65 hp, torque efectivo 6 N.m, rendimiento mecánico 95% y eficiencia térmica 52,5, gasto específico de combustible 166,5 g/(Kw\*H).
- Un jet principal de 0,91mm y un emulsor de 2,66 mm, logra empobrecer la relación A/F a 1,01, mejorando 12% de potencia y 18% del par de motor.
- El sistema de progresión del carburador denota mejoría al modificar la aguja cónica, bajando la altura de la misma a la muesca N° 1, reduciendo así la entrega de combustible del emulsor al venturi, por ende, empobreciendo la relación A/F plasmado en la cantidad de oxígeno de 0,965 a 1.
- Los parámetros óptimos en el sistema de encendido del motor Vortex 2T son de
   0,65 mm del gap de bujía y tiempo de adelanto al encendido de 3,2 mm

- equivalente a 13,4 ° antes del PMS.
- Las modificaciones realizadas son fruto de cálculos previos desarrollados para mantener limites predefinidos, basándose en el reglamento que rige el motor, es así que el surtidor principal comprenderá un valor entre 90 y 91 mm/100, el emulsor 2,62 a 2,66mm y para el sistema de encendido el gap optimo comprende los valores de (0,55 0,85) mm.
- La cantidad de oxígeno en la mezcla del motor en condiciones estándares es de 0,955, indicando que contiene 14,04 partes de aire y 1 parte de combustible medido en masa lo que se define como relación A/F rica.
- La cantidad de oxígeno en la mezcla del motor modificado en pro de la potencia es de 1,01 representando 14,847 partes de aire y 1 parte de combustible medido en masa, lo que se define como relación A/F relativamente pobre, muy similar a la estequiométrica.
- La velocidad del kart aumento 2 Km/h en altas revoluciones y 5 Km/h en bajas revoluciones, además la potencia incremento en 0,9 hp y el par en 0,1 N.m; dando 0,643 segundos aproximadamente en tiempo por vuelta del piloto, según la telemetría.
- El contraste de potencia es del 3 a 5% con respecto a los resultados finales entre la prueba dinamométrica, software y telemetría.
- El contraste de par motor se da entre 10 a 15% con respecto a los resultados finales entre la prueba dinamométrica, software y telemetría.
- Usar el emulsor AN 262 exige una configuración diferente en el surtidor principal siendo la medida 0,78 mm para un correcto funcionamiento del sistema de aceleración del carburador.

### 6.2. Recomendaciones

- Realizar una simulación de un motor dos tiempos en la interfaz de WAVE Build que sintetiza de manera más práctica los elementos y dinamiza la simulación, además que tiene mayor compatibilidad con el WAVE Post.
- Utilizar el software Ricardo WAVE para hacer un análisis a fondo de transferencia de calor de un motor en distintos ambientes y condiciones, aplicando la mayoría de submodelos del cilindro.
- Desarrollar una simulación de motor con distintos tipos de válvulas que ofrece
   Ricardo WAVE y analizar las gráficas de flujo másico y barrido en el WAVE Post.
- Realizar el análisis de los parámetros característicos del motor dos tiempos
   Vortex en condiciones del nivel del mar.
- Realizar el análisis de los parámetros característicos del motor dos tiempos con un carburador Dell Orto PHBG 17,5BS, disminuyendo el diámetro del venturi a 17,5 mm.
- En el caso de no disponer del equipo telemétrico se recomienda introducir los resultados de las pruebas dinamométricas de un banco de rodillos, aunque estos no sean tan exactos como los de pista.
- Desarrollar las pruebas de telemetría con más de un piloto profesional, en condiciones de pista similares y con un trazado de ruta mayor a 1,3Km, con una pista variada en rectas y curvas para poder analizar el motor a diversas rpm.
- Incursionar un análisis de la igual forma, pero a un motor Junior Vortex aplicando modificaciones a la válvula de potencia, la cual tiene un gran papel en el desfogue de gases de escape.

## Bibliografía

- AIM. (s. f.). Manual-Mychron5-AIM-ESP.pdf.
- Albarracín, J. F. G. (2018). DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE TELEMETRÍA PARA UN KART ELÉCTRICO DE COMPETICIÓN.
- Álvarez Flórez, J. A., Callejón i Agramunt, I., & Forns Farrús, S. (2005). Motores alternativos de combustión interna. Edicions UPC. Recuperado el 20 de junio del 2021, de: http://bibliotecnica.upc.es/edupc/locate4.asp?codi=EM048XXX
- Álvarez Flórez, J. A., Callejón i Agramunt, I., & Forns Farrús, S. (2005). Motores alternativos de combustión interna. Edicions UPC. Recuperado el 22 de junio del 2021, de: http://bibliotecnica.upc.es/edupc/locate4.asp?codi=EM048XXX
- Angulo, J. P. (2006). Diseño y construcción de un sistema de telemetría para un vehículo eléctrico.
- Armas, D., & Vallejo, A. (2013). Implementación de un Sistema de Inyección
   Multipunto Programable en un vehículo a carburador.
- Ávila, A. (2016). Estudio e implementación del dinamómetro de chasis modelo de tracción 2 ruedas del fabricante DYNOCOM. 87.
- Bacca, D. A. (2004). Relación de la proporción combustible-aire y rendimiento de motores de combustión interna. 57.
- Barro, B. (2018). Características particulares de un motor de 2 tiempos frente a uno de 4 tiempos en un buque mercante convencional.
- Bejarano, J. D. M., & Burgos, D. G. V. (2012). DISEÑO, CONSTRUCCIÓN E
   IMPLEMENTACIÓN DE UN SISTEMA DE TELEMETRÍA PARA UN VEHÍCULO DE
   KARTING.
- Carlos M., R. (2013). Oligopolio y competencia mundial en la industria automotriz.
   La emergencia del Toyotismo y la caída del Fordismo. Economía Informa, 383, 107-

- 130. Recuperado el 20 de junio del 2021, de: https://doi.org/10.1016/S0185-0849(13)71344-6
- Castro, M. (2001). Carburadores (Ceac, Vol. 1). Ceac.
- Crespo, P. C. (2015). Plan de negocios para la readecuación y comercialización de una pista de karting en el Cotopaxi Tenis Club.
- Cuenca, R. (2012). Simulación y validación del flujo de aire en un carburador
   Tillotson para un motor de dos tiempos
- Dresler, P., & Richtář, M. (2011). Modelo de simulación del monocilindro. 9.
- EFM (Ed.). (2017). EL MOTOR DE 2 TIEMPOS. 1, 12.
- Estalin, H. J. D., & Alejandro, P. G. D. (2015). Diseño y construcción del sistema de control de ingreso y salida de gases del motor Honda CBR 600 F4I para el prototipo formula SAE 2014.
- Fiallo, F. (2005). Diseño en la mejora de rendimiento de un motor Yamaha 125 refrigerado por aire.
- Granizo, S. J., & Toscano, P. E. (2003). Diseño, construcción y montaje de un banco de pruebas de motores de dos tiempos. 50.
- Guevara, R. (s. f.). SEPARATA DE USO INTERNO MAQUINAS TERMICAS I. En SEPARATA DE USO INTERNO-MAQUINAS TERMICAS I.
- Hamm, G., & Bruk, G. (2001). Tablas de la técnica del automóvil GTZ (Vol. 14).
   Reverte.
- Hinojosa, E. D., & Piña, A. D. (2015). Diseño y construcción del sistema de control de ingreso y salida de gases del motor Honda CBR 600 F4I para el prototipo formula SAE 2014.
- Huaraca, J. L. (2019). Presión atmosférica. Recuperado el 28 de junio del 2021, de: https://es.scribd.com/document/438415740/presion-atmosferica

- INAMHI. (2021). Boletín climatológico mensual.
- León, M. (2009). La termografía en la industria del plástico. Lethwala, Y., Sharma,
   N., & Jain, R. (2019). Simulación de rendimiento del motor de Ricardo WAVE para optimización GTDI. 6.
- Lisbonal, F., Villamil, E., & Barrio, J. C. (s. f.). El Carburador.pdf.
- Manual-Mychron5-AIM-ESP.pdf. (s. f.).
- Parra, D. A. B. (2004). Relación de la proporción combustible-aire y rendimiento de motores de combustión interna. 57.
- Payri, F., & Desantes, M. (2014). Motores de combustión interna alternativa
   (Universidad Politécnica de Valencia, Vol. 18). Reverte. Recuperado el 05 de junio
   del 2021, de: http://polipapers.upv.es/index.php/IA/article/view/3293
- Quezada, P. (2018). Diseño y fabricación del chasis para un KART KF4 según la normativa CIK/FIA.
- Robayo, F. (2016). Sistema de encendido CDI (p. 6).
- Rodríguez, C. (2013). Oligopolio y competencia mundial en la industria automotriz. La emergencia del Toyotismo y la caída del Fordismo. Economía Informa, 383, 107-130. Recuperado el 20 de julio del 2021, de: https://doi.org/10.1016/S0185-0849(13)71344-6
- Ruiz, R. (2007). EL METODO CIENTÍFICO Y SUS ETAPAS.
- Santiago, P. P. K., & Vladimir, P. Y. E. (2012). Diseño y Construcción de un Sistema de Medición de Consumo Específico de Combustible con la Utilización de un Software para la Optimización del Dinamómetro del Laboratorio de Motores
   Diesel—Gasolina. 174.
- Sanz Acebes, S. (2007). Motores. Ed. Editex.
- Savage, J. (2008). Manual Carburador Dell"Orto.pdf.

- Software, R. (2019). Help GUIDE.
- Suasnavas, V., Cando, I., Torres, G., & Rocha, J. (2016). DISEÑO Y
   CONSTRUCCIÓN DE UN BANCO DE PRUEBAS DINAMOMÉTRICO PARA
   MOTOS DE 125 CENTÍMETROS CÚBICOS. 9.
- Terán, E. S. A., & Rivadeneira, R. J. A. (2013). Diseño y construcción del bastidor y sistema de suspensión de un Car-Cross monoplaza para servicio turístico.
- Vortex, E. (2017). Reglamento técnico 2017. En Reglamento técnico 2017 mini
   ROK (Vol. 1, p. 23). RokCup.
- Vortex, E. (2019). Motores Vortex Manual del propietario (Vol. 1). OTK Factory.

**Anexos**