ESCUELA POLITÉCNICA DEL EJÉRCITO CARRERA DE INGENIERÍA EN CIENCIAS AGROPECUARIAS "GRAD. CARLOMAGNO ANDRADE PAREDES"

"EFECTO DE UBIQUINONA SOBRE LA CURVA DE OXIMETRÍA E INCIDENCIA DE ASCÍTIS EN POLLOS BROILER CRIADOS A 2600 msnm"

FRANCISCO XAVIER GORDILLO JARAMILLO

INFORME TÉCNICO DEL PROYECTO DE INVESTIGACIÓN PRESENTADO COMO REQUISITO PARA OPTAR AL TÍTULO DE INGENIERO AGROPECUARIO

SANGOLQUÍ – ECUADOR 2007

"EFECTO DE UBIQUINONA SOBRE LA CURVA DE OXIMETRÍA E INCIDENCIA DE ASCÍTIS EN POLLOS BROILER CRIADOS A 2600 msnm"

FRANCISCO XAVIER GORDILLO JARAMILLO

REVISADO Y APROBADO:

Ing. Norman Soria COORDINADOR DE CARRERA DE CIENCIAS AGROPECUARIAS

Ing. Rómulo Falconí
DIRECTOR INVESTIGACIÓN

Ing. Mario Ortíz CODIRECTOR INVESTIGACIÓN

Ing. MsC. Marco Luna BIOMETRISTA

Ab. Carlos Orozco SECRETARIO ACADÉMICO

"EFECTO DE UBIQUINONA SOBRE LA CURVA DE OXIMETRÍA E INCIDENCIA DE ASCÍTIS EN POLLOS BROILER CRIADOS A 2600 msnm"

FRANCISCO XAVIER GORDILLO JARAMILLO

APROBADO POR LOS SEÑORES MIEMBROS DEL TRIBUNAL DE CALIFICACIÓN DEL INFORME TÉCNICO

	CALIFICACIÓN	FECHA
Ing. Rómulo Falconí DIRECTOR INVESTIGACIÓN		
Ing. Mario Ortíz CODIRECTOR INVESTIGACIÓN		

CERTIFICO QUE ESTAS CALIFICACIONES FUERON PRESENTADAS EN ESTA SECRETARIA

Ab. Carlos Orozco SECRETARIO ACADÉMICO

"EFECTO DE UBIQUINONA SOBRE LA CURVA DE OXIMETRÍA E INCIDENCIA DE ASCÍTIS EN POLLOS BROILER CRIADOS A 2600 msnm"

2007

DEDICATORIA

A Carmita, Cristy, Miki y Washo, los mejores compañeros, amigos y cómplices.

AGRADECIMIENTO

A todo el equipo del Departamento de Investigación y Desarrollo de Pronaca Puembo, a los ingenieros, Rómulo Falconí, Mario Ortiz y Marco Luna, todo el equipo de trabajo del Centro de Biomedicina de la Universidad Central del Ecuador y a todos aquellos que colaboraron con la realización de este trabajo.

ESCUELA POLITÉCNICA DEL EJÉRCITO

CARRERA DE INGENIERÍA EN CIENCIAS AGROPECUARIAS, I.A.S.A "GRAD. CARLOMAGNO ANDRADE PAREDES"

"EFECTO DE UBIQUINONA SOBRE LA CURVA DE OXIMETRÍA E
INCIDENCIA DE ASCÍTIS EN POLLOS BROILER CRIADOS A 2600 msnm

FRANCISCO XAVIER GORDILLO JARAMILLO

INFORME TÉCNICO DEL PROYECTO DE INVESTIGACIÓN

2007

El Prado, 2 de Mayo de 2007

Por medio del presente documento autorizó a quién corresponda a publicar mi proyecto de investigación titulado"EFECTO DE UBIQUINONA SOBRE LA CURVA DE OXIMETRÍA E INCIDENCIA DE ASCÍTIS EN POLLOS BROILERS CRIADOS A 2600 msnm", en la página Web de la Escuela Politécnica del Ejercito, ESPE.

Xavier Gordillo

EGRESADO

INDICE:

Estracto	1
Abstract	3
I. INTRODUCCIÓN	5
1.1 Objetivo general	6
1.2 Objetivos específicos	6
II. REVISIÓN BIBLIOGRÁFICA	7
2.1 Ubiquinona	7
2.1.1 Definición	7
2.1.2 Historia	10
2.1.3 Fosforilación oxidativa	18
2.1.4 Ciclo Q	23
2.1.5 Dosis	24
2.2 Síndrome ascítico	24
III. MATERIALES Y MÉTODOS	29
3.1 Localización	29
3.2 Instalaciones	30
3.3 Materiales y equipos	32
3.4 Metodología	32
3.4.1 Pesaje	32
3.4.2 Oximetría y frecuencia cardiaca	32
3.4.3 Hematocrito	34
3.4.4 HPLC	35
3.4.4.1 Determinación de ubiquinona en corazones	35
3.4.4.2 Extracción de ubiquinona	35

3.4.4.3 Curva estándar	36
3.5 Tratamientos	36
3.5.1 Manejo Sierra	37
3.5.2 Manejo Costa	38
3.5.3 Esquema de distribución en el campo	39
3.5.4 Factores de estudio	39
3.5.4.1 Tratamientos	39
3.6 Procedimientos	40
3.6.1 Diseño experimental	40
3.6.2 Datos obtenidos	41
3.6.3 Hipótesis	41
3.6.4 Características de las unidades experimentales	42
IV. RESULTADOS Y DISCUSIÓN	43
4.1 Oximetría	43
4.2 Frecuencia cardiaca	47
4.3 Hematocrito	49
4.4 Pesos	51
4.4.1 Análisis de costos fijos y variables	58
4.5 HPLC	59
V. CONCLUSIONES	60
VI. RECOMENDACIONES	62
VII BIBLIOGRAFÍA	63
VIII ANEXOS	68
INDICE DE FIGURAS	
FIGURA 1: Estructura de la molécula de ubiquinona	9

FIGURA 2: La ubiquinona y su cadena isoprenoide	9
FIGURA 3: Bioquímica de la fosforilación oxidativa	22
INDICE DE CUADROS	
CUADRO 1: Esquema de los tratamientos	36
CUADRO 2: Programa de alimentación sierra	37
CUADRO 3: Programa de luz sierra	37
CUADRO 4: Programa de vacunación sierra	37
CUADRO 5: Programa de Temperatura sierra	37
CUADRO 6: Programa de alimentación costa	38
CUADRO 7: Programa de vacunación costa	38
CUADRO 8: Programa de luz costa	38
CUADRO 9: Programa de temperatura	38
CUADRO 10: Distribución de los tratamientos en el campo	39
CUADRO 11: Análisis de variancia de oximetría 10	43
CUADRO 12: Análisis de variancia de oximetría 20	44
CUADRO 13: Análisis de variancia de frecuencia cardiaca 10	47
CUADRO 14: Análisis de variancia de frecuencia cardiaca 30	48
CUADRO 15: Análisis de variancia de frecuencia cardiaca 40	48
CUADRO 16: Análisis de variancia de hematocrito 30	50
CUADRO 17: Análisis de variancia peso 1	51
CUADRO 18: Análisis de variancia peso 7	52
CUADRO 19: Análisis de variancia peso 14	52
CUADRO 20: Análisis de variancia peso 21	53
CUADRO 21: Análisis de variancia peso 28	54
CUADRO 22: Análisis de variancia peso 35	54

CUADRO 23: Análisis de variancia peso 42	55
CUADRO 24: Análisis de variancia peso 45	56
INDICE DE TABLAS	
TABLA 1: Parámetros zootécnicos al final del ciclo	57
TABLA 2: Parámetros zootécnicos T2 vs T3	58
TABLA 3: Costos fijos	58
TABLA 4: Costos variables	59
TABLA 5: producción anual	59

EXTRACTO

La presente investigación fue realizada en la Provincia de Pichincha, en el Cantón Quito, en la Parroquia de Puembo, en el Galpón Experimental del Departamento de Investigación y Desarrollo de Pronaca, con una altura aproximada de 2600 m.s.n.m., y una temperatura promedio de 18 °C.

El objetivo de este trabajo fue determinar el efecto de la ubiquinona sobre la curva de la oximetría, y reducir la mortalidad por causa del síndrome ascítico. Esto se llevó a cabo con 16 jaulas de 2,90 x 1,37 m (4 m²), cada una con 48 pollos, en total 768 machos de la línea Ross 308. Estas fueron las unidades experimentales.

Los factores a evaluarse fueron: el manejo y el nivel de ubiquinona. Por lo que se utilizó un diseño bifactorial completamente al azar. Para establecer el factor de manejo se tomó como referencia el manejo realizado en costa y sierra del Ecuador. El manejo sierra, posee un programa de alimentación restringido, con una presentación en polvo para el engorde 1 y 2, y en pellet de 4 mm para los engordes 3 y 4; con un programa de 12 horas de luz diarias desde la segunda semana, ya que para ambos manejos la primera semana la presencia de luz es permanente. Mientras que para el manejo costa se cuenta con un programa de alimentación ad limitum, con una presentación migajeada para los engordes 1 y 2 y una presentación en pellet de 4mm en engordes 3 y 4; con un programa de luz, de 18 horas al día desde el día 8 al 18; 20 horas al día desde el día 19 al 28 y 22 horas de luz diarias del día 29 en adelante. El programa de vacunación y temperatura fueron iguales para ambos manejos. De esta manera el manejo costa, tendría predisposición a la presencia de ascítis, además de que la altura

ya interviene como un factor natural predisponente. En cada manejo se aplicaron dos niveles de ubiquinona, 40 mg CoQ10 / Kg de peso vivo, frente a un control con nivel cero.

Se tomaron medidas de peso cada semana, y de oximetría, frecuencia cardiaca y hematocrito cada 10 días. Al final del ciclo se tomo una muestra de 10 corazones de cada tratamiento, para ser analizados por medio de HPLC, y determinar la cantidad de ubiquinona en el tejido muscular de los mismos.

El experimento tuvo una duración de 45 días, día que las aves fueron faenadas.

Con los datos obtenidos se realizó un análisis estadístico, aplicando la prueba de Duncan, estableciendo diferencias significativas para el manejo y para el nivel de ubiquinona en los distintos tratamientos.

Al final se analizaron los parámetros zootécnicos para determinar las ventajas y los beneficios del manejo y la aplicación de ubiquinona, obteniendo como resultados que el manejo costa con ubiquinona permite obtener pollos de 2.2 Kg a los 37 días con una mortalidad del 7,29%, mientras que el tratamiento control del manejo sierra alcanzó dicho peso en 45 días con una mortalidad de 4,17%.

Posteriormente se realizó un análisis económico de cada tratamiento que permitió ver que el tratamiento todavía no es posible el uso de ubiquinona a nivel comercial.

ABSTRACT

The present investigation was made in the Province of Pichincha, the Parish of Puembo, the Experimental Shed of the Department of Investigation and Development of Pronaca, with 2600 an approximated height, and one temperature 18 average of °C.

The objective of this work was to determine the effect of ubiquinona on the curve of the oximetría, and to reduce mortality because of the ascític syndrome. This was carried out with 16 cages of 2.90 xs 1.37 ms (4 m²), each one with 48 chickens, altogether 768 males of the line Ross 308. These were the experimental units.

The factors to evaluate itself went: the handling and the level of ubiquinona. Reason why a bifactorial design was used completely at random. In order to establish the handling factor it was taken as reference the handling made in coast and mountain range from Ecuador. The handling mountain range, has a restricted program of feeding, with a presentation in dust for fattening 1 and 2, and in pellet of 4 mm for fattening 3 and 4; with a program of 12 hours of light daily from the second week, since for both handlings the first week the light presence is permanent. Whereas for the handling coast ad is counted on a program of feeding limidum, on a presentation migajeada for fattening 1 and 2 and one presentation in pellet of 4mm in fattening 3 and 4; with a program of light, 18 hours to the day from day 8 to the 18; 20 hours to the day from day 19

to the 28 and 22 daily hours of light of day 29 in ahead. The program of vaccination and temperature was equal for both handlings. This way the handling coast, would have predisposition to the presence of ascítis, in addition of which the height already takes part like a predisponente natural factor. In each handling two levels of ubiquinona were applied, 40 mg CoQ10/kg of alive weight, in front of a control with level zero.

They took measures from weight every week, and oximetría, frequency cardiac and hematocrito every 10 days. At the end of the cycle volume a sample of 10 hearts of each treatment, to be analyzed by means of HPLC, and to determine the amount of ubiquinona in the muscular weave of such.

The experiment lasted of 45 days, day that the birds were killed. With the collected data a statistical analysis was made, applying to the test of Duncan, establishing significant differences for the handling and the level of ubiquinona in the different treatments. In the end the zootécnicos parameters were analyzed to determine the advantages and the benefits of the handling and the application of ubiquinona, obtaining like results that the handling coast with ubiquinona allows to obtain chickens of 2,2 kg to the 37 days with a mortality of 7.29%, whereas the treatment control of the handling mountain range reached this weight in 45 days with a mortality of 4,17%.

Later an economic analysis of each treatment was made that allowed to see that the treatment still is not possible the use of ubiquinona at commercial level.

I. INTRODUCCIÓN

En el presente trabajo encontrará datos sobre el efecto de la ubiquinona en la producción de pollos broiler a 2600 m.s.n.m., sobre la incidencia de ascítis. Para lo cual fueron colocados 48 pollos de 1 día de edad, en 16 jaulas, separados en dos bloques, según el manejo costa y sierra del Ecuador, con una dosis de 40 mg Q10/Kg de peso vivo, contra un testigo, en cada bloque. Tomando mediciones cada diez días de: frecuencia cardiaca, oximetría, hematocrito; y, al final del ciclo una cromatografía líquida de alta presión (HPLC) para determinar los niveles de ubiquinona en cada tratamiento; a parte de los parámetros zootécnicos productivos que nos servirán para evaluar los beneficios de la ubiquinona a través de la incidencia de ascítis, porcentaje de mortalidad y, nos permitirá realizar un análisis económico de su uso en la producción de carne de pollo, especialmente en la altura.

La ubiquinona o Q10 como se la conoce es una coenzima esencial en la respiración celular, la transferencia de electrones y en el control de los procesos de oxidación actuando como <u>antioxidante</u>. A la cual se le atribuye efectos benéficos en los tratamientos de enfermedades cardiovasculares en humanos, los cuales podrían reducir la mortalidad causados por la ascitis en pollos.

La ascítis es una enfermedad cadiovascular que se presenta a partir de la cuarta semana, causando pérdidas económicas significativas ya que al síndrome ascítico en nuestro país, se le atribuye el 33% de todas las causas de mortalidad, especialmente en planteles de la sierra ubicados sobre los 2000 m.s.n.m.

Los objetivos de esta investigación fueron:

1.1 Objetivo general

Determinar la relación entre la curva de oximetría, suministro de ubiquinona e incidencia de ascítis.

1.2 Objetivos específicos

- Medir la curva de oximetría en aves normales sin ningún tratamiento.
- Evaluar la respuesta de la curva de oximetría a la inclusión de ubiquinona..
- Medir la curva de oximetría en aves que presentan ascitis con y sin inclusión de ubiquinona.
- Determinar si la inclusión de ubiquinona reduce la incidencia de ascitis
- Determinar si existen diferencias en hematocrito, peso y mortalidad en aves de cada tratamiento.
- Determinar los niveles de ubiquinona de los tratamientos por una cromatografía liquida de alta presión (HPLC).
- Realizar un análisis económico de los dos tratamientos.

Meta del proyecto

 Determinar si es recomendable el uso de ubiquinona para reducir la mortalidad por incidencia de ascitis en planteles avícolas sobre los 2000 msnm.

II. REVISIÓN BIBLIOGRÁFICA

2.1 UBIQUINONA

2.1.1 Definición

La Coenzima Q10 (CoQ10), también conocida como Ubiquinona o Ubidecaredona, es sintetizada intracelularmente y es esencial para el organismo ya que participa en una variedad de procesos celulares. Se encuentra principalmente en el interior de las membranas mitocondriales, y en mayor concentración, a nivel del corazón, hígado, riñones y páncreas. La cantidad total de Coenzima Q10 en el organismo es de 0,5 a 1,5g.

Esta sustancia es una quinona soluble en grasas y posee características similares a las de una vitamina. Tiene un rol significativo en la transferencia de electrones a nivel mitocondrial y en la síntesis de ATP debido a que sirve como transportador móvil de electrones en los procesos de respiración y fosforilación oxidativa. Por su acción antioxidante, la Coenzima Q10 también puede actuar directamente estabilizando las membranas y eliminar radicales libres. Se han relacionado las deficiencias de Coenzima Q10 con una variedad de alteraciones y condiciones que incluyen entre ellas: insuficiencia cardiaca congestiva, hipertensión, hemodiálisis crónica, alteraciones mitocondriales y enfermedades periodontales.

La ubiquinona, conocida también como: CoQ10 o 2,3 – dimethoxy, 5-methyl, 6-polyisopreno parabenzoquinona, ubiquinona; está presente en todas las membranas de la célula (Kalén, 1987). La ubiquinona (CoQ10) sustancia similar en la estructura a la Vitamina K. Aislada en su forma pura en 1957, los investigadores encontraron que era una sustancia esencial en la respiración celular, la transferencia de electrones y en el control de los procesos de oxidación actuando como <u>antioxidante</u>. Se le atribuyen efectos benéficos que

sugieren que la CoQ10 puede ser útil en los tratamientos de enfermedades cardiovasculares, incluidas la angina de pecho (angor pectoris) y en la enfermedad congestiva cardíaca.

Deficiencias de CoQ10 fueron reportadas en un 60% a 96% de pacientes con gingivitis (inflamación de las encías). Niveles deficientes de esta enzima han sido hallados en la diabetes, enfermedad periodontal y distrofia muscular. Disminuye con la edad y en la esclerosis múltiple. (Borek, 2005)

Esta coenzima es sintetizada a partir de farnesil pirofosfato. Al igual que el FMN, la CoQ es capaz de aceptar y donar uno o dos electrones porque su forma semiquinona es estable. A su forma oxidada se le conoce como ubiquinona (de ubicuo, *lat. ubique*, en todas partes) o quinona. A su forma reducida se le conoce como QH₂, ubiquinol o hidroquinona. A la coenzima solo parcialmente reducida se le conoce como ubisemiquinona, semiquinona o QH• .(Borek, 2005)

Figura 1: Representación de la molécula de CoQ.A la derecha de la reacción en su forma oxidada y a la izquierda en su forma reducida o ubiquinol.

La síntesis de la CoQ se lleva a cabo a través de unidades isoprenoides.

Figura 2: la CoQ se produce a partir de isoprenoides.

Está presente naturalmente en alimentos y también se sintetiza a veces en el cuerpo. La CoQ10 se encuentra además en cantidades pequeñas en una variedad amplia de alimentos y se sintetiza en todos los tejidos finos. La biosíntesis de CoQ10 del aminoácido tirosina es un proceso gradual que requiere por lo menos ocho vitaminas y varios elementos de rastro. Las coenzimas son los cofactores de los cuales las enzimas comparativamente grandes y complejas dependen absolutamente para su función. La coenzima Q10 es la coenzima que sirve como transportador de electrones entre los tres complejos (complejos I, II y III) así como las enzimas en otras partes de la célula. Las enzimas mitocondriales que intervienen en la fosforilación oxidativa son esenciales para la producción del fosfato de gran energía, el trifosfato de adenosina (ATP), del cual dependen todas las funciones celulares. Las

funciones de la transferencia del electrón y del protón del anillo de la quinona son de importancia fundamental en todas las formas de vida; ubiquinona en las mitocondrias de animales, plastoquinona en el cloroplasto de plantas, y menaquinona en bacterias. El término "bioenergéticas" se ha utilizado para describir el campo de la bioquímica que miraba específicamente la producción energética celular. En el campo relacionado de la química del radical libre, CoQ10 se ha estudiado en su forma reducida como antioxidante (Littarru 1994).

2.1.2 Historia

La historia de la CoQ10 primero fue aislada de las mitocondrias del corazón de la carne de vaca con el Dr. Frederick Crane de Wisconsin, los E.E.U.U., en 1957. El mismo año, profesor Morton de Inglaterra definió un compuesto obtenido del hígado deficiente de la rata de la vitamina A igual que CoQ10. Profesor Morton introdujo el ubiquinone conocido, significando la quinona ubicua. En 1958, profesor Karl Folkers y compañeros de trabajo en Merck, Inc., determinaron la estructura química exacta de CoQ10: 2.3 benzoquinone del decaprenil de dimetoxi-5 metil-6, sintetizada, era la primera para ser producida por la fermentación. En 1960, el profesor Yamamura en Japón, fue el primero en el mundo en utilizar la coenzima Q7 (un compuesto relacionado) en el tratamiento de la enfermedad humana: paro cardíaco congestivo. En 1966, Mellors y Tappel demostraron que CoQ6 reducida era un antioxidante eficaz. En 1972 Gian Paolo Littarru de Italia junto al profesor Karl Folkers documentó una deficiencia de CoQ10 en la enfermedad cardíaca humana. A mediados de los años setenta, el japonés perfeccionó la tecnología industrial para producir CoQ10 puro, en las cantidades suficientes para ensayos clínicos más grandes.

Peter Mitchell recibió el premio Nobel en 1978 para su contribución a la comprensión de la transferencia de energía biológica con la formulación de la teoría quimiosmótica, que incluye el papel de la CoQ10 como transportador de protones en los sistemas de transferencia de energía. A principios de los años 80, había una aceleración considerable en el número y el tamaño de ensayos clínicos. Éstos dieron lugar, a parte de la disponibilidad de CoQ10 puro en cantidades grandes de las compañías farmacéuticas en Japón y de la capacidad de medir directamente CoQ10 en sangre y de tejido fino por cromatografía líquida del alto rendimiento. Lars Ernster de Suecia, agrandado sobre importancia de CoQ10's como limpiador del radical antioxidante y libre. El Profesor Karl Folkers recibió la medalla de la sociedad química americana en 1986 y la medalla nacional de la ciencia del presidente Bush en 1990 por su trabajo con CoQ10 y otras vitaminas (Littarru 1994).

Los niveles normales de ubiquinona han sido establecidos por numerosos investigadores alrededor del mundo. Los niveles perceptiblemente disminuidos de ubiquinona se han observado en una variedad amplia de enfermedades, en estudios de animales y del ser humano. La ingestión dietética disminuida se presume en la desnutrición crónica y caquexia. Karl Folkers toma la posición que la fuente dominante de CoQ10 en hombre es biosíntesis. Este complejo, requiere por lo menos siete vitaminas (vitamina B2 - riboflavina, vitamina B3 - niacinamide, vitamina B6, ácido folic, vitamina B12, vitamina C, y ácido pantoténico) y varios elementos de rastro, está, al lado de su naturaleza, altamente vulnerable. Esto significaría que ese promedio o niveles "normales" de ubiquinona son realmente bajos y los niveles muy bajos observados en estados avanzados de la enfermedad representan solamente la extremidad de

una deficiencia "tempano de hielo". Los inhibidores de la reductasa de HMG-CoA trataban niveles elevados del colesterol de la sangre bloqueando la biosíntesis del colesterol también bloquean la biosíntesis de ubiquinona. En pacientes con paro cardíaco ésta es más que una observación del laboratorio. Tiene un efecto dañino significativo que se pueda no aceptar por suministración oral de ubiquinona. El consumo creciente del cuerpo de ubiquinona es la causa presumida de los niveles bajos de ubiquinona en la sangre considerados en el esfuerzo excesivo, el hipermetabolismo, y estados agudos del choque. Es probable que los tres mecanismos (ubiquinona dietético escaso, la biosíntesis deteriorada ubiquinona, y la utilización excesiva de ubiquinona) sean operables a los grados que varían en la mayoría de los casos de la deficiencia de ubiquinona observada (Langsljoen 1994).

El tratamiento de enfermedades cardiacas con ubiquinona es muy conocido para ser concentrado altamente en las células del músculo del corazón debido a las altas necesidades energéticas de este tipo de la célula. Los últimos 14 años, la gran cantidad de trabajo clínico con ubiquinona se ha centrado en enfermedades cardíacas. Específicamente, el paro cardíaco congestivo (de una variedad amplia de causas) se ha correlacionado fuertemente con los niveles perceptiblemente bajos de ubiquinona en la sangre y el tejido fino. La severidad del paro cardíaco correlaciona con la severidad de la deficiencia ubiquinona. Esta deficiencia de ubiquinona puede ser que sea un factor etiológico primario en algunos tipos de disfunción del músculo del corazón mientras que en otros puede ser un fenómeno secundario. Si es primaria, secundaria o ambas, esta deficiencia de ubiquinona parece ser un factor tratable importante en la progresión de manera inexorable del paro cardíaco. Iniciar ensayos con

ubiquinona en paro cardíaco implicó sobre todo a pacientes con el músculo débil dilatado del corazón de la causa desconocida (cardiomiopatía dilatada idiopatica). La ubiquinona fue agregada a los tratamientos estándares para el paro cardíaco tales como píldoras líquidas (la diurética), preparaciones de la digital (Lanoxin). Varios ensayos implicaron la comparación entre suplementos de ubiquinona y el placebo en la función del corazón según lo medido por la ecocardiografía. La ubiquinona fue suministrada por vía oral en dosis divididas como tableta seca masticada con un alimento que contenía aceite durante las comidas. La función del corazón, según lo indicado por la fracción de la sangre bombeada del corazón, con cada golpe (la fracción de la eyección), demostrando una mejora gradual y sostenida a tiempo con una mejora gradual v sostenida en los síntomas de los pacientes de la fatiga, del dolor de pecho, v de las palpitaciones. El grado de mejora era de vez en cuando dramático con algunos pacientes que desarrollaban un tamaño y una función normales del corazón con ubiquinona solamente. La mayoría de estos casos dramáticos eran los pacientes que comenzaron con poca ubiquinona después del inicio del paro cardíaco congestivo. Los pacientes con enfermedad establecida demostraron con frecuencia la mejora claramente pero no una vuelta al tamaño normal y a la función del corazón. Internacionalmente, ha habido por lo menos nueve estudios controlados placebo en el tratamiento de la enfermedad cardíaca con ubiquinona: dos en Japón, dos en los Estados Unidos, dos en Italia, dos en Alemania, y uno en Suecia. Los nueve de estos estudios han confirmado la eficacia de ubiquinona así como su seguridad notable. Ahora ha habido ocho simposios internacionales sobre los aspectos biomédicos y clínicos de la ubiquinona (a partir el 1976 a 1993). Estos ocho simposios abarcados sobre 300 papeles presentaron por aproximadamente 200 diversos

médicos y científicos a partir de 18 diversos países. La mayoría de estos papeles científicos eran japoneses (el 34%), con el americano (el 26%), el italiano (el 20%) y el 20% restante de Suecia, de Dinamarca, de Alemania, de Reino Unido, de Bélgica, de Australia, de Austria, de Francia, de la India, de Corea, de Países Bajos, de Polonia, de Suiza, de URSS, y de Finlandia. La mayoría de los estudios clínicos se refirió al tratamiento de la enfermedad cardíaca y era notable constante en sus conclusiones: ese tratamiento con CoQ10 mejoró perceptiblemente la función del músculo del corazón mientras que no producía ningunos efectos nocivos o interacción de la droga. Debe ser mencionado que una disminución leve de la eficacia del deluente de la sangre, coumadin, fue observada de un caso por un clínico noruego. Esta droga posible - la interacción ubiquinona no ha sido observada por otros investigadores incluso al usar dosis mucho más altas de ubiquinona por hasta siete años y la participación de 25 pacientes trató con el coumadin concomitante con ubiquinona. La eficacia y la seguridad de ubiquinona en el tratamiento del paro cardíaco congestivo, está relacionada con las cardiomiopatías primarias o las formas secundarias del paro cardíaco, parecen ser establecidas. El estudio más grande hasta la fecha es el ensayo italiano del multicentro, por Baggio 1994, implicando a 2664 pacientes con el paro cardíaco. El trabajo más reciente del paro cardíaco examinó el efecto de ubiquinnona en la disfunción diastólica, una de las muestras identificables más tempranas de la falta del miocardio que se encuentra a menudo en el prolapso de la válvula mitral, la enfermedad cardíaca hipertensa y ciertos síndromes de la fatiga. La disfunción diastólica se pudo considerar el denominador común y una causa básica de síntomas en estos tres grupos de diagnóstico de la enfermedad. El diástole es la fase que llena del ciclo cardiaco. La función

diastólica tiene una necesidad energética celular más grande que la contracción sistólica y, por lo tanto, el proceso de la relajación diastólica es más altamente energía dependiente y así más altamente dependiente con ubiquinona. Términos más simples, toma más energía para completar el corazón que vaciarlo. La disfunción diastólica es el atiesarse del músculo del corazón que interfiere con la capacidad del corazón de funcionar como una bomba eficaz. Se ve temprano en el curso de muchos desórdenes cardiacos comunes y es demostrable por la ecocardiografía. Esto que se atiesa vuelve hacia normal con suplementación de ubiquinona a tiempo con la mejora clínica. En un estudio por Langsjoen (1994) de 109 pacientes con la hipertensión esencial, los 51% podían parar entre una y tres drogas del antihipertensivos en un promedio de 4.4 meses después del tratamiento que comenzaba con ubiquinona mientras que la clase funcional total de la asociación del corazón de Nueva York (NYHA) mejoró perceptiblemente de un medio de 2.40 a 1.36. Se reduce la hipertensión cuando la función diastólica mejora. En otro estudio (Folkers 1990), había una disminución gradual y sostenida de la dosificación o de la discontinuación de la terapia de droga cardiovascular concomitante: De 424 pacientes con enfermedad cardiovascular, los 43% podían parar entre una y tres drogas cardiovasculares con la terapia con ubiquinona. Los autores concluyen que vitamina-como la sustancia, ubiquinona, "pueden llevar en la nueva era del tratamiento de celular/bioquímico de la enfermedad, la complementación y acercamiento orientado al sistema, macro y microscópico que nos ha servido bien a este punto". (Folkers 1990)

La ubiquinona es esencial para la generación de la energía y la protección antioxidante. Se hace en el cuerpo y se concentra en mitocondria. Los niveles

ubiquinona disminuyen con la edad, que puede afectar más el corazón, el cerebro y los músculos mitocondria-ricos. Los niveles reducidos ubiquinona debido al envejecimiento así como algunas condiciones de la enfermedad se pueden superar por la suplementación. Animales más viejos que reciben una dosis de ubiquinona creciente nivelan en su sangre y cerebro, y los suplementos de ubiquinona pueden ayudar a seres humanos de la misma manera. Los estudios clínicos demuestran que ubiquinona mejora algunas formas de enfermedad cardíaca y puede ayudar a proteger contra enfermedades neurodegenerativas en seres humanos, como hace en animales. La ubiquinona está presente en todos los alimentos que comemos. Las fuentes dietéticas ricas incluyen las almendras, los salmones del océano, las sardinas, espinaca y los órganos y el músculo de la carne-especial que contienen altos niveles de mitocoondria tales como corazón y otros músculos.

La ubiquinona energiza el corazón y el cerebro (Borek, 2005). Además de eso uno de los alimentos antioxidantes más populares y solicitados por los consumidores es la ubiquinona, que está denominado como la coenzima Q10, un cofactor soluble en la grasa en el metabolismo que desempeña un papel dominante en las vidas de células. Las variedades mejores vienen en una base de aceite, solubilizado, la forma de la gelatina-capsula, que estudia la demostración es más adecuadas en seres humanos que las formas polvobasadas del nutriente. En una mano, es esencial para generar la energía en mitocondria, los centros de la energía de virtualmente cada célula. Por otra parte, es parte del sistema de defensa antioxidante de la célula, que protege contra los subproductos tóxicos del oxígeno hechos durante metabolismo. La ubiquinona se hace en células humanas y se encuentra en las células de los animales y de las plantas que abarcan nuestra dieta diaria. Debido a su

presencia extensa y ubicua, Co-Q10 también se llama ubiquinona. La ubiquinona fue aislada de los mitocondria del corazón en 1957 en la universidad de Wisconsin, Madison, e identificado como transportador del electrón debido a su capacidad de transportar electrones a través de la membrana mitocondrial esto ocurre en un proceso de cadena de la respiración en el cual las moléculas de la energía de los alimentos sean quemadas (oxidado) por el oxígeno que respiramos para producir las unidades de la energía del trifosfato de adenosina, o del ATP. La ubiquinona tiene acciones antioxidantes similares a las de otros antioxidantes solubles en la grasa tales como vitamina E, radicales libres del barrido y oxidación de la prevención de lípidos y de otras moléculas. En experimentos del prueba-tubo, las ayudas de ubiquinona mantienen el estado antioxidante de la vitamina E y hacen posiblemente así que en el cuerpo químico protector los efectos de ubiquinona fueron divulgados recientemente en un estudio pequeño de 24 trabajadores de producción en la industria de la pintura y de la laca de Polonia que había elevado concentraciones del suero de lípidos oxidados. Aunque pocos detalles fueron dados, el estudio concluyó que cuatro semanas de suplementación de ubiquinona ayudaban para reducir niveles de productos de peroxidación del lípido de la sangre después de la exposición al químico 6 radical que se produce libre con la edad, los daños de radicales libres acumula en los tejidos finos, aumentando susceptibilidad a muchas enfermedades y condiciones relativas a la edad. El envejecimiento también se asocia a una disminución de los niveles ubiquinona tanto en el interior como en el exterior los mitocondria, que afecta la protección antioxidante y energética el cerebro, el corazón y los músculos, más ricos de mitocondria, es el más afectado por esta declinación relativa a la edad.

2.1.3 Fosforilación oxidativa

La síntesis de ATP impulsada por la transferencia de electrones hacia el O2. Éste es el proceso de transfusión de energía más importante, junto con la fotofosforilación, ya que son los procesos que sintetizan la mayor cantidad de ATP en los organismos aeróbicos (Matews 2004)

Los electrones van a fluir desde intermediarios catabólicos hacia el oxígeno para la formación de energía que lleva a la formación de ATP a partir de ADP y Pi. Así, las moléculas formadas en éstos procesos se van a reoxidar, generando energía para la síntesis de ATP. La glucosa en un sistema anaeróbico va a formar dos moléculas de ATP, NADH y piruvato. Este piruvato en un sistema aeróbico va a transformarse en acetil coA, que en el ciclo del ácido cítrico forma éstas moléculas transportadoras de electrones (NADH y FADH2), así como también los procesos de oxidación de aminoácidos que van a dar origen a éstas moléculas reducidas, la oxidación de ácidos grasos y posteriormente éstas moléculas que entran también en algunos casos al ciclo del ácido cítrico, van a entrar a la cadena respiratoria para formar ATP y reducir al O2 para formar agua, recobrando posteriormente los transportadores de electrones nuevamente oxidados.

La formación de piruvato ocurre en el citosol, y éstos procesos, tanto el ciclo del ácido cítrico, y la oxidación ocurren en el interior de la mitocondria.

Las mitocondrias son organelos presentes en las células eucariontes. Tienen una membrana externa y una interna altamente plegada, formando las crestas mitocondriales. En el interior está la matriz mitocondrial, donde ocurre la oxidación y el ciclo de Krebs. En la membrana interna ocurre la fosforilación oxidativa y se encuentra la cadena transportadora de electrones. Entre ambas membranas existe el espacio intermembrana (Matews 2004)

En la membrana interna tenemos los complejos que forman la cadena transportadora de electrones y la enzima que va a formar ATP a partir de ADP y Pi.

Existen algunas enzimas asociadas a la membrana externa que participan en procesos como la desaturación de ácidos grasos, síntesis de fosfolípidos, y posee también algunas monoaminooxidasas que participan en el metabolismo de los diacilgliceroles. En la matriz mitocondrial están las enzimas que participan en la oxidación de los ácidos grasos, en la oxidación de aminoácidos y el complejo piruvato deshidrogensa. La membrana interna es bastante permeable, sin embargo posee una permeabilidad selectiva a moléculas pequeñas y a iones, los que pasan a través de ella gracias a transportadores especiales.

Está formada aproximadamente por un 70 % de proteínas y un 30% por lípidos, y es probablemente la membrana biológica más rica en proteínas. Aprox. la mitad de los componentes proteicos que posee participan tanto en la cadena transportadora de electrones y en la fosforilación oxidativa(Matews 2004).

Estas proteínas se encuentran ensambladas en cinco complejos multiproteicos.

Complejo I

Llamado NADH deshidrogenasa, está formado por aproximadamente 25 unidades proteicas. Posee como grupo prostéticos: flavina mononucleótido (FMN) y fierro-azufre. Las proteínas que poseen como grupo prostético fierro-azufre se denominan proteínas ferrosulfuradas. Posee específicamente, al menos siete proteínas que poseen centros fierrosulfurados. Este complejo se encuentra completamente embebido en la membrana interna de la mitocondria, y está orientado de tal manera que el sitio de fijación de NADH está mirando hacia la matriz mitocondrial. Su masa es de aprox. 850 kilodaltons.

Complejo II

Llamado succinato deshidrogenasa, va a recibir los electrones directamente del succinato. Posee a lo menos cuatro proteínas diferentes. Es mucho más pequeño que el complejo I. Como grupo prostético posee a: flavina adenina dinucleótido (FAD) y fierro-azufre (Fe-S). Su masa es de aprox. 140 kilodaltons (Matews 2004).

Complejo III

Llamado citocromo c coenzima Q reductasa. Está compuesto por los citocromos b562 y b566, citocromo c1 y c, una proteína ferrosulfurada y al menos otras seis subunidades proteicas. Posee como grupos prostéticos fierro-azufre y el grupo Hem. Su masa es de aprox. 250 kDa.

Complejo IV

Llamado citocromo oxidasa, contiene los citocromos a1 y a3. Éstos están formados por dos grupos Hem unidos a diferentes regiones de la misma proteína, y son por lo tanto, espectral y funcionalmente distintos. También contiene dos iones cobre, CuA y CuB, de gran importancia para la transferencia de electrones al O2. Tiene entre 6 y 13 subunidades proteicas. Sus grupos prostéticos son el ión Cu (en forma A y B) y el grupo Hem. Su masa es de aprox. 160 kDa.

Complejo V

Llamado complejo F0- F1 o ATP sintetasa. Es el responsable directo de la síntesis de ATP a partir de ATP + Pi .Las subunidades proteicas que lo componen varían de acuerdo a la especie, pero el rango en mamíferos va desde 12 a 18 subunidades. La subunidad F0 está completamente embebida dentro de la membrana interna mitocondrial y la subunidad F1 se encuentra orientada hacia la matriz mitocondrial. La subunidad F1 funciona como un canal protónico. En un comienzo fueron llamados "partículas elementales", que se podían ver fácilmente en el microscopio electrónico al observar un corte de la membrana interna de la mitocondria.

Otro componente presente en la cadena de electrones y que pertenece a ningún complejo y que participa activamente en ella es la ubiquinona o coenzima Q. Es una benzoquinona liposoluble, y se mueve con bastante libertad en la membrana interna mitocondrial. Es capaz de captar electrones de los complejos I y II, y los cede al complejo III (Matews 2004).

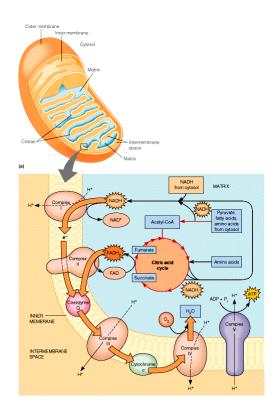


Figura 3: Bioquímica de la fosforilación oxidativa

2.1.4 Ciclo Q

El ubiquinol entrega 1 electrón al citocromo b562, de tal forma que la ubiquinona queda como radical semiquinona; al entregar un electrón, se expulsa un protón hacia el espacio intermembrana.

El radical semiquinona le entrega un electrón al citocromo c1, el cual, a su vez, le entrega un electrón al citocromo c. Al entregar el electrón al citocromo c1, libera otro protón al espacio intermembrana. (Matews 2004)

Ahora la ubiquinona está oxidada.

El citocromo b562 le cede su electrón al citocromo b566.

El citocromo b566 le cede el electrón nuevamente a la ubiquinona.

La ubiquinona capta un protón desde la matriz, a partir del agua. Se forma, al captar el electrón y el protón, el radical semiquinona.

El radical semiquinona capta otro de los electrones que proviene del complejo I o II y va a volver a formar ubiquinol, captando un protón de la matriz, entrando nuevamente al ciclo.

Como cada uno de los componentes del complejo III capta de a un electrón, forzosamente, para que los electrones fluyan se debe recurrir a un ciclo similar a este, dentro del complejo III (Matews 2004).

2.1.5 Dosis

Con respecto a la dosis adecuada para ser aplicada en pollos, no existe una recomendada. Es un producto que en humanos no se tiene bien establecida una dosis, y sus posibles diferentes efectos beneficiosos según la misma. Asi que, para efecto del presente estudio, se ha fijado en 40 mg CoQ10 / Kg de peso vivo, que es la dosis más alta utilizada en la investigación de Geng, de la Universidad técnica de agricultura en China; para evaluar sus efectos en pollos, sus posibles daños secundarios y afirmar si existe toxicidad. (Ver anexos).

2.2 Síndrome ascítico

El síndrome ascítico (SA) es una entidad patológica que se caracteriza principalmente por la acumulación de líquidos vasculares e intersticiales en la cavidad abdominal, afecta principalmente a los pollos de engorda, con mayor incidencia en los machos, sobre todo cuando se crían a elevadas altitudes. En Ecuador empezó a cobrar importancia a partir de 1981; a mediados de la década de los ochenta, el SA se presentó con mayor frecuencia, ocasionando mortalidad entre 5% y 30% de la parvada. El SA puede observarse a partir de la primera semana de edad, ha sido asociado por varios autores con un incremento de la presión en la arteria pulmonar que provoca hipertrofia del ventrículo derecho; si la situación continúa, el corazón se torna flácido, este trastorno puede o no ser simultáneo con una lesión pulmonar, que bloquea el transito de la sangre (la mal función primaria puede o no ser cardiaca o

pulmonar), por lo que se produce una elevación de la presión sanguínea en la arteria pulmonar. El incremento de la presión sanguínea en la arteria pulmonar, finalmente va a llegar hasta los capilares pulmonares; este efecto provoca cardiomegalia, el ventrículo derecho se dilata e impide que la válvula aurículoventricular no cierre adecuadamente, por ello hay un reflujo de sangre; este retorno produce un aumento de la presión en el sistema venoso, los órganos se congestionan por la sangre acumulada, presentando salida de líquido a partir de los tejidos, principalmente por el hígado e intestino, el cual se acumula en la cavidad abdominal presentándose el cuadro de ascitis (Wittwer 2002)

Como factores que predisponen la presentación del SA, se han mencionado aspectos de tipo genético (velocidad de crecimiento), nutricionales (elevada concentración nutritiva), ambientales (altas y bajas altitudes de crianza), manejo (reducción de la ventilación), tóxicos (micotóxinas, grasas tóxicas), afecciones del aparato respiratorio, problemas cardiovasculares y estados de hipoxia.

Las primeras publicaciones sobre el SA han relacionado su presentación con animales que obtuvieron un crecimiento muy rápido (como consecuencia de un mejoramiento genético y de elevada concentración nutritiva de la dieta), explicando con ello la mayor incidencia en los machos, ya que en las hembras su crecimiento es más lento.

Entre los factores ambientales desencadenantes del SA, destaca el efecto de las bajas temperaturas en la caseta durante la crianza, debido a que se produce un aumento en la actividad metabólica; por lo tanto, aumentan los requerimientos de oxígeno, aumentando el gasto cardiaco, teniendo como consecuencia hipertensión pulmonar, la cual puede ser secundaria en pollos con patología pulmonar (Contreras, 2002).

Los estudios sobre la fisiopatología del SA han comprendido la relación que existe entre la insuficiencia cardiaca derecha y la hipertensión pulmonar con respecto a la altitud sobre el nivel del mar donde fueron criadas las aves, mediante la determinación del índice de hipertrofia cardiaca derecha y del grosor de las paredes de las ramas intralobulillares de la arteria pulmonar en aves criadas a diferentes altitudes con y sin SA. Los resultados mostraron que las aves con SA, incluyendo las que fueron criadas a nivel del mar, presentaron hipertrofia cardiaca derecha. También se obtuvo una relación directa entre el índice de hipertrofia cardiaca derecha y el grosor de las paredes de las ramas intralobulillares de la arteria pulmonar; pero aun así, no se pudo concluir que la hipertrofia cardiaca derecha fuera la consecuencia de la hipertensión pulmonar (Wittwer 2002)

Posteriormente, para establecer la relación entre la hipertrofia cardiaca derecha y la hipertensión pulmonar, procedieron a medir directamente la presión de la arteria pulmonar mediante la técnica de Burton en aves con SA y testigos clínicamente sanos, criadas en bajas y elevadas altitudes, para determinar si la hipertensión pulmonar es la responsable de la hipertrofia cardiaca derecha en el SA.. Se encontró que las presiones pulmonares en aves con SA provenientes de las dos altitudes, fueron entre 50% y 70% superiores respecto de los animales no afectados (Contreras, 2002).

La hipertensión pulmonar guardó relación con el peso del ventrículo derecho, en las aves con SA ubicadas en cualquiera de las dos altitudes, siendo entre 60% y 100% superior con respecto a las aves sanas. Como conclusión de este estudio, se obtuvo que la hipertensión pulmonar es responsable de la hipertrofia cardiaca derecha que se presenta en el SA (que fue independiente de la altitud sobre el nivel del mar donde se alojaron esos

animales). Sin embargo, estos dos estudios relacionados con las causas físicas de la enfermedad no distinguen las diferencias entre el sexo de las aves, siendo que el SA es una patogenia ligada al sexo, donde son más afectados los machos, se habló que hembras pesadas con un tipo de crecimiento más acelerado que el de los machos, muestran una marcada reducción en la mortalidad producida por el SA. En 1984 los pesos de los pollos de engorda machos y hembras de 56 días de edad fueron de 2.3 respectivamente (41 y 37.5 gramos de ganancia/ave/día), con porcentajes de mortalidad por el SA de 4.66%. Para 1994 los pesos corporales obtenidos bajo condiciones experimentales en la misma zona geográfica corresponden a 2.7 kg para los machos y 2.3 kg en las hembras (48.2 y 41.07 gramos de ganancia/ave/día) presentándose en este año porcentajes de mortalidad por el SA de 4.01% en machos y 1.5 en hembras, por lo que a pesar de que las hembras han obtenido ganancias de peso en 1994 similares a los de los machos criados en 1984, la mortalidad por el SA no se ha incrementado. Con el fin de conocer el estado funcional del corazón mediante una técnica no invasiva, se tomaron electrocardiogramas (ECG) a pollos de engorda a los 14 y 35 días de edad; en este sentido, se demostró que los pollos con predisposición a una falla cardiaca derecha tenían mayor incidencia de SA, pudiendo ser prevenido éste al reducir la velocidad de crecimiento mediante programas de restricción alimentaria (Wittwer 2002).

Debido a que las ondas eléctricas registradas en el electrocardiograma (ECG) están alteradas en forma característica por un agrandamiento del ventrículo derecho, tienen valor diagnóstico.

La hipertrofia cardiaca (ventrículo derecho) que se presenta en los pollos muy jóvenes antes del desarrollo de la falla cardiaca y de la ascitis en los pollos de engorda, también se ha caracterizado por un incremento en el voltaje del complejo ventricular. En este caso es la onda S la que presenta un aumento de volumen en la conducción estándar II de las extremidades. De aquí se desprende la necesidad del presente trabajo para estudiar la diferencia que pueda existir entre machos y hembras en cuanto a los valores de presión de la arteria pulmonar y las fallas cardiacas que se puedan observar en la lectura de los electrocardiogramas para correlacionarlos con la incidencia del SA (Contreras, 2002).

III. MATERIALES Y MÉTODOS

3.1 Localización

La presente investigación fue realizada en la Provincia de Pichincha, en el Cantón Quito, en la Parroquia de Puembo, en el Galpón Experimental del Departamento de Investigación y Desarrollo de Pronaca, con las siguientes características:

• Latitud sur 10" 27"

• Longitud: 78° 2124"

• Altitud: 2600 m

• Clima: Temperado subandino

• Temperatura: máxima 28°C

mínima 12°C

media anual 18° C

• Humedad: 40%

• Precipitación: 873 mm anuales

Heliofanía: 1579 horas luz/anuales

• Vientos: I,8 m/seg Sur-Norte

3.2 Instalaciones

El galpón experimental cuenta con 48 jaulas de 2,90 x 1,37 m (4 m²), de las cuales se utilizaron 16 jaulas, cada una con 48 pollos, en total 768 todos machos.

El galpón está dividido en dos secciones, las cuales permiten realizar dos manejos distintos, en la una sección se aplicó un manejo costa y en la otra el manejo sierra, en cada una se ubicaron 8 jaulas, y se dividió cuatro jaulas para cada tratamiento, de las cuales se tomó un pollo al azar para realizar los análisis de oximetría, hematocrito, frecuencia cardiaca, cada diez días. El examen post-morten (HPLC) se realizó a 10 corazones de cada tratamiento,

3.3 Materiales y equipos

- 768 Pollitos de 1 día de edad de línea Ross 308 mixto
- Galpón Experimental
- 16 jaulas
- 32 comederos
- 24 bebederos
- 10 criadoras
- 2 balanzas
- Tanques de gas
- 2 termómetros
- 2 higrotermógrafos
- Hojas papel bond
- Esferos
- Marcadores
- Registros
- Copias
- Carpetas
- Calculadora

- Documentos publicados en Internet
- Documentos publicados en revistas
- Libros
- Balanza de precisión 0.001 g
- Balanza 6 kg
- Oxímetro (Equipo NOMN 8600V)
- Micro Centrífuga
- Agujas de Insulina
- Agujas # 26
- Capilares
- Plastilina
- Tijeras
- Papel secante
- Guantes # 8
- Cámara digital

3.4 Metodología

El primer día se realizaron las siguientes actividades: distribución de 48 pollitos para cada jaula, posteriormente se procedió con el pesaje de cada jaula (esta actividad se la repitió cada semana), se tomo datos de oximetría, frecuencia cardiaca y hematocrito (estas actividades se realizaron cada diez días).

3.4.1 Pesaje

Para realizar el pesaje se agrupaba en una esquina de la jaula a todos los pollos, para luego meterlos dentro de una cubeta plástica, para contarlos, después, se los pesaba en una balanza de 300 Kg, tarando el peso de la cubeta plástica y posteriormente se registraba en la ficha correspondiente a la jaula, el peso y el número total de aves pesadas, de tal manera que se pueda obtener el peso promedio de los pollitos. A los pollitos que tengan dificultad para poder caminar, comer o tomar agua se los descartó antes del pesaje.

3.4.2 Oximetría y frecuencia cardiaca

La saturación de oxígeno determinado por el equipo (NONIN (8600 V) esta definido como la cantidad de oxígeno unido a la hemoglobina de los eritrocitos en una cierta cantidad de sangre dividido para la capacidad de oxígeno.

El equipo determina la saturación de oxihemoglobina arterial (SpO2), midiendo la absorción de la luz roja e infrarroja que pasa a través del tejido. La determinación de la saturación arterial y la frecuencia del pulso se basa en los cambios de absorción causados por la pulsación de la sangre en el lecho vascular

El ritmo cardíaco esta definido como el número de secuencia de contracciones del corazón (aurículas y ventrículos) por cada minuto.

Se debe cargar el equipo por un lapso de 8 a 16 horas previo a su uso

Para esta determinación las aves deben estar tranquilas por lo que el manejo de las aves es muy importante antes, durante y luego de la determinación . Se recomienda que la persona que realiza la determinación se encuentre

cómodamente sentada, ubique una toalla sobre las piernas y tratar de que el ave esté los más confortable posible.

Ubicar el lector sobre el área a medir la saturación de oxígeno debe estar cercano al 100% en aves sanas por lo que se considera normal a partir de 90% pero nunca inferior a 75%.

Para la lectura del ritmo cardíaco los valores en aves jóvenes está cercano a 500/minuto. En aves sobre 1ª primera semana de edad puede estar entre 400-500/minuto, valores menores a 400/minuto no se consideran reales.

Se recomienda mantener prendido el parlante y luz indicadora del equipo de esta manera se puede asociar por el sonido o luz si ubicamos correctamente sobre un vaso (arteria radial, femoral).

En el caso de que la luz se presente de tres colores, verde significa que estamos correctamente ubicados, amarillo indica que la señal tiene interrupciones porque estamos ubicados cerca del vaso, la luz roja significa que no tenemos señal porque estamos fuera del vaso.

3.4.3 Hematocrito

La palabra hematocrito indica separación de la sangre en sus componentes y es el porcentaje de células rojas empaquetadas en un volumen determinado de sangre. La importancia de esta prueba esta en la utilidad para diagnosticar anemias policitemias.

En aves:

- a. Puncionar la vena alar con aguja # 26
- b. Aproximar el extremo identificado con color rojo o la sangre
- c. Llenar el capilar con sangre fresca o sangre anticougulada hasta las tres cuartas partes (volumen para lectura)
- d. Cerrar el extremo por el que se llenó el capilar con plastilina o al calor
- e. Centrifugar en la Micro centrífuga por el 2 minutos y 4000 RPM
- f. Leer el porcentaje de células rojas empaquetadas, con relación al volumen total de sangre que está en el tubo
- g. Los valores que se consideran normales en aves sanas están entre 28-35%.

3.4.4 Cromatografía líquida de alta presión

Para este análisis de laboratorio se tomaron 10 corazones de cada tratamiento, para determinar la cantidad de ubiquinona presente en los mismos, por medio de HPLC.

3.4.4.1 Determinación de ubiquinona en corazones

- 2 gramos lavados en SS
- Homogenización en Potter manual de vidrio
- Centrifugar a 2300 rpm por 10'
- Filtrar el sobrenadante
- Centrifugar a 8000 rpm por 12'

- Sobrenadante: citosol

Pellet obtenido: mitocondria

- Resuspensión en Buffer

3.4.4.2 Extracción de ubiquinona:

200 uL + 50 uL de BHT + 200 uL SDS + 1600 uL de etanol

Vórtex por 30" + 2000 uL N-hexano

Vórtex por 2' y centrifugar a 2610 rpm por 8'

1 ml de fase hexánica, secado con Nitrógeno inherte

Residuo: resuspendido con 200 ul de alcohol reagente (etanol/isopropanol

95:5)

3.4.4.3 Curva Estandar

 $0.086\ mg\ de\ CoQ_{10}$: $863.3g\ PM$ + $500\ ul\ Cloroformo,\ vortear\ por\ 2\ minutos$ +

9500 ul de etanol

1 miliMolar

6 puntos CoQ₁₀: 0.1 a 10 uM/l

Se inyectaron 50 uL en HPLC (Hewlett Packard series 1050)

Columna: Supelcosil 5 um LC-18, 25 x 4.6 cm

Precolumna: LC 18S, 2 cm.

Filtros: A 701

Flujo: 1 ml/minuto

Fase móvil: etanol/metanol 70:30 v/v

Detector: UV, 275 nm de absorbancia

3.5 Tratamientos

Se utilizó solo un nivel de ubiquinona 40 mgQ10 / Kg de peso vivo, para los tratamientos con Q10 tanto para el manejo sierra como costa.

Cuadro 1: Esquema de los tratamientos

Manejo	Niveles de Q10	Tratamientos
Sierra	40 mg/KGPV	T1
Sierra	0 mg/KGPV	T2
Costa	40 mg/KGPV	T3
Costa	0 mg/KGPV	T4

3.5.1 Manejo Sierra

Cuadro 2: Programa de alimentación (restringido)

MANEJO SIERRA							
Alimento Presentación Programa							
Engorde 1	Polvo	1 - 18 d					
Engorde 2	Polvo	19 - 32 d					
Engorde 3	Pellet 4mm	33 - 41 d					
Engorde 4	Pellet 4mm	42 - 45 d					

Cuadro 3: Programa de Luz Sierra

EDAD	HORAS LUZ	HORARIO
1a7d	24	permanente
8 a 49 d	12	6 a 18horas

Cuadro 4: Programa de Vacunación (De acuerdo al programa de vacunación vigente en la sierra)

EDAD	VACUNA	LITROS		
7	B1 + NC + G	10		
14	Bursina	15		

Cuadro 5: Programa de temperatura.

Edad /	Temperatura / AC
0	30.5
3	29.5
6	28.5
9	27.5
12	25
15	24
18	23
21	22
24	21
27	21

Considerar el programa sugerido en el Manual Ross para ambientes con humedad relativa de RH 60%.

3.5.2 Manejo Costa

Cuadro 6: Programa de alimentación: (a libertad)

MANEJO COSTA								
Alimento Presentación Programa								
Engorde 1	Migajeado	1 - 18 d						
Engorde 2	Migajeado	19 - 28 d						
Engorde 3	Pellet 4mm	29 - 35 d						
Engorde 4	Pellet 4mm	36 - 45 d						

Cuadro 7: Programa de Vacunación (De acuerdo al programa de vacunación vigente en la sierra)

EDAD	VACUNA	LITROS		
7	B1 + NC + G	10		
14	Bursina	15		
21	B1 + NC	20		

Cuadro 8: Programa de Luz Costa

EDAD	HORAS LUZ	HORARIO
1a7d	24	permanente
8 a 18 d	18	21 a 24h y 2 a 5h

19 a 28d	20	21 a 23h y 2 a 4h
29 A 49d	22	00 A 1h y 3 a 4h

Cuadro 9: Programa de temperatura.

Edad / Días	Temperatura / AC
0	30.5
3	29.5
6	28.5
9	27.5
12	25
15	24
18	23
21	22
24	21
27	21

Considerar el programa sugerido en el Manual Ross para ambientes con humedad relativa de RH 60%.

3.5.3 Esquema de distribución del ensayo en el campo

El ensayo se dividió en bloques, para brindar un manejo de sierra y otro de costa, y en cada bloque se aplicó los dos niveles de ubiquinona. Dentro del galpón a continuación consta la ubicación de las jaulas:

Cuadro 10: Distribución de los tratamientos en el campo

	MANEJO SIERRA										
12	13	14	15	16	17	18	19	20	21	22	23
<u> </u>							I	1			
	11	10	9	8	7	6	5	4	3	2	1

	MANEJO COSTA										
35	36	37	38	39	40	41	42	43	44	45	46
34	33	32	31	30	29	28	27	26	25	24	

3.5.4 Factor en estudio

Factor A: Manejo Sierra

Manejo Costa

Factor B: Niveles de ubiquinona o CoQ10

3.5.5 Tratamientos

T1 = 40 mg diarios de CoQ10 / kg de peso vivo (1 – 21 días de edad)Manejo Sierra.

T2 = Control o testigo (sin administración de CoQ10) Manejo Sierra.

T3 = 40 mg diarios de CoQ10 / kg de peso vivo (1 – 21 días de edad)Manejo Costa.

T4 = Control o testigo (sin administración de CoQ10) Manejo Costa.

3.6 Procedimientos

3.6.1 Diseño experimental

Para la presente investigación, se utilizó un diseño bifactorial completamente al azar; con dos niveles para cada factor, el primer factor está determinado por el tipo de manejo (costa y sierra), y el segundo factor por el nivel de inclusión de ubiquinona (con ubiquinona y un control).

El diseño planteado puede describirse mediante el siguiente modelo estadístico lineal.

$$Y_{ijk} = \mu + M_i + N_j + (MN)_{ij} + E_{ijk}$$

Donde: $\mu = \text{la media global}$

Mi = es el efecto debido al manejo

N_i = es el efecto debido a la inclusión de ubiquinona

(MN)_{ij} = es el efecto de la interacción del manejo y el nivel de

Q10

Eijk = es el error experimental

Se realizaron 4 repeticiones por tratamiento dándonos un total de 16 unidades experimentales; para cuyo análisis de variancia se presenta el siguiente esquema

Fuente de Variación	⁰GL
Modelo	3
Manejo	1
N-Q10	1
Inter Manejo*N-Q10	1
Error	12
Total	15

3.6.2 Datos Obtenidos

- Peso Inicial
- Peso Final
- Peso promedio
- Ganancia diaria de peso
- Consumo de Alimento
- Oximetría
- Hematocrito
- Conversión alimenticia
- Factor de eficiencia europeo
- Determinación porcentual de la mortalidad.
- Cantidad de Q10 final en cada tratamiento.

Aplicación de la prueba de Duncan para determinar diferencia

significativa entre tratamientos para:

Oximetría

Frecuencia cardiaca

Hematocrito

Ganancia de peso

3.6.3 Hipótesis

La administración de 40mg diarios de CoQ10 / kg de peso vivo

afecta la curva de oximetría y reduce la mortalidad causada por el

síndrome ascítico.

3.6.4 Características de las unidades experimentales

Los pollitos que formaron parte del ensayo, fueron todos machos de la línea

Ross 308, procedentes de la Incubadora Avepica, todos de un día de edad, y

de primera clase.

> Estado fisiológico de los animales: 1ºra clase (peso promedio superior a

40 g y sin daños en patas, pico y cicatrizado el ombligo).

> Edad de los animales: 1 día de edad.

Sexo: machos.

> Peso: 40 g promedio.

➤ Línea Ross 308.

xlix

IV. RESULTADOS Y DISCUSIÓN

4.1 Oximetría

Para el primer día se tomaron datos de oximetría, no existiendo diferencias significativas entre los factores, ya que recién se iniciaba el experimento. Para la oximetría realizada el día 10, se encontraron diferencias significativas en el manejo (p=0.0375), siendo más alto en promedio del manejo costa (88%), y, altamente significativa para los niveles de ubiquinona (p=0.0002) para los tratamientos con ubiquinona (90,13%) (Cuadro 11).

Cuadro 11: Análisis de variancia y test de Duncan para oximetría día 10

Analisis	de	Ιa	varıanza

Variable	N	R²	R² Aj	CV
Oximetria	16	0.76	0.69	3.47

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	
Modelo	331.50	3	110.50	12.33	0.0006	
Manejo	49.00	1	49.00	5.47	0.0375	
N-Q10	240.25	1	240.25	26.82	0.0002	
Manejo*N-Q10	42.25	1	42.25	4.72	0.0506	
Error	107.50	12	8.96			
Total	439.00	15				

Test:Duncan Alfa:=0.05

Error: 8.9583 gl: 12

Manejo	Medias	n		
Costa	88.00	8	A	
Sierra	84.50	8		В

Letras distintas indican diferencias significativas (p<= 0.05)

Test:Duncan Alfa:=0.05

Error: 8.9583 gl: 12

N-Q10	Medias	n		
Q10	90.13	8	А	
Control	82.38	8		Ε

Letras distintas indican diferencias significativas (p<= 0.05)

La prueba de Duncan indica que el manejo costa tiene el mayor valor con 88%, y el manejo sierra 84,5%. Para el nivel de ubiquinona se tiene que la inclusión de ubiquinona tiene el mayor valor con 90,13% frente al control de 82,33%.

El día 20, donde se realizó la siguiente oximetría, se presentó una diferencia significativa solamente en el manejo (p=0.0214), siendo más alto el promedio del manejo sierra (89.38%); el manejo costa tuvo un valor de 82,38%. Mientras que entre los niveles de ubiquinona no existieron diferencias significativas (p=0.3637). (Cuadro 12).

Cuadro 12: Análisis de variancia y test de Duncan para oximetría día 20

Análisis de la varianza

Variable	N	R²	R² Aj	CV
Oximetria	16	0.40	0.25	6.17

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	
Modelo	227.25	3	75.75	2.70	0.0924	
Manejo	196.00	1	196.00	6.99	0.0214	
N-Q10	25.00	1	25.00	0.89	0.3637	
Manejo*N-Q10	6.25	1	6.25	0.22	0.6453	
Error	336.50	12	28.04			
Total	563.75	15				

Test:Duncan Alfa:=0.05

Error: 28.0417 gl: 12

Manejo	Medias	n		
Sierra	89.38	8	А	
Costa	82.38	8		В

Letras distintas indican diferencias significativas(p<= 0.05)

Para los siguientes análisis de oximetría del día 30 y 40, no existieron diferencias significativas. Estas diferencias demuestran el efecto directo que

tiene la ubiquinona sobre la captación de oxigeno, ya que se presentaron solamente hasta los 21 días, cuando se suministró ubiquinona.

En el gráfico 1 se puede observar el comportamiento de los tratamientos con manejo sierra, que a pesar de no tener una línea de tendencia bien definida, se comportan de manera similar. Y también se puede apreciar claramente las diferencias presentes entre los días 10 y 20.

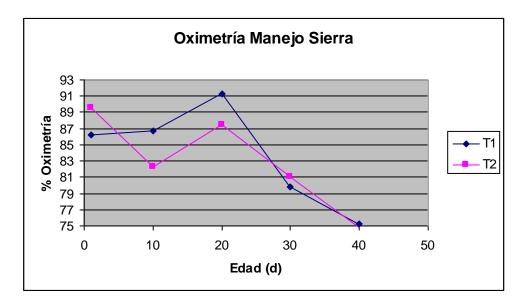


Gráfico1: Comportamiento de la oximetría en T1 y T2

En cambio existe una diferencia entre las curvas de la oximetría del manejo costa, El T3 tiene una tendencia lineal, que arrojó niveles más altos en las primeras semanas y se puede ver que al final fue decreciendo. En el T4 la tendencia de la curva pertenece a una polinomial de 3ºer grado, con datos similares el primer día, pero después cada tratamiento se comporta de diferente modo.

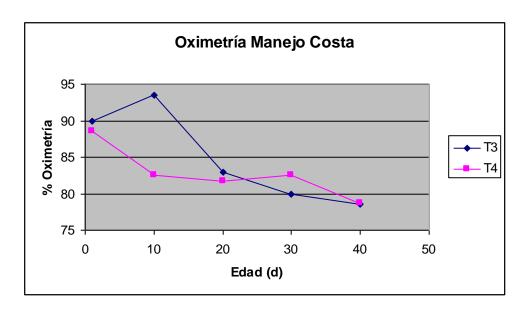


Gráfico 2: Comportamiento de la oximetría en T3 y T4

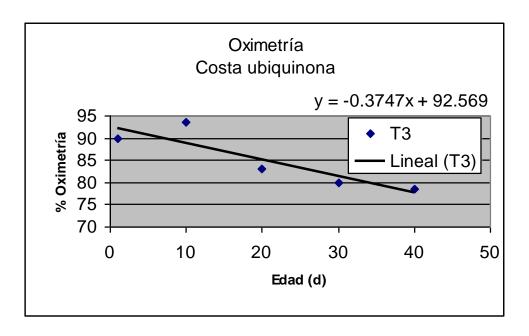


Grafico 3: Tendencia de T3

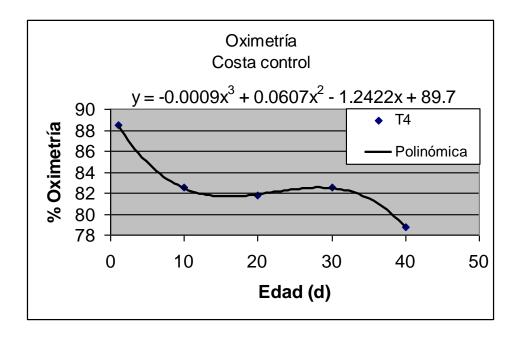


Grafico 4: Tendencia de T4

4.2 Frecuencia cardiaca

Con respecto a la variable de frecuencia cardiaca se encontraron algunas diferencias, siendo altamente significativa la del día 10 (p=0.0001), siendo mayor el promedio con la inclusión de ubiquinona con 480,63 frente a 437,88 del control (Cuadro 13).

Cuadro 13: Análisis de variancia y test de Duncan para frecuencia cardiaca día 10

Análisis de la varianza

Variable	N	R²	R² Aj	CV
Frec.Card	16	0.74	0.68	3.17

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo	7367.50	3	2455.83	11.57	0.0007
Manejo	1.00	1	1.00	4.7E-03	0.9464
N-Q10	7310.25	1	7310.25	34.43	0.0001
Manejo*N-Q10	56.25	1	56.25	0.26	0.6161
Error	2547.50	12	212.29		
Total	9915.00	15			

Test:Duncan Alfa:=0.05

Error: 212.2917 gl: 12

N-Q10	Medias	n		
Q10	480.63	8	А	
Control	437.88	8		В

Letras distintas indican diferencias significativas (p<= 0.05)

Para los datos tomados en el día 30 presentaron una diferencia significativa en el manejo (p=0.0164) (Cuadro 14)

Cuadro 14: Análisis de variancia y test de Duncan para frecuencia cardiaca día 30

Análisis de la varianza

Variable	N	R²	\mathbb{R}^2	Αj	CV
Frec.Card	16	0.47	0 .	.33	7.75

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	
Modelo	11065.69	3	3688.56	3.52	0.0490	
Manejo	8145.06	1	8145.06	7.77	0.0164	
N-Q10	2425.56	1	2425.56	2.31	0.1542	
Manejo*N-Q10	495.06	1	495.06	0.47	0.5051	
Error	12585.75	12	1048.81			
Total	23651.44	15				

Test:Duncan Alfa:=0.05

Error: 1048.8125 gl: 12

Manejo	Medias	n		
Sierra	440.25	8	А	
Costa	395.13	8		Ι

Letras distintas indican diferencias significativas (p<= 0.05)

El valor más alto en este día lo tuvo el manejo sierra con 440.25 pulsos por minuto, mientras que el manejo costa tuvo un valor de 395,13.

Para los datos tomados el día 40 se encontraron diferencias significativas (p=0.0129) para los niveles de ubiquinona en los tratamientos control (sin inclusión de ubiquinona) (Cuadro 15).

Cuadro 15: Análisis de variancia y test de Duncan para frecuencia cardiaca día 40

Análisis de la varianza

Variable	N	R²	R² Aj	CV
Frec.Card	16	0.49	0.36	3.38

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gΙ	CM	F'	p-valor	
Modelo	1978.19	3	659.40	3.84	0.0387	
Manejo	105.06	1	105.06	0.61	0.4492	
N-Q10	1463.06	1	1463.06	8.52	0.0129	
Manejo*N-Q10	410.06	1	410.06	2.39	0.1481	

Error	2059.75	12	171.65
Total	4037.94	15	

Test:Duncan Alfa:=0.05							
Error: 171	.6458 gl:	12					
N-Q10	Medias	n					
Control	397.00	8	A				
Q10	377.88	8	Ε	3			
Letras distir	ntas indican	diferencias	signific	ativas(p<=	0.05)		

El comportamiento de la variable de frecuencia cardiaca puede ser alterado al momento del análisis, ya que depende de la actividad del pollo dentro de la jaula, de la forma de atrapar al pollo e incluso hasta de la fuerza con la que se sostiene al pollo al momento del análisis.

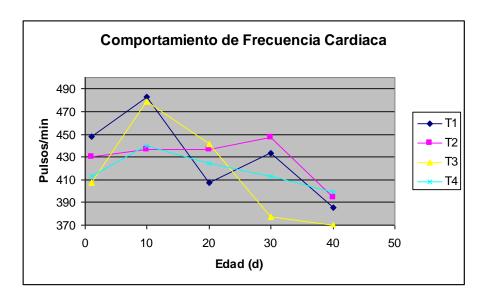


Gráfico 5: Comportamiento Frecuencia Cardiaca T1, T2, T3 y T4

4.3 Hematocrito

Con respecto a ésta variable se encontraron diferencias significativas únicamente en el día 30, para los niveles de ubiquinona (p=0.0016), siendo el mejor promedio en del control (40,88), es decir paralos tratamientos sin inclusión de ubiquinona. (Cuadro 16).

Cuadro 16: Análisis de variancia y test de Duncan para hematocrito día 30

Análisis de la varianza

Variable	N	R²	R² Aj	CV
Hematocrito	16	0.66	0.58	5.25

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	
Modelo	96.69	3	32.23	7.77	0.0038	
Manejo	18.06	1	18.06	4.36	0.0589	
N-Q10	68.06	1	68.06	16.42	0.0016	
Manejo*N-Q10	10.56	1	10.56	2.55	0.1364	
Error	49.75	12	4.15			
Total	146.44	15				

Test:Duncan Alfa:=0.05

Error:	4.1458 gl: 12			
N-Q10	Medias	n		
Control	40.88	8	А	
Q10	36.75	8		

Letras distintas indican diferencias significativas (p<= 0.05)

Esto nos da la idea de que la sangre es más líquida y de fácil circulación cuando se aplica ubiquinona, y esto hace que el corazón no haga tanto esfuerzo al momento del bombeo.

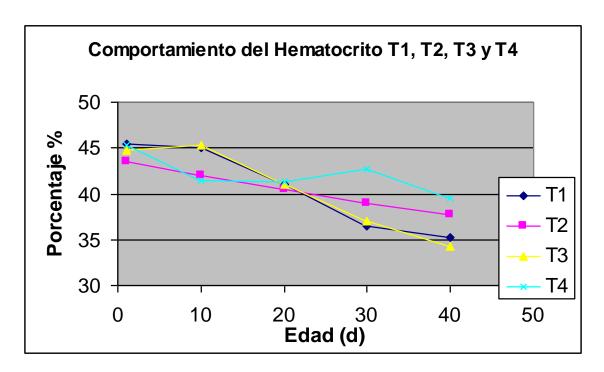


Gráfico 6: Comportamiento del hematocrito de T1, T2, T3 y T4

4.4 Pesos

El día 1, al momento de la distribución fueron pesados los pollos de manera conjunta, para luego obtener los pesos promedios, de lo cual ser observó que

existió una diferencia significativa con respecto a los pollos ubicados dentro del manejo sierra, ya que estos presentaron mayor promedio. Cabe recalcar que las diferencias sobre esta variable tienen una sensibilidad de 0,5 gramos.

Cuadro 17: Análisis de variancia y test de Duncan para el peso día 1

Peso semana 0

Análisis de la varianza

Variable	N	R ²	R² Aj	CV
Pesos	16	0.5000	0.3750	0.8175

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo	1.5E-06	3	5.0E-07	4.0000	0.0346
Manejo	1.0E-06	1	1.0E-06	8.0000	0.0152
N-Q10	2.5E-07	1	2.5E-07	2.0000	0.1827
Manejo*N-Q10	2.5E-07	1	2.5E-07	2.0000	0.1827
Error	1.5E-06	12	1.3E-07		
Total	3.0E-06	15			

Test:Duncan Alfa:=0.05

Error: 0.0000 gl: 12

Manejo	Medias	n		
Sierra	0.0435	8	А	
Costa	0.0430	8		В

Letras distintas indican diferencias significativas(p<= 0.05)

A pesar de que la primera semana ambos manejos tuvieron condiciones de luz iguales, la administración de alimento, restringido para la sierra y ad limitum para la costa, fue lo que marcó una diferencia altamente significativa (p=0.0001), siendo mejor el de la costa con un valor de 0,161 Kg. En tanto que para el nivel de ubiquinona la diferencia fue significativa (p=0.0147), siendo mayores los tratamientos con ubiquinona con un valor de 0,153 Kg frente al control con un valor de 0,146 Kg. (Cuadro 18).

Cuadro 18: Análisis de variancia y test de Duncan para el peso día 7

Peso semana 1

Análisis de la varianza

Variable	N	R²	R² Aj	CV
Pesos	16	0.8847	0.8559	3.2828

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	
Modelo	0.0022	3	0.0007	30.6897	<0.0001	
Manejo	0.0020	1	0.0020	83.7931	<0.0001	
N-Q10	0.0002	1	0.0002	8.1103	0.0147	
Manejo*N-Q10	4.0E-06	1	4.0E-06	0.1655	0.6913	
Error	0.0003	12	2.4E-05			
Total	0.0025	15				

Test:Duncan Alfa:=0.05

Error: 0.0000 gl: 12

Manejo	Medias	n		
Costa	0.1610	8	А	
Sierra	0.1385	8		E

Letras distintas indican diferencias significativas(p<= 0.05)

Test:Duncan Alfa:=0.05

Error: 0.0000 gl: 12

N-Q10	Medias	n		
Q10	0.1533	8	А	
Testigo	0.1463	8		E

Letras distintas indican diferencias significativas (p<= 0.05)

Para la segunda semana (14d), se tomaron los datos de peso, encontrando diferencias significativas (p=0.0001) para el manejo costa con un valor de 0,3949 Kg, frente al manejo sierra con un valor de 0,301 Kg. (Cuadro 19).

Cuadro 19: Análisis de variancia y test de Duncan para el peso día 14

Peso semana 2

Análisis de la varianza

Variable	N	R ²	R² Aj	CV
Pesos	16	0.9816	0.9770	2.1391

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	
Modelo	0.0354	3	0.0118	212.9413	<0.0001	
Manejo	0.0353	1	0.0353	636.3306	<0.0001	
N-Q10	0.0001	1	0.0001	2.0861	0.1742	
Manejo*N-Q10	2.3E-05	1	2.3E-05	0.4073	0.5353	
Error	0.0007	12	0.0001			
Total	0.0361	15				

Test:Duncan Alfa:=0.05

Error: 0.0001 gl: 12

Manejo	Medias	n		
Costa	0.3949	8	А	
Sierra	0.3010	8		В

Letras distintas indican diferencias significativas(p<= 0.05)

Para la tercera semana (21d), se tomaron los datos de peso, encontrando diferencias significativas (p=0.0001) para el manejo costa con un valor de 0,810 Kg, frente al manejo sierra con un valor de 0,590 Kg. (Cuadro 20).

Cuadro 20: Análisis de variancia y test de Duncan para el peso día 21

Peso semana 3

Análisis de la varianza

Variable	N	R ²	R² Aj	CV
Pesos	16	0.9913	0.9892	1.6971

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	ql	CM	F	p-valor	
Modelo	0.1941	3	0.0647	458.3042	<0.0001	
Manejo	0.1934	1	0.1934	1370.0728	<0.0001	
N-010	0.0006	1	0.0006	4.1663	0.0639	
Manejo*N-Q10	0.0001	1	0.0001	0.6735	0.4278	
Error	0.0017	12	0.0001			
Total	0.1958	15				

Test:Duncan Alfa:=0.05

Error: 0.0001 gl: 12

Manejo	Medias	n		
Costa	0.8100	8	А	
Sierra	0.5901	8		Е

Letras distintas indican diferencias significativas(p<= 0.05)

Para la cuarta semana (28d), se tomaron los datos de peso, encontrando diferencias significativas (p=0.0001) para el manejo costa con un valor de 1,4149 Kg, frente al manejo sierra con un valor de 0,927 Kg. (Cuadro 21).

Cuadro 21: Análisis de variancia y test de Duncan para el peso día 28

Peso semana 4

Análisis de la varianza

Variable	N	R²	R² Aj	CV
Pesos	16	0.9883	0.9853	2.6199

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gΙ	CM	F	p-valor	
Modelo	0.9519	3	0.3173	337.1253	<0.0001	
Manejo	0.9516	1	0.9516	1011.0410	<0.0001	

N-Q10	9.0E-06	1	9.0E-06	0.0096	0.9237
Manejo*N-Q10	0.0003	1	0.0003	0.3254	0.5789
Error	0.0113	12	0.0009		
Total	0.9632	15			

Test:Duncan Alfa:=0.05

Error: 0.0009 gl: 12

Manejo Medias n

Costa 1.4149 8 A

Sierra 0.9271 8

Letras distintas indican diferencias significativas (p<= 0.05)

Para la quinta semana (35d), se tomaron los datos de peso, encontrando diferencias significativas (p=0.0001) para el manejo costa con un valor de 2,0179 Kg, frente al manejo sierra con un valor de 1,3819 Kg. (Cuadro 22).

Cuadro 22: Análisis de variancia y test de Duncan para el peso día 35

Peso semana 5 Análisis de la varianza

Variable	N	R ²	R² Aj	CV
Pesos	16	0.9959	0.9949	1.3780

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	
Modelo	1.6182	3	0.5394	983.0342	<0.0001	
Manejo	1.6180	1	1.6180	2948.7141	<0.0001	
N-Q10	0.0001	1	0.0001	0.2410	0.6323	
Manejo*N-Q10	0.0001	1	0.0001	0.1476	0.7075	
Error	0.0066	12	0.0005			
Total	1.6248	15				

Test:Duncan Alfa:=0.05

Error: 0.0005 gl: 12

Manejo	Medias	n		
Costa	2.0179	8	А	
Sierra	1.3819	8		В

<u>Letras distintas indican diferencias significativas(p<= 0.05)</u>

Para la sexta semana (42d), se tomaron los datos de peso, encontrando diferencias significativas (p=0.0001) para el manejo costa con un valor de 2,7299 Kg, frente al manejo sierra con un valor de 1,9929 Kg. (Cuadro 23), y también se observó una diferencia significativa (p=0.0045) en el nivel de ubiquinona, siendo mayor el tratamiento con ubiquinona con un valor de 2,38,26 Kg frente al control con un valor de 2,3401 Kg (Cuadro 23).

Cuadro 23: Análisis de variancia y test de Duncan para el peso día 42

Peso semana 6

Análisis de la varianza

Variable	N	R ²	R² Aj	CV
Pesos	16	0.9967	0.9959	1.0337

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	
Modelo	2.1805	3	0.7268	1219.7487	<0.0001	
Manejo	2.1727	1	2.1727	3646.1943	<0.0001	
N-Q10	0.0072	1	0.0072	12.1250	0.0045	
Manejo*N-Q10	0.0006	1	0.0006	0.9268	0.3547	
Error	0.0072	12	0.0006			
Total	2.1876	15				

Test:Duncan Alfa:=0.05

Error: 0.0006 gl: 12

Manejo	Medias	n		
Costa	2.7299	8	А	
Sierra	1.9929	8		В

Letras distintas indican diferencias significativas(p<= 0.05)

Test:Duncan Alfa:=0.05

Error: 0.0006 gl: 12

N-Q10	Medias	n		
Q10	2.3826	8	А	
Testigo	2.3401	8]

Letras distintas indican diferencias significativas(p<= 0.05)

Para el día 45, se tomaron los datos de peso, encontrando diferencias significativas (p=0.0001) para el manejo costa con un valor de 3,1229 Kg, frente al manejo sierra con un valor de 2,2466 Kg. (Cuadro 24).

Cuadro 24: Análisis de variancia y test de Duncan para el peso día 45

Peso semana 7

Análisis de la varianza

Variable	N	R²	R² Aj	CV
Pesos	16	0.9928	0.9910	1.6087

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo	3.0797	3	1.0266	550.3553	<0.0001
Manejo	3.0713	1	3.0713	1646.5287	<0.0001
N-Q10	0.0034	1	0.0034	1.8347	0.2005
Manejo*N-Q10	0.0050	1	0.0050	2.7025	0.1261
Error	0.0224	12	0.0019		
Total	3.1021	15			

Test:Duncan Alfa:=0.05

Error:	0.0019 gl: 12			
Manejo	Medias	n		
Costa	3.1229	8	А	
Sierra	2.2466	8		Ε

Letras distintas indican diferencias significativas(p<= 0.05)

En el siguiente gráfico se puede notar claramente las curvas de ganancia de pesos de T1, T2, T3 y T4. Mostrándonos de sobre manera la diferencia causada básicamente por el manejo, y que dentro de estos, los tratamientos con y sin ubiquinona no influyen para la ganancia de peso.

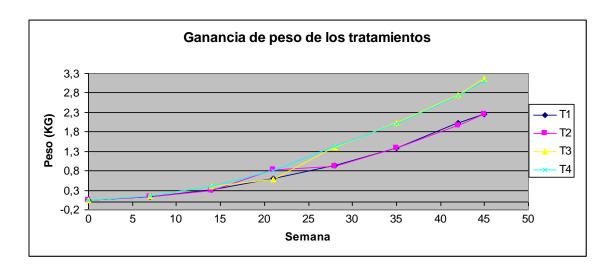


Gráfico 7: Ganancia de peso de T1, T2, T3 y T4 durante el ciclo de producción

En la tabla Nº 1, se puede apreciar los parámetros zootécnicos obtenidos en el experimento en cada una de las unidades experimentales, al final del ciclo (día 45). Esto nos permite ver que el manejo costa alcanza mayor peso (3,11 y 3,16 Kg) que el manejo sierra (2,28 y 2,25 Kg).

Tabla 1: Parámetros zootécnicos de T1, T2, T3 y T4 al final del ciclo

Tabla resumen de paràmetros zootècnicos

	rabia rocamon do paramon do 200100111000							
Manejo	Jaula	Edad	Consumo	Peso (kg)	%Mort	%Viabi	C.A.	FEE
Sie	2	45	178,22	2,28	2,08	97,92	1,67	298
ierra	6	45	173,223	2,26	6,25	93,75	1,71	276

	8	45	178,28	2,26	2,08	97,92	1,68	292
	17	45	173,13	2,25	6,25	93,75	1,71	274
	18	45	178,31	2,24	2,08	97,92	1,69	287
	19	45	181,33	2,26	2,08	97,92	1,70	289
	20	45	175,50	2,27	4,17	95,83	1,68	288
	22	45	180,98	2,23	2,08	97,92	1,73	281
Q1	0	45	177,58	2,26	2,60	97,40	1,68	291
Cont	rol	45	177,16	2,25	4,17	95,83	1,71	280
	24	45	226,23	3,09	12,50	87,50	1,74	345
	25	45	227,37	3,18	20,83	79,17	1,88	298
	28	45	220,71	3,12	16,67	83,33	1,77	326
Costa	29	45	235,55	3,21	8,33	91,67	1,67	392
sta	32	45	223,69	3,15	18,75	81,25	1,82	312
	33	45	228,85	3,10	10,42	89,58	1,72	360
	34	45	213,13	3,00	20,83	79,17	1,87	283
	37	45	224,68	3,13	18,75	81,25	1,84	307
Q1	0	45	229,11	3,16	14,58	85,42	1,78	339
Cont	rol	45	221,66	3,11	17,71	82,29	1,81	317

La demanda del mercado tiene aprecio por un pollo de 2.2 Kg de peso promedio, y es por esta razón que hemos fijado el peso para los distintos tratamientos obteniendo datos respecto a la edad, consumo de alimento, mortalidad, conversión alimenticia y factor de eficiencia europeo, de tal manera que se pueda comparar entre los mismos para determinar cual es el mejor.

Tabla 2: Parámetros zootécnicos de T2 VS T3 cuando alcanzan un peso promedio de 2.2 KG

Tabla resumen de paràmetros zootècnicos

Manejo	Jaula	Edad	Consumo	Peso (kg)	%Mort	%Viabi	C.A.	FEE
Costa Q10	25	37	157.07	2.23	8.33	91.67	1.60	344
Sierra	6	45	173.22	2.26	6.25	93.75	1.71	276
Costa Q10	29	37	156.43	2.22	4.17	95.83	1.53	376
Sierra	17	45	173.13	2.25	6.25	93.75	1.71	274
Costa Q10	33	37	156.07	2.28	8.33	91.67	1.56	363
Sierra	19	45	181.33	2.26	2.08	97.92	1.70	289
Costa Q10	37	37	155.36	2.20	8.33	91.67	1.61	339

Sierra	22	45	180.98	2.23	2.08	97.92	1.73	281
Costa C	210	37	156.23	2.23	7.29	92.71	1.57	355
Sierra	a	45	177.16	2.25	4.17	95.83	1.71	280

4.4.1 Análisis de costos fijos y variables

Tabla 3: Costos fijos

Análisis de Costos Fijos y Variables						
Costos Fijos	Costo (dólares)	Costo unitario				
Pollito bebe	0,4	0,4				
Vacunas(dosis/1000)						
NC	8,5	0,01				
Bi	12	0,01				
Gbo	16	0,01				
Desinfectante (Stock)	40	0,03				
Limp y desinfección						
Pediluvio						
Agua						
Viruta (15 m2)	3	0,00				
Mano de Obra	330	0,41				
Medicinas	35	0,04				
Sub Total		0,92				

Los costos fijos tienen que ver con la infraestructura, equipos, vacunas y materiales usados y suministrados por igual, a todos los tratamientos. Y será a partir de este costo que tomaremos en cuenta los costos variables de cada tratamiento para poder compararlos.

Tabla 4: Costos variables

Costos por tratamientos							
Tratamientos	Costo/ave (Balanceado)	Costo Fijo	Costo de Q10	Peso (kg)	Total Costo/kg.		
T1	0,37	0,92	0,839	2,23	0,96		
T2	0,37	0,92	0	2,25	0,57		
T3	0,33	0,92	0,839	2,23	0,94		
T4	0,32	0,92	0	2,25	0,55		

Tabla 5: Producción anual

		pollos	carne	Kg
10000	70000,00	64897,00	144720,31	135667,85
10000	60000,00	57498,00	128220,54	70735,00
Rentabiblidad	14,29	11,40	11,40	47,86

Aves/ciclo	Ciclos/año	N ^a pollos	Kg de carne	Costo por Kg
1	7,00	6,49	14,47	13,57
1	6,00	5,75	12,82	7,07
Rentabiblidad	14,29	11,40	11,40	47,86

4.5 Cromatografía liquida de alta presión (µml/

ID	T1	T2	Т3	T4
1	23,5	17,81	12,49	11,48
2	25,1	11,04	15,87	11,5
3	8,35	10,75	19,75	12,1
4	31,2	12,84	19,82	9,09
5	18,65	14,61	17,99	8,35
6	19,58	17,5	17,9	10,15
7	16,09	13,79	13,28	21,22
8	19,8	17,8	17,96	37
9	34,66	16,39	11,16	17,23
10	29,1	22,1	14,18	11,62
	22,60	15,46	16,04	14,97

V. CONCLUSIONES

- ➤ El manejo de la costa con el programa de manejo ad limidum es el que permite una mejor ganancia de peso, sin embargo presenta una mortalidad de 7,29%.
- El manejo costa con ubiquinona permite reducir la mortalidad causada por la intensidad de este manejo de 12,50% a 7,29%
- Dentro de los tratamientos de cada manejo no existe una diferencia significativa, excepto en la mortalidad.

- La inclusión de ubiquinona al agua, al parecer tendría problemas por afección de la luz, tiempo de exposición en el campo.
- Los 37 días de ciclo que permite el manejo costa con ubiquinona ahorra una semana en un ciclo normal, lo que facilitaría tener en el año un ciclo adicional.
- Con un ciclo de 37 días habría más vacíos sanitarios en el año, lo que evitaría el aumento de la población bacteriana dentro del los galpones.
- Por la dosis aplicada, y el número de dosis aplicadas en este ensayo, se puede suponer que la ubiquinona no es toxica para los pollos, y no causa problemas secundarios en la carne.
- La aplicación directa de la ubiquinona mejora la captación de oxígeno, ya que durante los primeros 21 días se observaron valores más altos de oximetría, después tienden a reducir drásticamente.
- La ubiquinona no ayuda a obtener una mayor ganancia de peso, pero nos permite reducir la incidencia de ascítis, ya que actúa directamente en el metabolismo y sistema cardiovascular.
- Económicamente no es factible el uso de la ubiquinona, o no de manera en la que se aplicó en esta investigación.

Los resultados de HPLC, nos muestran niveles más altos de ubiquinona en el músculo cardiaco, y esto nos puede dar la idea de que el producto si es absorbido por el organismo.

VI. RECOMENDACIONES

- Se debe realizar otras investigaciones para determinar la dosis adecuada para ser administrada.
- Se debe determinar el número de dosis a ser aplicadas y los días adecuados durante el ciclo.
- No es recomendable utilizar la ubiquinona a nivel comercial, hasta no establecer la dosis adecuada y el número de dosis a ser apliocadas.
- Es necesario comparar la inclusión de ubiquinona en el agua de bebida, con la inclusión directamente al alimento.

VII. BIBLIOGRAFÍA

- Gian Paolo Littarru (1994) Energy and Defense. Facts and erspectives on CoenzymeQ10 in biology and medicine. CasaEditrice Scientifica Internazionale, pp 1-91.
- Crane F.L., Hatefi Y., Lester R.I., Widmer C. (1957) Isolation of a quinone from beef heart mitochondria. In: Biochimica et Biophys. Acta, vol. 25, pp 220-221.
- Morton R.A., Wilson G.M., Lowe J.S., Leat W.M.F. (1957) Ubiquinone. In:
 Chemical Industry, pp 1649.

- Mellors A., Tappel A.L. (1966) Quinones and quinols as inhibitors of lipid peroxidation. Lipids, vol. 1, pp 282-284.
- Mellors A., Tappel A.L. (1966) The inhibition of mitochondrial peroxidation by ubiquinone and ubiquinol. J. Biol. Chem., vol. 241, pp 4353-4356.
- Littarru G.P., Ho L., Folkers K. (1972) Deficiency of Coenzyme Q10 in human heart disease. Part I and II. In: Internat. J. Vit. Nutr. Res., 42, n. 2, 291:42, n. 3:413.
- Mitchell P. (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems. In: J. Theoret. Biol., vol. 62, pp 327-367.
- Mitchell P. (1991) The vital protonmotive role of coenzyme In: Folkers K.,
 Littarru G.P., Yamagami T. (eds) Biomedical and Clinical Aspects of
 Coenzyme Q, vol. 6, Elsevier, Amsterdam, pp 3-10.
 - Mitchell P. (1988) Respiratory chain systems in theory and practice. In:
 Advances in Membrane Biochemistry and Bioenergetics, Kim C.H., et al.
 (eds), Plenum Press, New York, pp 25-52.
 - Mitchell P. (1979) Kelin's respiratory chain concept and its chemiosmotic consequences. In: Journal Science, vol. 206, pp 1148-1159.
 - Ernster L. (1977) Facts and ideas about the function of coenzyme Q10 in the Mitochondria. In: Folkers K.,

- Yamamura Y. (eds) Biomedical and Clinical Aspects of Coenzyme Q.
 Elsevier, Amsterdam, pp 15-8.
- Littarru G.P., Lippa S., Oradei A., Fiorni R.M., Mazzanti L. Metabolic and diagnostic implications of blood CoQ10 levels. In: Biomedical and Clinical Aspects of Coenzyme Q, vol. 6
- (1991) Folkers K., Yamagami T., and Littarru G. P. (eds) Elsevier,
 Amsterdam, pp 167-178.
- Ghirlanda G., Oradei A., Manto A., Lippa S., Uccioli L., Caputo S., Greco A.V., Littarru G.P. (1993) Evidence of Plasma CoQ10 Lowering Effect by HMG-CoA Reductase Inhibitors: A double blind , placebo-controlled study. Clin. Pharmocol., J. 33, 3, 226-229.
- Folkers K., Langsjoen Per H., Willis R., Richardson P., Xia L., Ye C.,
 Tamagawa H. (1990) Lovastatin decreases coenzyme Q levels in humans. Proc. Natl. Acad Sci. Vol. 87, pp.8931-8934.
- Folkers K., Vadhanavikit S., Mortensen S.A. (1985) Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. In: Proc. Natl. Acad. Sci., U.S.A., vol. 82(3), pp 901-904.

- Mortensen S.A., Vadhanavikit S., Folkers K. (1984) Deficiency of coenzyme Q10 in myocardial failure. In: Drugs Exptl. Clin. Res. X(7) 497-502.
- Hiasa Y., Ishida T., Maeda T., Iwanc K., Aihara T., and Mori H. (1984)
 Effects of coenzyme Q10 on exercise tolerance in patients with stable angina pectoris. In: Biomedical and Clinical Aspects of Coenzyme Q, vol. 4 (1984) Folkers K.,
- Yamamura Y., (eds) Elsevier, Amsterdam, pp 291-301. Kamikawa T.,
 Kobayashi A., Yamashita T., Hayashi H., and Yamazaki N. (1985)
 Effects of coenzyme Q10 on exercise tolerance in chronic stable angina pectoris. In: Am. J. Cardiol.; 56:247-251.
- Langsjoen Per.H., Vadhanavikit S., Folkers K. (1985) Response of patients in classes III and IV of cardiomyo pathyto therapy in a blind and crossover trial with coenzyme Q10. In: Proc. Natl. Acad. of Sci., U.S.A., vol. 82, pp 4240-4244.
- Judy W.V., Hall J.H., Toth P.D., Folkers K. (1986) Double blind-double crossover study of coenzyme Q10 in heart failure. In: Folkers K., Yamamura Y. (eds) Biomedical and clinical aspects of coenzyme Q, vol.
 Elsevier, Amsterdam, pp 315-323.
- Rossi E., Lombardo A., Testa M., Lippa S., Oradei A., Littarru G.P.,
 Lucente M. Coppola E., Manzoli U. Coenzyme Q10 in ischaemic
 cardiopathy. In: Biomedical and Clinical Aspects of Coenzyme Q, vol. 6

- (1991) Folkers K., Yamagami T., and Littarru G. P. (eds) Elsevier, Amsterdam, pp 321-326.
- Morisco C., Trimarco B., Condorlli M. Effect of coenzyme Q10 therapy in patients with congestive heart failure: A long-term multicenter randomized study. In: Seventh International Symposium on Biomedical and Clinical Aspects of Coenzyme Q Folkers K., Mortensen S.A., Littarru G.P., Yamagami T., and Lenaz G. (eds) The Clinical Investigator, (1993) 71:S 34-S 136.
- Schneeberger W., Muller-Steinwachs J., Anda L.P., Fuchs W., Zilliken F.,
 Lyson K., Muratsu K., and Folkers K. A clinical double blind and crossover trial with coenzyme Q10 on patients with cardiac disease. In: Biomedical and Clinical Aspects of Coenzyme Q, vol. 5 (1986) Folkers K., Yamamura Y., (eds) Elsevier, Amsterdam, pp 325-333.
- Langsjoen P. H., Langsjoen, P. H., Folkers, K. (1989) Long term efficacy and safety of coenzyme Q10 therapy for idiopathic dilated cardiomyopathy. In: The American Journal of Cardiology, Vol. 65, pp 521 - 523.
- Baggio E., Gandini R., Plancher A.C., Passeri M., Carmosino talian multicenter study on safety and efficacy of coenzyme Q10 adjunctive therapy in heart failure. In: Eighth International Symposium on Biomedical and Clinical Aspects of Coenzyme Q (1994) Littarru G.P., Battino M.,

Folkers K. (Eds) The Molecular Aspects of Medicine, Vol. 15 (Supplement), pp S287-S294.

- MOLINA S., 2005, Evaluación agronómica y bromatológica del pasto maralfalfa (pennisetum sp.) cultivado en el valle del sinú. Disponible en: http://www.agro.unalmed.edu.co/agrodocs/index.php?link=ver_docs&id=278
- RESTREPO E., 2004, Maralfalfa La revolución verde. Disponible en: http://www.zoetecnocampo.com/foron/Forum12/HTML/000024.html

VIII. ANEXOS

Anexo1: Datos de la jaula 2 Manejo Sierra con ubiquinona (T1)

				%	%M			
Edad	Consumo	Cons/ave		Mortalidad	acum	Viabilidad	C.A.	FEE
1	0,36	0,01	0,044	0,00	0,00	100,00	0,17	2574
2	0,51	0,01	0,060	0,00	0,00	100,00	0,30	1012
3	0,66	0,01	0,078	2,08	2,08	97,92	0,41	620
4	0,80	0,02	0,095	0,00	2,08	97,92	0,52	450
5	1,11	0,02	0,112	0,00	2,08	97,92	0,65	338
6	1,29	0,03	0,129	0,00	2,08	97,92	0,78	271
7	1,32	0,03	0,146	0,00	2,08	97,92	0,88	232
8	1,34	0,03	0,168	0,00	2,08	97,92	0,93	221
9	1,36	0,03	0,191	0,00	2,08	97,92	0,97	213
10	1,49	0,03	0,213	0,00	2,08	97,92	1,02	205
11	1,64	0,03	0,236	0,00	2,08	97,92	1,07	196
12	1,88	0,04	0,258	0,00	2,08	97,92	1,13	186
13	1,98	0,04	0,281	0,00	2,08	97,92	1,19	178
14	2,12	0,05	0,303	0,00	2,08	97,92	1,25	170
15	2,20	0,05	0,344	0,00	2,08	97,92	1,24	181
16	2,44	0,05	0,384	0,00	2,08	97,92	1,24	189
17	2,64	0,06	0,425	0,00	2,08	97,92	1,26	195
18	2,82	0,06	0,465	0,00	2,08	97,92	1,28	198
19	3,00	0,06	0,506	0,00	2,08	97,92	1,30	200
20	3,20	0,07	0,546	0,00	2,08	97,92	1,33	201
21	3,44	0,07	0,587	0,00	2,08	97,92	1,36	201
22	3,66	0,08	0,636	0,00	2,08	97,92	1,38	205
23	3,76	0,08	0,686	0,00	2,08	97,92	1,40	209
24	3,86	0,08	0,735	0,00	2,08	97,92	1,41	212
25	4,00	0,09	0,784	0,00	2,08	97,92	1,43	214
26	4,14	0,09	0,834	0,00	2,08	97,92	1,45	216
27	4,32	0,09	0,883	0,00	2,08	97,92	1,48	217
28	4,52	0,10	0,932	0,00	2,08	97,92	1,50	217
29	4,80	0,10	0,998	0,00	2,08	97,92	1,51	224
30	4,98	0,11	1,064	0,00	2,08	97,92	1,51	229
31	5,18	0,11	1,129	0,00	2,08	97,92	1,52	234
32	5,26	0,11	1,195	0,00	2,08	97,92	1,53	239
33	5,50	0,12	1,260	0,00	2,08	97,92	1,55	242
34	5,64	0,12	1,326	0,00	2,08	97,92	1,56	245
35	5,78	0,12	1,391	0,00	2,08	97,92	1,57	247
36	5,92	0,13	1,479	0,00	2,08	97,92	1,57	257
37	6,06	0,13	1,566	0,00	2,08	97,92	1,56	265

38	6,26	0,13	1,653	0,00	2,08	97,92	1,56	273
39	6,44	0,14	1,740	0,00	2,08	97,92	1,56	280
40	8,08	0,17	1,827	0,00	2,08	97,92	1,58	283
41	8,22	0,17	1,914	0,00	2,08	97,92	1,60	286
42	8,22	0,17	2,001	0,00	2,08	97,92	1,62	288
43	8,60	0,18	2,093	0,00	2,08	97,92	1,63	292
44	8,72	0,19	2,185	0,00	2,08	97,92	1,65	295
45	8,72	0,19	2,277	0,00	2,08	97,92	1,67	298
	178,22			2,08				

Anexo 2: Datos de la jaula 8 Manejo Sierra con ubiquinona (T1)

			Р	%	%M			
Edad	Consumo	Cons/ave	prom	Mortalidad	acum	Viabilidad	C.A.	FEE
1	0,36	0,01	0,043	0,00	0,00	100,00	0,17	2511
2	0,51	0,01	0,059	0,00	0,00	100,00	0,30	969
3	0,66	0,01	0,076	2,08	2,08	97,92	0,42	588
4	0,79	0,02	0,093	0,00	2,08	97,92	0,53	425
5	1,10	0,02	0,109	0,00	2,08	97,92	0,67	318
6	1,29	0,03	0,125	0,00	2,08	97,92	0,80	254
7	1,32	0,03	0,141	0,00	2,08	97,92	0,91	217
8	1,32	0,03	0,164	0,00	2,08	97,92	0,95	210
9	1,38	0,03	0,186	0,00	2,08	97,92	1,00	204
10	1,56	0,03	0,209	0,00	2,08	97,92	1,05	196
11	1,64	0,03	0,232	0,00	2,08	97,92	1,09	189
12	1,88	0,04	0,255	0,00	2,08	97,92	1,15	180
13	1,98	0,04	0,278	0,00	2,08	97,92	1,21	173
14	2,12	0,05	0,300	0,00	2,08	97,92	1,27	166
15	2,20	0,05	0,340	0,00	2,08	97,92	1,26	176
16	2,44	0,05	0,379	0,00	2,08	97,92	1,27	183
17	2,64	0,06	0,418	0,00	2,08	97,92	1,28	188
18	2,82	0,06	0,458	0,00	2,08	97,92	1,30	191
19	3,00	0,06	0,497	0,00	2,08	97,92	1,33	193
20	3,20	0,07	0,536	0,00	2,08	97,92	1,36	194
21	3,44	0,07	0,576	0,00	2,08	97,92	1,39	193
22	3,66	0,08	0,626	0,00	2,08	97,92	1,40	199
23	3,76	0,08	0,676	0,00	2,08	97,92	1,42	203
24	3,86	0,08	0,727	0,00	2,08	97,92	1,43	207
25	4,00	0,09	0,777	0,00	2,08	97,92	1,45	210
26	4,14	0,09	0,827	0,00	2,08	97,92	1,47	212
27	4,32	0,09	0,878	0,00	2,08	97,92	1,49	214
28	4,52	0,10	0,928	0,00	2,08	97,92	1,51	215
29	4,80	0,10	0,993	0,00	2,08	97,92	1,51	221
30	4,98	0,11	1,058	0,00	2,08	97,92	1,52	227
31	5,18	0,11	1,123	0,00	2,08	97,92	1,53	232
32	5,26	0,11	1,189	0,00	2,08	97,92	1,54	236
33	5,50	0,12	1,254	0,00	2,08	97,92	1,55	239
34	5,64	0,12	1,319	0,00	2,08	97,92	1,57	242
35	5,78	0,12	1,384	0,00	2,08	97,92	1,58	244
36	5,92	0,13	1,470	0,00	2,08	97,92	1,58	253
37	6,06	0,13	1,555	0,00	2,08	97,92	1,57	262
38	6,26	0,13	1,641	0,00	2,08	97,92	1,57	269
39	6,44	0,14	1,727	0,00	2,08	97,92	1,57	275

40	8,08	0,17	1,812	0,00	2,08	97,92	1,59	278
41	8,22	0,17	1,898	0,00	2,08	97,92	1,61	281
42	8,22	0,17	1,984	0,00	2,08	97,92	1,63	283
43	8,60	0,18	2,075	0,00	2,08	97,92	1,65	286
44	8,72	0,19	2,165	0,00	2,08	97,92	1,67	289
45	8,72	0,19	2,256	0,00	2,08	97,92	1,68	292
	178,28		·	2,08			·	·

Anexo 3: Datos de la jaula 18 Manejo Sierra con ubiquinona (T1)

			Р	%	%M			
Edad	Consumo	Cons/ave	prom	Mortalidad	acum	Viabilidad	C.A.	FEE
1	0,36	0,01	0,044	0,00	0,00	100,00	0,17	2588
2	0,50	0,01	0,059	0,00	0,00	100,00	0,30	983
3	0,66	0,01	0,076	2,08	2,08	97,92	0,42	589
4	0,80	0,02	0,092	0,00	2,08	97,92	0,54	421
5	1,09	0,02	0,108	0,00	2,08	97,92	0,67	315
6	1,26	0,03	0,124	0,00	2,08	97,92	0,80	252
7	1,32	0,03	0,140	0,00	2,08	97,92	0,91	214
8	1,36	0,03	0,163	0,00	2,08	97,92	0,96	207
9	1,40	0,03	0,186	0,00	2,08	97,92	1,00	201
10	1,56	0,03	0,209	0,00	2,08	97,92	1,05	194
11	1,64	0,03	0,231	0,00	2,08	97,92	1,10	188
12	1,88	0,04	0,254	0,00	2,08	97,92	1,16	180
13	1,98	0,04	0,277	0,00	2,08	97,92	1,21	172
14	2,12	0,05	0,300	0,00	2,08	97,92	1,27	166
15	2,20	0,05	0,344	0,00	2,08	97,92	1,25	180
16	2,44	0,05	0,387	0,00	2,08	97,92	1,24	191
17	2,64	0,06	0,430	0,00	2,08	97,92	1,25	199
18	2,82	0,06	0,474	0,00	2,08	97,92	1,26	205
19	3,00	0,06	0,517	0,00	2,08	97,92	1,28	209
20	3,20	0,07	0,560	0,00	2,08	97,92	1,30	211
21	3,44	0,07	0,603	0,00	2,08	97,92	1,33	212
22	3,66	0,08	0,650	0,00	2,08	97,92	1,35	214
23	3,76	0,08	0,697	0,00	2,08	97,92	1,38	216
24	3,86	0,08	0,744	0,00	2,08	97,92	1,40	217
25	4,00	0,09	0,791	0,00	2,08	97,92	1,42	217
26	4,14	0,09	0,837	0,00	2,08	97,92	1,45	217
27	4,32	0,09	0,884	0,00	2,08	97,92	1,48	217
28	4,52	0,10	0,931	0,00	2,08	97,92	1,51	216
29	4,80	0,10	0,995	0,00	2,08	97,92	1,51	222
30	4,98	0,11	1,060	0,00	2,08	97,92	1,52	227
31	5,18	0,11	1,124	0,00	2,08	97,92	1,53	232
32	5,26	0,11	1,188	0,00	2,08	97,92	1,54	236
33	5,50	0,12	1,252	0,00	2,08	97,92	1,56	239
34	5,64	0,12	1,317	0,00	2,08	97,92	1,57	241
35	5,78	0,12	1,381	0,00	2,08	97,92	1,59	243
36	5,92	0,13	1,468	0,00	2,08	97,92	1,58	253
37	6,06	0,13	1,555	0,00	2,08	97,92	1,57	262
38	6,26	0,13	1,643	0,00	2,08	97,92	1,57	269
39	6,44	0,14	1,730	0,00	2,08	97,92	1,57	276
40	8,08	0,17	1,817	0,00	2,08	97,92	1,59	280
41	8,22	0,17	1,905	0,00	2,08	97,92	1,61	283
42	8,22	0,17	1,992	0,00	2,08	97,92	1,63	286

43	8,60	0,18	2,074	0,00	2,08	97,92	1,65	286
44	8,72	0,19	2,156	0,00	2,08	97,92	1,67	287
45	8,72	0,19	2,238	0,00	2,08	97,92	1,69	287
	178,31			2,08				

Anexo 4: Datos de la jaula 20 Manejo Sierra con ubiquinona (T1)

			Р	%	%M			1
Edad	Consumo	Cons/ave	prom	Mortalidad	acum	Viabilidad	C.A.	FEE
1	0,25	0,01	0,044	0,00	0,00	100,00	0,12	3675
2	0,49	0,01	0,060	0,00	0,00	100,00	0,26	1158
3	0,66	0,01	0,077	2,08	2,08	97,92	0,38	657
4	0,79	0,02	0,094	0,00	2,08	97,92	0,50	461
5	1,11	0,02	0,110	0,00	2,08	97,92	0,64	338
6	1,30	0,03	0,127	0,00	2,08	97,92	0,77	267
7	1,32	0,03	0,143	0,00	2,08	97,92	0,88	227
8	1,36	0,03	0,166	0,00	2,08	97,92	0,93	219
9	1,40	0,03	0,190	0,00	2,08	97,92	0,97	212
10	1,56	0,03	0,213	0,00	2,08	97,92	1,02	204
11	1,69	0,04	0,237	0,00	2,08	97,92	1,07	196
12	1,88	0,04	0,260	0,00	2,08	97,92	1,13	188
13	1,98	0,04	0,283	0,00	2,08	97,92	1,19	180
14	2,12	0,05	0,307	0,00	2,08	97,92	1,24	173
15	2,20	0,05	0,348	0,00	2,08	97,92	1,23	185
16 17	2,49	0,05	0,389	0,00	2,08	97,92	1,23	193
18	2,64 2,82	0,06 0,06	0,431 0,472	0,00	2,08 2,08	97,92 97,92	1,25 1,27	199 203
19	3,00	0,06	0,472	0,00	2,08	97,92	1,27	205
20	3,20	0,00	0,513	0,00	2,08	97,92	1,31	206
21	3,44	0,07	0,609	2,08	4,17	95,83	1,35	206
22	3,58	0,08	0,656	0,00	4,17	95,83	1,37	209
23	3,68	0,08	0,703	0,00	4,17	95,83	1,39	211
24	3,78	0,08	0,750	0,00	4,17	95,83	1,41	212
25	3,92	0,09	0,797	0,00	4,17	95,83	1,44	213
26	4,04	0,09	0,844	0,00	4,17	95,83	1,46	213
27	4,24	0,09	0,891	0,00	4,17	95,83	1,49	213
28	4,42	0,10	0,938	0,00	4,17	95,83	1,52	212
29	4,70	0,10	1,003	0,00	4,17	95,83	1,52	218
30	4,88	0,11	1,068	0,00	4,17	95,83	1,53	223
31	5,06	0,11	1,132	0,00	4,17	95,83	1,54	228
32	5,16	0,11	1,197	0,00	4,17	95,83	1,55	232
33	5,38	0,12	1,262	0,00	4,17	95,83	1,56	235
34	5,52	0,12	1,327	0,00	4,17	95,83	1,57	238
35	5,66	0,12	1,392	0,00	4,17	95,83	1,59	240
36	5,80	0,13	1,482	0,00	4,17	95,83	1,58	250
37	5,94	0,13	1,571	0,00	4,17	95,83	1,57	259
38 39	6,12	0,13	1,661 1,751	0,00	4,17 4,17	95,83	1,56 1,56	268 275
40	6,30 7,92	0,14 0,17	1,751	0,00	4,17	95,83 95,83	1,58	279
41	8,06	0,17	1,931	0,00	4,17	95,83	1,60	283
42	8,06	0,18	2,021	0,00	4,17	95,83	1,61	286
43	8,42	0,18	2,105	0,00	4,17	95,83	1,64	287
44	8,58	0,19	2,189	0,00	4,17	95,83	1,66	288
45	8,58	0,19	2,273	0,00	4,17	95,83	1,68	288

175,50 4,17

Anexo 5: Datos de la jaula 6 Manejo Sierra sin ubiquinona (T2)

				%	%M			
Edad	Consumo	Cons/ave	P prom	Mortalidad	acum	Viabilidad	C.A.	FEE
1	0,30	0,01	0,044	0,00	0,00	100,00	0,14	3073
2	0,46	0,01	0,059	0,00	0,00	100,00	0,27	1098
3	0,68	0,01	0,074	0,00	0,00	100,00	0,40	611
4	0,78	0,02	0,089	0,00	0,00	100,00	0,52	432
5	1,11	0,02	0,105	0,00	0,00	100,00	0,66	315
6	1,27	0,03	0,120	0,00	0,00	100,00	0,80	249
7	1,34	0,03	0,135	0,00	0,00	100,00	0,92	210
8	1,34	0,03	0,165	2,08	2,08	97,92	0,94	215
9	1,36	0,03	0,192	2,08	4,17	95,83	0,98	209
10	1,52	0,03	0,216	0,00	4,17	95,83	1,02	202
11	1,62	0,04	0,239	0,00	4,17	95,83	1,07	195
12	1,84	0,04	0,263	0,00	4,17	95,83	1,13	186
13	1,94	0,04	0,286	0,00	4,17	95,83	1,18	179
14	2,08	0,05	0,306	0,00	4,17	95,83	1,25	167
15	2,16	0,05	0,345	0,00	4,17	95,83	1,25	176
16	2,40	0,05	0,383	0,00	4,17	95,83	1,26	182
17	2,58	0,06	0,422	0,00	4,17	95,83	1,28	186
18	2,76	0,06	0,461	0,00	4,17	95,83	1,30	189
19	2,94	0,06	0,499	0,00	4,17	95,83	1,33	190
20	3,12	0,07	0,538	0,00	4,17	95,83	1,36	190
21	3,36	0,07	0,577	0,00	4,17	95,83	1,39	189
22	3,58	0,08	0,626	0,00	4,17	95,83	1,41	194
23	3,68	0,08	0,676	0,00	4,17	95,83	1,42	198
24	3,78	0,08	0,725	0,00	4,17	95,83	1,44	201
25	3,92	0,09	0,775	0,00	4,17	95,83	1,46	204
26	4,04	0,09	0,824	0,00	4,17	95,83	1,48	206
27	4,24	0,09	0,874	0,00	4,17	95,83	1,50	207
28	4,42	0,10	0,923	0,00	4,17	95,83	1,52	208
29	4,70	0,10	0,989	0,00	4,17	95,83	1,52	215
30	4,88	0,11	1,055	0,00	4,17	95,83	1,53	220
31	5,06	0,11	1,121	0,00	4,17	95,83	1,54	225
32	5,16	0,11	1,187	0,00	4,17	95,83	1,55	230
33	5,38	0,12	1,252	0,00	4,17	95,83	1,56	233
34	5,52	0,12	1,318	0,00	4,17	95,83	1,57	236
35	5,66	0,12	1,384	0,00	4,17	95,83	1,59	239
36	5,80	0,13	1,463	0,00	4,17	95,83	1,59	245
37	5,80	0,13	1,576	2,08	6,25	93,75	1,59	252
38	5,98	0,13	1,657	0,00	6,25	93,75	1,59	257
39	6,16	0,14	1,738	0,00	6,25	93,75	1,59	262
40	7,74	0,17	1,819	0,00	6,25	93,75	1,62	263
41	7,88	0,18	1,900	0,00	6,25	93,75	1,64	265
42	7,88	0,18	1,981	0,00	6,25	93,75	1,66	266
43	8,24	0,18	2,073	0,00	6,25	93,75	1,68	269
44	8,38	0,19	2,165	0,00	6,25	93,75	1,69	273
45	8,38	0,19	2,257	0,00	6,25	93,75	1,71	276
	173,223			6,25				

Anexo 6: Datos de la jaula 17 Manejo Sierra sin ubiquinona (T2)

			Р	%	%M			
Edad	Consumo	Cons/ave	=	Mortalidad	acum	Viabilidad	C.A.	FEE
1	0,251	0,01	0,043	0,00	0,00	100,00	0,12	3591
2	0,445	0,01	0,058	0,00	0,00	100,00	0,25	1159
3	0,661	0,01	0,073	0,00	0,00	100,00	0,39	622
4	0,769	0,02	0,089	2,08	2,08	97,92	0,51	430
5	1,038	0,02	0,104	0,00	2,08	97,92	0,65	315
6	1,221	0,03	0,119	0,00	2,08	97,92	0,78	248
7	1,320	0,03	0,134	0,00	2,08	97,92	0,91	207
8	1,320	0,03	0,156	0,00	2,08	97,92	0,96	200
9	1,380	0,03	0,182	2,08	4,17	95,83	1,00	194
10	1,520	0,03	0,205	0,00	4,17	95,83	1,05	187
11	1,620	0,04	0,228	0,00	4,17	95,83	1,10	180
12	1,840	0,04	0,251	0,00	4,17	95,83	1,16	172
13	1,940	0,04	0,273	0,00	4,17	95,83	1,22	165
14	2,080	0,05	0,296	0,00	4,17	95,83	1,28	159
15	2,160	0,05	0,338	0,00	4,17	95,83	1,26	172
16	2,400	0,05	0,380	0,00	4,17	95,83	1,26	181
17	2,580	0,06	0,422	0,00	4,17	95,83	1,26	188
18	2,760	0,06	0,464	0,00	4,17	95,83	1,28	193
19	2,940	0,06	0,506	0,00	4,17	95,83	1,30	196
20	3,120	0,07	0,548	0,00	4,17	95,83	1,32	198
21	3,360	0,07	0,590	0,00	4,17	95,83	1,35	199
22	3,580	0,08	0,637	0,00	4,17	95,83	1,38	202
23	3,680	0,08	0,684	0,00	4,17	95,83	1,40	204
24	3,780	0,08	0,731	0,00	4,17	95,83	1,42	206
25	3,920	0,09	0,778	0,00	4,17	95,83	1,44	207
26	4,040	0,09	0,825	0,00	4,17	95,83	1,47	207
27	4,240	0,09	0,872	0,00	4,17	95,83	1,49	207
28	4,420	0,10	0,919	0,00	4,17	95,83	1,52	207
29	4,700	0,10	0,983	0,00	4,17	95,83	1,53	213
30	4,880	0,11	1,047	0,00	4,17	95,83	1,54	218
31	5,060	0,11	1,111	0,00	4,17	95,83	1,55	222
32	5,160	0,11	1,176	0,00	4,17	95,83	1,56	226
33	5,380	0,12	1,240	0,00	4,17	95,83	1,57	229
34	5,520	0,12	1,304	0,00	4,17	95,83	1,59	232
35	5,660	0,12	1,368	0,00	4,17	95,83	1,60	234
36	5,800	0,13	1,449	0,00	4,17	95,83	1,60	241
37	5,940	0,13	1,531	0,00	4,17	95,83	1,60	248
38	5,980	0,13	1,649	2,08	6,25	93,75	1,60	255
39	6,160	0,14	1,732	0,00	6,25	93,75	1,60	260
40	7,740	0,17	1,815	0,00	6,25	93,75	1,62	263
41	7,880	0,18	1,899	0,00	6,25	93,75	1,64	265
42	7,880	0,18	1,982	0,00	6,25	93,75	1,66	266
43	8,240	0,18	2,071	0,00	6,25	93,75	1,68	269
44	8,380	0,19	2,160	0,00	6,25	93,75	1,69	272
45	8,380	0,19	2,249	0,00	6,25	93,75	1,71	274
	173,125			6,25				

Anexo 7: Datos de la jaula 19 Manejo Sierra sin ubiquinona (T2)

			Р	%	%M			
Edad	Consumo	Cons/ave	prom	Mortalidad	acum	Viabilidad	C.A.	FEE
1	0,27	0,006	0,043	0,00	0,00	100,00	0,13	3302
2	0,45	0,009	0,059	0,00	0,00	100,00	0,25	1174
3	0,68	0,014	0,075	0,00	0,00	100,00	0,39	650
4	0,80	0,017	0,091	0,00	0,00	100,00	0,50	456
5	1,08	0,023	0,108	0,00	0,00	100,00	0,64	338
6	1,27	0,026	0,124	0,00	0,00	100,00	0,77	269
7	1,34	0,028	0,140	0,00	0,00	100,00	0,88	227
8	1,42	0,030	0,163	0,00	0,00	100,00	0,93	218
9	1,44	0,030	0,186	0,00	0,00	100,00	0,98	211
10	1,58	0,033	0,209	0,00	0,00	100,00	1,03	204
11	1,68	0,035	0,233	0,00	0,00	100,00	1,08	197
12	1,92	0,040	0,256	0,00	0,00	100,00	1,13	188
13	2,02	0,042	0,279	0,00	0,00	100,00	1,19	181
14	2,16	0,045	0,303	0,00	0,00	100,00	1,25	173
15	2,26	0,047	0,344	0,00	0,00	100,00	1,23	186
16	2,50	0,052	0,386	0,00	0,00	100,00	1,23	196
17	2,68	0,056	0,428	0,00	0,00	100,00	1,24	203
18	2,88	0,060	0,470	0,00	0,00	100,00	1,26	208
19	3,08	0,064	0,512	0,00	0,00	100,00	1,28	210
20	3,26	0,068	0,554	0,00	0,00	100,00	1,31	212
21	3,50	0,073	0,596	0,00	0,00	100,00	1,34	212
22	3,74	0,078	0,643	0,00	0,00	100,00	1,36	214
23	3,84	0,080	0,689	0,00	0,00	100,00	1,39	216
24	3,94	0,082	0,735	0,00	0,00	100,00	1,41	217
25	4,08	0,085	0,782	0,00	0,00	100,00	1,44	218
26	4,22	0,088	0,828	0,00	0,00	100,00	1,46	218
27	4,42	0,092	0,874	0,00	0,00	100,00	1,49	217
28	4,60	0,096	0,921	0,00	0,00	100,00	1,52	217
29	4,90	0,102	0,986	0,00	0,00	100,00	1,52	223
30	5,08	0,106	1,051	0,00	0,00	100,00	1,53	229
31	5,28	0,110	1,116	0,00	0,00	100,00	1,54	234
32	5,38	0,112	1,181	0,00	0,00	100,00	1,55	238
33	5,62	0,117	1,246	0,00	0,00	100,00	1,56	242
34	5,76	0,120	1,311	0,00	0,00	100,00	1,58	245
35	5,90	0,123	1,376	0,00	0,00	100,00	1,59	247
36	6,04	0,126	1,457	0,00	0,00	100,00	1,59	255
37	6,20	0,129	1,539	0,00	0,00	100,00	1,59	262
38	6,38	0,133	1,621	0,00	0,00	100,00	1,59	268
39	6,58	0,137	1,702	0,00	0,00	100,00	1,59	274
40	8,26	0,172	1,784	0,00	0,00	100,00	1,62	276
41	8,40	0,175	1,865	0,00	0,00	100,00	1,64	277
42	8,40	0,175	1,947	0,00	0,00	100,00	1,66	279
43	8,60	0,183	2,081	2,08	2,08	97,92	1,68	283
44	8,72	0,186	2,173	0,00	2,08	97,92	1,69	286
45	8,72	0,186	2,265	0,00	2,08	97,92	1,70	289
	181,33			2,08				

Anexo 8: Datos de la jaula 22 Manejo Sierra sin ubiquinona (T2)

Edad	Consumo	Cons/ave	P prom	% Mortalidad	%M acum	Viabilidad	C.A.	FEE
1	0,27	0,01	0,043	0,00	0,00	100,00	0,13	3262
2	0,45	0,01	0,057	0,00	0,00	100,00	0,26	1098
3	0,60	0,01	0,072	0,00	0,00	100,00	0,38	622
4	0,74	0,02	0,086	0,00	0,00	100,00	0,50	431
5	1,02	0,02	0,100	0,00	0,00	100,00	0,64	313
6	1,20	0,03	0,114	0,00	0,00	100,00	0,78	245
7	1,34	0,03	0,129	0,00	0,00	100,00	0,91	202
8	1,36	0,03	0,152	0,00	0,00	100,00	0,96	199
9	1,42	0,03	0,176	0,00	0,00	100,00	1,00	196
10	1,58	0,03	0,199	0,00	0,00	100,00	1,04	191
11	1,68	0,04	0,223	0,00	0,00	100,00	1,09	186
12	1,92	0,04	0,246	0,00	0,00	100,00	1,15	179
13	2,02	0,04	0,270	0,00	0,00	100,00	1,20	172
14	2,16	0,05	0,293	0,00	0,00	100,00	1,26	166
15	2,26	0,05	0,335	0,00	0,00	100,00	1,25	179
16	2,50	0,05	0,376	0,00	0,00	100,00	1,25	189
17	2,68	0,06	0,418	0,00	0,00	100,00	1,26	195
18	2,88	0,06	0,459	0,00	0,00	100,00	1,27	200
19	3,08	0,06	0,500	0,00	0,00	100,00	1,30	203
20	3,26	0,07	0,542	0,00	0,00	100,00	1,32	205
21	3,50	0,07	0,583	0,00	0,00	100,00	1,35	205
22	3,74	0,08	0,632	0,00	0,00	100,00	1,37	209
23	3,84	0,08	0,681	0,00	0,00	100,00	1,39	213
24	3,94	0,08	0,730	0,00	0,00	100,00	1,41	216
25	4,08	0,09	0,779	0,00	0,00	100,00	1,43	218
26	4,22	0,09	0,828	0,00	0,00	100,00	1,45	219
27	4,42	0,09	0,877	0,00	0,00	100,00	1,48	220
28	4,60	0,10	0,925	0,00	0,00	100,00	1,50	220
29	4,90	0,10	0,990	0,00	0,00	100,00	1,51	226
30	5,08	0,11	1,055	0,00	0,00	100,00	1,52	232
31	5,28	0,11	1,120	0,00	0,00	100,00	1,53	237
32	5,38	0,11	1,184	0,00	0,00	100,00	1,54	241 244
34	5,62 5,76	0,12 0,12	1,249 1,314	0,00	0,00	100,00	1,55 1,57	247
35	5,70	0,12	1,379	0,00	0,00	100,00	1,58	247
36	6,04	0,12	1,461	0,00	0,00	100,00	1,58	257
37	6,20	0,13	1,543	0,00	0,00	100,00	1,58	264
38	6,38	0,13	1,625	0,00	0,00	100,00	1,58	270
39	6,58	0,13	1,707	0,00	0,00	100,00	1,59	276
40	8,26	0,14	1,789	0,00	0,00	100,00	1,61	278
41	8,40	0,17	1,871	0,00	0,00	100,00	1,63	280
42	8,40	0,18	1,953	0,00	0,00	100,00	1,65	281
43	8,60	0,18	2,072	2,08	2,08	97,92	1,68	281
44	8,72	0,19	2,150	0,00	2,08	97,92	1,70	281
45	8,72	0,19	2,228	0,00	2,08	97,92	1,73	281
43	180,98	0,19	2,220	2,08	2,00	31,32	1,73	201
	100,30	l	1	2,00		I	<u> </u>	<u> </u>

Anexo 9: Datos de la jaula 25 Manejo Sierra con ubiquinona (T3)

			Р	%	%M			
Edad	Consumo	Cons/ave	prom	Mortalidad	acum	Viabilidad	C.A.	FEE
1	0,38	0,01	0,043	0,00	0,00	100,00	0,18	2327
2	0,52	0,01	0,062	0,00	0,00	100,00	0,30	1035
3	0,68	0,01	0,082	0,00	0,00	100,00	0,40	675
4	0,96	0,02	0,101	0,00	0,00	100,00	0,52	482
5	1,26	0,03	0,120	0,00	0,00	100,00	0,66	366
6	1,46	0,03	0,140	0,00	0,00	100,00	0,78	297
7	1,53	0,03	0,159	0,00	0,00	100,00	0,89	256
8	1,70	0,04	0,192	0,00	0,00	100,00	0,92	260
9	1,96	0,04	0,225	0,00	0,00	100,00	0,97	257
10	2,03	0,04	0,257	0,00	0,00	100,00	1,01	254
11	2,22	0,05	0,290	0,00	0,00	100,00	1,06	249
12	2,34	0,05	0,323	0,00	0,00	100,00	1,10	244
13	2,51	0,05	0,355	0,00	0,00	100,00	1,15	238
14	2,57	0,05	0,388	0,00	0,00	100,00	1,19	233
15	2,78	0,06	0,447	0,00	0,00	100,00	1,16	257
16	2,98	0,06	0,507	0,00	0,00	100,00	1,15	277
17	3,26	0,07	0,566	0,00	0,00	100,00	1,15	291
18	3,74	0,08	0,626	0,00	0,00	100,00	1,16	300
19	4,32	0,09	0,686	0,00	0,00	100,00	1,19	303
20	4,87	0,10	0,745	0,00	0,00	100,00	1,23	302
21	5,22	0,11	0,805	0,00	0,00	100,00	1,28	300
22	5,52	0,12	0,888	0,00	0,00	100,00	1,29	314
23	5,62	0,12	0,971	0,00	0,00	100,00	1,30	326
24	5,68	0,12	1,054	0,00	0,00	100,00	1,31	336
25	5,84	0,12	1,138	0,00	0,00	100,00	1,32	345
26	6,16	0,13	1,221	0,00	0,00	100,00	1,33	352
27	6,30	0,13	1,304	0,00	0,00	100,00	1,35	358
28	6,38	0,13	1,388	0,00	0,00	100,00	1,36	364
29	6,64	0,14	1,466	0,00	0,00	100,00	1,38	365
30	6,88	0,15	1,578	2,08	2,08	97,92	1,41	366
31	6,92	0,15	1,659	0,00	2,08	97,92		367
32	7,10	0,15	1,739	0,00	2,08	97,92	1,45	368
33	7,34	0,16	1,820	0,00	2,08	97,92	1,47	368
34	7,58	0,16	1,901	0,00	2,08	97,92	1,49	367
35	7,66	0,17	2,024	2,08	4,17	95,83	1,51	366
36	8,06	0,18	2,123	2,08	6,25	93,75	1,56	355
37	8,10	0,18	2,226	2,08	8,33	91,67	1,60	344
38	8,28	0,19	2,282	0,00	8,33	91,67	1,65	334
39	8,30	0,19	2,391	2,08	10,42	89,58	1,69	325
40	8,70	0,21	2,506	2,08	12,50	87,50	1,73	316
41	8,90	0,22	2,626	2,08	14,58	85,42	1,78	308
42	8,84	0,22	2,752	2,08	16,67	83,33	1,82	300
43	8,78	0,23	2,915	2,08	18,75	81,25	1,84	300
44	9,02	0,24	3,087	2,08	20,83	79,17	1,86	299
45	9,48	0,25	3,183	0,00	20,83	79,17	1,88	298
<u> </u>	227,37			20,83				

Anexo 10: Datos de la jaula 29 Manejo Sierra con ubiquinona (T3)

			Р	%	%M			
Edad	Consumo	Cons/ave	prom	Mortalidad	acum	Viabilidad	C.A.	FEE

1	0,38	0,01	0,043	0,00	0,00	100,00	0,18	2372
2	0,52	0,01	0,063	0,00	0,00	100,00	0,30	1072
3	0,68	0,01	0,085	2,08	2,08	97,92	0,39	706
4	0,94	0,02	0,106	0,00	2,08	97,92	0,51	511
5	1,28	0,03	0,126	0,00	2,08	97,92	0,64	386
6	1,46	0,03	0,147	0,00	2,08	97,92	0,76	314
7	1,67	0,04	0,167	0,00	2,08	97,92	0,88	265
8	1,78	0,04	0,202	0,00	2,08	97,92	0,92	269
9	2,04	0,04	0,237	0,00	2,08	97,92	0,97	267
10	2,15	0,05	0,272	0,00	2,08	97,92	1,01	263
11	2,25	0,05	0,306	0,00	2,08	97,92	1,05	259
12	2,38	0,05	0,341	0,00	2,08	97,92	1,09	254
13	2,50	0,05	0,376	0,00	2,08	97,92	1,13	250
14	2,51	0,05	0,411	0,00	2,08	97,92	1,17	246
15	2,72	0,06	0,471	0,00	2,08	97,92	1,14	269
16	2,92	0,06	0,531	0,00	2,08	97,92	1,13	287
17	3,20	0,07	0,590	0,00	2,08	97,92	1,13	301
18	3,66	0,08	0,650	0,00	2,08	97,92	1,15	309
19	4,24	0,09	0,710	0,00	2,08	97,92	1,18	311
20	4,75	0,10	0,770	0,00	2,08	97,92	1,22	310
21	5,14	0,11	0,830	0,00	2,08	97,92	1,26	307
22	5,44	0,12	0,910	0,00	2,08	97,92	1,28	317
23	5,50	0,12	0,990	0,00	2,08	97,92	1,29	326
24	5,76	0,12	1,070	0,00	2,08	97,92	1,31	333
25	5,92	0,13	1,150	0,00	2,08	97,92	1,33	339
26	6,22	0,13	1,230	0,00	2,08	97,92	1,35	343
27	6,34	0,13	1,309	0,00	2,08	97,92	1,37	346
28	6,50	0,14	1,420	2,08	4,17	95,83	1,39	349
29	6,50	0,14	1,506	0,00	4,17	95,83	1,41	354
30	6,58	0,14	1,592	0,00	4,17	95,83	1,42	358
31	6,76	0,15	1,678	0,00	4,17	95,83	1,43	362
32	6,96	0,15	1,764	0,00	4,17	95,83	1,45	364
33	7,16	0,16	1,850	0,00	4,17	95,83	1,47	366
34	7,50	0,16	1,936	0,00	4,17	95,83	1,49	367
35	7,78	0,17	2,022	0,00	4,17	95,83	1,51	368
36	8,06	0,18	2,122	0,00	4,17	95,83	1,52	372
37	8,28	0,18	2,221	0,00	4,17	95,83	1,53	376
38	8,52	0,19	2,321	0,00	4,17	95,83	1,55	379
39	8,74	0,19	2,420	0,00	4,17	95,83	1,56	381
40	9,20	0,20	2,520	0,00	4,17	95,83	1,58	383
41	9,62	0,21	2,620	0,00	4,17	95,83	1,60	383
42	10,06	0,22	2,719	0,00	4,17	95,83	1,62	383
43	10,88	0,24	2,836	0,00	4,17	95,83	1,64	386
44	11,14	0,25	3,018	2,08	6,25	93,75	1,65	389
45	10,96	0,25	3,209	2,08	8,33	91,67	1,67	392
	235,55			8,33				

Anexo 11: Datos de la jaula 33 Manejo Sierra con ubiquinona (T3)

Eda	Consumo	Cons/ave	P prom	% Mortalidad	%M acum	Viabilidad	C.A.	FEE
	0,38	0,01	0,043	0,00	0,00	100,00		2327
	2 0,52	0,01	0,064	0,00	0,00	100,00	0,29	1093

3	0,68	0,01	0,085	0,00	0,00	100,00	0,39	734
4	0,96	0,02	0,106	0,00	0,00	100,00	0,50	533
5	1,30	0,03	0,127	0,00	0,00	100,00	0,63	405
6	1,46	0,03	0,148	0,00	0,00	100,00	0,74	333
7	1,79	0,04	0,170	0,00	0,00	100,00	0,87	278
8	1,92	0,04	0,202	0,00	0,00	100,00	0,93	273
9	2,10	0,04	0,235	0,00	0,00	100,00	0,98	266
10	2,17	0,05	0,268	0,00	0,00	100,00	1,03	260
11	2,34	0,05	0,301	0,00	0,00	100,00	1,08	253
12	2,43	0,05	0,334	0,00	0,00	100,00	1,13	247
13	2,51	0,05	0,367	0,00	0,00	100,00	1,17	242
14	2,57	0,05	0,400	0,00	0,00	100,00	1,21	237
15	2,70	0,06	0,468	2,08	2,08	97,92	1,17	260
16	2,92	0,06	0,528	0,00	2,08	97,92	1,16	279
17	3,20	0,07	0,588	0,00	2,08	97,92	1,16	293
18	3,66	0,08	0,648	0,00	2,08	97,92	1,17	301
19	4,24	0,09	0,708	0,00	2,08	97,92	1,20	305
20	4,86	0,10	0,768	0,00	2,08	97,92	1,24	303
21	5,22	0,11	0,828	0,00	2,08	97,92	1,28	301
22	5,52	0,12	0,909	0,00	2,08	97,92	1,30	312
23	5,62	0,12	0,991	0,00	2,08	97,92	1,31	322
24	5,74	0,12	1,073	0,00	2,08	97,92	1,32	330
25	5,88	0,13	1,155	0,00	2,08	97,92	1,34	338
26	6,16	0,13	1,236	0,00	2,08	97,92	1,36	343
27	6,10	0,13	1,347	2,08	4,17	95,83	1,37	349
28	6,32	0,14	1,430	0,00	4,17	95,83	1,39	353
29	6,52	0,14	1,513	0,00	4,17	95,83	1,41	356
30	6,66	0,14	1,595	0,00	4,17	95,83	1,42	358
31	6,76	0,15	1,677	0,00	4,17	95,83	1,44	360
32	6,92	0,15	1,759	0,00	4,17	95,83	1,46	361
33	7,14	0,16	1,841	0,00	4,17	95,83	1,48	361
34	7,42	0,16	1,923	0,00	4,17	95,83	1,50	361
35	7,58	0,16	2,005	0,00	4,17	95,83	1,52	361
36	7,88	0,18	2,140	2,08	6,25	93,75	1,54	362
37	7,92	0,18	2,281	2,08	8,33	91,67	1,56	363
38	8,08	0,18	2,373	0,00	8,33	91,67	1,57	364
39	8,28	0,19	2,465	0,00	8,33	91,67	1,59	364
40	8,68	0,20	2,557	0,00	8,33	91,67	1,61	364
41	9,06	0,21	2,649	0,00	8,33	91,67	1,63	363
42	9,36	0,21	2,741	0,00	8,33	91,67	1,65	362
43	9,96	0,23	2,838	0,00	8,33	91,67	1,68	361
44	9,60	0,22	2,934	0,00	8,33	91,67	1,70	360
45	9,76	0,23	3,101	2,08	10,42	89,58	1,72	360
	228,85			10,42				

Anexo 12: Datos de la jaula 37 Manejo Sierra con ubiquinona (T3)

			Р	%	%M			
Edad	Consumo	Cons/ave	prom	Mortalidad	acum	Viabilidad	C.A.	FEE
1	0,34	0,01	0,043	0,00	0,00	100,00	0,16	2635
2	0,51	0,01	0,063	0,00	0,00	100,00	0,28	1109
3	0,68	0,01	0,082	0,00	0,00	100,00	0,39	706
4	0,93	0,02	0,102	0,00	0,00	100,00	0,50	504

5	1,18	0,02	0,121	0,00	0,00	100,00	0,63	387
6	1,39	0,03	0,141	0,00	0,00	100,00	0,75	314
7	1,67	0,03	0,160	0,00	0,00	100,00	0,87	262
8	1,74	0,04	0,193	0,00	0,00	100,00	0,91	264
9	1,92	0,04	0,230	2,08	2,08	97,92	0,96	261
10	2,01	0,04	0,263	0,00	2,08	97,92	1,00	257
11	2,21	0,05	0,296	0,00	2,08	97,92	1,05	252
12	2,32	0,05	0,329	0,00	2,08	97,92	1,09	246
13	2,49	0,05	0,363	0,00	2,08	97,92	1,14	240
14	2,48	0,05	0,396	0,00	2,08	97,92	1,18	235
15	2,63	0,06	0,455	0,00	2,08	97,92	1,15	259
16	2,92	0,06	0,514	0,00	2,08	97,92	1,13	277
17	3,20	0,07	0,574	0,00	2,08	97,92	1,14	291
18	3,66	0,08	0,633	0,00	2,08	97,92	1,15	299
19	4,24	0,09	0,692	0,00	2,08	97,92	1,18	301
20	4,80	0,10	0,751	0,00	2,08	97,92	1,23	300
21	5,12	0,11	0,811	0,00	2,08	97,92	1,27	297
22	5,46	0,12	0,896	0,00	2,08	97,92	1,28	311
23	5,70	0,12	0,981	0,00	2,08	97,92	1,29	323
24	5,62	0,12	1,066	0,00	2,08	97,92	1,30	334
25	5,80	0,12	1,151	0,00	2,08	97,92	1,31	344
26	6,08	0,13	1,236	0,00	2,08	97,92	1,33	351
27	6,16	0,13	1,322	0,00	2,08	97,92	1,34	358
28	6,36	0,14	1,407	0,00	2,08	97,92	1,36	363
29	6,62	0,14	1,482	0,00	2,08	97,92	1,38	362
30	6,80	0,14	1,558	0,00	2,08	97,92	1,41	361
31	6,94	0,15	1,669	2,08	4,17	95,83	1,43	360
32	6,98	0,16	1,786	2,08	6,25	93,75	1,46	359
33	7,20	0,16	1,865	0,00	6,25	93,75	1,48	358
34	7,46	0,17	1,944	0,00	6,25	93,75	1,50	356
35	7,76	0,17	2,023	0,00	6,25	93,75	1,53	354
36	7,88	0,18	2,133	2,08	8,33	91,67	1,57	346
37	8,10	0,18	2,197	0,00	8,33	91,67	1,61	339
38	8,28	0,19	2,261	0,00	8,33	91,67		
39	8,52	0,19	2,325	0,00	8,33	91,67	1,68	325
40	8,50	0,20	2,503	4,17	12,50	87,50	1,72	319
41	8,64	0,21	2,633	2,08	14,58	85,42	1,75	313
42	8,74	0,22	2,769	2,08	16,67	83,33	1,79	307
43	8,74	0,22	2,936	2,08	18,75	81,25	1,81	307
44	9,34	0,24	3,032	0,00	18,75	81,25	1,83	306
45	8,56	0,22	3,128	0,00	18,75	81,25	1,84	307
	224,68			18,75				

Anexo 13: Datos de la jaula 24 Manejo Sierra sin ubiquinona (T4)

			Р	%				
Edad	Consumo	Cons/ave	prom	Mortalidad	%M acum	Viabilidad	C.A.	FEE
1	0,28	0,01	0,043	0,00	0,00	100,00	0,14	3196
2	0,47	0,01	0,061	0,00	0,00	100,00	0,26	1192
3	0,68	0,01	0,078	0,00	0,00	100,00	0,38	690
4	0,88	0,02	0,096	0,00	0,00	100,00	0,50	481
5	1,23	0,03	0,114	0,00	0,00	100,00	0,65	351
6	1,33	0,03	0,131	0,00	0,00	100,00	0,77	283

7	1,54	0,03	0,149	0,00	0,00	100,00	0,90	237
8	1,42	0,03	0,182	0,00	0,00	100,00	0,90	253
9	1,86	0,04	0,215	0,00	0,00	100,00	0,94	254
10	1,99	0,04	0,248	0,00	0,00	100,00	0,98	252
11	2,20	0,05	0,280	0,00	0,00	100,00	1,03	247
12	2,36	0,05	0,313	0,00	0,00	100,00	1,08	242
13	2,51	0,05	0,346	0,00	0,00	100,00	1,13	236
14	2,56	0,05	0,379	0,00	0,00	100,00	1,17	231
15	2,76	0,06	0,437	0,00	0,00	100,00	1,15	254
16	2,98	0,06	0,496	0,00	0,00	100,00	1,14	273
17	3,26	0,07	0,554	0,00	0,00	100,00	1,14	286
18	3,74	0,08	0,612	0,00	0,00	100,00	1,16	293
19	4,32	0,09	0,670	0,00	0,00	100,00	1,19	296
20	4,90	0,10	0,728	0,00	0,00	100,00	1,24	294
21	5,05	0,11	0,787	0,00	0,00	100,00	1,28	293
22	5,46	0,11	0,866	0,00	0,00	100,00	1,29	304
23	5,52	0,12	0,946	0,00	0,00	100,00	1,31	315
24	5,36	0,11	1,025	0,00	0,00	100,00	1,31	325
25	5,78	0,12	1,105	0,00	0,00	100,00	1,33	333
26	6,04	0,13	1,184	0,00	0,00	100,00	1,35	338
27	6,24	0,13	1,263	0,00	0,00	100,00	1,36	343
28	6,26	0,13	1,343	0,00	0,00	100,00	1,38	347
29	6,34	0,13	1,448	2,08	2,08	97,92	1,40	349
30	6,58	0,14	1,557	2,08	4,17	95,83	1,42	350
31	6,62	0,15	1,749	6,25	10,42	89,58	1,44	350
32	6,78	0,16	1,833	0,00	10,42	89,58	1,46	351
33	7,02	0,16	1,916	0,00	10,42	89,58	1,48	350
34	7,30	0,17	1,999	0,00	10,42	89,58	1,51	349
35	7,52	0,17	2,083	0,00	10,42	89,58	1,53	348
36	7,88	0,18	2,163	0,00	10,42	89,58	1,56	345
37	8,10	0,19	2,243	0,00	10,42	89,58	1,59	342
38	8,28	0,19	2,324	0,00	10,42	89,58	1,62	339
39	8,18	0,19	2,461	2,08	12,50	87,50	1,64	337
40	8,56	0,20	2,543	0,00	12,50	87,50	1,67	334
41	9,02	0,21	2,625	0,00	12,50	87,50	1,70	330
42	9,36	0,22	2,708	0,00	12,50	87,50	1,73	326
43	9,80	0,23	2,836	0,00	12,50	87,50	1,73	333
44	9,12	0,22	2,963	0,00	12,50	87,50	1,73	340
45	10,80	0,26	3,091	0,00	12,50	87,50	1,74	345
	226,23			12,50				

Anexo 14: Datos de la jaula 28 Manejo Sierra sin ubiquinona (T4)

			Р	%				
Edad	Consumo	Cons/ave	prom	Mortalidad	%M acum	Viabilidad	C.A.	FEE
1	0,30	0,01	0,043	0,00	0,00	100,00	0,14	2994
2	0,46	0,01	0,061	0,00	0,00	100,00	0,26	1195
3	0,68	0,01	0,083	4,17	4,17	95,83	0,38	703
4	0,88	0,02	0,102	0,00	4,17	95,83	0,49	493
5	1,21	0,03	0,121	0,00	4,17	95,83	0,63	364
6	1,39	0,03	0,139	0,00	4,17	95,83	0,77	291
7	1,50	0,03	0,158	0,00	4,17	95,83	0,88	246
8	1,66	0,04	0,192	0,00	4,17	95,83	0,92	251

9	1,96	0,04	0,225	0,00	4,17	95,83	0,97	247
10	1,94	0,04	0,258	0,00	4,17	95,83	1,01	245
11	2,14	0,05	0,291	0,00	4,17	95,83	1,05	241
12	2,29	0,05	0,325	0,00	4,17	95,83	1,10	236
13	2,43	0,05	0,358	0,00	4,17	95,83	1,14	231
14	2,46	0,05	0,391	0,00	4,17	95,83	1,18	227
15	2,66	0,06	0,450	0,00	4,17	95,83	1,16	249
16	2,86	0,06	0,509	0,00	4,17	95,83	1,14	267
17	3,12	0,07	0,568	0,00	4,17	95,83	1,14	280
18	3,58	0,08	0,627	0,00	4,17	95,83	1,16	288
19	4,14	0,09	0,686	0,00	4,17	95,83	1,19	290
20	4,70	0,10	0,745	0,00	4,17	95,83	1,24	289
21	5,08	0,11	0,804	0,00	4,17	95,83	1,28	286
22	5,36	0,12	0,896	0,00	4,17	95,83	1,28	305
23	5,56	0,12	0,988	0,00	4,17	95,83	1,28	321
24	5,44	0,12	1,080	0,00	4,17	95,83	1,28	336
25	5,72	0,12	1,173	0,00	4,17	95,83	1,29	349
26	5,96	0,13	1,265	0,00	4,17	95,83	1,30	359
27	5,98	0,13	1,357	0,00	4,17	95,83	1,31	369
28	6,18	0,13	1,449	0,00	4,17	95,83	1,31	377
29	6,40	0,14	1,537	2,08	6,25	93,75	1,36	365
30	6,48	0,14	1,592	0,00	6,25	93,75	1,40	355
31	6,62	0,15	1,648	0,00	6,25	93,75	1,44	345
32	6,64	0,15	1,742	2,08	8,33	91,67	1,48	336
33	6,86	0,16	1,799	0,00	8,33	91,67	1,52	328
34	7,18	0,17	1,899	2,08	10,42	89,58	1,57	320
35	7,30	0,17	2,004	2,08	12,50	87,50	1,61	312
36	7,36	0,18	2,137	2,08	14,58	85,42	1,63	312
37	7,38	0,18	2,277	2,08	16,67	83,33	1,64	312
38	7,58	0,19	2,364	0,00	16,67	83,33	1,66	311
39	7,80	0,20	2,451	0,00	16,67	83,33	1,69	311
40	8,18	0,20	2,538	0,00	16,67	83,33	1,71	309
41	8,36	0,21	2,624	0,00	16,67	83,33	1,73	308
42	8,76	0,22	2,711	0,00	16,67	83,33	1,76	306
43	9,36	0,23	2,847	0,00	16,67	83,33	1,76	314
44	9,98	0,25	2,983	0,00	16,67	83,33	1,76	321
45	10,84	0,27	3,119	0,00	16,67	83,33	1,77	326
	220,71			16,67				

Anexo 15: Datos de la jaula 32 Manejo Sierra sin ubiquinona (T4)

			Р	%	%M			
Edad	Consumo	Cons/ave	prom	Mortalidad	acum	Viabilidad	C.A.	FEE
1	0,35	0,01	0,043	0,00	0,00	100,00	0,17	2526
2	0,52	0,01	0,063	0,00	0,00	100,00	0,29	1087
3	0,68	0,01	0,083	0,00	0,00	100,00	0,39	705
4	0,95	0,02	0,103	0,00	0,00	100,00	0,51	503
5	1,31	0,03	0,122	0,00	0,00	100,00	0,65	377
6	1,47	0,03	0,142	0,00	0,00	100,00	0,77	307
7	1,71	0,04	0,162	0,00	0,00	100,00	0,90	258
8	1,78	0,04	0,194	0,00	0,00	100,00	0,94	257
9	2,02	0,04	0,226	0,00	0,00	100,00	1,00	252
10	2,03	0,04	0,257	0,00	0,00	100,00	1,04	248

11	2,25	0,05	0,289	0,00	0,00	100,00	1,08	242
12	2,43	0,05	0,321	0,00	0,00	100,00	1,14	236
13	2,53	0,05	0,353	0,00	0,00	100,00	1,18	230
14	2,53	0,05	0,393	2,08	2,08	97,92	1,22	225
15	2,72	0,06	0,451	0,00	2,08	97,92	1,19	247
16	2,92	0,06	0,510	0,00	2,08	97,92	1,18	265
17	3,20	0,07	0,568	0,00	2,08	97,92	1,18	278
18	3,66	0,08	0,627	0,00	2,08	97,92	1,19	286
19	4,24	0,09	0,685	0,00	2,08	97,92	1,22	289
20	4,80	0,10	0,744	0,00	2,08	97,92	1,26	289
21	5,08	0,11	0,802	0,00	2,08	97,92	1,30	287
22	5,42	0,12	0,899	0,00	2,08	97,92	1,29	309
23	5,38	0,11	0,995	0,00	2,08	97,92	1,28	330
24	5,54	0,12	1,091	0,00	2,08	97,92	1,28	349
25	5,82	0,12	1,188	0,00	2,08	97,92	1,28	364
26	6,04	0,13	1,284	0,00	2,08	97,92	1,28	377
27	6,18	0,13	1,381	0,00	2,08	97,92	1,29	389
28	6,10	0,13	1,477	0,00	2,08	97,92	1,29	400
29	6,54	0,14	1,531	0,00	2,08	97,92	1,34	387
30	6,64	0,14	1,619	2,08	4,17	95,83	1,38	375
31	6,70	0,15	1,711	2,08	6,25	93,75	1,42	364
32	6,84	0,15	1,767	0,00	6,25	93,75	1,46	354
33	7,12	0,16	1,824	0,00	6,25	93,75	1,50	344
34	7,34	0,16	1,880	0,00	6,25	93,75	1,55	335
35	7,44	0,17	1,980	2,08	8,33	91,67	1,59	327
36	7,70	0,18	2,099	2,08	10,42	89,58	1,62	323
37	7,92	0,18	2,172	0,00	10,42	89,58	1,65	319
38	7,98	0,19	2,245	0,00	10,42	89,58	1,68	316
39	8,20	0,19	2,318	0,00	10,42	89,58	1,71	312
40	8,48	0,20	2,448	2,08	12,50	87,50	1,74	308
41	8,60	0,21	2,584	2,08	14,58	85,42	1,77	305
42	9,04	0,23	2,728	2,08	16,67	83,33	1,80	301
43	8,72	0,22	2,842	0,00	16,67	83,33	1,80	305
44	9,64	0,24	2,956	0,00	16,67	83,33	1,81	309
45	9,14	0,23	3,149	2,08	18,75	81,25	1,82	312
	223,69			18,75				

Anexo 16: Datos de la jaula 34 Manejo Sierra sin ubiquinona (T4)

			Р	%				
Edad	Consumo	Cons/ave	prom	Mortalidad	%M acum	Viabilidad	C.A.	FEE
1	0,32	0,01	0,043	0,00	0,00	100,00	0,15	2817
2	0,50	0,01	0,063	0,00	0,00	100,00	0,27	1155
3	0,68	0,01	0,082	0,00	0,00	100,00	0,38	722
4	0,94	0,02	0,102	0,00	0,00	100,00	0,50	509
5	1,25	0,03	0,124	2,08	2,08	97,92	0,63	382
6	1,36	0,03	0,144	0,00	2,08	97,92	0,75	313
7	1,46	0,03	0,163	0,00	2,08	97,92	0,85	270
8	1,68	0,04	0,196	0,00	2,08	97,92	0,89	271
9	1,98	0,04	0,229	0,00	2,08	97,92	0,94	264
10	2,00	0,04	0,262	0,00	2,08	97,92	0,99	259
11	2,20	0,05	0,294	0,00	2,08	97,92	1,04	252
12	2,32	0,05	0,334	2,08	4,17	95,83	1,09	246

13	2,44	0,05	0,367	0,00	4,17	95,83	1,13	240
14	2,43	0,05	0,401	0,00	4,17	95,83	1,17	235
15	2,66	0,06	0,460	0,00	4,17	95,83	1,14	257
16	2,86	0,06	0,519	0,00	4,17	95,83	1,13	274
17	3,12	0,07	0,578	0,00	4,17	95,83	1,14	287
18	3,58	0,08	0,636	0,00	4,17	95,83	1,15	294
19	4,13	0,09	0,695	0,00	4,17	95,83	1,18	296
20	4,54	0,10	0,754	0,00	4,17	95,83	1,22	295
21	4,94	0,11	0,813	0,00	4,17	95,83	1,27	293
22	5,32	0,12	0,893	0,00	4,17	95,83	1,28	303
23	5,42	0,12	0,974	0,00	4,17	95,83	1,30	313
24	5,40	0,12	1,054	0,00	4,17	95,83	1,31	321
25	5,62	0,12	1,134	0,00	4,17	95,83	1,33	328
26	5,94	0,13	1,214	0,00	4,17	95,83	1,34	333
27	5,78	0,13	1,295	0,00	4,17	95,83	1,36	338
28	5,90	0,13	1,405	2,08	6,25	93,75	1,37	343
29	6,38	0,14	1,478	0,00	6,25	93,75	1,40	341
30	6,46	0,14	1,550	0,00	6,25	93,75	1,43	339
31	6,62	0,15	1,623	0,00	6,25	93,75	1,45	338
32	6,78	0,15	1,696	0,00	6,25	93,75	1,48	335
33	6,68	0,16	1,850	4,17	10,42	89,58	1,50	334
34	6,92	0,16	1,926	0,00	10,42	89,58	1,53	332
35	7,16	0,17	2,002	0,00	10,42	89,58	1,55	330
36	7,36	0,18	2,126	2,08	12,50	87,50	1,58	327
37	7,56	0,18	2,202	0,00	12,50	87,50	1,61	324
38	7,72	0,18	2,278	0,00	12,50	87,50	1,63	321
39	7,74	0,19	2,411	2,08	14,58	85,42	1,66	318
40	7,96	0,20	2,551	2,08	16,67	83,33	1,69	315
41	8,28	0,21	2,631	0,00	16,67	83,33	1,71	312
42	8,50	0,21	2,711	0,00	16,67	83,33	1,74	309
43	8,04	0,21	2,829	2,08	18,75	81,25	1,78	299
44	8,60	0,22	2,877	0,00	18,75	81,25	1,83	290
45	7,62	0,20	3,003	2,08	20,83	79,17	1,87	283
	213,13			20,83				

Anexo 17: Dosis calculada para ser aplicada

mg/ave	cc/ave	CC	
40mg/Kg	Producto	Prod/trat	Adm
1,6	0,032	6	13
2,12	0,0424	8	17
2,92	0,0584	11	23
3,32	0,0664	13	27
4,16	0,0832	16	33
4,92	0,0984	19	39
5,56	0,1112	21	44
5,76	0,1152	22	46
6,32	0,1264	24	51
7,48	0,1496	29	60
7,92	0,1584	30	63
9,2	0,184	35	74
9,92	0,1984	38	79
11,52	0,2304	44	92
12,96	0,2592	50	104

14,12	0,2824	54	113
15,16	0,3032	58	121
16,8	0,336	65	134
18,68	0,3736	72	149
19,2	0,384	74	154
21,8	0,436	84	174
		774	1612

Anexo 18: Datos de oximtría, frecuancia cardíaca y hematocrito de T1, T2, T3 y T4.

Mane		Jaul	F	RECUE	NCIA CA	RDIACA			C	XIMETF	RÍA			HEMATOCRITO				
jo	Tratami	a	FC d1	FC d10	FC d20	FC d30	FC d40	OX d1	OX d10	OX d20	OX d30	OX d40	HT d1	HT d10	HT d20	HT d30	HT d40	
		6	413	453	442	460	388	90	87	84	80	69	43	40	41	39	35	
	Control	17	456	435	468	446	380	93	81	86	82	74	46	43	40	40	37	
	Control	19	403	418	421	462	401	86	79	99	81	80	41	42	41	39	38	
Sierr		22	447	439	414	420	409	89	82	81	81	76	44	43	40	38	41	
а		2	500	485	384	409	375	91	88	90	76	68	40	42	40	34	32	
	Q10	8	401	468	399	444	392	90	88	83	74	75	48	46	41	37	34	
	QIU	18	488	500	421	460	408	84	86	99	80	78	49	48	40	39	42	
		20	402	478	427	421	367	80	85	93	89	80	45	44	43	36	33	
Х	Control	4	430	436	436	447	395	90	82	88	81	75	44	42	41	39	38	
^	Q10	4	448	483	408	434	386	86	87	91	80	75	46	45	41	37	35	
		24	408	425	418	408	390	88	80	82	91	79	40	39	39	40	40	
	Control	28	415	432	427	416	401	80	82	81	78	80	45	42	42	40	32	
	Oomaoi	32	421	457	432	412	412	91	87	84	80	84	46	38	41	45	42	
Cost		34	409	444	421	416	395	95	81	80	81	72	50	47	43	46	44	
а		25	401	475	456	303	368	93	90	84	83	79	41	43	40	38	34	
	Q10	29	388	490	429	362	374	84	96	81	78	76	39	40	41	36	32	
	QIU	33	428	457	444	415	381	87	91	83	76	80	51	48	43	36	34	
		37	411	492	436	429	358	96	97	84	83	79	48	50	40	38	37	
	Control	4	413	440	425	413	400	89	83	82	83	79	45	42	41	43	40	
X	Q10	4	407	479	441	377	370	90	94	83	80	79	45	45	41	37	34	

Anexo 19: DETERMINACIÓN DE Q10 EN CORAZÓN DE POLLOS POR HPLC (Centro de Biomedicina de la Universidad Central del Ecuador)

(Ce	GRUPO1/Q	ABSO	PROTEÍNA	volumen/		GRUPO2/Q10	ABSO	PROTEÍN	volum
1	23.5	0.329	5.75	10.00		17.81	0.329	5.75	10
2	25.1	0.34	5.94	11.00		11.04	0.259	4.52	9
3	8.35	0.324	5.66	8.50		10.75	0.264	4.61	8
4	31.82	0.348	6.08	10.00		12.84	0.256	4.47	9
5	18.65	0.331	5.78	8.50		14.61	0.258	4.51	8
6	19.58	0.343	5.99	10.00		17.5	0.276	4.82	9
7	16.09	0.326	5.69	10.00	<u> </u>	13.79	0.266	4.65	9
8	19.8	0.338	5.90	11.00		17.8	0.265	4.63	9
9	34.66	0.369	6.45	10.00	<u> </u>	16.39	0.262	4.58	9
10	29.1	0.4	6.99	8.00		22.1	0.258	4.51	8
		ı		·			<u> </u>		
							<u> </u>		
ID		ABSO		volumen		GRUPO4/O10			volum
1	12.49	0.307	PROTEÍN 5.36	volumen 10.00		11.48	0.295	5.15	7
1 2									7 9
1	12.49	0.307	5.36	10.00		11.48	0.295	5.15	7 9 9
1 2 3 4	12.49 15.87	0.307 0.339	5.36 5.92	10.00 9.00		11.48 11.5	0.295 0.284	5.15 4.96	7 9
1 2 3	12.49 15.87 19.75	0.307 0.339 0.349	5.36 5.92 6.10	10.00 9.00 8.00		11.48 11.5 12.1	0.295 0.284 0.267	5.15 4.96 4.66	7 9 9
1 2 3 4	12.49 15.87 19.75 19.82	0.307 0.339 0.349 0.323	5.36 5.92 6.10 5.64	10.00 9.00 8.00 9.00		11.48 11.5 12.1 9.09	0.295 0.284 0.267 0.295	5.15 4.96 4.66 5.15	7 9 9 10
1 2 3 4 5	12.49 15.87 19.75 19.82 17.99	0.307 0.339 0.349 0.323 0.321	5.36 5.92 6.10 5.64 5.61	10.00 9.00 8.00 9.00 8.00		11.48 11.5 12.1 9.09 8.35	0.295 0.284 0.267 0.295 0.281	5.15 4.96 4.66 5.15 4.91	7 9 9 10 10.:
1 2 3 4 5 6	12.49 15.87 19.75 19.82 17.99 17.9	0.307 0.339 0.349 0.323 0.321 0.335	5.36 5.92 6.10 5.64 5.61 5.85	10.00 9.00 8.00 9.00 8.00 9.00		11.48 11.5 12.1 9.09 8.35 10.15	0.295 0.284 0.267 0.295 0.281 0.292	5.15 4.96 4.66 5.15 4.91 5.10	7 9 9 10.1 10.1
1 2 3 4 5 6 7	12.49 15.87 19.75 19.82 17.99 17.9 13.28	0.307 0.339 0.349 0.323 0.321 0.335 0.342	5.36 5.92 6.10 5.64 5.61 5.85 5.97	10.00 9.00 8.00 9.00 8.00 9.00 9.00		11.48 11.5 12.1 9.09 8.35 10.15 21.22	0.295 0.284 0.267 0.295 0.281 0.292 0.334	5.15 4.96 4.66 5.15 4.91 5.10 5.83	7 9 9 10 10 10