

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE

DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA

CARRERA DE INGENIERÍA EN ELECTRÓNICA E INSTRUMENTACIÓN

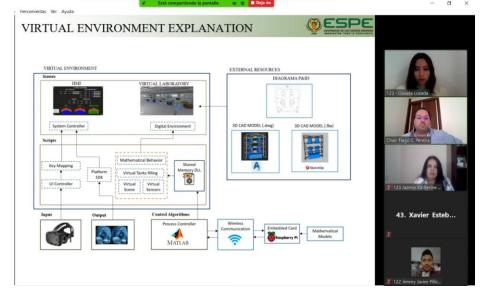
Artículo Académico, Previo a la Obtención del Título de Ingeniera en Electrónica e Instrumentación

"CONTROL DE PROCESOS DE NIVEL CON DIFERENTES CONFIGURACIONES DE TANQUES: TÉCNICA DE HARDWARE-IN-THE-LOOP"

Autoras

Lozada Herrera, Gissela Fernanda Pruna Villegas, Jazmín Katherine

Ing. Andaluz Ortíz, Víctor Hugo, Ph.D. *Tutor* Ing. Naranjo Hidalgo, César Alfredo, MSc. *Cotutor*



?

ICITED 21 <info@icited.org> para mí ▼

Dear Author,

On behalf of the ICITED'21 - The 2021 International Conference in Information Technology & Education, I am pleased to inform you that your submission, titled

Level Process Control with Different Tank Configurations: Hardware-in-the-Loop Technique

has been accepted.

We have included the reviewers' feedback at the end of this message

ITINERARIO

Introducción

Modelo Matemático

Algoritmos de Control

Entorno Virtual

Resultados Obtenidos

Conclusiones

ITINERARIO

Introducción

Modelo Matemático

Algoritmos de Control

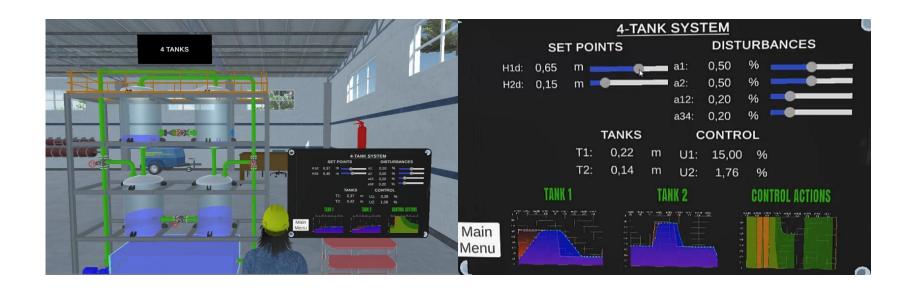
Entorno Virtual

Resultados Obtenidos

Conclusiones

INTRODUCCIÓN

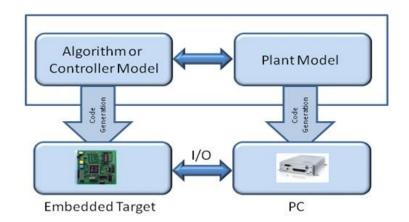
Existen procesos complejos MIMO en industrias que no pueden controlarse de manera óptima mediante algoritmos de control clásicos, lo cual que se resolvió mediante técnicas de control avanzadas, mismas que se evalúan mediante la técnica de simulación en tiempo real Hardware-in-the-Loop y el ambiente virtual del proceso en el entorno gráfico Unity 3D.



INTRODUCCIÓN

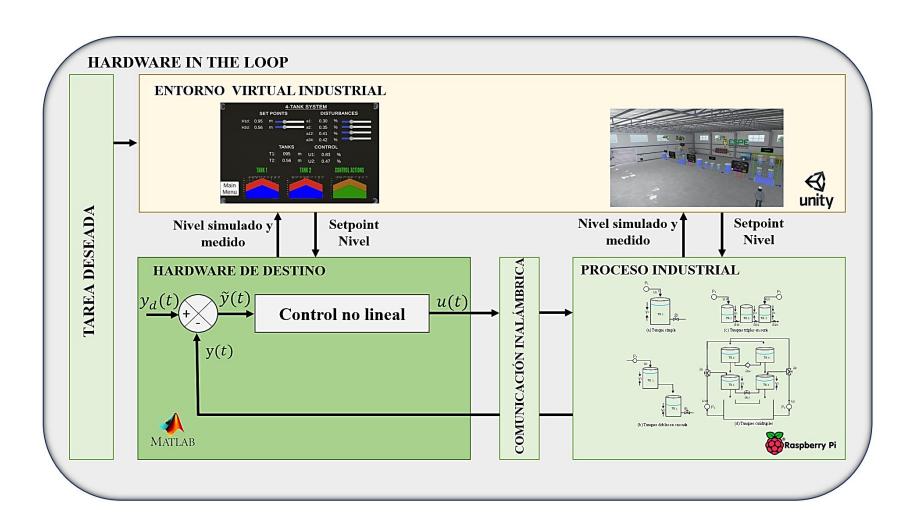
Control de Procesos

Hardware-in-the-Loop

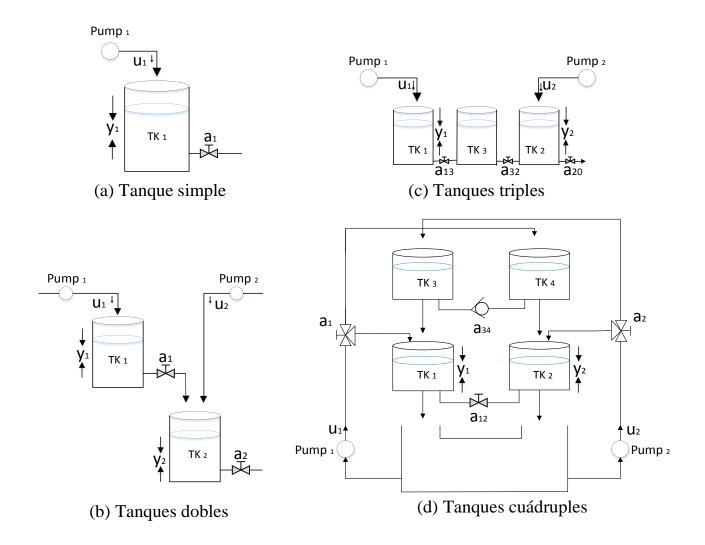


Realidad Virtual

DESCRIPCIÓN DEL SISTEMA



CONFIGURACIONES DE TANQUES



OBJETIVO GENERAL

Implementar **algoritmos de control avanzado MIMO** (múltiples entradas — múltiples salidas) a través de la técnica **Hardware-in-the-loop**, HIL, para el control de la variable nivel en diferentes configuraciones de tanques.

OBJETIVOS ESPECÍFICOS

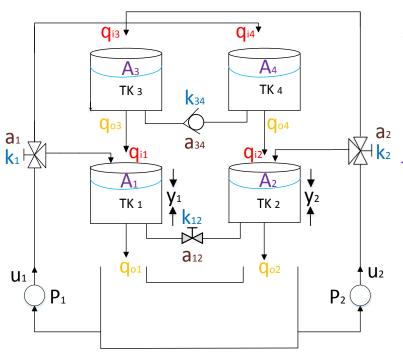
- ✓ **Investigar en bases de datos científicas** el método heurístico para la obtención del modelo matemático del proceso de nivel; a fin de implementar la técnica de simulación Hardware-in-the-loop.
- ✓ Determinar el **modelo matemático** que represente el comportamiento de un proceso de **control de nivel**, considerando **diferentes configuraciones de tanques.**
- ✓ Proponer un **algoritmo de control MIMO no lineal** para tareas de regulación, basado en el modelo matemático del proceso.
- ✓ Analizar **la estabilidad y robustez** del esquema de control propuesto.
- ✓ Implementar un **esquema de control** basado en la técnica "**Hardware-in-the-loop**" considerando el modelo matemático del proceso.
- ✓ Desarrollar un **entorno virtual inmersivo e interactivo** con el usuario en el motor gráfico Unity 3D que simule un laboratorio de procesos industriales.
- ✓ Evaluar el desempeño del sistema de control implementado con la técnica "Hardware-inthe-loop", con el propósito de validar los modelos matemáticos obtenidos y el comportamiento de los errores de control, virtualizado en el motor gráfico Unity 3D.

ITINERARIO

Introducción Modelo Matemático Algoritmos de Control Entorno Virtual Resultados Obtenidos Conclusiones

CONFIGURACIÓN DE TANQUES CUÁDRUPLES

Definición de parámetros



 a_1, a_2, a_{12}, a_{34} ; Apertura de las válvulas

 k_1, k_2, k_{12}, k_{34} ; Constante de las válvulas

 k_2 k_2 k_3 , k_4 , k_2 , k_4 , k_5 , k_6 k_2 k_4 , k_6 k_8 k_8 k_8 k_8 k_8 k_8 k_8 k_8 k_9 k_9

q_i; Flujo de entrada

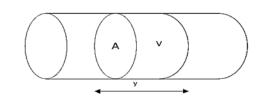
q_o; Flujo de salida

 u_1, u_2 ; Voltajes de las bombas

LEYES Y TEOREMAS FÍSICOS

Flujo Volumétrico:

$$Q = \frac{v}{t} = \frac{A * y}{t}$$

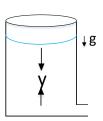


Principio de Bernoulli:
$$P_1 + \rho g \gamma_1 + \frac{1}{2} \rho V_1^2 = P_2 + \rho g \gamma_2 + \frac{1}{2} \rho V_2^2$$

$$V = \sqrt{2g\gamma}$$

Ley de Torriceli:

$$V = \sqrt{2gy}$$

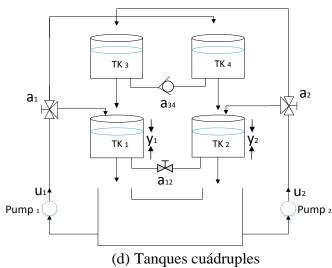


Ecuación del balance de masas: Acumulación = Entrada - Salida

MODELO MATEMÁTICO

Tanques cuádruples

$$\begin{cases} A_{1} \frac{dy_{1}}{dt} = a_{1}k_{1}\mu_{1} + S_{3}\sqrt{2gy_{3}} - S_{1}\sqrt{2gy_{1}} - sgn(y_{1} - y_{2})a_{12}k_{12}\sqrt{2g(y_{1} - y_{2})} \\ A_{2} \frac{dy_{2}}{dt} = a_{2}k_{2}\mu_{2} + S_{4}\sqrt{2gy_{4}} + sgn(y_{1} - y_{2})a_{12}k_{12}\sqrt{2g(y_{1} - y_{2})} - S_{2}\sqrt{2gy_{2}} \\ A_{3} \frac{dy_{3}}{dt} = (1 - a_{2})k_{2}\mu_{2} - S_{3}\sqrt{2gy_{3}} + a_{34}k_{34}\sqrt{2g(y_{4} - y_{3})} \\ A_{4} \frac{dy_{4}}{dt} = (1 - a_{1})k_{1}\mu_{1} - S_{4}\sqrt{2gy_{4}} - a_{34}k_{34}\sqrt{2g(y_{4} - y_{3})} \end{cases}$$



MODELOS MATEMÁTICOS

Tanque simple

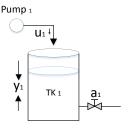
$$A_{1} \frac{dy_{1}}{dt} = u_{1} - a_{1}k_{1}\sqrt{2gy_{1}}$$

Sistema de tanques dobles

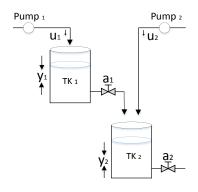
$$\begin{cases} A_1 \frac{dy_1}{dt} = u_1 - s_1 \sqrt{2gy_1} \\ A_2 \frac{dy_2}{dt} = s_1 \sqrt{2gy_1} - a_1 k_1 \sqrt{2gy_2} \end{cases}$$

Sistemas de tanques triples

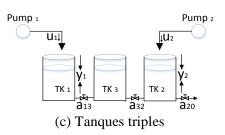
$$\begin{cases} A_{1} \frac{dy_{1}}{dt} = u_{1} - a_{13}k_{13}\sqrt{2g \mid y_{1-}y_{3} \mid} \\ A_{2} \frac{dy_{2}}{dt} = u_{2} + a_{32}k_{32}\sqrt{2g \mid y_{3-}y_{2} \mid} - a_{20}k_{20}\sqrt{2gy_{2}} \\ A_{3} \frac{dy_{3}}{dt} = a_{13}k_{13}\sqrt{2g \mid y_{1-}y_{3} \mid} - a_{32}k_{32}\sqrt{2g \mid y_{3-}y_{2} \mid} \end{cases}$$



(a) Tanque simple



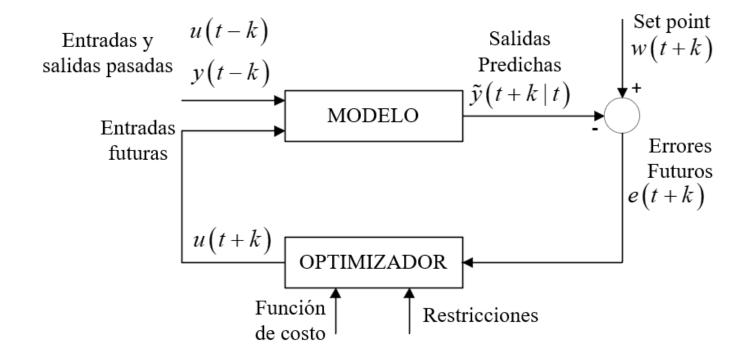
(b) Tanques dobles



ITINERARIO

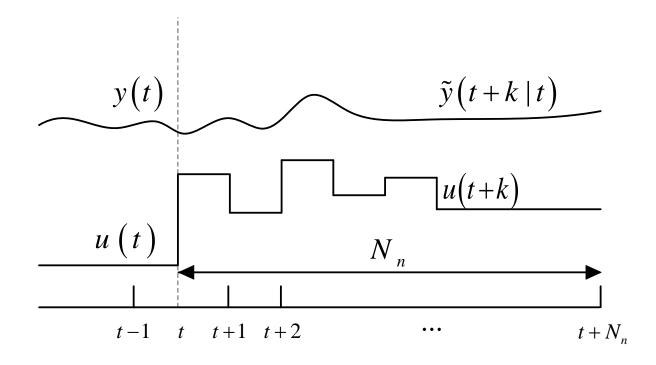
Introducción Modelo Matemático **Algoritmos de Control** Entorno Virtual Resultados Obtenidos Conclusiones

CONTROL MPC



CONTROL MPC

$$C(N_{1}, N_{2}, N_{n}) = \sum_{k=N_{1}}^{N_{2}} \delta_{1}(k) \left[\tilde{y}(t+k|t) - w(t+k) \right]^{2} + \sum_{k=1}^{N_{n}} \delta_{2}(k) \left[\Delta u(t+k-1) \right]^{2}$$



ANÁLISIS DE ESTABILIDAD

Se asume que:

- 1. $f(\tilde{y}, u)$ es continua de acuerdo a Lipschitz y f(0, 0) = 0.
- 2. $g_{\tilde{y}}(w_s)$ es continua en λ_s .
- 3. $\delta_0: \Box^p \to \Box$ es convexa y definida positiva. Además, $\hat{w}_s = \arg\min_{w_s \in \lambda_s} \delta_0(w_s w_t)$ es único.
- 4. Existe una función $\sum_{i=0}^{N-1} |u(i) u_s| \le \varsigma(|\tilde{y} \tilde{y}_s|).$
- 5. El conjunto de salidas admisibles λ_s es convexo.

ANÁLISIS DE ESTABILIDAD

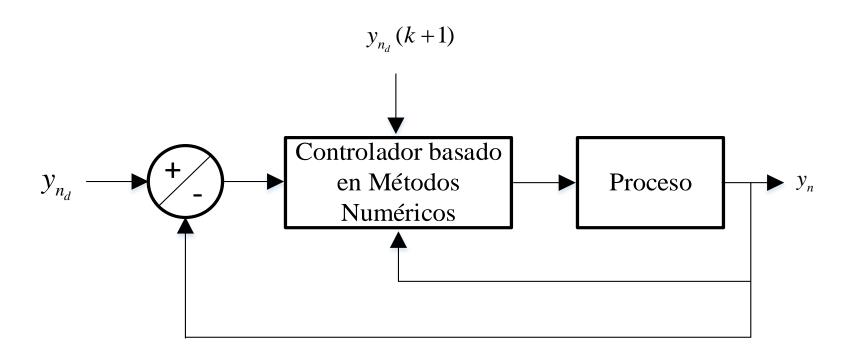
Asumiendo que se cumplen estas hipótesis, para cada estado inicial y_0 , el sistema es estable, si:

(i) Si
$$w_t \in \lambda_s$$
, entonces $\lim_{k \to \infty} |y(k) - w_t| = 0$.

(ii) Si,
$$w_t \notin \lambda_s$$
 entonces, $\lim_{k \to \infty} |y(k) - \hat{w}_t| = 0$ en donde

$$\hat{w}_s = \arg \min_{w_s \in \lambda_s} \delta_0(w_s - w_t).$$

CONTROL BASADO EN MÉTODOS NUMÉRICOS



CONTROL BASADO EN MÉTODOS NUMÉRICOS

Modelo discretizado del sistema:

$$\mathbf{y}(k+1) = \mathbf{y}(k) + T_0 \mathbf{J}(\mathbf{y}(k)) \mathbf{u}_{ref}(k)$$

Mediante Markov:

$$\mathbf{y}(k+1) = \mathbf{y}_{\mathbf{d}}(k+1) - \mathbf{W}(\mathbf{y}_{\mathbf{d}}(k) - \mathbf{y}(k))$$

Ley de control:

$$u_{ref}\left(k\right) = \frac{\mathbf{J}^{\#}\left(\mathbf{y}\left(k\right)\right)\left(\mathbf{y}_{\mathbf{d}}\left(k+1\right) - \mathbf{W}\left(\mathbf{y}_{\mathbf{d}}\left(k\right) - \mathbf{y}\left(k\right)\right) - \mathbf{y}\left(k\right)\right)}{T_{0}} \; ; \; k \in \left\{0, 1, 2, 3, ...\right\}$$

ANÁLISIS DE ESTABILIDAD

Ecuación de lazo cerrado:

$$\mathbf{u}(k) \equiv \mathbf{u}_{ref}(k)$$

Modelo discretizado:

$$\mathbf{y}(k+1) = \mathbf{y}(k) + T_0 \mathbf{J}(y(k))\mathbf{u}(k)$$

Ley de control:

$$\mathbf{u}_{ref}(k) = \frac{\mathbf{J}^{\#}(y(k))(\mathbf{y}_{d}(k+1) - \mathbf{W}(\mathbf{y}_{d}(k) - \mathbf{y}(k)) - \mathbf{y}(k))}{T_{0}}$$

Igualando los voltajes:

$$\mathbf{y}(k+1) - \mathbf{y}(k) = T_0 \mathbf{J}(y(k)) \left(\frac{1}{T_0} \mathbf{J}^{\#}(y(k)) (\mathbf{y}_d(k+1) - \mathbf{W}(\mathbf{y}_d(k) - \mathbf{y}(k)) - \mathbf{y}(k)) \right)$$
$$\tilde{\mathbf{y}}(k+1) = \mathbf{W}\tilde{\mathbf{y}}(k)$$

ANÁLISIS DE ESTABILIDAD

$$k \qquad \tilde{\mathbf{y}}(k+1) \qquad W \tilde{\mathbf{y}}(k)$$

$$1 \qquad \tilde{\mathbf{y}}(2) \qquad W \tilde{\mathbf{y}}(1)$$

$$2 \qquad \tilde{\mathbf{y}}(3) \qquad W \tilde{\mathbf{y}}(2) = W^2 \tilde{\mathbf{y}}(1)$$

$$3 \qquad \tilde{\mathbf{y}}(4) \qquad W^3 \tilde{\mathbf{y}}(1)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$n \qquad \tilde{\mathbf{y}}(n+1) \qquad W^n \tilde{\mathbf{y}}(1)$$

El controlador es asintóticamente estable:

$$\Rightarrow \tilde{\mathbf{y}}(k) \rightarrow 0$$
, cuando $k \rightarrow \infty$,
y $0 < diag(W_{11}, W_{22}) < 1$

ANÁLISIS DE ROBUSTEZ

Para el análisis de robustez se considera:

$$\mathbf{u}(k) = \mathbf{u}_{ref}(k) - \tilde{\mathbf{u}}(k)$$

$$\frac{1}{T_0} (\mathbf{y}(k+1) - \mathbf{y}(k)) = \frac{1}{T_0} \mathbf{J}(\mathbf{y}(k)) \mathbf{J}^{\#} (\mathbf{y}_{d}(k+1) - \mathbf{y}(k) - \mathbf{W}(\tilde{\mathbf{y}}(k)) - \tilde{\mathbf{u}}(k))$$

Simplificando los términos, la ecuación se define como:

$$\tilde{y}(k+1) = \mathbf{W}\tilde{y}(k) + \mathbf{J}(\mathbf{y}(k))\tilde{\mathbf{u}}(k)$$

$$\tilde{y}(n+1) = \mathbf{W}^{n}\tilde{y}(n) + \mathbf{J}(\mathbf{y}(n))\tilde{\mathbf{u}}(n)$$

$$\tilde{\mathbf{y}}(n) \to 0, \text{ cuando } n \to \infty \qquad y \qquad 0 < diag(W_{11}, W_{22}) < 1$$

$$\Rightarrow \|\tilde{\mathbf{y}}(n+1)\| < \|\mathbf{J}(\mathbf{y}(n))\tilde{\mathbf{u}}(n)\|$$

ITINERARIO

Introducción

Modelo Matemático

Algoritmos de Control

Entorno Virtual

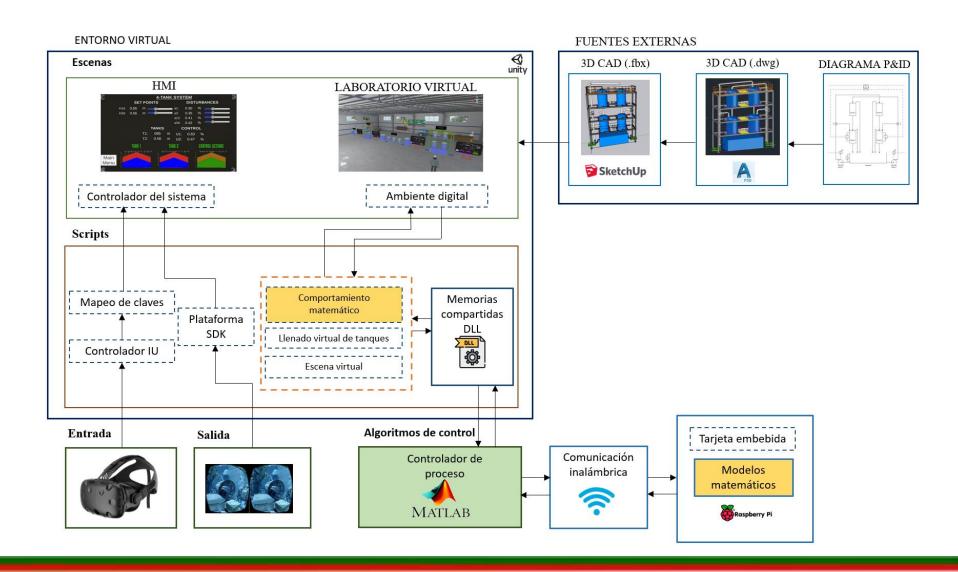
Resultados Obtenidos

Conclusiones

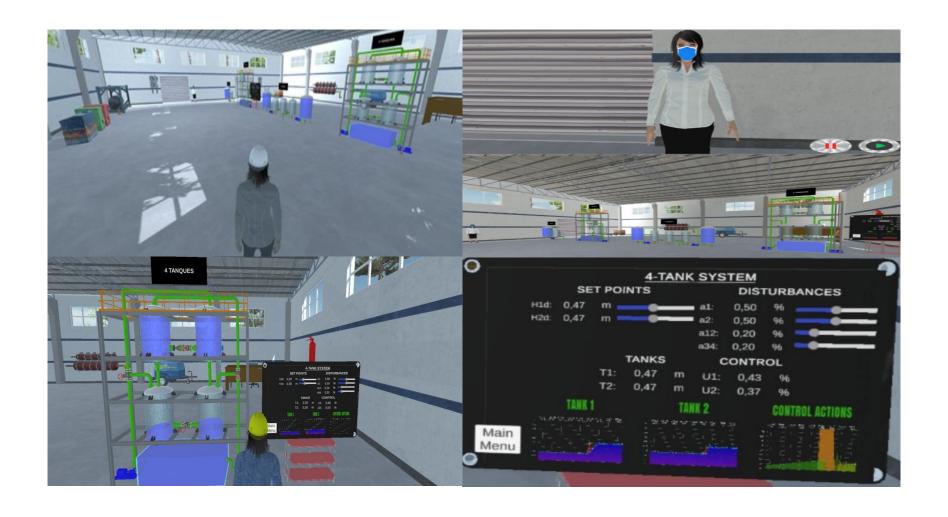
ENTORNO VIRTUAL

En un laboratorio virtual se presentan cuatro configuraciones de tanques, con los que el usuario puede interactuar para visualizar, monitorear y controlar las variables del proceso de nivel.

EXPLICACIÓN DEL ENTORNO VIRTUAL



LABORATORIO VIRTUAL



ITINERARIO

Introducción

Modelo Matemático

Algoritmos de Control

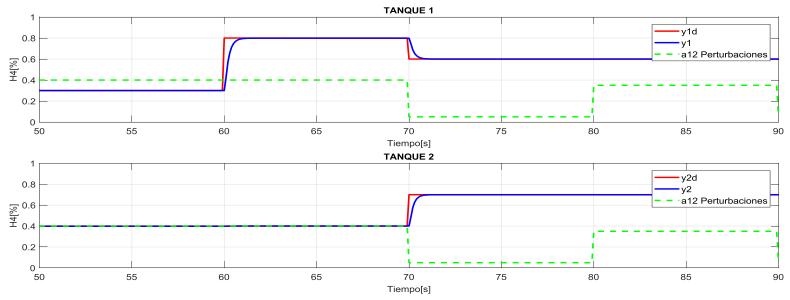
Entorno Virtual

Resultados Obtenidos

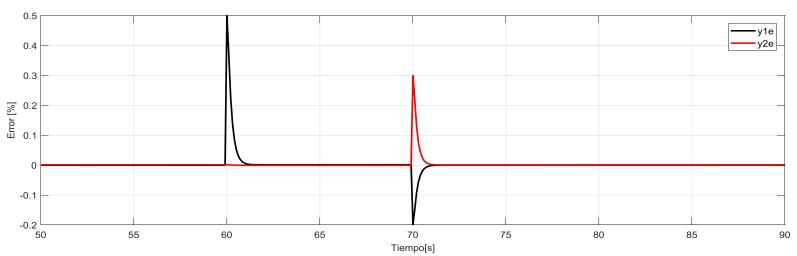
Conclusiones

CONFIGURACIÓN TANQUES CUÁDRUPLES

a. Curva de respuesta del control MPC

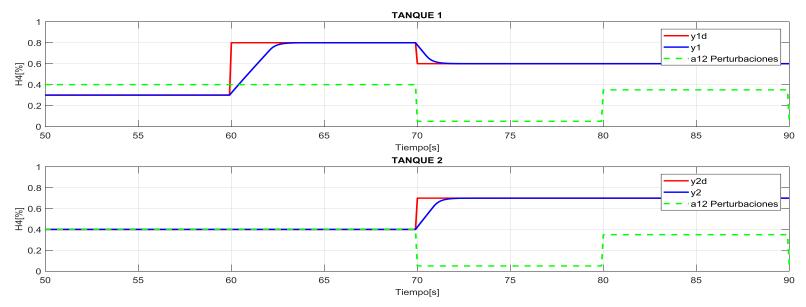


b. Curva de errores del controlador MPC

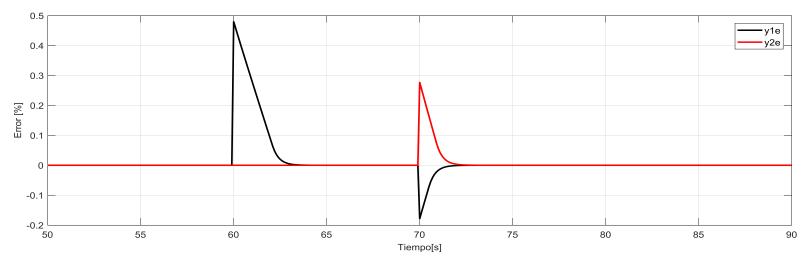


CONFIGURACIÓN TANQUES CUÁDRUPLES

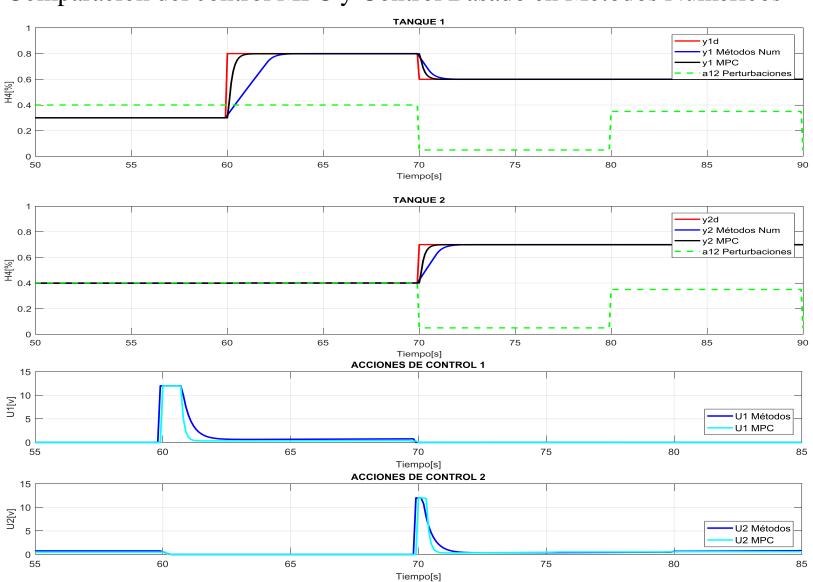
a. Curva de respuesta del control basado en Métodos Numéricos



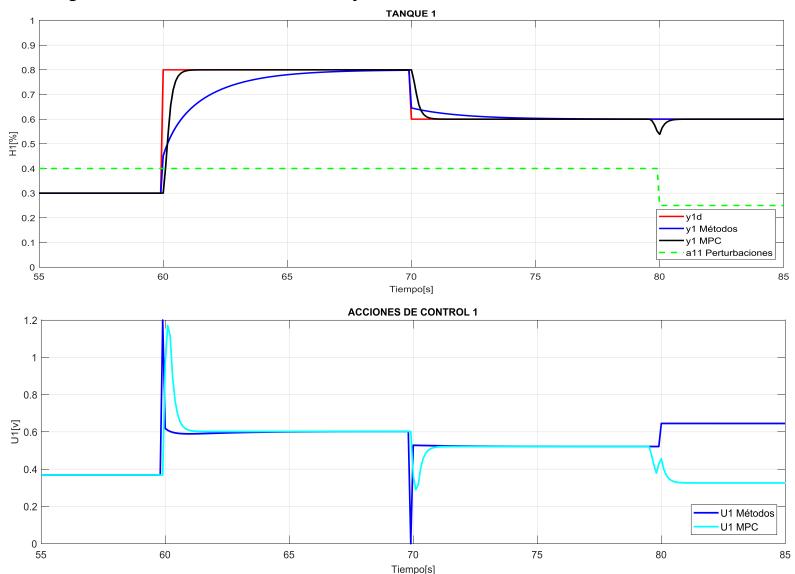
b. Curva de errores del controlador basado en Métodos Numéricos.



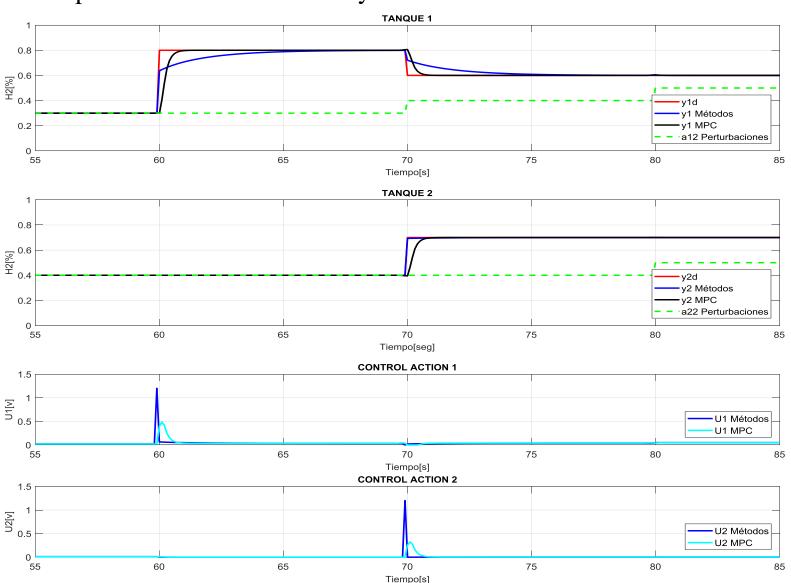
CONFIGURACIÓN TANQUES CUÁDRUPLES



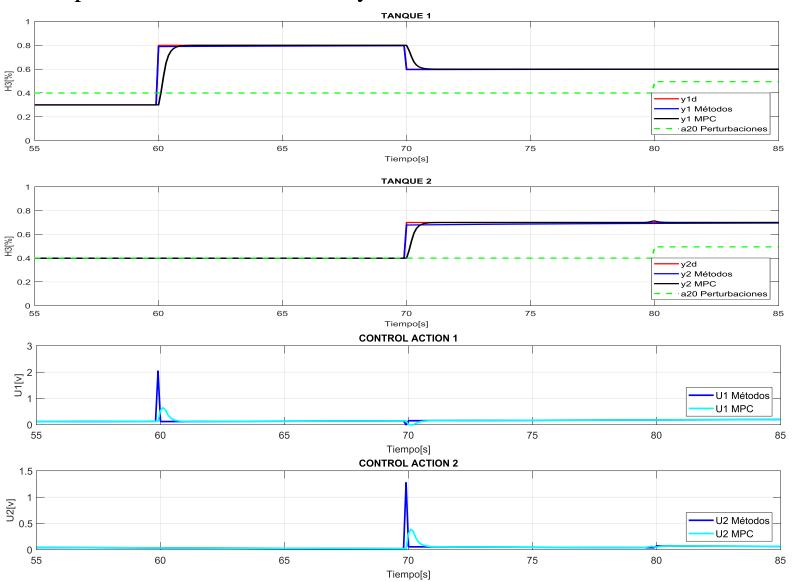
CONFIGURACIÓN TANQUE SIMPLE



CONFIGURACIÓN TANQUES DOBLES



CONFIGURACIÓN TANQUES TRIPLES



ITINERARIO

Introducción

Modelo Matemático

Algoritmos de Control

Entorno Virtual

Resultados Obtenidos

Conclusiones

CONCLUSIONES

- El modelo matemático del sistema permite representar el comportamiento de un sistema para evaluar algoritmos de control sin necesidad de un sistema real.
- Se implementaron los algoritmos de control partiendo de los modelos matemáticos obtenidos de cada una de las configuraciones de tanques.
- Se realizó el análisis de estabilidad de los controladores, demostrando estabilidad asintótica del sistema en bucle cerrado controlado por cada controlador propuesto.
- La técnica de simulación HIL junto con el entorno virtual permite evaluar algoritmos de control y llevar a la planta a situaciones de riesgo que normalmente no se podrían ejecutar, facilitando la enseñanza-aprendizaje acerca del control de procesos
- De acuerdo a las curvas obtenidas se determinó que el control MPC presenta resultados más precisos con respecto al control basado en métodos numéricos, ya que utiliza una estrategia de optimización que anticipa el efecto del control futuro.

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE

DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA

CARRERA DE INGENIERÍA EN ELECTRÓNICA E INSTRUMENTACIÓN

Artículo Académico, Previo a la Obtención del Título de Ingeniera en Electrónica e Instrumentación

"CONTROL DE PROCESOS DE NIVEL CON DIFERENTES CONFIGURACIONES DE TANQUES: TÉCNICA DE HARDWARE-IN-THE-LOOP"

Autoras

Lozada Herrera, Gissela Fernanda Pruna Villegas, Jazmín Katherine

Ing. Andaluz Ortíz, Víctor Hugo, Ph.D. *Tutor* Ing. Naranjo Hidalgo, César Alfredo, MSc. *Cotutor*

