

Análisis de tendencias de pérdidas eléctricas en los alimentadores de la subestación Batán de la Empresa Eléctrica Ambato Regional Centro Norte S.A. EEASA mediante la utilización de una hoja de cálculo en el período 2019-2020.

Carrión Claudio, Karen Vanesa y Andaluz Naranjo, Christian Alejandro

Departamento de Eléctrica y Electrónica

Carrera de Ingeniería Electromecánica

Trabajo de titulación previo a la obtención del título de Ingeniero Electromecánico

Ing. Freire Llerena, Washington Rodrigo

Latacunga, 31 de agosto del 2021

DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA CARRERA DE INGENIERÍA EN ELECTROMECÁNICA

CERTIFICACIÓN

Certifico que el trabajo de titulación "Análisis de tendencias de pérdidas eléctricas en los alimentadores de la subestación Batán de la empresa eléctrica Ambato Regional Centro Norte S.A. EEASA mediante la utilización de una hoja de cálculo en el período 2019 - 2020". Fue realizado por los estudiantes *Carrión Claudio, Karen Vanesa y Andaluz Naranjo, Christian Alejandro*, el mismo que ha sido revisado en su totalidad, analizado por la herramienta de verificación de similitud de contenido; por tanto, cumple con los requisitos teóricos, científicos, técnicos, metodológicos y legales establecidos por la Universidad de las Fuerzas Armadas-ESPE, razón por la cual me permito acreditar y autorizar para que lo sustente públicamente.

Latacunga, 31 de agosto de 2021

Ing. Freire Llerena Washington Rodrigo

C.C.: 180191088-4

Curiginal

Document Information

Analyzed document TESIS_ANDALUZ_CARRION.pdf (D111678918)

Submitted 8/25/2021 6:37:00 PM

Submitted by Lorena Ibarra

Submitter email loretaibarra@yahoo.es

Similarity 89

Analysis address lorenadibarra.uta@analysis.urkund.com

Sources included in the report

W	URL: https://repositorio.espe.edu.ec/bitstream/21000/10130/1/T-ESPEL-EMI-0293.pdf Fetched: 11/8/2019 7:42:04 AM	88	6
w	URL: http://repositorio.utn.edu.ec/bitstream/123456789/9563/2/04%20MEL%20054%20TRABAJO% 20GRADO.pdf Fetched: 8/25/2021 6:37:00 PM	88	2
w	URL: http://repositorio.utc.edu.ec/bitstream/27000/1031/1/T-UTC-1264.pdf Fetched: 12/1/2020 11:10:11 AM	88	2
w	URL: https://bibdigital.epn.edu.ec/bitstream/15000/6868/1/T1768.pdf Fetched: 8/25/2021 6:37:00 PM	88	1
W	URL: http://repositorio.utc.edu.ec/bitstream/27000/2152/1/T-UTC-3863.pdf Fetched: 1/8/2021 7:20:52 AM	88	5
W	URL: https://www.eeasa.com.ec/institucion/historia-de-la-eeasa/ Fetched: 8/25/2021 6:37:00 PM	88	2
w	URL: https://docplayer.es/98401524-Universidad-de-cuenca.html Fetched: 8/4/2020 7:31:20 AM	88	2
W	URL: https://resources.arcgis.com/es/help/getting-started/articles/026n00000014000000.htm Fetched: 8/25/2021 6:37:00 PM	88	1
w	URL: http://dspace.uclv.edu.cu/bitstream/handle/123456789/6144/Yodelkis%20Ruiz%20Hern%C3%A 1ndez.pdf?sequence=1&isAllowed=y Fetched: 11/27/2020 12:48:24 PM	88	1
w	URL: https://www.regulacionelectrica.gob.ec/introduccion_regulacion/ Fetched: 8/25/2021 6:37:00 PM	88	1
w	URL: https://dspace.ucuenca.edu.ec/bitstream/123456789/691/1/te323.pdf Fetched: 4/23/2020 8:40:33 AM	88	1
w	URL: http://dspace.unl.edu.ec:9001/jspui/bitstream/123456789/23412/1/Jennyfer%20Janine_Jarami llo%20Luzuriagapdf Fetched: 4/2/2021 1:00:35 PM	88	7

Curiginal

Tesis Byron Ordoñez final.docx Document Tesis Byron Ordoñez final.docx (D108503067)	88	3
URL: http://repositorio.utc.edu.ec/bitstream/27000/2149/1/T-UTC-3864.pdf Fetched: 3/11/2021 7:48:02 PM	88	5
URL: http://repositorio.utc.edu.ec/bitstream/27000/4031/1/T-UTC-0264.pdf Fetched: 5/19/2021 8:17:40 PM	88	1
URL: http://repositorio.ucsg.edu.ec/bitstream/3317/12705/1/T-UCSG-PRE-TEC-IEM-201.pdf Fetched: 8/25/2021 6:37:00 PM	88	1
URL: http://www.dspace.uce.edu.ec/bitstream/25000/21144/3/T-UCE-0005-CEC-296.pdf Fetched: 8/25/2021 6:37:00 PM	88	1
URL: http://192.188.52.94:8080/bitstream/3317/11354/1/T-UCSG-PRE-TEC-IEM-151.pdf Fetched: 1/25/2021 8:26:07 AM	88	2
URL: https://dspace.ups.edu.ec/bitstream/123456789/19213/1/UPS%20-%20TTS144.pdf Fetched: 6/22/2021 6:18:14 PM	88	1
	Document Tesis Byron Ordoñez final.docx (D108503067) URL: http://repositorio.utc.edu.ec/bitstream/27000/2149/1/T-UTC-3864.pdf Fetched: 3/11/2021 7:48:02 PM URL: http://repositorio.utc.edu.ec/bitstream/27000/4031/1/T-UTC-0264.pdf Fetched: 5/19/2021 8:17:40 PM URL: http://repositorio.ucsg.edu.ec/bitstream/3317/12705/1/T-UCSG-PRE-TEC-IEM-201.pdf Fetched: 8/25/2021 6:37:00 PM URL: http://www.dspace.uce.edu.ec/bitstream/25000/21144/3/T-UCE-0005-CEC-296.pdf Fetched: 8/25/2021 6:37:00 PM URL: http://192.188.52.94:8080/bitstream/3317/11354/1/T-UCSG-PRE-TEC-IEM-151.pdf Fetched: 1/25/2021 8:26:07 AM URL: https://dspace.ups.edu.ec/bitstream/123456789/19213/1/UPS%20-%20TTS144.pdf	Document Tesis Byron Ordoñez final.docx (D108503067) BB URL: http://repositorio.utc.edu.ec/bitstream/27000/2149/1/T-UTC-3864.pdf BB URL: http://repositorio.utc.edu.ec/bitstream/27000/4031/1/T-UTC-0264.pdf BB URL: http://repositorio.utc.edu.ec/bitstream/27000/4031/1/T-UTC-0264.pdf BB Fetched: 5/19/2021 8:17:40 PM BB URL: http://repositorio.ucsg.edu.ec/bitstream/3317/12705/1/T-UCSG-PRE-TEC-IEM-201.pdf BB Fetched: 8/25/2021 6:37:00 PM BB URL: http://www.dspace.uce.edu.ec/bitstream/25000/21144/3/T-UCE-0005-CEC-296.pdf BB URL: http://192.188.52.94:8080/bitstream/3317/11354/1/T-UCSG-PRE-TEC-IEM-151.pdf BB URL: http://dspace.ups.edu.ec/bitstream/123456789/19213/1/UPS%20-%20TTS144.pdf BB URL: https://dspace.ups.edu.ec/bitstream/123456789/19213/1/UPS%20-%20TTS144.pdf BB

Firmado electrônicamente por:
WASHINGTON
RODRIGO FREIRE
LLERENA

Ing. Freire Llerena Washington Rodrigo

C.C.: 180191088-4

DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA CARRERA DE INGENIERÍA EN ELECTROMECÁNICA

RESPONSABILIDAD DE AUTORÍA

Nosotros, Carrión Claudio, Karen Vanesa y Andaluz Naranjo, Christian Alejandro, declaramos que el contenido, ideas y criterios del trabajo de titulación: "Análisis de tendencias de pérdidas eléctricas en los alimentadores de la subestación Batán de la Empresa Eléctrica Ambato Regional Centro Norte S.A. EEASA mediante la utilización de una hoja de cálculo en el período 2019 - 2020". Es de nuestra autoría y responsabilidad, cumpliendo los requisitos teóricos, científicos, técnicos, metodológicos y legales establecidos por la Universidad de las Fuerzas Armadas ESPE, respetando derechos intelectuales de terceros, conforme las citas que constan el pie de las páginas correspondiente, cuyas fuentes se incorporan en la bibliografía. Consecuentemente el contenido de la investigación mencionada es veraz.

Latacunga, 31 de agosto de 2021

Andaluz Naranjo, Christian Alejandro

C.C.: 1804582185

Carrión Claudio, Karen Vanesa

C.C.:0550065775

DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA CARRERA DE INGENIERÍA EN ELECTROMECÁNICA

AUTORIZACIÓN DE PUBLICACIÓN

Nosotros, Carrión Claudio, Karen Vanesa y Andaluz Naranjo, Christian Alejandro, autorizamos a la Universidad de la Fuerzas Armadas ESPE publicar el trabajo de titulación: "Análisis de tendencias de pérdidas eléctricas en los alimentadores de la subestación Batán de la Empresa Eléctrica Ambato Regional Centro Norte S.A. EEASA mediante la utilización de una hoja de cálculo en el período 2019 - 2020". en el Repositorio Institucional, cuyo contenido, ideas y criterios son de nuestra responsabilidad.

Latacunga, 31 de agosto de 2021

Andaluz Naranjo, Christian Alejandro

C.C.: 1804582185

Carrión Claudio, Karen Vanesa

C.C.:0550065775

Dedicatoria

Con mucho amor y esfuerzo dedico mi presente trabajo de titulación

A mis queridos padres Graciela y José Luis por ser mi guía y apoyo en todo momento, a pesar de las dificultades que se presentaron siempre supieron darme una palabra de aliento o un consejo que me motive a seguir.

A mi hermano José Enrique por ser un amigo incondicional y un compañero en el trayecto de mi vida.

A mi familia quienes a pesar de la distancia siempre supieron motivarme en el logro de mis objetivos.

Gracias a ustedes soy una mujer fuerte y perseverante.

Los amo con todo mi corazón.

Karen Vanesa Carrión Claudio

Dedicatoria

Dedico este logró con mucho amor.

A mi Madre Silvia Naranjo, por ser siempre el pilar fundamental y la guía perfecta para lograr las metas de mi vida, gracias por tu cariño, paciencia y apoyo incondicional.

A mi pequeño hermano David y a mi princesa Aitana, quienes son una parte primordial en mi vida.

A toda mi familia, quienes me han sabido inculcar valores y guiarme por un camino de bien.

Por ustedes soy mejor cada día.

Los Amo con todo mi corazón.

Alejandro Andaluz N

Agradecimiento

Quiero agradecer en primer lugar a dios por la salud la vida y la sabiduría.

A mis padres Graciela y José Luis por impulsarme siempre a continuar y por guiar mis pasos.

A mi hermano José Enrique por ser un apoyo incondicional.

A mi familia por estar presentes en cada paso de mi vida

A mi tutor Ing. Washington Freire por ser una guía y apoyo para la culminación de mi trabajo de titulación.

A los Ingenieros de la EEASA por brindarnos sus conocimientos y apoyo.

A mis amigos de vida, por acompañarme en todas mis aventuras, por ser un apoyo y por haber permitido que mi paso por la universidad sea ameno.

Sin todos ustedes no habría sido lo mismo.

Karen Vanesa Carrión Claudio

Agradecimiento

En primer lugar, quiero agradecer a Dios por haberme dado la vida, la salud y la sabiduría para llegar a cumplir esta meta.

Quiero agradecer

A mi madre, Silvia Naranjo, por todo su esfuerzo, dedicación y apoyo brindado durante mi formación académica, sin ti no lo hubiese logrado.

A mi abuelita, Leticia Cherrez por su paciencia y amor infinito en todo momento.

A mi familia, por el amor, el apoyo y los consejos que me han brindado para ser una mejor persona cada día.

A mi querida Universidad y a los docentes, quienes con paciencia y dedicación me brindaron una educación de excelencia.

A mi tutor ING. Washington Freire y a los Ingenieros de la EEASA, por su apoyo y guía para lograr este trabajo de investigación.

A mis amigos de vida y estudio, que fueron esenciales para hacer este camino más placentero.

Sin ustedes no habría sido lo mismo.

 $Alejandro\ Andaluz\ N.$

Tabla de contenido

Carátula1
Certificación2
Responsabilidad de autoría5
Autorización de publicación6
Dedicatoria7
Dedicatoria8
Agradecimiento9
Agradecimiento10
Tabla de contenidos11
Índice de Tablas16
Índice de Figuras19
Resumen21
Abstract22
CAPÍTULO I23
Problemática23
Planteamiento del problema23
Antecedentes24
Justificación e Importancia25
Objetivos25
Objetivo General25
Objetivos Específicos26

CAPÍTULO II
Marco Teórico27
Antecedentes Investigativos27
Fundamentación Teórica28
Descripción del sistema eléctrico EEASA28
Software ArcGIS29
Etapa de distribución30
Pérdidas eléctricas39
Clasificación de las pérdidas eléctricas40
Fundamentación conceptual44
Fundamentación Legal44
Regulación del sector eléctrico44
Regulación No. CONELEC - 003/99 Reducción Anual de Pérdidas No Técnicas en las
Empresas de Distribución45
Regulación No. CONELEC - 004/01 Calidad de Servicio Eléctrico de Distribución 45
Regulación No. ARCONEL - 005/18 Calidad de servicio de distribución y
comercialización de energía eléctrica45
Hipótesis46
Sistema de Variables46
Variable independiente46
Variable dependiente46
Cuadro de operacionalización de variables46

CAPÍTULO III
Metodología48
Modalidad de investigación48
Método bibliográfico documental48
Método experimental48
Método Investigativo49
Tipo de investigación49
Investigación cuantitativa49
Diseño de la investigación49
Técnicas de recolección de datos49
Validez y confiabilidad50
Técnica de análisis de datos50
Clasificación y procesado de datos50
Técnica de comprobación de hipótesis61
CAPÍTULO IV62
Resultados de la investigación62
Sistema Eléctrico de la EEASA62
Selección de la muestra63
Subestación Batán64
Análisis de tendencias64
Gráficas de tendencias64
Análisis del alimentador Pérez de Anda66

Análisis de pérdidas técnicas67
Tipo de Red68
Niveles de voltaje68
Conductores68
Transformadores72
Circuitos75
CAPÍTULO V76
Propuesta76
Tema de la propuesta76
Datos informativos76
Objetivo General70
Objetivos Específicos70
Justificación de la propuesta77
Diseño de la propuesta77
Recopilación de información77
Procesamiento de datos mediante herramientas informáticas82
Cálculos
Diseño y uso del aplicativo Macros105
Uso del aplicativo112
CAPÍTULO VI117
Conclusiones y Recomendaciones117
Conclusiones

Recomendaciones	118
Bibliografía	119
Anexos	122

Índice de Tablas

Tabla 1 Cuadro de variables independientes	46
Tabla 2 Cuadro de variable dependiente	47
Tabla 3 Número total de código de clientes por alimentador	51
Tabla 4 Tipo de conductores por circuito	51
Tabla 5 Tipos de conductores por circuito	52
Tabla 6 Tipos de conductores por circuito	52
Tabla 7 Tipos de conductores por circuito	53
Tabla 8 Tipos de conductores por circuito	54
Tabla 9 Tipos de conductores por circuito	54
Tabla 10 Longitud por circuito	55
Tabla 11 Longitud por circuito	56
Tabla 12 Longitud por circuito	56
Tabla 13 Longitud por circuito	56
Tabla 14 Longitud por circuito	57
Tabla 15 Longitud por circuito	57
Tabla 16 Potencia y número de transformadores	57
Tabla 17 Potencia y número de transformadores	58
Tabla 18 Potencia y número de transformadores	58
Tabla 19 Potencia y número de transformadores	59
Tabla 20 Potencia y número de transformadores	60
Tabla 21 Potencia y número de transformadores	60
Tabla 22 Tipos de conductores descartados	69
Tabla 23 Tipos de conductores descartados	69
Tabla 24 Tipos de conductores descartados	70
Tabla 25 Tipos de conductores descartados	70

Tabla 26 Tipos de conductores descartados	71
Tabla 27 Tipos de conductores descartados	71
Tabla 28 Potencias descartadas en el análisis	72
Tabla 29 Potencias descartadas en el análisis	73
Tabla 30 Potencias descartadas en el análisis	73
Tabla 31 Potencias descartadas en el análisis	74
Tabla 32 Potencias descartadas en el análisis	74
Tabla 33 Potencias descartadas en el análisis	75
Tabla 34 Datos de código de clientes y coordenadas "X" y "Y"	83
Tabla 35 Datos de potencia de luminarias	84
Tabla 36 Datos de potencia de luminarias ascendentemente	85
Tabla 37 Cantidad de luminarias	85
Tabla 38 Datos de conductores en bajo voltaje	86
Tabla 39 Datos de transformadores ordenados	87
Tabla 40 Datos de consumo comercial por mes	88
Tabla 41 Datos de consumo de cabecera por mes	89
Tabla 42 Datos de consumo de luminarias	92
Tabla 43 Datos de consumos por mes	93
Tabla 44 Datos de pérdidas totales	94
Tabla 45 Pérdidas en acometidas y medidores	95
Tabla 46 Total de pérdidas técnicas en potencia	98
Tabla 47 Cálculo de corriente por circuitos	99
Tabla 48 Cálculo de longitud por circuito	100
Tabla 49 Longitud de acuerdo al número de transformadores	101
Tabla 50 Resistencia por km de acuerdo al conductor	102
Tabla 51 Cálculo de la resistencia	102

Tabla 52 Pérdidas en tramos	103
Tabla 53. Pérdidas totales en tramos	104
Tabla 54 Descripción de los botones	107
Tabla 55 Descripción de los botones	108
Tabla 56 Descripción de los botones	109
Tabla 57 Descripción de los hotones	111

Índice de Figuras

Figura 1 Area de concesión de la empresa eléctrica regional centro norte S.A. EEAS,	429
Figura 2 Sistema Georreferencial ArcGIS	30
Figura 3 Diagrama unifilar del sistema radial simple	32
Figura 4 Diagrama unifilar del sistema con enlace	32
Figura 5 Diagrama unifilar de sistema mallado y en anillo	33
Figura 6 Diagrama de conexión monofásico	35
Figura 7 Forma física de un transformador trifásico	36
Figura 8 Conductor de aluminio desnudo	37
Figura 9 Conductor preensamblado XLPE	38
Figura 10 Diagrama Unifilar Empresa eléctrica Ambato Regional Centro Norte S.A.	62
Figura 11 Diagrama Unifilar Subestación Batán	63
Figura 12 Gráfica de análisis de tendencias estándar	65
Figura 13 Gráfica de análisis de tendencia con un mes de retraso	65
Figura 14 Transferencia de energía	66
Figura 15 Gráfica de análisis de tendencias estándar	66
Figura 16 Gráfica de análisis de tendencias	67
Figura 17 Código de cliente y coordenadas geográficas	79
Figura 18 Datos de potencia y fecha de creación	79
Figura 19 Datos de baja tensión en redes aéreas	80
Figura 20 Datos de código de cliente y coordenadas geográficas	81
Figura 21 Datos de consumo de cabecera	81
Figura 22 Datos de consumo de cabecera por mes	82
Figura 23 Archivo .GPX	91
Figura 24 Representación de coordenadas en OsmAnd	91
Figura 25 Pantalla principal	105

Figura 26 Ventana de comparación	106
Figura 27 Ventana de Calculadora EMT	108
Figura 28 Ventana de análisis de tendencias	109
Figura 29 Ventana de cálculo de pérdidas eléctricas	110
Figura 30 Ventana de comparaciones sin coincidencia de datos	112
Figura 31 Ventana de comparaciones sin coincidencia de datos	113
Figura 32 Ventana de calculadora EMT	113
Figura 33 Ventana Análisis de tendencias	115
Figura 34 Graficas de tendencias del alimentador MIRAFLORES	115
Figura 35 Análisis de pérdidas eléctricas	116

Resumen

El presente proyecto de investigación pretende proporcionar a la Empresa Eléctrica Ambato Regional Centro Norte S.A. EEASA un análisis de tendencias y gráficas de pérdidas por cada alimentador de la subestación Batán. Para llevar a cabo el análisis, se realiza una comparación entre los datos arrojados por los sistemas existentes en la empresa, con la finalidad de verificar que la información del sistema ArcGIS coincida con la información del SISCOM. Para la ejecución de este proceso se implementa una programación MACROS en la hoja de cálculo Excel, con el objetivo de comparar la información entre ambos sistemas de manera más rápida y con una reducción de errores, el programa arrojó resultados indicando en cuál de los alimentadores la información no concuerda para de esta manera dar soluciones óptimas y proceder actualizar la información en el sistema de georreferenciación ArcGIS. Una vez actualizada la información se genera un análisis de tendencias de pérdidas, los cuales se obtuvieron en base a los datos de la energía consumida y el consumo facturado por los usuarios más el consumo de las luminarias pertenecientes a cada alimentador. El análisis de tendencias arroja perfiles de comportamiento, el mismo que facilita a la empresa la detección de irregularidades existentes no percibidas a simple vista, permitiendo determinar si la diferencia de pérdidas existente en la empresa se mantiene, se reduce o se incrementa. Para tener una mayor precisión de comportamiento, la información proporcionada por la empresa eléctrica fue de hace 2 años atrás con el fin de obtener perfiles de pérdidas aceptables.

Palabras clave:

- ANÁLISIS DE TENDENCIAS
- PROGRAMACIÓN MACROS
- PÉRDIDAS DE ENÉRGIA

Abstract

This research project aims to provide the "Empresa Eléctrica Ambato Regional Centro Norte S.A. EEASA" a trend analysis for each feeder of the "Batán" substation. To carry out the analysis, a comparison was made between the data produced by the existing systems in the company, in order to verify that the information in the ArcGIS system matches the information in the SISCOM. For the execution of this process, a MACROS programming was implemented in an Excel spreadsheet, in order to compare the information between both systems more quickly and with a reduction of errors, the program gave results indicating in which of the feeders the Information does not match in order to provide optimal solutions and proceed to update the information at ArcGIS georeferencing system. Once the information was updated, an analysis of loss trends was generated, which were obtained based on the data of the energy consumed and the consumption billed by the users plus the consumption of the luminaires belonging to each power supply. The trend analysis yields behavioral profiles, the same that makes it easier for the company to detect existing irregularities not perceived at first glance, allowing to determine if the difference in losses existing in the company is maintained, reduced or increased. To have a greater precision of behavior, the information provided by the electricity company was from 2 years ago in order to obtain acceptable loss profiles.

Key words:

- TREND ANALYSIS
- MACROS PROGRAMMING
- ENERGY LOSSES

CAPÍTULO I

1. Problemática

1.1. Planteamiento del problema

Actualmente la Empresa Eléctrica Ambato Regional Centro Norte S.A. EEASA cuenta con dos sistemas, el sistema ArcGIS y el sistema comercial (SISCOM). Cabe mencionar que el sistema ArcGIS maneja todo lo relacionado con la parte de planificación y distribución con el fin de poder ubicar a cada uno de los usuarios con su respectiva información mientras que dentro del sistema comercial se obtiene información de consumos de energía, los datos del vano y los datos del medidor.

Por lo tanto la empresa eléctrica requiere de un análisis de tendencias de pérdidas eléctricas en los alimentadores de la subestación Batán, mismo que sirve para detectar las causas que producen dichas pérdidas dentro del circuito comprendido por cada alimentador, con este análisis se encontró soluciones óptimas para mejorar el sistema, mismas que ayudan a reducir el porcentaje de pérdidas eléctricas, los resultados obtenidos del análisis son reflejados en el sistema ArcGIS mediante la actualización de la topología de red.

Por tal motivo surge la necesidad de los estudiantes de Ingeniería Electromecánica aplicar sus conocimientos para la elaboración de un aplicativo basado en una hoja de cálculo, que permita realizar el análisis de tendencias de pérdidas de cada uno de los alimentadores antes mencionados.

Esta necesidad se debe a que en la actualidad los flujos de potencia del sistema eléctrico, en este caso de los alimentadores de la subestación Batán se basan netamente en lo que arroja el sistema ArcGIS, los cuales no están concordando con la información que se refleja en el sistema comercial, por esto en los últimos meses se han observado considerables incrementos de consumo de energía.

1.2. Antecedentes

Según (Freire Reasco, 2019) la energía eléctrica es indispensable para el desarrollo industrial y tecnológico, por esta razón que su transporte, transmisión y distribución deben abastecer la demanda con el menor porcentaje de pérdidas posibles, las empresas eléctricas de distribución realizan los esfuerzos necesarios para poder reducir las pérdidas a un mínimo aceptable mejorando día a día su sistema eléctrico, los índices de calidad de servicio y su eficiencia al menor costo posible evitando cortes de energía.

(Tama Franco) Expresa que el índice de pérdidas es uno de los indicadores de la gestión técnico-administrativa de una empresa; por lo cual, es imprescindible conocer y evaluar la incidencia de las mismas en las diferentes etapas funcionales de un sistema eléctrico, desde la producción de energía eléctrica hasta la entrega de la misma al usuario final, con el fin de establecer criterios y políticas conducentes a lograr un control permanente de aquellas, posibilitando de esta manera su corrección. Indudablemente, las pérdidas de energía de una empresa distribuidora y comercializadora de electricidad tienen influencias y generan consecuencias en diferentes ámbitos; En la gestión técnica - económica de la empresa, en el orden social y en el orden de la ética y la moral.

Según (Freire Llerena & Guanoluisa Cando, 2001) Las pérdidas de energía son un indicativo de la serie de errores en los criterios aplicados en el sistema desde su planificación y diseño hasta su operación y mantenimiento. Es necesario determinar las pérdidas en sus diferentes etapas funcionales, que comprenden desde la generación hasta la entrega al consumidor final, para establecer programas y proyectos que lleven a una reducción y control de las pérdidas. Los programas de control de pérdidas deben ser un soporte para el planeamiento, diseño y operación del sistema, y no debe ser considerado como un objetivo puntual de la estrategia financiera de la Empresa.

1.3. Justificación e Importancia

Actualmente la Empresa Eléctrica Ambato Regional Centro Norte S.A. EEASA realiza el análisis de pérdidas a nivel de todo el sistema, pero no sé ha ejecutado un análisis de manera más minuciosa y detallada. Por lo cual en el presente proyecto se realiza un análisis en cada uno de los alimentadores pertenecientes a la subestación Batán, para lo cual los estudiantes de Electromecánica ejecutan un análisis de tendencias puntualizando las pérdidas en cada alimentador con el propósito de ratificar si el problema existente de pérdidas es a nivel de toda la subestación o solamente está enfocado en determinado alimentador, con la finalidad que la empresa pueda solventar las pérdidas producidas.

Por tal motivo se procede a realizar una programación mediante Macros en la hoja de cálculo Excel, mismo que será de gran utilidad para que la empresa pueda constatar que la información existente entre ambos sistemas sea correcta, y posteriormente se proceda a realizar el análisis de tendencia en cada uno de los alimentadores, además se puede realizar los cálculos de pérdidas técnicas por alimentador al igual que la gráfica en porcentajes de las pérdidas existentes, permitiendo que el usuario pueda determinar posibles soluciones óptimas. Con el propósito de establecer un análisis más acertado se desarrolla un procedimiento de acciones correctivas en una sola subestación, misma que sirve a la empresa como guía para el análisis del resto de Subestaciones.

1.4. Objetivos

1.4.1. Objetivo General

Realizar un análisis de pérdidas eléctricas de cada uno de los alimentadores de la subestación Batán perteneciente a la Empresa Eléctrica Ambato Regional Centro Norte S.A. EEASA.

1.4.2. Objetivos Específicos

- Recopilar la información de cada uno de los alimentadores.
- Comparar la información entre sistemas.
- Actualizar la información de los sistemas.
- Realizar un análisis de tendencias por cada alimentador.
- Calcular pérdidas técnicas.
- Desarrollar un aplicativo mediante Macros en la hoja de cálculo EXCEL.
- Graficar la tendencia y las pérdidas de energía.

CAPÍTULO II

2. Marco Teórico

2.1. Antecedentes Investigativos

En el trabajo de titulación (González Torres, 2019), se realizó un estudio de pérdidas no técnicas tomando información del área comercial y del área técnica, para determinar causas y efectos que producen las pérdidas en la empresa, además se planteó soluciones tanto a corto como a mediano plazo, mismas que ayudarán a la disminución de las pérdidas.

(Cabrera Brito & Rodas Rivera, 2016), realizaron una metodología para determinar pérdidas no técnicas en los sistemas primarios de distribución de la empresa Centro sur, en primera instancia ejecutaron un análisis mediante información técnica y comercial que consta en la base de datos empresarial.

Para lograr esto se basaron en técnicas de minería de datos y modelo de lógica difusa, lo cual ayuda a elegir el alimentador primario óptimo para dicho análisis, finalmente se determinan las variables que influyen en el balance energético mismas que permitirán la metodología adecuada para la reducción de pérdidas.

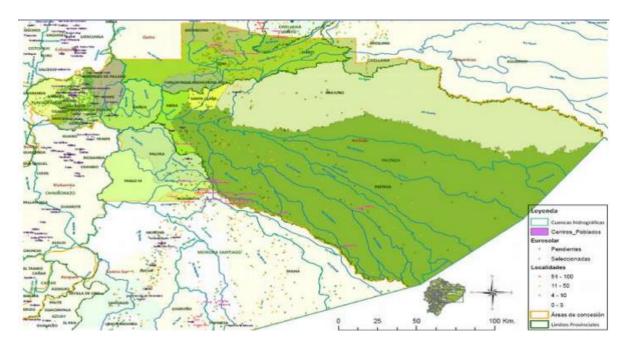
El presente proyecto de investigación (Intriago Paredes & Muñoz Fuentes, 2020), se basa en el análisis de detección y prevención de pérdidas fraudulentas, para ello se ejecutó un análisis geográfico y descriptivo, además de percibir una información adicional mediante encuestas, realizaron el uso de varios modelos, determinando que el modelo que arroja resultados positivos es el árbol de decisiones con un 92% y 98% de área bajo la curva.

(Cañar Olmedo, 2007) Determina que con una evaluación en cada etapa del alimentador es posible conocer el comportamiento de cada uno de sus componentes y sus perjuicios hacia el sistema, para lo cual utiliza una metodología que establece la utilización de equipos de medición y programas computacionales, con el fin de realizar un análisis de costo beneficio que tendría la Empresa Eléctrica Ambato Regional Centro Norte S.A. (EEASA).

2.2. Fundamentación Teórica

2.2.1. Descripción del sistema eléctrico EEASA

2.2.1.1. Historia. El 2 de julio del año 1959, inicia sus operaciones la Empresa


Eléctrica Ambato S.A., como entidad privada con finalidad social y pública, luego de que se suscribiera la escritura de constitución el 29 de abril del mismo año. Participaron en este acto societario inicial, el Ilustre Municipio de Ambato que en ese entonces estaba dirigido por su alcalde, el Dr. Ruperto Camacho, y la ex H. Junta de Reconstrucción de Tungurahua que estaba presidida por el señor Germánico Holguín. Su capital inicial fue de 97 millones de sucres; de ellos, 64 millones correspondían al Municipio y el resto a la Junta de Reconstrucción. Los activos iniciales se sustentaban en la Central Hidroeléctrica Miraflores de 1200 kW que estaba en servicio desde el año 1914; los terrenos y bienes de la central Río Verde, así como la de la Central Hidroeléctrica La Península que en ese momento se encontraba en construcción la segunda etapa; y, las redes eléctricas que permitían brindar el servicio de distribución en la parte urbana en la ciudad de Ambato a aproximadamente 5965 clientes, con 110 trabajadores.

Como es obvio suponer, partiendo la Empresa del ámbito municipal, empezó a funcionar en un local ubicado en la calle Bolívar y Lalama, facilitado por el señor Víctor Hugo Oviedo, Presidente del Directorio; poco tiempo después, se trasladó al local que entregó el I. Municipio de Ambato, en la Av. 12 de Noviembre, entre Espejo y Mariano Eguez, aquí funcionó hasta el mes de febrero de 1982. (Empresa Eléctrica Ambato Regional Centro Norte S.A, 2021)

2.2.1.2. Área de concesión. En la actualidad, el área de concesión de la EEASA, se circunscribe a gran parte de la zona central del País en una superficie de aproximadamente 40.805 Km² y 825.000 habitantes, que comprende las Provincias de Tungurahua y Pastaza, en su totalidad; los Cantones Palora, Huamboya y Pablo Sexto en la Provincia de Morona Santiago y la parte sur de la Provincia de Napo, que incluye su capital Tena y los Cantones

Tena, Archidona y Carlos Julio Arosemena Tola. Figura 1. (Empresa Eléctrica Ambato Regional Centro Norte S.A, 2021)

Figura 1Área de concesión de la Empresa Eléctrica Regional Centro Norte S.A. EEASA

Nota. La parte de color representa el área de concesión de la Empresa Eléctrica Ambato.

Tomado de (p.3), (Empresa Eléctrica Regional Centro Norte S.A., 2014)

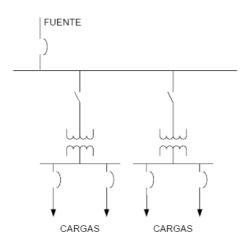
2.2.2. Software ArcGIS

ArcGIS es un completo sistema que permite recopilar, organizar, administrar, analizar, compartir y distribuir información geográfica. Como la plataforma líder mundial para crear y utilizar sistemas de información geográfica (SIG), ArcGIS es utilizada por personas de todo el mundo para poner el conocimiento geográfico al servicio de los sectores del gobierno, la empresa, la ciencia, la educación y los medios. ArcGIS permite publicar la información geográfica para que esté accesible para cualquier usuario. El sistema está disponible en cualquier lugar a través de navegadores Web, dispositivos móviles como smartphones y equipos de escritorio. (ArcGIS Resources, s.f.)

Figura 2
Sistema Georreferencial ArcGIS

Nota. Sistema utilizado para la extracción de datos en la Empresa Eléctrica Ambato. Tomado de (ArcGIS Resources, s.f.)

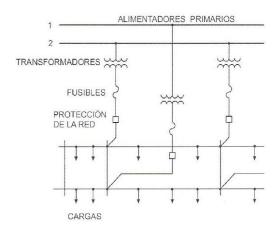
2.2.3. Etapa de distribución


La distribución de energía eléctrica comienza en las subestaciones de distribución y termina en los consumidores finales. Actualmente la distribución eléctrica se encuentra administrada por las distintas empresas eléctricas de todo el país, las cuales poseen un área de concesión específica. En el caso específico de la empresa eléctrica Regional Centro Norte Ambato S.A. EEASA brinda servicio a las provincias de Tungurahua y Pastaza. (Mendez, 2010)

2.2.3.1. Subestación de distribución. Se distingue dos tipos de subestaciones: las de transformación y de maniobra, siendo las primeras las destinadas a transformar la energía eléctrica mediante uno o más transformadores de potencia de un nivel de tensión elevado a otro manejable por los transformadores de distribución, mientras que las de maniobra están destinadas a la conexión de dos o más circuitos y su maniobra.

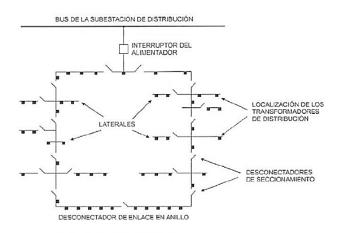
Los elementos más importantes que se distinguen en una subestación de distribución son los siguientes:

- Una o varias líneas de entrada de alta tensión.
- Uno o varios transformadores.
- Resistencias o bobinas de reactancia para puesta a tierra el neutro del transformador.
- Un cuadro para la distribución de energía a las distintas salidas de media tensión.
 Una batería de condensadores.
- Uno o varios transformadores para la alimentación de servicios auxiliares.
- Una o varias fuentes de corriente continua.
- Los circuitos de mando señalización y control.
- Reactancias limitadoras.
- 2.2.3.2. Alimentadores primarios. Los alimentadores primarios son los encargados de transferir la energía eléctrica desde las subestaciones de distribución hacia los transformadores de distribución. En nuestra región la distribución a nivel primario se efectúa con niveles de tensión de 22kV. Los alimentadores primarios suelen tener diferentes tipos de configuración como las que se presentan a continuación:
- 2.2.3.2.1. Sistema radial simple. El sistema adopta este nombre ya que el alimentador parte de la subestación y en forma radial se conectan con los distintos transformadores de distribución que alimenta a las respectivas cargas. Tiene la desventaja que de ocurrir una falla al inicio de la red se debe suspender todo el sistema, tiene un solo camino. (Mendez, 2010)


Figura 3Diagrama unifilar del sistema radial simple

Nota. Tomado de (Mendez, 2010)

2.2.3.2.2. Sistema con enlace. En un sistema con enlace el alimentador parte desde una subestación, hacia las respectivas cargas, y en otro extremo de la red se enlaza con un alimentador de otra subestación a través de un seccionamiento que generalmente se encuentra cerrado figura 4. En estos sistemas en caso de ocurrir una falla solo se lo aísla el sector afectado, mientras que el resto del alimentador se lo alimenta a través de la otra subestación. (Mendez, 2010)


Figura 4Diagrama unifilar del sistema con enlace

Nota. Tomado de (Mendez, 2010)

2.2.3.2.3. Sistema mallado y en anillo. Estos sistemas son útiles para mejorar la confiabilidad, debido a que en cada punto tiene dos caminos para la alimentación figura 5.
En caso de ocurrir fallas por medio de un seccionamiento adecuado solo se interrumpe el sector afectado. Como se mencionó anteriormente los alimentadores primarios distribuyen energía en niveles de 22KV. Para este fin se utilizar sistemas aéreos por lo general y en sectores urbanos sistemas subterráneos. En sistemas de distribución aéreos los alimentadores suelen ir montados sobre estructuras y postearía con los siguientes materiales. (Mendez, 2010)

Figura 5Diagrama unifilar de sistema mallado y en anillo

Nota. Tomado de (Mendez, 2010)

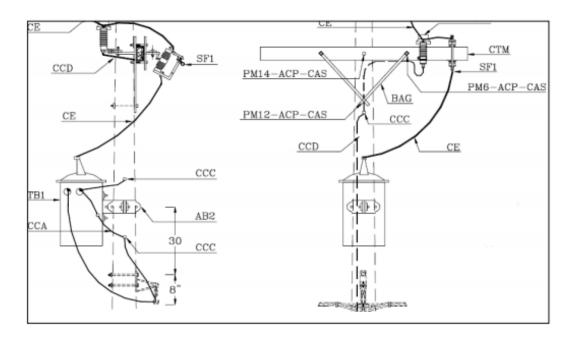
- **2.2.3.2.4. Conductores** [PRE.AL.2X95(50)]. Se ha generalizado que en redes aéreas estos sean del tipo ACSR, Y en sistemas trifásicos suelen ir tres conductores uno por cada fase, mientras que en monofásicos un solo conductor.
- 2.2.3.2.5. Estructuras [1CPT]. Las estructuras son las que se encuentran sobre los postes y sostienen a los conductores que transportan la energía eléctrica. Existe una gran variedad de configuraciones, las cuales dependen de varios factores como: Tipo de sistema (si es monofásico o trifásico).

Disposición topológica (si los postes se encuentran en línea o si forman algún ángulo), factores de seguridad (si están cercano a viviendas).

Las estructuras a su vez se encuentran formadas por herrajería y aisladores, que son los que impiden que existan fugas de corrientes a través de los postes. (Mendez, 2010)

- 2.2.3.2.6. Postes [PHC9_350]. En alimentadores primarios por lo general se emplean postes de hormigón armado de 11m, aunque dependiendo de la topología del lugar y de las características técnicas (por ejemplo, alumbrado) se suelen utilizar postes de hasta 14 metros. En sectores rurales donde el acceso es difícil, los postes de hormigón antiguamente eran remplazados por postes de madera tratada, pero actualmente son de fibra de vidrio. (Mendez, 2010)
- 2.2.3.2.7. Tensores [TFST]. Los tensores se utilizan para compensar los esfuerzos que la red ocasiona en el poste, por lo tanto, se los utiliza al final de una red o en ángulos que se forman. En nuestro medio los tensores son realizados con una varilla de anclaje que se lo entierra junto con un bloque, a esta varilla se lo sujeta un cable de acero que es tensado y entorchado en el poste.
- 2.2.3.2.8. Sistemas subterráneos. En los lugares céntricos de la ciudad para mejorar la estética los alimentadores son subterráneos. Este tipo de construcción requiere de conductores aislados y que posean un aislamiento para los niveles de tensión utilizados, de tal forma que no exista la posibilidad de fallas como fugas o arcos entre fases o fase-neutro. El conductor tipo XLPE, es el que actualmente se emplea en estas redes.

Estos conductores se los conecta en los transformadores de distribución por medio de unas puntas terminales, en algunos casos suelen existir empalmes que se los realizan utilizando tecnologías adecuadas. (Mendez, 2010)


2.2.3.3. Transformadores de distribución [1C3T]. Los transformadores de distribución son los encargados de transferir la energía desde los alimentadores primarios

hasta la red secundaria. Dependiendo de la configuración de la red y de los requerimientos técnicos suelen existir diferentes tipos de transformadores de distribución:

2.2.3.3.1. Transformador de distribución monofásico para red aérea. En el medio se emplea para reducir tensiones de 12,7KV monofásica a 240/120 V monofásico a dos y tres hilos.

Figura 6

Diagrama de conexión monofásico

Nota. Tomado de (Mendez, 2010)

2.2.3.3.2. Transformador de distribución Trifásico para red aérea. Los

transformadores trifásicos se emplean para reducir tensiones de 22KV, entre fases a sistemas trifásicos con dos niveles de tensión 220/127V, por lo general se emplean transformadores con el primario conectado en triángulo y el secundario en estrella, de donde se obtiene el neutro. En la figura 7 se observa la forma física de este tipo de transformadores.

Figura 7Forma física de un transformador trifásico

Nota. Tomado de (Mendez, 2010)

En algunas ocasiones para obtener una red trifásica en el secundario se suelen utilizar en remplazo del transformador trifásico un banco de transformadores monofásicos. Los bancos se forman con tres transformadores monofásicos, a los cuales se les conecta en la conexión deseada. Tienen la ventaja de permitir cualquier conexión ya que estas son externas, además si se deteriora uno de los transformadores el sistema puede seguir operando con una disminución de la demanda. Pero posee la desventaja del espacio físico y el costo que representa. (Mendez, 2010)

2.2.3.3.3. Transformadores utilizados en redes subterráneas. En redes subterráneas por lo general se emplean transformadores en cabinas, las cuales deben ser diseñadas correctamente de acuerdo a normas y requerimientos técnicos. En estas aplicaciones actualmente se están utilizando transformadores tipo Padmounted, que presentan varias ventajas entre las cuales podemos citar la seguridad, ya que se encuentra dentro de un compartimiento cerrado.

2.2.3.4. Red secundaria. Las redes de distribución secundarias en nuestro sistema distribuyen la energía a las respectivas cargas en niveles de tensión de 240/120 en redes

monofásicas y 220/127, en redes trifásicas, la configuración siempre es radial y al igual que los alimentadores primarios presentan varias variantes en su configuración.

- **2.2.3.4.1.** Red secundaria aérea. Las redes secundarias aéreas suelen presentar dos características constructivas, la primera que utiliza conductores de aluminio desnudo y la segunda con cables aislados pre ensamblados.
 - Redes con conductores de aluminio desnudo. En estas redes los conductores son de Aluminio tipo ACSR, y van soportados en postes de hormigón de 9m en sectores urbanos y en sectores rurales postes de madera tratada o fibra de vidrio de 9m.
 Cuando en una red de distribución coincide la red primaria y secundaria. La red secundaria va en el mismo poste de 11m en la parte inferior de la red primaria con una separación de aproximadamente 2m. Los conductores de aluminio son sostenidos en los postes con estructuras que tienen características similares para sistemas monofásicos o trifásicos, y son aisladas de los postes con aisladores tipo carrete (rollo),

Figura 8

Conductor de aluminio desnudo

Nota. Tomado de (Electrocables, 2018)

Redes con conductores preensamblados. La utilización de estos conductores,
 últimamente son muy utilizados con el fin de evitar pérdidas, debido al hurto de

energía y contribuir con la seguridad. Se constituyen de conductores trenzados tipo XLPE, donde se encuentran las fases y el neutro y son retenidos y suspendidos en los postes por medio de Kits de suspensión y de retención. (Mendez, 2010)

Figura 9

Conductor preensamblado XLPE

Nota. Tomado de (Electrocables, 2018)

2.2.3.4.2. Redes secundarias subterráneas. Al igual que los alimentadores primarios este tipo de redes se construyen en lugares donde se requiere mejorar la estética de la ciudad. Los conductores son de cobre aislado con los requerimientos técnicos adecuados y se distribuyen en tuberías. Se emplean empalmes, cajas de conexión, y conectores para derivaciones y acometidas.

2.2.3.5. Acometidas [ACO-0P2X6(6)]. Las acometidas son los conductores que van desde la red secundaria hasta el equipo de medición. En nuestro medio se suelen utilizar acometidas de aluminio tipo Dúplex, Tríplex, o Cuádruplex, dependiendo de la configuración (monofásico, o trifásico). En algunos casos también se utilizan para este fin conductores de cobre tipo concéntrico monofásicos, bifásicos o trifásicos.

Las acometidas igualmente pueden ser aéreas o subterráneas dependiendo de requerimientos técnicos estéticos o económicos. (Mendez, 2010)

2.2.3.6. Alumbrado público [LCPS100PCC]. Es aquel que se presta en espacios que son de libre acceso para todos los ciudadanos, como parques de municipios, carreteras, barrios, puentes, túneles, entre otros. Y van desde unas pocas luminarias, hasta la instalación masiva de lámparas en grandes espacios. (EPM, 2021)

2.2.4. Pérdidas eléctricas

Los distintos componentes de una red eléctrica producen pérdidas técnicas en condiciones normales de funcionamiento. El dimensionamiento, la operación y las pérdidas de una red eléctrica están ligados a la economía de la misma.

A nivel nacional, las pérdidas representan un serio problema, mismo que se refleja en deficiencias operativas de las Empresas de Distribución, las que ocasionan mayores costos internos que producen un serio impacto sobre las tarifas eléctricas y sobre la economía de las Empresas.

Las empresas distribuidoras han realizado esfuerzos para reducir las pérdidas de energía eléctrica a pesar que han rendido pocos frutos, debido a que el tema sigue latente por los escasos resultados obtenidos en la práctica. Esta situación conlleva, a la búsqueda de soluciones innovadores al problema.

Una empresa distribuidora tiene un nivel de pérdidas, en su medida de su eficiencia técnica, comercial y administrativa para atender el servicio demandado por sus clientes. (Pérdidas en distribución de energía, s.f.)

2.2.5. Clasificación de las pérdidas eléctricas

Dentro de los sistemas de distribución las pérdidas de energía eléctrica hacen referencia a la energía que no puede ser facturada o cuantificada directamente, estas pérdidas de energía se clasifican en:

- Pérdidas técnicas.
- Pérdidas no técnicas o comerciales.
- 2.2.5.1. Pérdidas Técnicas. Por las características físicas y químicas de los conductores y transformadores surgen las pérdidas técnicas, mismas que dependen de la energía que fluye en los conductores a través de las redes eléctricas, los transformadores con su naturaleza magnetizante, así como también por la topología de la red y la configuración de las líneas de transmisión y distribución; además, se encuentran afectadas por factores operacionales como la cargabilidad.

Las pérdidas técnicas son afectadas por los fenómenos físicos:

- Descargas por efecto corona
- Arcos eléctricos al operar interruptores
- Sobrecalentamiento en los conductores por el efecto piel debido al desgaste del material dieléctrico.

Las pérdidas técnicas pueden ser reducidas a niveles técnicamente aceptables, pero no es posible eliminarlas al 100 % por mayor que sea la inversión, debido a las propiedades de los componentes. (Cabrera Brito & Rodas Rivera, 2016)

2.2.5.1.1. Líneas Aéreas y Subterráneas. A lo largo de las redes de distribución la energía es transportada por líneas aéreas o subterráneas; la composición de estos conductores en su mayoría es de cobre o aluminio. Las líneas aéreas por lo general son de aluminio con alma de acero para una mayor resistencia, muchos de los conductores subterráneos se componen de aluminio; a medida que su temperatura incrementa se tiene un incremento en la resistencia eléctrica, ésta crece en una proporción del 40 % con un

incremento de 0 a 100 °C. El incremento de temperatura generalmente se presenta por razones naturales, al pasar la corriente por el conductor, pero también puede influenciar el clima.

El calor producido en un conductor por el paso de la corriente se relaciona por el efecto Joule "La cantidad de calor producida (Q) en un conductor en un tiempo (t), por el paso de una corriente eléctrica constante, es proporcional al cuadrado de la intensidad (I) de la corriente por la resistencia (R) del conductor". Ecuación 1.

$$Q = R x I^2 x t$$
 [1]

El calor generado en el conductor se convierte en pérdidas al sistema, ecuación 2, que son mayormente visualizadas en períodos de demanda pico.

$$P = R \times I^2$$
 [2]

La corriente se aumenta en los conductores debido a un bajo factor de potencia, lo que incrementa las pérdidas.

Debido a que estas pérdidas no dependen de la corriente que fluye en los conductores se las conoce también como pérdidas en el cobre o variables y pueden representar dos tercios del total de pérdidas técnicas. (Cabrera Brito & Rodas Rivera, 2016)

2.2.5.1.2. Medidores [3R20_10AT]. Estos equipos se utilizan para realizar la medición de la energía consumida por los usuarios de la red, los equipos de medición consumen una mínima cantidad de energía mediante su funcionamiento, pero al tener un número considerable de medidores a nivel de toda la empresa, la cifra se vuelve relevante y significativa, representando el 2 o 3 % del total de pérdidas técnicas.

2.2.5.1.3. Transformadores. [TRT_1C3]. Estos equipos se utilizan para incrementar el nivel de voltaje, esto disminuye la corriente que fluye en el conductor; por lo tanto, las pérdidas en el cobre tienden a minimizarse.

A lo largo de la red de distribución los transformadores son los encargados de bajar el voltaje de niveles de distribución (6,3 kV, 13,8 kV y 22 kV) a niveles de bajo voltaje (120/240 V o 127/220 V) para posteriormente ser distribuida a los puntos de consumo.

Como todo componente eléctrico, los transformadores presentan pérdidas de energía, debido al flujo magnético que causan corrientes parásitas al núcleo de hierro, provocando que este aumente su temperatura, de igual manera dentro del transformador existe las pérdidas en el hierro que ocurren indistintamente de la carga aplicada al equipo, por lo que se conocen como pérdidas estáticas o fijas y representan un tercio del total de las pérdidas técnicas. (Cabrera Brito & Rodas Rivera, 2016)

- **2.2.5.2. Pérdidas No Técnicas (Comerciales)**. Las pérdidas comerciales surgen por motivos distintos a las condiciones físicas de los conductores y transformadores, el origen de este tipo de pérdidas se encuentra en los siguientes aspectos:
 - Períodos de toma de lectura.
 - Diferencia en la precisión de los equipos de medición.
 - Errores de lectura.
 - Robo de energía.
 - Estimaciones de energía consumida por falta de lectura.
- 2.2.5.2.1. Períodos de Toma de Lectura. La toma de datos del consumo de energía de los clientes del sistema actualmente se realiza en su gran mayoría de forma manual, es decir, se requiere que una persona esté físicamente en el sitio, tome la lectura de consumo en cada punto de medición y envíe esta información para posteriormente realizar el proceso de registro y facturación en la empresa distribuidora; esta labor tiene que replicarse sobre cientos de miles de medidores mensualmente.

Dicha circunstancia operativa hace que la logística para obtener los consumos de energía de todos los clientes, no permita contabilizar efectivamente su consumo dentro de un mismo período de tiempo; es por eso que la facturación de energía se realiza entre los 28

y 33 días, que no necesariamente coinciden con los 30 o 31 días calendario de un mes. (Cabrera Brito & Rodas Rivera, 2016)

2.2.5.2.2. Diferencia en la Precisión de los Equipos de Medición. Según el uso de energía del cliente se tiene una variedad de equipos que son utilizados para registrar la energía consumida; por ejemplo, para los usuarios con bajo consumo y residenciales se utilizan medidores de clase 1, es decir equipos con precisión de ± 1 % y, para usuarios de gran consumo, industriales en general y puntos de subestación se emplean medidores de clase 0,2, es decir equipos con precisión de $\pm 0,2$ %. Por lo cual la energía registrada será distinta a la energía consumida, dando como resultado una diferencia de energía no registrada que se traduce como pérdidas. (Cabrera Brito & Rodas Rivera, 2016)

2.2.5.2.3. Errores de Lectura. Las pérdidas también se pueden originar por errores en la lectura de los datos que marcan los medidores, éstos pueden ser ocasionados por varios factores ya sea por daño en los equipos o error humano, en el primer caso, el equipo de medición por varios motivos deja de registrar el consumo; en cuanto al factor humano, el lector no registra correctamente los datos que marcan en los contadores de energía.

A estas causas se les atribuye una diferencia entre la energía consumida y la energía facturada, siendo ésta positiva o negativa, esta distorsión afecta a las pérdidas en el sistema.

2.2.5.2.4. Robo de Energía. Cuando hay una conexión ilegal en el lado anterior al medidor o cuando existe cualquier tipo de manipulación en el medidor se considera que son pérdidas por robo.

2.2.5.2.5. Estimaciones de Energía Consumida por Falta de Lectura o Imposibilidad de Realizarla. Debido a su naturaleza, la energía no registrada es totalmente estimada, puesto que en caso de los equipos de emergencia y respaldo en subestaciones como: lámparas, ventiladores, se utiliza la misma energía de la subestación para alimentar dichos componentes.

Además, se debe considerar las lámparas de las calles y los semáforos, así como también los contratos de servicios eventuales donde simplemente se estima la energía según la potencia de los equipos a utilizarse, siendo mayor o menor a la energía consumida; y, finalmente la estimación del consumo mensual a un abonado al que no se le realizó la lectura del mes. (Cabrera Brito & Rodas Rivera, 2016)

2.3. Fundamentación conceptual

- **SISCOM:** Sistema Comercial de la EEASA.
- ArcGIS: Sistema Georreferencial.
- 3R20_10AT: Medidor 13kV 3F4H Espec. Electr. Energía A-R-D-M-20A_Forma 10A.
- TRT-1C3: Transformador de 13kV 1F convencional 3kVA en poste.
- **PRE.AL.2X95(50):** Conductor de aluminio preensamblado de $2X95 + NX50mm^2$.
- **1CPT:** Estructura de 13kV 1F centrada pasante.
- PHC9_350: Poste de hormigón armado circular de 9m carga de rotura 350kg.
- TFST: Tensor farol simple en redes de distribución de 13kV.
- **1C3T:** Transformador de 13kV 1F convencional 3kVA en poste.
- ACO-OP2X6(6): Acometida TTU de cobre 2X6(6) AWG.
- LCPS100PCC: Luminaria de 120V de sodio 100watts en poste con red aérea, hilo piloto, potencia constante.

2.4. Fundamentación Legal

2.4.1. Regulación del sector eléctrico

Por disposición de la Ley Orgánica de Servicio Público de Energía Eléctrica, le corresponde a ARCERNNR, en su naturaleza jurídica (Art. 14), regular y controlar las actividades relacionadas con el servicio público de energía eléctrica y el servicio de alumbrado público general, precautelando los intereses del consumidor o usuario final, teniendo entre sus atribuciones el "Dictar las regulaciones a las cuales deberán ajustarse las empresas eléctricas; el Operador Nacional de Electricidad (CENACE) y los consumidores o

usuarios finales; sean estos públicos o privados, observando las políticas de eficiencia energética, para lo cual están obligados a proporcionar la información que le sea requerida", las mismas que son previamente aprobadas y expedidas por su Directorio. (Regulación del Sector Eléctrico, s.f.)

2.4.2. Regulación No. CONELEC - 003/99 Reducción Anual de Pérdidas No Técnicas en las Empresas de Distribución.

"Las pérdidas no técnicas resultarán de la diferencia entre las pérdidas totales menos las pérdidas técnicas. Los límites admisibles para las pérdidas no técnicas en el cálculo de tarifas, serán fijadas por el CONELEC para cada distribuidor en un plazo de 30 días posteriores a la expedición de este Reglamento, hasta llegar al 2 % en el año 2002, porcentaje máximo aceptable que deberá mantenerse a futuro. El CONELEC considerará dentro del cálculo del Valor Agregado de Distribución (VAD), la incidencia de las inversiones e incrementos en costos que el distribuidor realizará para cada período anual en el cumplimiento del programa de reducción de pérdidas no técnicas". (CONELEC, Regulación No. CONELEC - 003/99, 1999)

2.4.3. Regulación No. CONELEC - 004/01 Calidad de Servicio Eléctrico de Distribución

"Establecer los niveles de calidad de la prestación del servicio eléctrico de distribución y los procedimientos de evaluación a ser observados por parte de las empresas Distribuidoras" (CONELEC, Regulación No. CONELEC - 004/01, 2001).

2.4.4. Regulación No. ARCONEL - 005/18 Calidad de servicio de distribución y comercialización de energía eléctrica.

"Establecer los indicadores, índices y límites de calidad de servicio de distribución y comercialización de energía eléctrica; y, definir los procedimientos de medición, registro y evaluación a ser cumplidos por las empresas eléctricas de distribución y consumidores, según corresponda." (ARCONEL, 2018)

2.5. Hipótesis

Si se analiza las pérdidas en el sistema eléctrico de distribución de la Empresa Eléctrica Ambato S.A. EEASA, se podrá desarrollar un aplicativo que permita evaluar dichas pérdidas de manera más rápida y eficiente.

2.6. Sistema de Variables

2.6.1. Variable independiente.

Elaboración de un sistema de comparación de la base de datos del Departamento de pérdidas mediante macros en una hoja de cálculo.

2.6.2. Variable dependiente

Análisis de tendencias de pérdidas eléctricas en los alimentadores de la subestación Batán.

2.7. Cuadro de operacionalización de variables

Tabla 1Cuadro de variables independientes

Variables	Definición Conceptual	Dimensiones	Indicadores	Instrumento
Variable Independiente:		Información	Coordenadas	
Elaboración de un sistema de	Obtener	ArcGIS	Geográficas	
comparación de la base de datos del	información de los sistemas existentes en la		Código de cliente	Tablas de datos
Departamento de pérdidas	empresa.	Información SISCOM	Potencia	
mediante macros en una hoja de cálculo.			Consumo	

Nota. En esta tabla se muestra la definición conceptual, dimensión, indicador e instrumento de la variable independiente.

Tabla 2

Cuadro de variable dependiente

Variables	Definición Conceptual	Dimensiones	Indicadores	Instrumento
Variable				
Dependiente:	Mediante el	Información	Consumo	
	_ Macros se	ArcGIS	cliente	
Análisis de	permite	Aicdis		
tendencias de	constatar y		Consumo	
pérdidas	cuantificar los		luminarias	Curvas de
eléctricas en los	datos para	Información		comportamiento
alimentadores	generar perfiles	IIIIOIIIIacioii	Energía	
de la	de pérdidas de	CICCOM	consumida en	
subestación	cada	SISCOM	la cabecera del	
Batán.	alimentador.		alimentador	

Nota. En esta tabla se muestra la definición conceptual, dimensión, indicador e instrumento de la variable dependiente.

CAPÍTULO III

3. Metodología

3.1. Modalidad de investigación

El presente trabajo de titulación se basa en el análisis de tendencia de pérdidas eléctricas de los alimentadores ESPAÑA, PEREZ DE ANDA, URBINA, FICOA, MIRAFLORES y QUISAPINCHA pertenecientes a la subestación Batán que energiza la cabecera central de la ciudad de Ambato, se desarrolla mediante la extracción de datos de los sistemas pertenecientes de la Empresa Eléctrica Regional Centro Norte S.A. EEASA para realizar el análisis de tendencia de pérdidas a través de un aplicativo desarrollado en una Hoja de cálculo mediante Macros, con el fin de generar perfiles de comportamiento de consumo de energía y perfiles de pérdidas en cada alimentador.

3.2. Método bibliográfico documental

Mediante este método se recopila la mayor cantidad de información de proyectos de investigación, trabajos de repositorios institucionales, libros de ingeniería, documentos de rendición de cuenta de la EEASA, sitios web y documentación legal referente a regulaciones en páginas oficiales del sector eléctrico con información confiable para el análisis de tendencias de pérdidas eléctricas.

3.3. Método experimental

Por medio de este método se procede a la recopilación de datos de código de usuarios con sus respectivas coordenadas, datos de consumo de clientes, luminarias y cabecera, así como también se obtiene los datos específicos de potencia, longitud, tipo, configuración y voltaje de los componentes técnicos correspondientes a los alimentadores que suministran energía a la red de distribución del casco central de la ciudad de Ambato, con la finalidad de llevar a cabo el respectivo análisis de tendencias de comportamiento y pérdidas en el aplicativo Macros.

3.4. Método Investigativo

A través de este método se elabora el aplicativo, mismo que nos permite verificar la información existente en el sistema ArcGIS y el sistema SISCOM, así como también se desarrolla la tendencia de cada alimentador y se da soluciones óptimas a las pérdidas presentadas en los mismos.

3.5. Tipo de investigación

3.5.1. Investigación cuantitativa

En este tipo de investigación se procede a la obtención de datos del área técnica como del área comercial, estos arrojan variables de magnitud cuantificables dentro de los cuales se puede visualizar los valores de consumo de clientes (kWh), potencia (Watts), consumo de cabecera del alimentador (kWh), Longitud de la red (m) y Voltaje (V) mismos que fueron examinados con el objetivo de establecer las conclusiones correspondientes.

3.6. Diseño de la investigación

Mediante un Macros en Excel se ejecuta el análisis de tendencias de pérdidas eléctricas de la Empresa Eléctrica Regional Centro Norte S.A. EEASA, donde se realiza comparaciones de información entre sistemas, correcciones de información no coincidente, actualización de información del sistema ArcGIS, perfiles de comportamiento y gráfica de pérdidas de cada alimentador, para finalmente establecer soluciones que ayuden a la reducción de pérdidas en los mismos.

3.7. Técnicas de recolección de datos

Para la recopilación de datos técnicos de los alimentadores se procede a utilizar el software ArcGIS, de donde se extrajo los códigos de clientes con su respectiva ubicación geográfica en coordenadas, así como también se consigue información técnica de conductores, transformadores, y componentes de cada uno de los alimentadores de la subestación Batán, además se obtienen datos comerciales y datos de consumo de cabecera

mismos que fueron facilitados por los diferentes departamentos de la empresa distribuidora.

3.8. Validez y confiabilidad

Los datos utilizados fueron percibidos de cierta manera que nos arrojen resultados confiables, puesto que se considera de la siguiente manera; en la cabecera del alimentador fueron datos tomados cada 15 minutos, los consumos de clientes fueron durante un período de 28 meses y el consumo de componentes desde la fecha de ingreso de los mismos.

3.9. Técnica de análisis de datos

3.9.1. Clasificación y procesado de datos

Para el desarrollo del tema se clasifican los datos proporcionados por la Empresa Eléctrica Regional Centro Norte S.A. EEASA, una vez realizado esto se procesan dichos parámetros mediante el aplicativo en Macros.

Para dicho análisis se menciona algunos criterios de la siguiente manera:

- Se procede a la recopilación de datos por parte de la Empresa Eléctrica Regional
 Centro Norte S.A. EEASA y los estudiantes desarrolladores del proyecto para
 organizar los datos de manera que se encuentren aptos para el análisis.
- Constatación y depuración de datos mediante tablas, cálculos y gráficas para detectar fallos de información entre sistemas, misma que debe ser depurada para el ingreso en el aplicativo Macros.

Una vez que la información es procesada se tiene los siguientes resultados por alimentador:

3.9.1.1. Códigos de clientes

Tabla 3Número total de código de clientes por alimentador

Alimentadores	Total
España	3655
Pérez de Anda	2288
Urbina	2116
Ficoa	4098
Miraflores	1209
Quisapincha	4261

3.9.1.2. Conductores. A continuación, se describe el tipo de conductores

encontrados tanto en redes aéreas como subterráneas de cada alimentador de acuerdo a su conexión

Alimentador España

Tabla 4 *Tipo de conductores por circuito*

	Circuito Aéreo	
Monofásico	Bifásico	Trifásico
ASC.1/0	ACSR.2	ACSR.1/0
ASC.2	ASC.2	ACSR.2
PRE.AL.1X35(50)	MUL.AL.2X2	ASC.1/0
PRE.AL.2X35(35)	MUL.AL.3X2	ASC.2
PRE.AL.2X35(50)	PRE.AL.2X35(35)	MUL.AL.3X2
PRE.AL.2X50(50)	PRE.AL.2X35(50)	MUL.AL.4X1/0
-	PRE.AL.2X50(50)	MUL.AL.4X2
-	TW.CU.2	PRE.AL.3X35(25)
-	-	PRE.AL.3X50(50)
	Circuito Subterráneo	
Monofásico	-	Trifásico
TTU.CU.2	-	TTU.CU.2

	Circuito Subterráneo	
PRE.AL.2X50(50)	-	TT.CU.2/0
-	-	TTU.CU.350

Alimentador Pérez de Anda

Tabla 5

Tipos de conductores por circuito

Circuito Aéreo
Trifásico
ACSR.1/0
MUL.AL.4X1/0
PRE.AL.3X50(35)
PRE.AL.3X50(50)
Circuito Subterráneo
Trifásico
Des.Cu.2/0
PRE.AL.3X50(50)
TTU.Cu.1/0
TTU.Cu.2/0
TTU.Cu.4/0
TTU.Cu.250
TTU.Cu.300
TTU.Cu.500

Alimentador Urbina

Tabla 6

Tipos de conductores por circuito

Circuito Subterráneo
TTU.Cu.2/0
TTU.Cu.3/0
TTU.Cu.4/0
TTU.Cu.250
TTU.Cu.300
TTU.Cu.500
TW.Cu.250

Alimentador Ficoa

Tabla 7 *Tipos de conductores por circuito*

	Circuito Aéreo	
Monofásico	Bifásico	Trifásico
ACSR.1/0	ACSR.1/0	ACSR.1/0
ACSR.2	COO0066	ACSR,2
ASC.1/0	MUL.AL.2X2	COO0066
MUL.AL.2X2	MUL.AL.3X2	MUL.AL.2X2
MUL.AL,3X2	PRE.AL.1X35(50)	MUL.AL.3X2
PRE.AL.2X35(35)	PRE.AL.2X35(50)	MUL.AL.4X1/0
PRE.AL.2X35(50)	PRE.AL.3X50(50)	PRE.AL.2X35(50)
PRE.AL.2X50(50)	-	PRE.AL.3X50(50)
	Circuito Subterráneo	
Monofásico	Bifásico	Trifásico
TTU.AL.2/0	TTU.AL.2	TTU Cu.300
TTU.AL.250	-	TTU.Al.250
TTU.AL.4/0	-	-
TTU.Cu.1/0	-	-
TTU.Cu.2	-	-
TTU.Cu.250	-	-

Alimentador Miraflores

Tabla 8 *Tipos de conductores por circuito*

	Circuito Aéreo	
Monofásico	Bifásico	Trifásico
ACSR.2	ACSR.2	ACSR.1/0
ASC.2	MUL.AL.3X2	ACSR.2
PRE.AL.2X35(35)	PRE.AL.2X35(35)	ASC,1/0
PRE.AL.2X50(50)	PRE.AL.2X35(50)	MUL.AL.2X2
-	PRE.AL.2X50(50)	MUL.AL.4X1/0
-	-	MUL.AL.4X2
-	-	PRE.AL.3X35(50)
-	-	PRE.AL.3X50(50)
-	-	TW.Cu.2
	Circuito Subterráneo	1
	Trifásico	
	THHN.Cu.1/0	
	TTU.Cu.1/0	
	TTU.Cu.4/0	
	TTU.Cu.500	

Alimentador Quisapincha

Tabla 9 *Tipos de conductores por circuito*

Circuit	Circuito Aéreo		
Monofásico	Trifásico		
AAAC5005 1/0	COO0066		
ACSR 1/0	PRE.AL.3X50(50)		
ACSR,2	-		
ACSR.2/0	-		
ASC,2	-		
COO0066	-		

Circuito Aéreo		
Monofásico	Trifásico	
COO0066	-	
COO0067	-	
COO0158	-	
MUL.AL.3X1/0	-	
MUL.AL.3X2	-	
PRE.AL.1X35(50)	-	
PRE.AL.2X35(35)	-	
PRE.AL.2X35(50)	-	
PRE.AL.2X50(50)	-	
TW.Cu.2	-	
Circuito Subt	erráneo	
Monofá	sico	
TTU Cu.	4/0	

3.9.1.3. Tramos de BT. La información que se describe a continuación hace referencia a la longitud del sistema por conductor, dichos valores se encuentran en metros.

Alimentador España

Tabla 10Longitud por circuito

	Circuito Aéreo	
Monofásico	Bifásico	Trifásico
2231,062946	660,859248	5212,388087
	Circuito Subterráneo	
Monofásico	-	Trifásico
298,275497	-	376,209557

Alimentador Pérez de Anda

Tabla 11

Longitud por circuito

Circuito Aéreo		
Trifásico		
716,654369		
Circuito Subterráneo		
Trifásico		
7470,160781		
7470,160781		

Alimentador Urbina

Tabla 12

Longitud por circuito

Circuito Subterráneo			
Trifásico			
7744,106357			

Alimentador Ficoa

Tabla 13

Longitud por circuito

	Circuito Aéreo	
Monofásico	Bifásico	Trifásico
9246,657468	618,518088	2444,903637
	Circuito Subterráneo	
Monofásico	-	Trifásico
445,246038	-	10400,37753

Alimentador Miraflores

Tabla 14Longitud por circuito

Circuito Aéreo		
Monofásico	Bifásico	Trifásico
1910,188145	660,269427	2130,189085
	Circuito Subterráneo	
	Trifásico	
	2253,886653	

Alimentador Quisapincha

Tabla 15

Longitud por circuito

Circuito Aéreo		
Monofásico	Trifásico	
27058,50571	700,780372	
Circuito Sul	oterráneo	
Monof	ásico	
16,045309		

3.9.1.4. Transformadores. Los datos que se muestran a continuación pertenecen a la potencia existente por alimentador y a la cantidad de transformadores con dicha potencia.

Alimentador España

Tabla 16Potencia y número de transformadores

Circuito Aéreo			
Monofásico		Trifásico	
Potencia	# Transformadores	Potencia	# Transformadores
10	4	15	1
15	6	30	12

	Circuito Aéreo			
Monofásico		Trifásico		
Potencia	# Transformadores	Potencia	# Transformadores	
25	9	45	7	
37,5	9	50	16	
50	2	75	8	

Alimentador Pérez de Anda

Tabla 17Potencia y número de transformadores

Circuito Subterráneo		
Trifásico		
Potencia # Transformadores		
160	2	
200	2	
250	1	
300	4	
315	1	
300	4	

Alimentador Urbina

Tabla 18Potencia y número de transformadores

	Circuito Aéreo	
Trifásico		
Potencia	otencia # Transformadores	
50	1	
Circ	cuito Subterráneo	
	Trifásico	
Potencia	# Transformadores	
160	2	

Circuito Subterráneo		
Trifásico		
Potencia	# Transformadores	
200	2	
250	2	
300	1	
400	1	

Alimentador Ficoa

Tabla 19Potencia y número de transformadores

	Ci	rcuito Aéreo	
	Monofásico Trifásico		rifásico
Potencia	# Transformadores	Potencia	# Transformadores
10	2	30	2
15	5	45	1
25	10	50	2
37,5	7	75	2
50	5	112,5	1
	Circu	ito Subterráneo	
		Trifásico	
Potencia		# Transformadores	
	200 3		3
300		21	

Alimentador Miraflores

Tabla 20Potencia y número de transformadores

	Ci	rcuito Aéreo	
	Monofásico	Т	rifásico
Potencia	# Transformadores	Potencia	# Transformadores
10	1	15	2
15	3	30	1
25	5	45	3
37,5	5	50	4
-	-	75	4
-	-	100	1
	Circu	ito Subterráneo	
		Trifásico	
Potencia # Transformadores		sformadores	
150			4
	400		1
	600		1

Alimentador Quisapincha

Tabla 21Potencia y número de transformadores

	Circuito Aéreo		
Monofásico		T	rifásico
Potencia	# Transformadores	Potencia	# Transformadores
5	28	15	2
10	90	30	4
15	58	50	5
25	22	-	-
37,5	12	-	-
50	1	-	-

Circuito Subterráneo		
Trifásico		
Potencia	# Transformadores	
150	2	

 Desarrollar e interpretar las gráficas de perfiles de tendencias de consumo y pérdidas eléctricas para estimar el instante donde se producen las fallas con mayor relevancia y evaluar una solución óptima que ayude a mitigar dicho problema.

3.10. Técnica de comprobación de hipótesis

Aplicativo en Macros desarrollado en una Hoja de cálculo Excel para generar perfiles de comportamiento de consumo y de pérdidas de cada uno de los alimentadores de la subestación Batán con el objetivo de detectar irregularidades impalpables del sistema, mismo que será utilizado a futuro por el Departamento de pérdidas de la Empresa Eléctrica Regional Centro Norte S.A. EEASA.

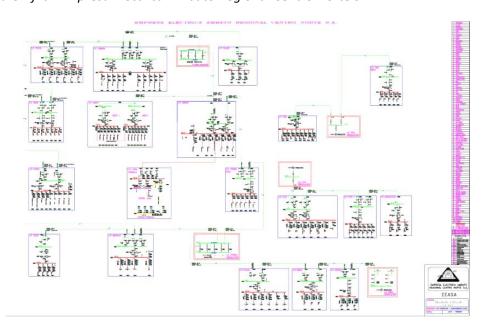
CAPÍTULO IV

4. Resultados de la investigación

En este capítulo se determinan los aspectos que se deben tomar en consideración para el análisis de tendencias y gráfica de pérdidas, mismos que tienen relación con el resultado de la investigación y los datos técnicos que maneja la Empresa Eléctrica Ambato, con la finalidad de conseguir una factibilidad positiva para la ejecución del aplicativo.

4.1. Sistema Eléctrico de la EEASA

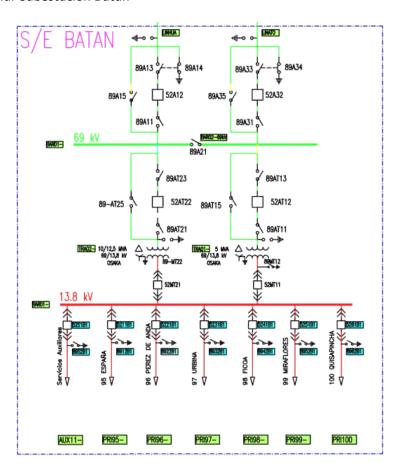
La empresa distribuidora EEASA por su trayectoria en el sector eléctrico cuenta con 19 subestaciones a su cargo al año 2020 con una potencia instalada de 286MVA, mismas que contienen entre 3 a 12 alimentadores.


Posee su longitud de línea en bajo voltaje es de 7876 km, un total de transformadores de distribución de16290 y un total de luminarias de 129546.

A continuación, se presenta el diagrama unifilar a nivel de la empresa eléctrica

Ambato regional centro norte S.A. EEASA. ANEXO 1

Figura 10


Diagrama Unifilar Empresa Eléctrica Ambato Regional Centro Norte S.A.

4.2. Selección de la muestra

Considerando la gran cantidad de subestaciones existentes dentro del sistema eléctrico de la empresa, se procede a tomar como referencia la Subestación Batán con el fin de lograr un análisis más preciso en comparación al resto, debido que la Subestación se encarga de energizar el casco central de la ciudad de Ambato, además hay que considerar que es la subestación que más cambios a sufrido en cuanto a la configuración de sus alimentadores, puesto que en su gran mayoría ha existido cambios de red aérea a red subterránea y se han desprendido sectores que se encontraban considerados dentro de la misma, al igual que se modificado puntos específicos de la red por cambio en equipos que ya cumplieron con su vida útil, todo esto provocando cambios significativos en lo que compete a la tendencia de comportamiento en los últimos años. Figura 11.

Figura 11Diagrama Unifilar Subestación Batán

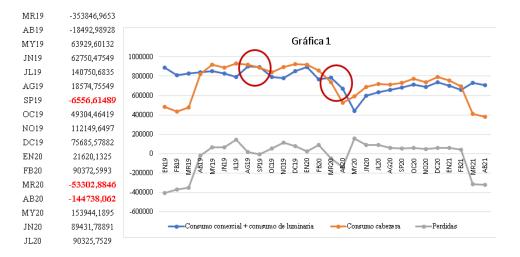
4.2.1. Subestación Batán

Es una subestación que cuenta actualmente con 6 alimentadores, la cual se encuentra ubicada en FICOA sector el sueño con una capacidad de 5/6,25 MVA, maneja un voltaje de 69/13,8 kV, tiene asociada una línea de subtransmisión de 2,3 km a doble circuito.

Esta subestación entro en funcionamiento en marzo del 2016 permitiendo atender la demanda actual y futura de energía eléctrica especialmente en la zona central de Ambato.

4.3. Análisis de tendencias

En este caso se presentaron ciertas novedades en la información utilizada para realizar el análisis, mismas que se deben tomar en cuenta para evitar inconvenientes y gráficas erróneas.


4.3.1. Gráficas de tendencias

Las gráficas de tendencias están enfocadas en base al consumo en la cabecera del alimentador versus el consumo total de todas las cargas, es por ello que el resultado en su mayoría debe ser considerado siempre mayor el consumo de cabecera puesto que el medidor contabiliza todo lo que consume el alimentador a partir de la salida. En caso de existir anomalías en las gráficas se debe recurrir a realizar las siguientes acciones:

4.3.1.1. Retraso de consumos mensuales

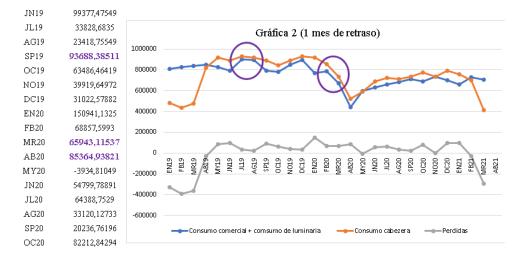

4.3.1.1.1. Gráfica 1. En esta gráfica se referencia los datos mes a mes según correspondan, en ciertos casos las gráficas se muestran no coincidentes, esto se debe a que la toma de lectura de medidores se los realiza entre los 5 primeros días de cada mes y en caso de no realizarlo dentro de este período de tiempo, los datos tomados posteriormente el SISCOM los considera para el próximo mes, dando como resultado que el consumo de cargas sea mayor al consumo de cabecera provocando pérdidas negativas como se muestra en la Figura 12.

Figura 12 *Gráfica de análisis de tendencias estándar*

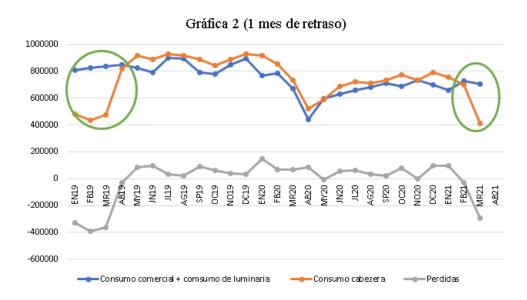
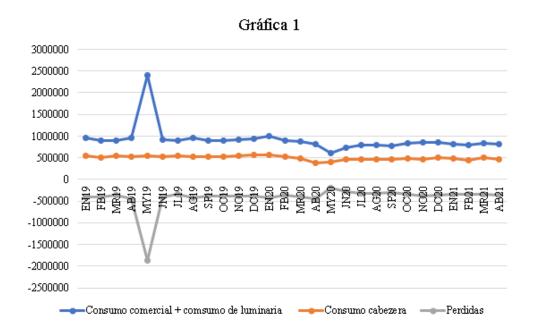

4.3.1.1.2. Graficas 2 y 3. Por lo expresado en la gráfica 1 es necesario considerar el retraso de uno o dos meses del consumo total de las cargas frente al consumo de cabecera, con el objetivo de obtener la mayor cantidad de coincidencias y de esta manera evitar que existan la menor cantidad de valores negativos en las pérdidas totales. Ver Figura 13.

Figura 13Gráfica de análisis de tendencia con un mes de retraso

A pesar de lo realizado anteriormente, de existir gran cantidad de pérdidas negativas se determinó que dicho factor inusual se debe a que existe transferencia de energía entre barras de las diferentes subestaciones, puesto que el sistema eléctrico de la EEASA es en circuito mallado. Ver Figura 14.

Figura 14 *Transferencia de energía*

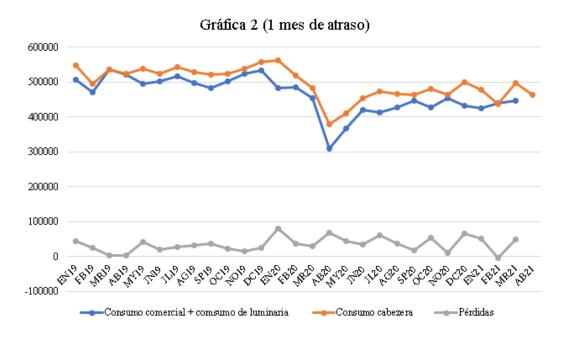


4.4. Análisis del alimentador Pérez de Anda

Una vez obtenidas las gráficas de análisis de tendencias de todos los alimentadores se observó que este alimentador tiene un consumo de cargas mucho mayor al consumo en cabecera, dándonos pérdidas negativas en todos los meses. Ver Figura 15.

Figura 15

Gráfica de análisis de tendencias estándar



Con el fin de reducir valores de pérdidas negativas se procede a realizar graficas con 1 y 2 meses de retraso, sin embargo, el resultado es el mismo por lo cual se procede a revisar la información referente al alimentador, y de esta manera se determina que este contiene medidores totalizadores, es por ello que se procede a eliminar las cuentas de los mismos, con el objetivo de conocer la tendencia real de dicho alimentador.

Una vez eliminadas las cuentas de los medidores totalizadores se realiza el respectivo atraso, para obtener la gráfica adecuada. Ver Figura 16.

Figura 16

Gráfica de análisis de tendencias

Nota. Se muestra las gráficas del Alimentador Pérez de Anda sin los medidores totalizadores para un mes de retraso

4.5. Análisis de pérdidas técnicas

Dentro de este apartado se da a conocer las diferentes especificaciones que maneja la empresa frente a esta subestación, así como también se muestran las diferentes anomalías encontradas durante el análisis puesto que la información tomada es del software ArcGIS, cuya manipulación e ingreso de datos es realizada por los diferentes colaboradores

de la empresa además de contratistas y fiscalizadores, por lo que se puede afirmar que la información del sistema ArcGIS no se encuentra del todo correcta frente a la realidad.

4.5.1. Tipo de Red

La empresa eléctrica Ambato maneja 3 tipos de configuración de redes, entre monofásicas, bifásicas y trifásicas, para el estudio de pérdidas que se realiza se toma en cuenta las redes monofásicas y trifásicas por lo cual las redes bifásicas deben ser utilizadas como trifásicas.

4.5.2. Niveles de voltaje

En cuanto a niveles de voltaje para los alimentadores de la subestación Batán, la empresa distribuidora maneja 13.8 kV en MT y 240/220 V en BT, cabe señalar que en algunos tramos el voltaje en BT puede variar hasta 208 V, además se considera un factor de potencia de 0.95.

4.5.3. Conductores

En cuanto a valores de conductores se considera calibres mayores a 2 AWG para redes aéreas y calibres mayores a 1/0 para redes subterráneas, en cuanto a alumbrado público la empresa utiliza calibres de 6 y 8 AWG, sin importar el tipo de chaqueta que estos poseen, finalmente las bajantes son despreciables puesto que por la longitud mínima que tienen se conoce que poseen pérdidas insignificantes.

Dentro de la información recabada se encontró calibres de conductores que no son utilizados para el análisis por lo cual fueron descartados, por lo cual se realizó un estudio minucioso de los calibres que no deben ser utilizados en cada uno de los alimentadores, los cuales se muestran a continuación:

Alimentador España

Tabla 22 *Tipos de conductores descartados*

Circuito Aéreo		
Monofásico	Bifásico	Trifásico
ASC.4	ASC.4	ASC.4
ASC.6	ASC.6	CON.Cu.2X14
CON.Cu.2X10	MUL.AL.2X4	MUL.AL.2X4
CON.Cu.2X12	MUL.AL.3X4	MUL.AL.4X4
MUL.AL.2X6	TW.Cu.12	-
MUL.AL.3X4	-	-
TW.Cu.12	-	-
	Circuito Subterráneo)
Monofásico	-	Bifásico
TTU.Cu.12	-	TTU.Cu.12
TTU.Cu.4	-	TTU.Cu.4
TTU.Cu.8	-	TW.Cu.12
TW.Cu.12	-	

Alimentador Pérez de Anda

Tabla 23 *Tipos de conductores descartados*

Circuito Subterráneo		
Monofásico Bifásico		
TTU.Cu.8	TTU.Cu.8	
-	TTU.Cu.6	
-	CON.Cu.2X10	

Alimentador Urbina

Tabla 24 *Tipos de conductores descartados*

Circuito Aéreo		
Bifásico		
TTU.Cu.6		
TTU.Cu.10		
TW.Cu.14		
TTU.Cu.8		

Alimentador Ficoa

Tabla 25 *Tipos de conductores descartados*

	Circuito Aéreo	
Monofásico	Bifásico	Trifásico
ACSR.4	ACSR.4	ACSR.4
ACSR.6	MUL.AL.3X4	MUL.AL.2X4
ASC.6	-	MUL.AL.2X6
MUL.AL.2X4	-	MUL.AL.3X4
MUL.AL.2X6	-	MUL.AL.4X4
MUL.AL.3X4	-	TW.Cu.10
MUL.AL.3X6	-	-
TW.Cu.10	-	-
TW.Cu.14	-	-
TW.Cu.8	-	-
	Circuito Subterráneo	
Monofásico	Bifásico	Trifásico
TTU.AL.6	THHN.Cu.12	TTU.AL.6
TTU.Cu.4	TTU.Cu.8	-
TTU.Cu.6	TTU.AL.6	-
TTU.Cu.8	TTU.Cu.6	-

Alimentador Miraflores

Tabla 26 *Tipos de conductores descartados*

	Circuito Aéreo	
Monofásico	Bifásico	Trifásico
MUL.AL.2X4	ACSR.4	MUL.AL.2X4
CON.AL.2X4(6)	CON.AL.3X6	MUL.AL.3X4
ACSR.4	CON.Cu.3X6	MUL.AL.4X4
TW Cu.10	MUL.AL.2X4	-
	Circuito Aéreo	
Monofásico	Bifásico	Trifásico
	MUL.AL.3X4	
	MUL.AL.3X6	
	TW.Cu.8	
С	ircuito Subterráneo	
	Trifásico	
	TTU.Cu.6	

Alimentador Quisapincha

Tabla 27 *Tipos de conductores descartados*

Circuito Aéreo		
Monofásico	Trifásico	
ACSR.4	MUL.AL.2X4	
ASC.4	-	
ASC.6	-	
CON.AL.2X4(6)	-	
MUL.AL.2X4	-	
MUL.AL.2X6	-	
MUL.AL.3X4	-	
MUL.AL.3X6	-	

Circuito Subterráneo	
Trifásico	
TTU.Cu.12	

En cuanto a la chaqueta de los conductores en los datos de tramos subterráneos se localizó el cable THHN de cobre, mismo que la empresa no emplea para este tipo de tramos por lo cual no fue considerado para los cálculos.

4.5.4. Transformadores

En cuanto a la potencia en los transformadores se emplea rangos de valores de acuerdo a la red, para redes aéreas la empresa maneja valores entre 15 y 100 kVA y para redes subterráneas se emplean transformadores con una potencia entre 150 kVA y 600 kVA para cubrir demanda, siempre y cuando el equipo se encuentre en cabina o bajo una malla de protección.

Una vez levantada la información de transformadores se encuentra que en redes aéreas existe potencias mayores a 100 kVA por lo que no se considera dichas potencias para el análisis ya que este transformador puede ser un Padmounted o sumergible. Debido a que existe una gran cantidad de alimentadores que están fuera del rango establecido se realiza un estudio minucioso de las potencias de los transformadores que no deben ser considerados para el análisis por cada alimentador como se describe a continuación:

Alimentador España

Tabla 28Potencias descartadas en el análisis

Circuito Aéreo	
Potencia # Transformadores	
160	1

Circuito Subterráneo					
Potencia	# Transformadores				
75	1				
125	1				

Alimentador Pérez de Anda

Tabla 29

Potencias descartadas en el análisis

Circuito Subterráneo Trifásico				
50	2			
75	3			
100	1			
112,5	1			

Alimentador Urbina

Tabla 30

Potencias descartadas en el análisis

Circuito Subterráneo				
Trifásico				
Potencia	# Transformadores			
50	1			
75	1			
112,5	2			

Alimentador Ficoa

Tabla 31Potencias descartadas en el análisis

	Circuito	Subterráneo	
	Monofásico		Trifásico
Potencia	# Transformadores	Potencia	# Transformadores
15	1	50	4
25	1	100	1
37,5	1	-	-
	Circuito	Subterráneo	
	Monofásico		Trifásico
Potencia	# Transformadores	Potencia	# Transformadores
50	2	-	-

Alimentador Miraflores

Tabla 32Potencias descartadas en el análisis

	Circuito Aéreo				
Trifásico					
Potencia # Transformadores					
125	1				
150	1				
300	1				
Circ	cuito Subterráneo				
	Trifásico				
Potencia	# Transformadores				
45	1				
50	3				
75	2				
100	1				

Alimentador Quisapincha

Tabla 33Potencias descartadas en el análisis

	Monofásico	
Potencia	# Transformadores	
375	1	

A pesar que no es correcto instalar transformadores menores a 150kVA en redes subterráneas, para este caso fueron considerados por motivo que están empleados como respaldo para alumbrado público.

4.5.5. Circuitos

En este caso la empresa establece que deben ser 2 circuitos salientes desde el transformador para redes aéreas y 2 o 4 circuitos salientes desde el transformador dependiendo la potencia del mismo para redes subterráneas.

CAPÍTULO V

5. Propuesta

5.1. Tema de la propuesta

Análisis de tendencias de pérdidas eléctricas en los alimentadores de la subestación Batán de la Empresa Eléctrica Ambato Regional Centro Norte S.A. EEASA mediante la utilización de una hoja de cálculo en el período 2019-2020.

5.2. Datos informativos

Institución

Empresa Eléctrica Ambato Regional Centro Norte S.A.

Dirección

Provincia de Tungurahua, Ciudad Ambato

Tipo de empresa

Sociedad Anónima

Tamaño de la empresa

Grande

Beneficiario

Empresa Eléctrica Ambato Regional Centro Norte S.A., Departamento de pérdidas eléctricas

5.2.1. Objetivo General

Realizar un análisis de tendencias y curva de pérdidas eléctricas de cada uno de los alimentadores de la subestación Batán perteneciente a la Empresa Eléctrica Ambato Regional Centro Norte S.A. EEASA mediante una hoja de cálculo.

5.2.2. Objetivos Específicos

- Obtener la información del sistema ArcGIS y del sistema comercial de cada uno de los alimentadores de la subestación Batán.
- Verificar los datos de código de clientes y coordenadas georreferenciales entre sistemas existentes en la empresa.

- Actualizar los datos en el sistema de georreferenciación ArcGIS.
- Calcular y analizar las pérdidas eléctricas de los alimentadores mediante las curvas de comportamiento de los mismos.
- Desarrollar el aplicativo de Macros mediante una hoja de cálculo Excel.
- Proponer una solución a las pérdidas obtenidas en los perfiles de tendencia.

5.3. Justificación de la propuesta

En el presente proyecto se propone realizar un análisis de tendencias de comportamiento y curva de pérdidas eléctricas de cada uno de los alimentadores pertenecientes a la subestación Batán de la Empresa Distribuidora EEASA empleando un aplicativo de Macros mediante una hoja de cálculo en Excel, con el fin de detectar comportamientos inusuales de consumo que dan lugar a pérdidas eléctricas a la empresa, es por ello que se requiere mitigar dichas pérdidas con soluciones óptimas percibidas del análisis realizado con anterioridad.

5.4. Diseño de la propuesta

Para el desarrollo de la propuesta se debe realizar los siguientes pasos con la finalidad de diseñar el aplicativo Macros que nos arroje los perfiles de comportamiento y curvas de pérdidas eléctricas de los alimentadores de la subestación Batán.

- Recopilación de información
- Procesamiento de datos mediante herramientas informáticas
- Cálculos para pérdidas eléctricas.
- Diseño del aplicativo mediante Macros.
- Uso del aplicativo.

5.4.1. Recopilación de información

Los datos necesarios para el desarrollo del análisis de tendencias de consumo y de pérdidas eléctricas fueron recolectados por los estudiantes y por el Departamento Comercial de la Empresa Eléctrica Ambato Regional Centro Norte S.A., mediante la utilización de los siguientes sistemas:

- **5.4.1.1. Sistema ArcGIS**. La información de este sistema fue tomada por los estudiantes mediante el manejo del software de georreferenciación ArcGIS, mismo que es utilizado por la empresa distribuidora para el manejo y adquisición de ciertos datos técnicos correspondientes al sistema eléctrico de medio y bajo voltaje, para la adquisición de estos datos se procede a seguir los siguientes pasos:
 - Ingreso al sistema
 - Activar y desactivar capas a estudiar
 - Seleccionar el alimentador correspondiente
 - Extraer información

Dentro de este sistema se logró adquirir los siguientes datos:

5.4.1.1.1. Cuentas. En los datos extraídos se observa que varios códigos de clientes están asociados a un mismo valor de coordenadas en una sola columna.

Figura 17

Código de cliente y coordenadas geográficas

1	U	V	W	Х	Υ	Z	AA	AB	AC
1	ESTRUCTU_	PARROQUIA.	MISUBTIPO	CODIGOCLIE	RUTALECTUR	COORD_X	COORD_Y	HIPERVINCU	MEDIDOR
2	0	180150	0	68649	2 19 2	762458,449	9861301,92		
3	0	180150	0	7664	2 20 1	762781,016	9861708,23		
4	0	180150	0	7824	2 21 1	763496,518	9862378,88		
5	0	180150	0	7203	2 19 1	763311,457	9862344,33		4442009
6	0	180150	0	7187;7186;7185	2 19 1	763393,543	9862327,03		
7	0	180150	0	7816	2 21 1	763417,595	9862379,83		
8	0	180150	0	7813	2 21 1	763413,312	9862387		
9	0	180150	0	7823;7821;7820	2 21 1	763485,886	9862394,27		08;709109;70
10	0	180150	0	7614;69369	2 20 1	762570,356	9861340,16		
11	0	180150	0	88086;147070;91359	2 20 1	762403,26	9861203,55		15;694216;69
12	0	180150	0	7621;91462	2 20 1	762447,725	9861244,23		96958;69526
13	0	180150	0	95285;96668;230746	2 20 1	762392,583	9861195,51		11;689898;68
14	0	180150	0	93046;7681;93063;188623	2 20 1	762968,454	9861759,29		08495;71986
15	0	180150	0	200089	2 19 1	763158,103	9862163,66		
16	0	180150	0	217895	2 20 1	763032,549	9861882,62		
17	0	180150	0	209729;209728	2 20 1	763016,859	9861869,97		
18	0	180150	0	134422;134421	2 20 1	763035,154	9861820,14		19871;71986
19	0	180150	Δ	196852:7340:7338:7339:124571	2 19 1	762638 712	9861577 67		82-213985-70
	·	Ficoa Miraflo	ores Quisap	pincha L.España L.ficoa L.Pe	erez L.urbina	L.miraflores	L (+)	1	

5.4.1.1.2. Luminarias. La información correspondiente a luminarias por cada alimentador consta de varios ítems como fecha de modificación, código de luminarias, código de estructura, fecha de energización, provincia, cantón, etc. mismos que son innecesarios para el estudio Figura 18.

Figura 18Datos de potencia y fecha de creación

4	Α	В	С	D	Е	F	G	Н	
1	OBJECTID *	Usu Cre	F Cre Sis	F Mod Sis	POTENCIA	Usu Mod	Proyecto Const	F Construccion	FECHAENERGIZACION
2	5143	1803007937	24/03/2009 12:48	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
3	243362	1802901635	09/08/2002 10:00	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
4	267187	1803007937	24/03/2009 12:47	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
5	244473	1803007937	24/03/2009 12:50	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
6	72994	ljacome	27/02/2014	04/07/2019	250	sdiaz	LJACOME	27/02/2014	27/02/2014
7	6451	1804227385	13/08/2009 10:22	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
8	243372	1803007937	24/03/2009 12:48	02/04/2019	70	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
9	245209	1804227385	13/08/2009 10:27	28/05/2019	100	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
10	547313	diselectri	14/08/2017	04/07/2019	150	sdiaz	OM-059-2017	10/08/2017	<null></null>
11	246142	1804227385	13/08/2009 10:23	03/07/2019	100	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
12	4811	1803007937	24/03/2009 12:48	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
13	267188	1803007937	24/03/2009 12:47	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
14	241679	1802901635	23/09/2003 11:47	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
15	241678	1804227385	13/08/2009 10:23	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
16	289835	1803007937	24/03/2009 12:48	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
17	4449	1803007937	24/03/2009 12:50	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
18	243135	1803007937	24/03/2009 12:48	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
19	5146		24/03/2009 12:48	03/07/2019	150	sdiaz	MIGRACI	30/01/2013 14:32	30/01/2013 14:32
	· → l	España L.f	icoa L.Perez	urbina L.r	niraflores	L.quisapincha	+	:	4

5.4.1.1.3. Pérdidas Técnicas. La información se obtuvo a nivel de bajo voltaje tanto para redes áreas como para redes subterráneas, los datos a tomar en cuenta para el análisis son de Transformadores, Cables y Medidores. Figura 19.

Figura 19Datos de bajo voltaje en redes aéreas

4	М	N	0	Р	Q	R	S	T
1	F Construccion	FINANCIAMIENTO	Codigo Empresa	SUBTIPO	Fase Conexion	VOLTAJE	Longitud Sistema	o Conductor B
2	29/01/2013 9:04	<null></null>	EEASA	Tramo BTA Trifasico	ABC	240 V	40,091173	MUL.A1.4x4
3	<null></null>	<null></null>	EEASA	Tramo BTA Trifasico	ABC	240 V	4,494018	MUL.A1.4x2
4	<null></null>	<null></null>	EEASA	Tramo BTA Trifasico	ABC	240 V	11,199254	MUL.A1.4x2
5	24/10/2019	<null></null>	EEASA	Bajante BTA Bifasica	AB	240 V	0,999991	THHN.Cu.14
6	<null></null>	<null></null>	EEASA	Acometida BTA Bifasica	AB	240 V	35,874809	TW.A1.2
7	30/01/2017 12:32	<null></null>	EEASA	Acometida BTA Trifasica	ABC	240 V	25,617237	CON.A1.4x4
8	<null></null>	16-107-CTOBAR	EEASA	Acometida BTA Bifasica	AB	240 V	9,634208	CON.A1.3x4
9	<null></null>	<null></null>	EEASA	Acometida BTA Bifasica	AB	240 V	18,690903	CON.A1.3x4
10	<null></null>	<null></null>	EEASA	Bajante BTA Bifasica	AB	240 V	5,989678	THHN.Cu.14
11	<null></null>	<null></null>	EEASA	Bajante BTA Bifasica	AB	240 V	1,272223	TW.Cu.14
12	<null></null>	17-295-CTOBAR	EEASA	Acometida BTA Bifasica	AB	240 V	21,458139	CON.A1.3x4
13	<null></null>	<null></null>	EEASA	Bajante BTA Bifasica	AC	220 V	0,58071	THHN.Cu.14
14	<null></null>	17-295-CTOBAR	EEASA	Acometida BTA Trifasica	ABC	220 V	7,406286	CON.A1.4x4
15	<null></null>	<null></null>	EEASA	Acometida BTA Bifasica	AB	240 V	10,510562	TW.A1.2
16	<null></null>	<null></null>	EEASA	Acometida BTA Bifasica	AB	240 V	11,659802	TW.A1.2
17	<null></null>	<null></null>	EEASA	Acometida BTA Bifasica	AB	240 V	11,748887	TW.A1.2
18	<null></null>	<null></null>	EEASA	Acometida BTA Bifasica	AB	240 V	14,492965	TW.A1.2
19	03/03/2015 16:14	<nui1></nui1>	FEASA	Acometida BTA Bifasica	AR	240 V	9 494636	CON A13x4
	· · · · · T.MIR.	AFLORES T.QUISAPING	CHA BTA_ESPAÑ/	BTA_PEREZDEANDA B	TA_URBINA BT	A_FIC (+)	: 4	

5.4.1.2. Sistema Comercial. Esta información fue proporcionada por los diferentes departamentos de la Empresa Eléctrica Ambato, de donde se obtuvo los siguientes datos:

- Cuentas
- Consumo de cabecera

Cabe mencionar que los datos anteriormente mencionados fueron facilitados en una hoja de cálculo Excel, mismos que se encuentran de manera abundante y desordenada además de mostrar datos que no deben ser considerados para el análisis, a continuación, se detalla cómo se visualizan los datos para cada uno de los casos expuestos:

5.4.1.2.1. Cuentas. La información de cuentas y consumos de clientes en primera instancia se la encuentra de manera incompleta a la solicitada por los estudiantes desarrolladores, por lo cual se procede a solicitar nuevamente los datos con la finalidad de obtener la información de manera completa, cabe mencionar que los datos proporcionados

se encuentran en forma global a nivel de todos los alimentadores de la subestación Batán en un solo archivo como se muestra en la Figura 20.

Figura 20

Datos de código de cliente y coordenadas geográficas

-4	В	C	D	E	F	G	Н	1	J	K	L
	aac_codig		mame_direction	_numero_n		proyecto	mame_x	mame_y	consumo01	consumo02	consumo03
2	220833	EZ WASHING	MEDO 02 12 Y MC	442533	RESIDENCIAL	ALIMENTADOR URBINA	764097,5378	9862295,015	92	90	76
3	104985	RADOSAMU	OLMEDO 04 38 Y	448809	RESIDENCIAL	ALIMENTADOR URBINA		9862162,709	65	68	67
4	209523	RADOSAMU	OLMEDO 04 38 Y	256835	TERCIAL SIN DEMAI	ALIMENTADOR URBINA	763990,5794	9862162,709	50	39	38
5	77	RADOSAMU	OLMEDO 04 38 Y	350268	TERCIAL SIN DEMAI	ALIMENTADOR URBINA	763990,5794	9862162,709	27	39	53
6	92	LANESSEGUL	MEDO Y J MONTI	213644	TERCIAL SIN DEMAI	ALIMENTADOR URBINA	763939,7839	9862132,026	94	96	95
7			SE J. OLMEDO 06	452130	RESIDENCIAL	ALIMENTADOR PEREZ DE ANDA	763939,7839		81	107	84
8	113	IILLO LEONII	.MEDO 06 66 Y GU	213653	TERCIAL SIN DEMAI	ALIMENTADOR PEREZ DE ANDA	763899,4193	9862121,463	66	88	84
9			.MEDO 06 65 Y GU	685472	RESIDENCIAL	ALIMENTADOR URBINA	763899,4193		14	0	1
10		JILLO LEONII	EDO 06-66 GUAYA	349467	TERCIAL SIN DEMAI	ALIMENTADOR URBINA	763899,4193		79	72	70
11	114	CONTRERASI	ONTE Y JOSE J OL	442500	RESIDENCIAL	ALIMENTADOR URBINA	763897	9862125	75	80	38
12	52812	ALERO SONIA	EA 11 17 Y ELOY A	699291	RESIDENCIAL	ALIMENTADOR PEREZ DE ANDA	764175,816		0	0	4
13			EA 11 17 Y ELOY A			ALIMENTADOR PEREZ DE ANDA	764175,816	9862897,243	0	0	1
14			EA 11 17 Y ELOY A		RESIDENCIAL	ALIMENTADOR PEREZ DE ANDA	764175,816	9862897,243	93	94	127
15			QUEA 18 35 Y AYL		DUSTRIAL ARTESAN	ALIMENTADOR FICOA		9863150,573	17	13	10
16			EA 11 12 Y ELOY A		RESIDENCIAL	ALIMENTADOR PEREZ DE ANDA		9862905,577	44	45	49
17			EA 11 12 Y ELOY A		RESIDENCIAL	ALIMENTADOR PEREZ DE ANDA		9862905,577	110	104	107
18			EA 11 10 Y ELOY A		RESIDENCIAL	ALIMENTADOR PEREZ DE ANDA	764166,1173		36	71	65
19			REANA 01 02 Y SU	459706	RESIDENCIAL	ALIMENTADOR URBINA	763514,4443		405	334	412
20			UEA Y VARGAS T(FICIAL SIN DEMANI	ALIMENTADOR QUISAPINCHA	755065,3798				
21					ICIAL CON DEMANI		763859,4328		4064	4007	3481
22			UAN L. MERA Y L			ALIMENTADOR PEREZ DE ANDA	763900	9862731	2507	2409	2042
23			R 06 34 Y VARGAS		TERCIAL SIN DEMAI	ALIMENTADOR QUISAPINCHA	760581,7623	9862404,76	112	117	116
24			R 06 34 Y VARGAS		ENCIAL - PROGRAM	ALIMENTADOR QUISAPINCHA	760581,7623	9862404,76	32	40	24
25	2862	MPAÑA LUI	R 06 34 Y VARGAS		TERCIAL SIN DEMAI		760581,7623	9862404,76	23	27	21
26			ANDA FRANCISC		RESIDENCIAL	ALIMENTADOR MIRAFLORES	763487	9862583			
27			ANDA FRANCISC		RESIDENCIAL	ALIMENTADOR MIRAFLORES	763487	9862583			
28			ANDA Y FRANCI:		RESIDENCIAL	ALIMENTADOR MIRAFLORES	763487	9862582			
29			REZ DE ANDA 01 :		DUSTRIAL ARTESAN	ALIMENTADOR MIRAFLORES	763498	9862567	526	657	567
30	99736		REZ DE ANDA 01 2		DUSTRIAL ARTESAN	ALIMENTADOR MIRAFLORES	763498	9862567	267	308	251
31	3969		VDA 01 276 Y FRAN		RESIDENCIAL	ALIMENTADOR MIRAFLORES		9862562,005	95	95	78
32			REZ DE ANDA 01 2		RESIDENCIAL	ALIMENTADOR MIRAFLORES		9862562,005	10	5	7
33			REZ DE ANDA 16	364028	RESIDENCIAL	ALIMENTADOR MIRAFLORES	763475,2389	9862524,158	490	490	227
34	3959	LGO MARCO	RUIZ 11 45 Y JUA1	748275	RESIDENCIAL	ALIMENTADOR PEREZ DE ANDA	763649,3153	9862934,367	172	176	138
4	()-	datos	alimentadores_2	7may202	1 +				: [◀		

5.4.1.2.2. Consumo de cabecera. Los datos correspondientes al consumo de cabecera que fueron facilitados por el departamento comercial, se encuentran en subcarpetas que contienen los datos del medidor de cabecera por cada alimentador correspondiente a la subestación en estudio por cada mes como se muestra a continuación. Figura 21.

Figura 21Datos de consumo de cabecera

Cabe recalcar que los datos en la cabecera del alimentador son tomados cada 15 minutos con el fin de obtener valores más precisos, estos son arrojados en una hoja de cálculo Excel a una sola columna sin su respectiva separación, esta información fue tomada en cuenta desde enero 2019 hasta abril 2021. Figura 22.

Figura 22Datos de consumo de cabecera por mes

Date/Time,kWh del int,kVARh del int,kWh rec int,kVARh rec int,l a,l b,l c,VIn a,VIn b,VIn c,kW a,kW b,kW c,kVAR a,kVAR b,kVAR c 2 01/01/2019 00:00:00,351.4131774902344,64.98531341552734,0.0,0.0,57.01510238647461,55.6552848815918,61.75372314453 3 01/01/2019 00:15:00,345.4385986328125,64.61024475097656,0.0,0.0,57.94905090332031,56.186031341552734,62.755859375 4 01/01/2019 00:30:00,346.1324462890625,64.8091049194336,0.0,0.0,55.85581970214844,54.673336029052734,62.0093955993 01/01/2019 00:45:00,340.7845458984375,63.987464904785156,0.0,0.0,56.14438247680664,53.58074951171875,61.712287902 01/01/2019 01:00:00,334.3880310058594,62.88704299926758,0.0,0.0,54.37762451171875,52.741817474365234,59.97354888 01/01/2019 01:15:00,322.9857482910156,61.997074127197266,0.0,0.0,52.84136199951172,50.94153594970703,57.212093353 10 01/01/2019 02:00:00,300.724365234375,64.97157287597656,0.0,0.0,49.526123046875,48.19062805175781,53.0407905578613 11 01/01/2019 02:15:00,289.3479919433594,62.59058380126953,0.0,0.0,47.525814056396484,46.47249221801758,50.537452697 12 01/01/2019 02:30:00,285.05712890625,64.73474884033203,0.0,0.0,46.504703521728516,46.363014221191406,50.909854888 13 01/01/2019 02:45:00,277.5523681640625,64.94508361816406,0.0,0.0,44.66055679321289,45.07697296142578,48.3825340270 14 01/01/2019 03:00:00,269.0320129394531,64.85413360595703,0.0,0.0,44.36637496948242,44.04071807861328,48.2425231933 15 01/01/2019 03:15:00,264.5552673339844,66.72662353515625,0.0,0.0,43.92491149902344,43.21854782104492,47.8725242614 16 01/01/2019 03:30:00,259.37322998046875,66.03950500488281,0.0,0.0,42.02442932128906,43.82176208496094,46.073211669 17 01/01/2019 03:45:00,253.562255859375,65.10694885253906,0.0,0.0,40.07509231567383,41.572776794433594,45.1936874389 18 01/01/2019 04:00:00,248.74639892578125,66.42832946777344,0.0,0.0,40.35887908935547,41.598907470703125,44.6711463€ 19 01/01/2019 04:15:00,246.0616455078125,66.99195098876953,0.0,0.0,41.145355224609375,41.5352783203125,45.1631202697 20 01/01/2019 04:30:00,244.40655517578125,67.31451416015625,0.0,0.0,40.26961898803711,41.0823860168457,44.8859825134 21 01/01/2019 04:45:00,242.8290252685547,66.97925567626953,0.0,0.0,39.99392318725586,41.06878662109375,43.9924926757 BATES0119

5.4.1. Procesamiento de datos mediante herramientas informáticas

Para llevar a cabo el procesamiento de información antes extraída, así como también la constatación de la misma, se utiliza las diferentes herramientas informáticas de la siguiente manera:

- **5.4.1.1.** Hoja de Cálculo EXCEL. En este software se procede a separar y ordenar la información acorde a las necesidades que ameriten los estudiantes para el desarrollo del análisis de tendencia y curva de pérdidas, a continuación, se detalla cada proceso para la respectiva información extraída de ambos sistemas.
- **5.4.1.1.2. Sistema ArcGIS.** En este apartado se especifica el procedimiento para ordenar la información mediante la ayuda de una Hoja de cálculo.

Código de clientes

Una vez extraída la información, los datos que se van a utilizar son los códigos de clientes con su respectiva coordenada "X" y "Y", para procesar dicha información se debe separar uno a uno los códigos de cliente, obteniendo los datos de la siguiente manera:

Tabla 34

Datos de código de clientes y coordenadas "X" y "Y"

	SISTEMA ARCGIS	
CODIGO CLIENTE	COORDENADA X	COORDENADA Y
40	763676,4738	9860190,318
130	763676,4738	9860190,318
337	763624,621	9860278,474
827	763675,3878	9860288,346
1208	763675,3878	9860288,346
1915	763649,3268	9860323,195
2104	763649,3268	9860323,195
2155	763756,8203	9860949,495
	SISTEMA ARCGIS	
CODIGO CLIENTE	COORDENADA X	COORDENADA Y
2437	763756,8203	9860949,495
2505	763498,1175	9862233,89
2506	763498,1175	9862233,89
2507	763498,1175	9862233,89
2510	763498,1175	9862233,89
2511	763485,0021	9862212,2
2512	763460,1891	9862219,285
2513	763460,1891	9862219,285

Después se procede a solicitar al SISCOM los códigos de cliente con sus respectivas coordenadas, mismas que constan dentro de su sistema, con la finalidad de contrarrestar los datos con la información del sistema ArcGIS.

Luminarias

Los valores que van a ser considerados para el análisis de tendencias son únicamente las columnas de Fecha de creación y potencia.

Tabla 35Datos de potencia de luminarias

F Cre Sis	POTENCIA
23/04/2010 11:16	100
19/11/2015	100
23/04/2010 11:16	150
07/09/2008 13:39	70
07/09/2008 13:02	70
16/04/2012 16:26	100
23/04/2014	100
29/04/2014	150
09/09/2008 20:06	70
F Cre Sis	POTENCIA
16/12/2014	100
29/04/2014	100
28/11/2019	100
20/03/2014	100
30/12/2011 11:57	70
27/09/2018	100

Los valores seleccionados anteriormente se proceden a ordenarlos de acuerdo a la fecha de creación. Tabla 36.

Tabla 36Datos de potencia de luminarias ascendentemente

F Cre Sis	POTENCIA
07/09/2008 13:02	70
07/09/2008 13:39	70
09/09/2008 20:06	70
23/04/2010 11:16	100
23/04/2010 11:16	150
30/12/2011 11:57	70
16/04/2012 16:26	100
20/03/2014	100
23/04/2014	100
29/04/2014	150
29/04/2014	100
16/12/2014	100
19/11/2015	100
27/09/2018	100
28/11/2019	100

Una vez que los datos son ordenados por fecha de creación y de manera correcta se continúa a contabilizar el número de luminarias existentes en cada alimentador de acuerdo a su potencia. Tabla 37

Tabla 37Cantidad de luminarias

POTENCIA [W]	Cantidad	días	
250	5	28	
150	20	30	
240	1	30	
250	10	30	
70	8	31	

Cantidad	días	
25	31	
150	31	
31	31	
	25 150	

Pérdidas técnicas

Para el análisis y gráfica de pérdidas se tomó en cuenta los valores correspondientes a potencia, voltaje, fechas de creación, longitud del sistema, cantidad de transformadores, tipo de conexión, tipo de conductores, entre otros.

Para los respectivos cálculos se debe clasificar la información de la siguiente manera:

Tramos de Conductores en Líneas de Bajo voltaje

Hay que tomar en cuenta que la información debe ser seleccionada en primera instancia por el por tipo de conexión, y esta a su vez debe ser ordenada por tipo de conductor y finalmente por el tipo de configuración.

Tabla 38Datos de conductores en bajo voltaje

SUBTIPO	VOLTAJE	Longitud Sistema [m]	Conductor Fase	Configuración
Tramo BTA Monofásico	120 V	44,538213	ASC.2	1F2C
Tramo BTA Monofásico	120 V	31,495481	ASC.2	1F2C
Tramo BTA Monofásico	240 V	35,580004	PRE.Al.2x50(50)	2F3C
Tramo BTA Monofásico	240 V	0,879236	PRE.AI.2x50(50)	2F3C
Tramo BTA Monofásico	240 V	38,801019	PRE.Al.2x50(50)	2F3C
Tramo BTA Monofásico	240 V	6,504019	PRE.AI.2x50(50)	2F3C
Tramo BTA Bifásico	240 V	39,6593	ACSR.2	2F3C
Tramo BTA Bifásico	240 V	25,631535	ACSR.2	2F3C
Tramo BTA Bifásico	240 V	29,142059	ACSR.2	2F3C
Tramo BTA Bifásico	240 V	40,774257	MUL.Al.3x2	2F3C
Tramo BTA Bifásico	240 V	36,258902	MUL.Al.3x2	2F3C

SUBTIPO	VOLTAJE	Longitud Sistema [m]	Conductor Fase	Configuración
Tramo BTA Bifásico	240 V	28,072798	MUL.Al.3x2	2F3C
Tramo BTA Trifásico	240 V	19,461783	ACSR.1/0	3F4C
Tramo BTA Trifásico	240 V	46,387949	ACSR.1/0	3F4C
Tramo BTA Trifásico	240 V	18,456387	ACSR.1/0	3F4C
Tramo BTA Trifásico	240 V	23,571216	ACSR.1/0	3F4C
Tramo BTA Trifásico	240 V	28,441821	MUL.Al.4x1/0	3F4C
Tramo BTA Trifásico	240 V	33,321249	MUL.Al.4x1/0	3F4C
Tramo BTA Trifásico	240 V	29,443307	MUL.Al.4x1/0	3F4C

Además, se debe considerar que la empresa eléctrica emplea calibres a partir de 2

AWG para redes, así como también se debe considerar que solo maneja configuraciones de red monofásicas y trifásicas para el cálculo de pérdidas técnicas.

Transformadores

Los datos recopilados deben ordenarse de acuerdo a la potencia y tipo de conexión.

Tabla 39Datos de transformadores ordenados

Subtipo	Potencia [kVA]	Propiedad	Voltaje Secundario
Transformador Monofásico en Poste	10	EEASA	240 V
Transformador Monofásico en Poste	15	EEASA	240 V
Transformador Monofásico en Poste	15	EEASA	240 V
Transformador Monofásico en Poste	15	EEASA	240 V
Transformador Monofásico en Poste	25	EEASA	240 V
Transformador Monofásico en Poste	25	EEASA	240 V
Transformador Trifásico en Poste	15	EEASA	220 V
Transformador Trifásico en Poste	15	EEASA	220 V
Transformador Trifásico en Poste	30	EEASA	220 V

Subtipo	Potencia [kVA]	Propiedad	Voltaje Secundario
Banco de 3 Transformadores en Cabina	45	EEASA	208 V

5.4.1.1.3. Sistema Comercial. Para este apartado se debe tomar en cuenta que los códigos de clientes tanto del sistema comercial como del sistema ArcGIS coincidan.

Consumo comercial de clientes

Al determinar los códigos de clientes a utilizar se debe relacionar cada usuario con sus respectivos consumos, para este caso se obtuvo un total de 28 meses, con la finalidad de obtener valores precisos y confiables.

Para realizar el análisis correspondiente se procede a sumar los valores de cada consumo obteniendo un valor total por mes.

Tabla 40Datos de consumo comercial por mes

Mes	Consumo comercial [kWh/mes]
EN19	372142
FB19	380809
MR19	329143
AB19	386668
MY19	366123
JN19	376547
JL19	371414
AG19	406995
SP19	375544
OC19	414556
NO19	382319
DC19	387200
EN20	360277
FB20	360917

Consumo comercial [kWh/mes]
382536
345186
333086
364492
369331
428642
403044
411398
403185
414356
411674
387853
438228
376166

Consumo de cabecera

La información tomada en la cabecera del alimentador debe ser una por cada mes, es por ello que se procede a sumar todas las lecturas para obtener un valor total.

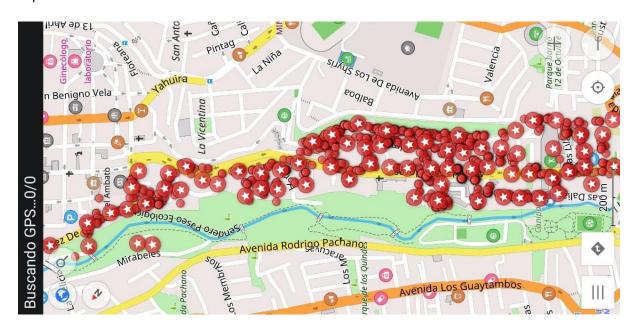
Tabla 41Datos de consumo de cabecera por mes

Mes	Consumo de cabecera [kWh/mes]
EN19	425832,8713
FB19	400881,1676
MR19	389517,3128
AB19	424244,2937
MY19	403303,2363
JN19	432575,3357
JL19	413830,6418
AG19	446528,6322
SP19	426452,6005

Mes	Consumo comercial [kWh/mes]
OC19	459605,3986
NO19	436712,0741
DC19	431584,8157
EN20	410725,3189
FB20	394048,3284
MR20	442387,94
AB20	396509,5277
MY20	402455,3041
JN20	430660,8337
JL20	423345,6639
AG20	480163,6221
SP20	439414,1451
OC20	460360,2749
NO20	440410,1799
DC20	472632,1557
EN21	465225,0488
FB21	406971,7049
MR21	494706,7349
AB21	430007,3834

5.4.1.2. OsmAnd. Esta herramienta informática de código abierto sirve para graficar los datos obtenidos de los sistemas ArcGIS y SISCOM, mismos que deben ser coincidentes. Los datos a ingresar en esta aplicación son los de código de clientes y coordenadas geométricas "X" y "Y", mismas que deben ser transformadas a coordenadas geográficas relacionadas con Latitud y Longitud, este archivo debe tener una extensión .GPX para el funcionamiento dentro de la plataforma móvil.

Figura 23


Archivo .GPX

	Α	В	С	D	E	F G	Н	1	J
1			CODIGO CLIENTE			Observacion	LONGITUD	LATITUD	
2	C:	A:	59	MIRAFLORES	C:59	A:MIRAFLORES	-78,63030859	-1,242328522	C:59,A:MIRAFLORES,
3	C:	A:	93	MIRAFLORES	C:93	A:MIRAFLORES	-78,63030859	-1,242328522	C:93,A:MIRAFLORES,
4	C:	A:	113	MIRAFLORES	C:113	A:MIRAFLORES	-78,63030859	-1,242328522	C:113,A:MIRAFLORES,
5	C:	A:	1355	MIRAFLORES	C:1355	A:MIRAFLORES	-78,63030859	-1,242328522	C:1355,A:MIRAFLORES,
6	C:	A:	1413	MIRAFLORES	C:1413	A:MIRAFLORES	-78,63021505	-1,2426498	C:1413,A:MIRAFLORES,
7	C:	A:	1501	MIRAFLORES	C:1501	A:MIRAFLORES	-78,63021505	-1,2426498	C:1501,A:MIRAFLORES,
8	C:	A:	1561	MIRAFLORES	C:1561	A:MIRAFLORES	-78,62920674	-1,238264625	C:1561,A:MIRAFLORES,
9	C:	A:	1584	MIRAFLORES	C:1584	A:MIRAFLORES	-78,63075277	-1,240703619	C:1584,A:MIRAFLORES,
10	C:	A:	1746	MIRAFLORES	C:1746	A:MIRAFLORES	-78,63075277	-1,240703619	C:1746,A:MIRAFLORES,
11	C:	A:	2029	MIRAFLORES	C:2029	A:MIRAFLORES	-78,63075277	-1,240703619	C:2029,A:MIRAFLORES,
12	C:	A:	2357	MIRAFLORES	C:2357	A:MIRAFLORES	-78,62824526	-1,241663557	C:2357,A:MIRAFLORES,
13	C:	A:	2426	MIRAFLORES	C:2426	A:MIRAFLORES	-78,62982644	-1,243139525	C:2426,A:MIRAFLORES,
14	C:	A:	2427	MIRAFLORES	C:2427	A:MIRAFLORES	-78,62993526	-1,243195379	C:2427,A:MIRAFLORES,
15	C:	A:	2428	MIRAFLORES	C:2428	A:MIRAFLORES	-78,62993526	-1,243195379	C:2428,A:MIRAFLORES,
16	C:	A:	2433	MIRAFLORES	C:2433	A:MIRAFLORES	-78,63083471	-1,240787411	C:2433,A:MIRAFLORES,
17	C:	A:	2543	MIRAFLORES	C:2543	A:MIRAFLORES	-78,63086727	-1,24324644	C:2543,A:MIRAFLORES,
18	C:	A:	2544	MIRAFLORES	C:2544	A:MIRAFLORES	-78,63086727	-1,24324644	C:2544,A:MIRAFLORES,
19	C:	A:	2545	MIRAFLORES	C:2545	A:MIRAFLORES	-78,63086727	-1,24324644	C:2545,A:MIRAFLORES,
20	C:	A:	2546	MIRAFLORES	C:2546	A:MIRAFLORES	-78,63086727	-1,24324644	C:2546,A:MIRAFLORES,

Nota. El archivo contiene valores de Latitud y Longitud de cada código de cliente

Al ingresar los datos en la app móvil con la extensión requerida, se visualiza de la siguiente manera. Figura 24.

Figura 24Representación de coordenadas en OsmAnd

5.4.2. Cálculos

A continuación, se detalla los cálculos y procedimiento utilizado para el análisis de tendencias y las gráficas de pérdidas eléctricas, para ello se emplea diferentes métodos y estrategias que faciliten el cálculo adecuado y preciso en cada elemento a estudiar, los valores que se deben obtener tienen que estar en unidades de energía, es decir KWh/mes.

5.4.2.1. Consumo de luminarias. Para obtener la demanda mensual de luminarias, es necesario transformar la potencia a consumo, tomando en cuenta un tiempo estimado de 12 horas y de 28, 30 y 31 días dependiendo el mes en el que fueron creadas, para ello se emplea la ecuación 3.

$$D_L = \frac{Potencia \ x \ horas \ x \ dias}{1000} \ [kWh] \qquad [3]$$

Tabla 42Datos de consumo de luminarias

POTENCIA [W]	Cantidad	horas	días	factor	kWh/mes		
250	5	12	28	1000	420		
150	20	12	30	1000	1080		
240	1	12	30	1000	86,4		
250	10	12	30	1000	900		
70	8	12	31	1000	208,32		
100	25	12	31	1000	930		
150	150	12	31	1000	8370		
250	31	12	31	1000	2883		
	TOTAL						

El resultado total obtenido en luminarias por alimentador debe ser el mismo para cada mes, este valor se debe sumar a los datos de consumo comercial total por mes mencionados en el apartado anterior como se visualiza a continuación.

Tabla 43Datos de consumos por mes

Mes	C.C [kWh/mes]	C.L [kWh/mes]	C.C + C.L [kWh/mes]
EN19	372142	14877,72	387019,72
FB19	380809	14877,72	395686,72
MR19	329143	14877,72	344020,72
AB19	386668	14877,72	401545,72
MY19	366123	14877,72	381000,72
JN19	376547	14877,72	391424,72
JL19	371414	14877,72	386291,72
AG19	406995	14877,72	421872,72
SP19	375544	14877,72	390421,72
OC19	414556	14877,72	429433,72
NO19	382319	14877,72	397196,72
DC19	387200	14877,72	402077,72
EN20	360277	14877,72	375154,72
FB20	360917	14877,72	375794,72
MR20	382536	14877,72	397413,72
AB20	345186	14877,72	360063,72
MY20	333086	14877,72	347963,72
JN20	364492	14877,72	379369,72
JL20	369331	14877,72	384208,72
AG20	428642	14877,72	443519,72
SP20	403044	14877,72	417921,72
OC20	411398	14877,72	426275,72
NO20	403185	14877,72	418062,72
DC20	414356	14877,72	429233,72
EN21	411674	14877,72	426551,72
FB21	387853	14877,72	402730,72
MR21	438228	14877,72	453105,72
AB21	376166	14877,72	391043,72

Nota. En la tabla se presenta valores de consumos de cargas los cuales representan la suma de consumo comercial más consumo de luminaria.

5.4.2.2. Pérdidas Totales. Para el cálculo de pérdidas totales se debe restar los datos obtenidos en la cabecera del alimentador con los datos de consumo de luminarias más consumo comercial.

Tabla 44Datos de pérdidas totales

Mes	C.C + C.L [kWh/mes]	Consumo de cabecera [kWh/mes]	Pérdidas totales [kWh/mes]
EN19	387019,72	425832,8713	38813,15134
FB19	395686,72	400881,1676	5194,447608
MR19	344020,72	389517,3128	45496,59277
AB19	401545,72	424244,2937	22698,57369
MY19	381000,72	403303,2363	22302,51634
JN19	391424,72	432575,3357	41150,61567
JL19	386291,72	413830,6418	27538,92184
AG19	421872,72	446528,6322	24655,91225
SP19	390421,72	426452,6005	36030,88055
OC19	429433,72	459605,3986	30171,67862
NO19	397196,72	436712,0741	39515,3541
DC19	402077,72	431584,8157	29507,0957
EN20	375154,72	410725,3189	35570,59891
FB20	375794,72	394048,3284	18253,60841
MR20	397413,72	442387,94	44974,22005
AB20	360063,72	396509,5277	36445,80772
MY20	347963,72	402455,3041	54491,58406
JN20	379369,72	430660,8337	51291,11369
JL20	384208,72	423345,6639	39136,94387
AG20	443519,72	480163,6221	36643,90212
SP20	417921,72	439414,1451	21492,42506
OC20	426275,72	460360,2749	34084,55491
NO20	418062,72	440410,1799	22347,45989
DC20	429233,72	472632,1557	43398,43565
EN21	426551,72	465225,0488	38673,32885

Mes	C.C + C.L [kWh/mes]	Consumo de cabecera [kWh/mes]	Pérdidas totales [kWh/mes]
FB21	402730,72	406971,7049	4240,984925
MR21	453105,72	494706,7349	41601,01489
AB21	391043,72	430007,3834	38963,6634

5.4.2.3. Pérdidas Técnicas. Para el cálculo de pérdidas técnicas se debe considerar las pérdidas obtenidos en los tramos, transformadores, acometidas y medidores.

Para el desarrollo de pérdidas técnicas se tomó como muestra el alimentador

MIRAFLORES, puesto que tiene la menor cantidad de datos a procesar en referencia al resto

de alimentadores

5.4.2.3.1. Pérdidas en acometidas y medidores. Para este tipo de análisis se considera un valor de 1 [W] de pérdidas por medidor y en acometidas se considera una longitud de 15
[m] con un conductor de calibre 2x4(4), teniendo en cuenta el 60% de los usuarios, puesto que en la mayoría de casos las viviendas cuentan con 2 medidores.

Con las consideraciones antes mencionadas se obtienen los siguientes valores de pérdidas.

Tabla 45 *Pérdidas en acometidas y medidores*

Acometidas	152 [kWh/mes]	
Medidores	870,48 [kWh/mes]	

5.4.2.3.2. Cargabilidad de los Transformadores. El valor de cargabilidad se calcula de manera global, para ello se debe hacer una relación entre la demanda de cabecera y la potencia total de los transformadores correspondientes a cada alimentador de la subestación Batán

Para este cálculo se debe tomar en cuenta tanto transformadores de propiedad particular como transformadores de la EEASA.

$$Cargabilidad \ [\%] = \frac{Demanda\ total\ de\ cabecera}{Potencia\ total\ de\ transformadores} \ \ \ \ \ [4]$$

De acuerdo a la ecuación 4 se obtiene un valor de 26,56% de Cargabilidad.

5.4.2.3.3. Pérdidas en Transformadores. Para el cálculo en transformadores se debe considerar los valores de potencia que maneja la empresa eléctrica a nivel de bajo voltaje. Además, se debe tomar en cuenta los transformadores pertenecientes únicamente a la EEASA descartando de esta manera los transformadores particulares.

Las pérdidas totales en transformadores es la suma de las pérdidas en el cobre más las pérdidas en el hierro, para ello se tomó las ecuaciones 5,6,7,8,9 y 10, mismas que pertenecen a la norma NTE INEN 2115:2004 para transformadores trifásicos y la norma NTE INEN 2114:2004 para transformadores monofásicos.

A continuación, se detalla las ecuaciones aplicadas según el tipo de conexión y la potencia del transformador:

Monofásico

Estas ecuaciones son utilizadas únicamente en transformadores monofásicos de 3 a 167 kVA de potencia.

• Pérdidas en el hierro

$$P_{Fe} = 9,8033 (P_n)^{0,714}$$
 [5]

• Pérdidas en el cobre

$$P_{Cu} = 0.000063(P_c)^3 - 0.02695(P_c)^2 + 10.657(P_c) + 38,267$$
 [6]

Trifásico

• Pérdidas en el hierro

Desde 15 kVA hasta 150 kVA

$$P_{Fe} = 10,514 (P_n)^{0,7486}$$
 [7]

Mayores de 150 kVA hasta 800 kVA

$$P_{Fe} = 13,27 (P_n)^{0,7093} [8]$$

• Pérdidas en el cobre

Desde 15 kVA hasta 150 kVA

$$P_{Fe} = -0.013 (P_c)^2 + 13.892 (P_c) + 106.65$$
 [9]

Mayores de 150 kVA hasta 800 kVA

$$P_{Fe} = 10,465 (P_c) + 537$$
 [10]

Donde:

 $P_n = \text{Potencia nominal}$

 $P_c =$ Potencia con Cargabilidad

Pérdidas Técnicas totales

$$P_T = P_{Fe} + P_{Cu}$$
 [11]

Al calcular las pérdidas según las ecuaciones antes mencionadas, se obtuvo los siguientes resultados:

Tabla 46Total de pérdidas técnicas en potencia

Subtipo	Pérdidas Fe	Pérdidas Cu	Total Pérdidas [W]
Monofásico	1394,070013	1555,744106	2949,814119
Trifásico	10211,98016	15864,38237	26076,36252
	TOTAL		29026,17664

Se debe considerar que las pérdidas totales calculadas en transformadores se obtienen en potencia, por lo que es necesario transformar dicho valor a energía, dando como resultado un total de 20898,84718 [kWh/mes]

5.4.2.3.4. Pérdidas en Tramos aéreos y subterráneos. Para realizar el cálculo de pérdidas en tramos se debe tomar en cuenta las especificaciones técnicas que maneja la empresa distribuidora, además se debe considerar que las longitudes de los tramos por conductor deben ser mayores a 50 m, todo esto con la finalidad de no obtener pérdidas nulas o despreciables.

Para encontrar el valor de pérdidas por tramos se considera la resistencia del conductor según su calibre y la longitud del tramo, puesto que es directamente proporcional a la resistencia total del cable, de igual manera se considera la configuración y la potencia con cargabilidad del transformador para el cálculo de la corriente, como se detalla a continuación:

Cálculo de Corriente

De acuerdo al tipo de conexión la fórmula de la corriente son las siguientes:

Monofásico

$$I = \frac{Potencia\ cargabilidad\ [kVA]}{voltaje\ secundario\ [kV]}$$
[12]

Trifásico

$$I = \frac{Potencia\ cargabilidad\ [kVA]}{\sqrt{3}\ x\ voltaje\ secundario\ [kV]} \qquad [13]$$

Una vez calculada la corriente se debe dividir para el número de circuitos correspondientes, considerando 2 circuitos para redes aéreas y 2 o 4 circuitos para redes subterráneas dependiendo de la potencia, teniendo como resultado lo siguiente:

Tabla 47Cálculo de corriente por circuitos

Circuito Aéreo						
Subtipo	Potencia	Potencia con cargabilidad	# Circuitos	Corriente		
Trifásico	15	3,984	2	5,2338413		
Trifásico	30	7,968	2	10,4676826		
Trifásico	45	11,952	2	15,7015239		
Trifásico	50	13,28	2	17,4461377		
Trifásico	75	19,92	2	26,1692065		
Trifásico	100	26,56	2	34,8922754		
Monofásico	10	2,656	2	5,53333333		
Monofásico	15	3,984	2	8,3		
Monofásico	25	6,64	2	13,8333333		
Monofásico	37,5	9,96	2	20,75		

Circuito Subterráneo

Subtipo	Potencia	Potencia con cargabilidad	# Circuitos	Corriente
Trifásico	45	11,952	2	16,6073811
Trifásico	50	13,28	2	17,4461377
Trifásico	75	19,92	2	26,1692065
Trifásico	150	39,84	4	26,1692065
Trifásico	400	106,24	4	69,7845507
Trifásico	600	159,36	4	104,676826

Cálculo de Longitud

Se debe tener presente que la longitud de los tramos expresada en el sistema ArcGIS se debe multiplicar por el número de conductores según su configuración, a partir de este dato se procede a sumar las longitudes totales por calibre de conductor, teniendo en cuenta que los valores manejados se encuentran en metros.

Tabla 48

Cálculo de longitud por circuito

	Circuito Aéreo				
Trifá	ísico	Monof	ásico	Trifásico	
1/0	2	1/0	2	4/0	
1427,82	893,89	5091,13	124,42	8852,795576	
673,52	562,54		152,06		
3942,43	672,57		224,69		
1103,21	234,41				
	156,5				
	183,68				
	373,59				
7146,98	3077,18	5091,13	501,17	8852,795576	

Nota. Los cálculos presentados además de ser divididos por circuitos también se los subdivide por conexión sea monofásica o trifásica

El valor total de longitud por calibre mostrado en la tabla 48 se divide para el número de transformadores, según la especificación técnica manejada por la empresa.

Tabla 49Longitud de acuerdo al número de transformadores

Circuito Aéreo					
Subtipo	Potencia	N° Trafo.	Conductor	Longitud [m]	
Trifásico	15	2	2		
Trifásico	30	1	2	512,8633333	
Trifásico	45	3	2		
Trifásico	50	4	1/0		
Trifásico	75	4	1/0	794,1088889	
Trifásico	100	1	1/0		
Monofásico	10	2	2	250,585	
Monofásico	15	2	1/0		
Monofásico	25	5	1/0	424,2608333	
Monofásico	37,5	5	1/0		
		Circuito Sub	terráneo		
Subtipo	Potencia	N° Trafo.	Conductor	Longitud [m]	
Trifásico	45	1	4/0		
Trifásico	50	2	4/0		
Trifásico	75	1	4/0	1264,685082	
Trifásico	150	1	4/0		
Trifásico	400	1	4/0		
Trifásico	600	1	4/0		

Cálculo de Resistencia

En primera instancia se procede a tomar los datos de resistencia por kilómetro de cada conductor, dichos valores son tomados del ANEXO 2, para ello se considera el calibre de conductor, siendo este de aluminio o cobre.

Para el alimentador MIRAFLORES tanto para circuito aéreo como subterráneo se considera los siguientes datos:

Tabla 50Resistencia por km de acuerdo al conductor

Calibre	Resistencia [Ω/km]
2	1,05
1/0	0,659
4/0	0,205
	2 1/0

Al tomar los valores de resistencia por cada kilómetro se procede a multiplicar por la longitud calculada en la tabla 49, para encontrar la resistencia real del conductor aplicado en cada tramo; se debe tener en cuenta que, para la operación a realizar, el valor de longitud debe estar en Km.

Tabla 51Cálculo de la resistencia

	Circu	uito Aéreo	
Subtipo	Potencia	Conductor	Resistencia Ω
Trifásico	15	2	0,5376
Trifásico	30	2	0,5376
Trifásico	45	2	0,5376
Trifásico	50	1/0	0,523246
Trifásico	75	1/0	0,523246
Trifásico	100	1/0	0,523246
Monofásico	10	2	0,2625
Monofásico	15	1/0	0,279416
Monofásico	25	1/0	0,279416
Monofásico	37,5	1/0	0,279416
	Circuito	Subterráneo	
Subtipo	Potencia	Conductor	Resistencia Ω
Trifásico	45	4/0	0,2583
Trifásico	50	4/0	0,2583
Trifásico	75	4/0	0,2583

Subtipo	Potencia	Conductor	Resistencia Ω
Trifásico	150	4/0	0,2583
Trifásico	400	4/0	0,2583
Trifásico	600	4/0	0,2583

Pérdidas totales en tramos

La ecuación empleada para el cálculo de pérdidas en tramos es la siguiente:

$$P\'{e}rdidas_{Tramo} = I^2 x R$$
 [14]

Obteniendo los siguientes resultados:

Tabla 52 *Pérdidas en tramos*

Circuito Aéreo			
Pérdidas [W]			
14,72652776			
58,90611103			
132,5387498			
159,2591919			
358,3331819			
637,0367678			
8,037166667			
19,24896824			
53,46935622			
120,3060515			
Subterráneo			
Pérdidas [W]			
71,24045878			
78,61818204			
176,8909096			
176,8909096			
1257,890913			
2830,254553			

Para el cálculo de pérdidas totales en tramos los valores obtenidos anteriormente se deben multiplicar por el número de transformadores como se muestra a continuación:

Tabla 53 *Pérdidas totales en tramos*

	(Circuito Aéreo		
Subtipo	Nº Trafos.	Pérdidas totales[W]	Pérdidas totales circuito[W]	
Trifásico	2	29,45305552	-	
Trifásico	1	58,90611103		
Trifásico	3	397,6162495		
Trifásico	4	637,0367678	_	
Trifásico	4	1433,332727	- 4116,830987 - -	
Trifásico	1	637,0367678		
Monofásico	2	16,07433333		
Monofásico	2	38,49793648		
Monofásico	5	267,3467811		
Monofásico	5	601,5302575	-	
	Circ	uito Subterráneo		
Subtipo	Nº Trafos.	Pérdidas totales[W]	Pérdidas totales circuito[W]	
Trifásico	1	71,24045878		
Trifásico	2	157,2363641	4670,404108	
Trifásico	1	176,8909096		
Trifásico	1	176,8909096		
Trifásico	1	1257,890913	-	
Trifásico	1	2830,254553		

Los valores obtenidos por circuito se los debe sumar y transformar a pérdidas de energía, obteniendo así un valor total para pérdidas técnicas de 7338,47258 [kWh/mes]

Una vez concluidos los cálculos en medidores, acometidas, transformadores y tramos se obtiene un valor total de pérdidas técnicas de 29259,7998 [kWh/mes].

5.4.3. Diseño y uso del aplicativo Macros

La elaboración del aplicativo se realiza mediante programación Macros, el cual se maneja por medio de la herramienta Visual Basic que emplea un lenguaje de programación a código abierto para el ingreso de botones y acciones dentro de los mismos, este aplicativo sirve como herramienta para la optimización del análisis de tendencias y curvas de pérdidas eléctricas, aportando al usuario a realizar el proceso de manera más rápida y eficaz.

El aplicativo constituye en su pantalla principal la portada y a su vez de 7 botones como se puede observar en la Figura 25.

Figura 25Pantalla principal

A continuación, se detalla la función que tiene cada uno de los botones, tomando en cuenta que el aplicativo tiene funcionalidad para todas las subestaciones correspondientes a la Empresa Eléctrica Ambato.

5.4.3.1. Botón de comparación. Dentro de este apartado tenemos la función de comparación de datos entre sistemas que maneja la empresa para realizar el análisis de tendencias, en primera instancia la ventana muestra el ingreso de información correspondiente a la subestación con el número de alimentadores que consten dentro de la misma.

Figura 26Ventana de comparación

Además, en la parte superior se muestra varias opciones las cuales van a ser descritas a continuación:

Tabla 54Descripción de los botones

Botones	Descripción		
	Sirve para limpiar los datos ingresados en ambas columnas, debido a la gran cantidad de información que se maneja.		
= ¥	Sirve para realizar la comparación de datos ingresados en las columnas.		
	Sirve para mostrar la tabla donde se visualiza los datos ingresados una vez que ya son comparados.		
心	Sirve para cerrar la ventana "Comparación" y retornar a la pantalla principal.		

Al realizar la comparación el aplicativo muestra en la parte inferior un mensaje cuando la información no coincide "Los datos entre sistemas no coinciden, por favor realizar revisión de información" y otro mensaje cuando la información coinciden "Los datos fueron guardados".

5.4.3.2. Botón para calculadora EMT. Este apartado nos ayuda a transformar las coordenadas geométricas en coordenadas geográficas o EMT para el ingreso dentro de la aplicación OsmAnd, cabe mencionar que los datos a ser graficados deben corresponder únicamente a cada alimentador y por ello se dispuso la selección del mismo dentro de esta ventana.

Figura 27Ventana de Calculadora EMT

Calculadora EMT			
	Subestaci	ón BATAN	
Seleccione el alimentador			
×	Y	Longitud	Latitud

En la parte superior se muestra algunas opciones cuya funcionalidad se detalla a continuación:

Tabla 55Descripción de los botones

Botones	Descripción	
^	Sirve para limpiar los datos ingresados en las columnas, debido a la gran cantidad de información que se maneja.	
	Sirve para realizar la conversión entre coordenadas.	
	Sirve para mostrar la tabla donde se visualizan los datos ingresados una vez que ya son transformados.	
பு	Sirve para cerrar la ventana "Calculadora EMT" y retornar a la pantalla principal.	

5.4.3.3. Análisis de tendencias. Dentro de esta ventana se debe tomar en cuenta el alimentador a estudiar, es por ello que se dispone un ítem para la selección del mismo, además los datos a ingresar deben ser los datos de consumo de cabecera total por mes, los datos de consumo comercial por mes y el consumo de luminarias que debe tener un cálculo apropiado según la potencia, cantidad y días en funcionamiento como se detalla a continuación:

Figura 28

Ventana de análisis de tendencias

Análisis de tendencias

Subestación BATAN						
Seleccione el alimentador		•				
Ingrese los datos de luminaria		Ingrese los datos de consumo				
Potencia [W]	Cantidad	Días	Consumo comercial kWh/mes	Consumo de cabezera kWh/mes		

Además, la ventana incluye ciertas opciones en la parte superior, mismas que se detallan en la tabla 56.

Tabla 56Descripción de los botones

Botones	Descripción		
^	Sirve para limpiar los datos ingresados en las columnas, debido a la gran cantidad de información que se maneja.		
/	Sirve para guardar los datos ingresados.		
	Sirve para mostrar la tabla de datos de potencia.		
Botones	Descripción		
	Sirve para mostrar la tabla de datos de consumo.		
N	Sirve para graficar los datos ingresados en función de consumo de cabecera versus consumo comercial más luminarias		
O	Sirve para cerrar la ventana "Análisis de tendencias" y retornar a la pantalla principal.		

El aplicativo arroja la gráfica modelo y dos gráficas con uno y dos meses de retraso respectivamente.

5.4.3.4. Cálculos de Pérdidas Técnicas. El aplicativo considera el alimentador seleccionado en el apartado de "Análisis de tendencias", por lo cual se ingresa netamente información técnica correspondiente a cargabilidad, potencia, voltaje secundario y número de Transformadores, en cuanto a conductores se estima la Resistencia por km según el calibre, numero de circuitos y longitud destinada por conductor en km.

Figura 29

Ventana de cálculo de pérdidas eléctricas

Cálculo de pérdidas técnicas						
Cargabilidad	0,00					
Pérdidas en acometidas Pérdidas en medidores	0,00					
Tipo de conexión	•	Pérdidas técnicas totales Kwh	0,00			
INGRESE LOS DATOS TÉCNICOS						
Potencia [W]	Voltaje [V]	# Trafos	Longitud [km]	Resistencia Ω/km	No. Circuitos	

A continuación, se describe la función de cada uno de los botones que se encuentran en dicha ventana:

Tabla 57Descripción de los botones

Botones	Descripción		
	Sirve para limpiar los datos ingresados en las columnas, debido a la gran cantidad de información que se maneja.		
/	Sirve para guardar los datos ingresados.		
	Sirve para mostrar los datos de pérdidas con conexión monofásica.		
	Sirve para mostrar los datos de pérdidas con conexión trifásica.		
+ - x ÷	Sirve para calcular las pérdidas de tramos y transformadores.		
Û	Sirve para cerrar la ventana "Cálculo de pérdidas Técnicas" y retornar a la pantalla principal.		

- **5.4.3.5. Análisis de pérdidas eléctricas**. En esta ventana se muestra las gráficas de pérdidas totales, pérdidas técnicas y pérdidas no técnicas en porcentajes.
- **5.4.3.6. Limpiar Base de Datos.** Limpia toda la información ingresada en los diferentes apartados del aplicativo, dejando listo para empezar un nuevo análisis.

5.4.4. Uso del aplicativo

5.4.3.7. Cerrar. Finaliza y cierra el aplicativo.

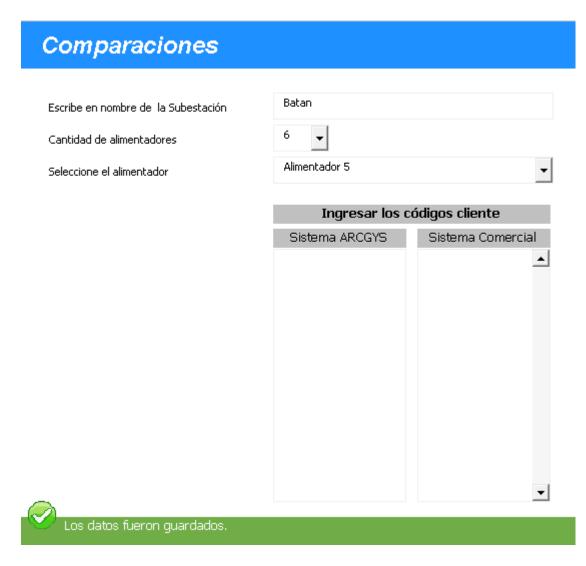
Para entender de mejor manera la funcionalidad del aplicativo se presenta un ejemplo práctico tomando en consideración el alimentador 5, el mismo que pertenece a MIRAFLORES, la información ingresa se guarda en una base de datos.

Ejemplo:

La manera en la que se ingresa la información al aplicativo se muestra en el ANEXO

5.4.4.1. Comparación. Una vez extraída y procesada la información del sistema ArcGIS y el sistema comercial se procede a ingresar los códigos de cliente de forma masiva con la finalidad de comparar los datos entre sistemas, en caso de existir datos que no coincidan se procede a realizar una revisión para posteriormente volver a ingresar los códigos. Figura 30

Figura 30


Ventana de comparaciones sin coincidencia de datos

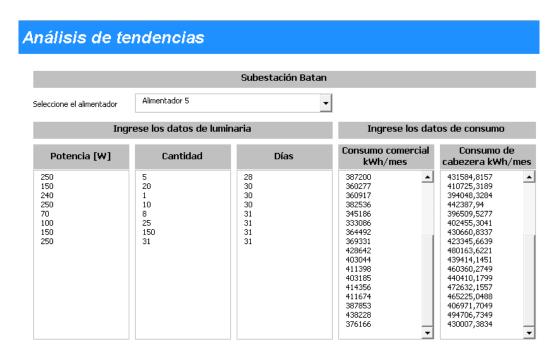
Al no coincidir se realiza una inspección minuciosa de la información misma que arrojó como resultado para este caso que los datos del sistema comercial no coincidentes se los debe colocar dentro del sistema ArcGIS, no obstante, si existen datos no coincidentes del sistema ArcGIS se los debe eliminar, finalmente los datos serán guardados cuando los códigos de cliente entre ambos sistemas coincidan. Figura 31.

Figura 31

Ventana de comparaciones sin coincidencia de datos

5.4.4.2. Calculadora EMT. De acuerdo a los datos comparados anteriormente se procede a ubicar cada código de cliente con sus respectivas coordenadas geométricas para posteriormente convertir a coordenadas geográficas. Figura 32.

Figura 32Ventana de calculadora EMT


Calculadora EMT

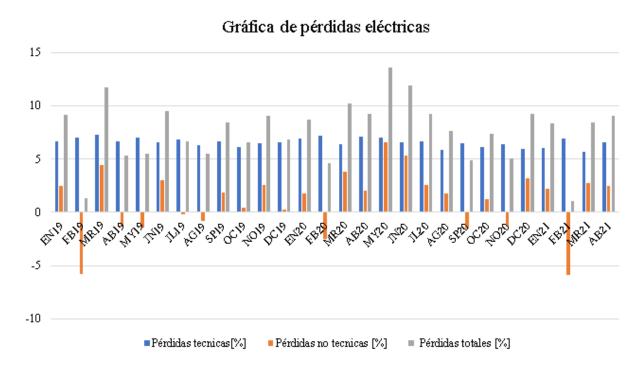
5.4.4.3. Análisis de tendencias. Para el ingreso de datos en este apartado se debe tener en cuenta que los mismos deben ir encolumnados según los requerimientos expresados en el diseño. Figura 33.

Figura 33

Ventana Análisis de tendencias

Las gráficas que nos arroja el aplicativo corresponden a un mismo alimentador por las razones expuestas anteriormente.

Figura 34 *Gráficas de tendencias del alimentador MIRAFLORES*



5.4.4.4. Cálculo de pérdidas técnicas. Para proceder con el cálculo de pérdidas técnicas se debe considerar los datos puntuales solicitados por el aplicativo, como se muestra en la figura 29, al igual que el ítem anterior se debe colocar los datos ordenados de tal manera que tengan dependencia entre sí.

El dato arrojado corresponde al valor total de pérdidas técnicas mensual del alimentador MIRAFLORES.

5.4.4.5. Análisis de pérdidas eléctricas. Una vez realizado el análisis y cálculo respectivo se procede a seleccionar la gráfica correcta arrojada en el ítem de análisis de tendencias para proceder a graficar las pérdidas totales, pérdidas técnicas y no técnicas en porcentajes. Figura 35.

Figura 35Análisis de pérdidas eléctricas

CAPÍTULO VI

6. Conclusiones y Recomendaciones

6.1. Conclusiones

En el presente trabajo de investigación se propone un aplicativo mediante programación en Macros que permita optimizar el tiempo para realizar análisis de tendencia de pérdidas en alimentadores de manera precisa y eficaz.

Se desarrolló un análisis de comparación de datos entre el sistema ArcGIS y el sistema comercial, verificando la coincidencia y ausencia de datos con la finalidad de obtener la información verídica para el análisis correspondiente a tendencias.

En base al análisis de tendencias realizado en los alimentadores de la subestación

Batán se determinó que existen cuentas de medidores totalizadores dentro del alimentador

Pérez de Anda, mismas que incrementan el consumo de manera considerable, además se

visualizó que existe transferencia de energía principalmente en los meses con mayor

demanda puesto que el consumo de cabecera es mayor al consumo de cargas, una vez

corregidas estas eventualidades la tendencia de los alimentadores estudiados se consideran

apropiadas.

Se recopiló los datos técnicos correspondientes a los elementos instalados dentro de la red de distribución por alimentador con el objetivo de calcular las pérdidas técnicas puntuales que se encuentran presentes en el mismo. Los resultados de este proceso en función al alimentador Miraflores, arrojó consideraciones que se debe tener en cuenta para futuros análisis, puesto que al descartar las anomalías encontradas se obtuvo un valor de 6.5% para pérdidas técnicas y un 1.06% para pérdidas negras, dándonos un porcentaje de confiabilidad acertado dentro de los rangos estimados por la empresa.

Se concluye que en la base de datos del sistema ArcGIS existe información errónea debido al mal manejo del software, puesto que los datos ingresados en la plataforma son

por personal externo a la empresa sin una fiscalización adecuada, por lo cual al momento de realizar el análisis se observó información contradictoria que tuvo que ser despreciada.

6.2. Recomendaciones

Es importante llevar a cabo la correcta selección de información previo al ingreso en el aplicativo, además de tener en cuenta las consideraciones expresadas en el análisis desarrollado con el fin de obtener resultados acertados, de igual manera se recomienda realizar este tipo de análisis de pérdidas en intervalos de tiempo más corto y de manera más minuciosa considerando los alimentadores con más eventualidades. y no de forma global como actualmente se lo desarrolla.

Se debe realizar una revisión de la información existente en el software ArcGIS con la finalidad de actualizar el sistema a valores reales, además de revisar la información futura con su debida fiscalización previo al ingreso en el mismo.

Se recomienda designar personal capacitado para el manejo del software ArcGIS con el objetivo de realizar un correcto ingreso de la información dentro de la base de datos del sistema, de esta manera se evitará que los datos sean manipulados por terceros, obteniendo un sistema más confiable para la empresa.

Bibliografía

- ArcGIS Resources. (s.f.). Recuperado el 14 de Mayo de 2021, de Introducción a ArcGIS:

 https://resources.arcgis.com/es/help/gettingstarted/articles/026n00000014000000.htm
- ARCONEL. (Diciembre de 2018). *Regulación No. ARCONEL 005/18.* Recuperado el 26 de Mayo de 2021, de p.1: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2019/01/Regulacion-de-Calidad-Suscrita.pdf
- Cabrera Brito, C. V., & Rodas Rivera, P. F. (Julio de 2016). *Metodología para determinar las*Pérdidas No Técnicas de Energía en el Sistema de Distribución de la Empresa

 Eléctrica Regional Centro Sur. Recuperado el 14 de Mayo de 2021, de

 https://dspace.ups.edu.ec/bitstream/123456789/12681/1/UPS-CT006505.pdf
- Cañar Olmedo, S. P. (Septiembre de 2007). Cálculo detallado de pérdidas en sistemas

 eléctricos de distribución aplicado al alimentador "Universidad" perteneciente a la

 Empresa Eléctrica Ambato Regional Centro Norte S.A. Recuperado el 14 de Mayo de

 2021, de https://bibdigital.epn.edu.ec/bitstream/15000/4217/1/CD-0926.pdf
- CONELEC. (Marzo de 1999). *Regulación No. CONELEC 003/99*. Recuperado el 26 de Mayo de 2021, de p.1: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2015/10/003-99-PNT-VIGENTE.pdf
- CONELEC. (Mayo de 2001). *Regulación No. CONELEC 004/01*. Recuperado el 26 de Mayo de 2021, de p.1: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2016/02/Regulacion-No.-CONELEC-004-01.pdf

Electrocables. (Febrero de 2018). Electrocables. Obtenido de Listado de cables.

- Empresa Eléctrica Ambato Regional Centro Norte S.A. (Mayo de 2021). *Historia de la EEASA.*Recuperado el 17 de Agosto de 2021, de https://www.eeasa.com.ec/:

 https://www.eeasa.com.ec/institucion/historia-de-la-eeasa/
- Empresa Eléctrica Regional Centro Norte S.A. , E. (Enero de 2014). Rendición de cuentas año 2014. Recuperado el 17 de Agosto de 2021, de https://www.eeasa.com.ec/content/uploads/2020/08/Presentacion-de-Rendicion-de-Cuentas-2014.pdf
- EPM. (Enero de 2021). *Qué es el alumbrado público*. Recuperado el 17 de Agosto de 2021, de

 EPM Radio: https://www.epm.com.co/site/home/nuestra-empresa/epmradio/interna/artmid/24363/articleid/5387
- Freire Llerena, W. R., & Guanoluisa Cando, J. A. (Agosto de 2001). Cálculo de pérdidas en sistemas de distribución aplicación a un alimentador primario de ELEPCO S.A.

 Recuperado el 14 de Mayo de 2021, de

 https://bibdigital.epn.edu.ec/bitstream/15000/6868/1/T1768.pdf
- Freire Reasco, F. A. (Mayo de 2019). Estudio de pérdidas técnicas de energía eléctrica en la subestación san Gabriel de la Empresa Eléctrica Regional Norte S.A. Recuperado el 14 de Mayo de 2021, de http://repositorio.utn.edu.ec/bitstream/123456789/9563/2/04%20MEL%20054%20
 TRABAJO%20GRADO.pdf
- Ghia, A., & Rosso, A. (Diciembre de 2013). Reducción de pèrdidas en sistemas de transmisión y distribución. Argentina.
- González Torres, F. A. (15 de Marzo de 2019). Estudio de causas incidentes en las pérdidas no técnicas en baja tensión de una empresa distribuidora de electricidad con alta demanda. Obtenido de http://repositorio.ucsg.edu.ec:

- http://repositorio.ucsg.edu.ec/bitstream/3317/12705/1/T-UCSG-PRE-TEC-IEM-201.pdf
- Intriago Paredes, J. A., & Muñoz Fuentes, J. L. (Marzo de 2020). Detección y prevención de pérdidas no técnicas fraudulentas de energía eléctrica en clientes residenciales de la corporación nacional de electrici-dad CNEL EP unidad de negocios Manabí.

 Recuperado el 14 de Mayo de 2021, de http://www.dspace.uce.edu.ec/bitstream/25000/21144/3/T-UCE-0005-CEC-296.pdf
- Martin, B. A. (2010). *Efecto Joule*. Obtenido de T.U.S. En mantenimiento industrial: http://docshare04.docshare.tips/files/30010/300108380.pdf
- Mendez, A. E. (Diciembre de 2010). Estudio para determinar las pérdidas de energía del alimentador 124 perteneciente al sistema de Distribución de la Empresa Eléctrica Azogues. Recuperado el 14 de Mayo de 2021, de https://dspace.ups.edu.ec/bitstream/123456789/1957/12/UPS-CT002031.pdf
- Pérdidas en distribución de energía. (s.f.). Recuperado el 14 de Mayo de 2021, de

 https://dspace.ups.edu.ec/bitstream/123456789/1898/2/01%20Perdidas%20en%20

 distribucion.pdf
- Regulación del Sector Eléctrico. (s.f.). Recuperado el 14 de Mayo de 2021, de Regulación del Sector Eléctrico: https://www.regulacionelectrica.gob.ec/introduccion_regulacion/
- Tama Franco, A. (s.f.). Las perdidas de energía eléctrica. Recuperado el 14 de Mayo de 2021, de

https://www.dspace.espol.edu.ec/bitstream/123456789/25745/1/Las%20P%C3%A9 rdidas%20de%20Energ%C3%ADa%20El%C3%A9ctrica.pdf

ANEXOS