

TEMA:

DISEÑO Y CONSTRUCCIÓN DE UN BANCO DE PRUEBAS GENÉRICO PARA DIAGNÓSTICO Y REPARACIÓN DE MÓDULOS DE CONTROL ELECTRÓNICO AUTOMOTRIZ

Autores:

Clavón Taipe, Byron Lenin Lema Panchi, Nelson Bolivar

Director:

Ing. Erazo Laverde, Washington Germán

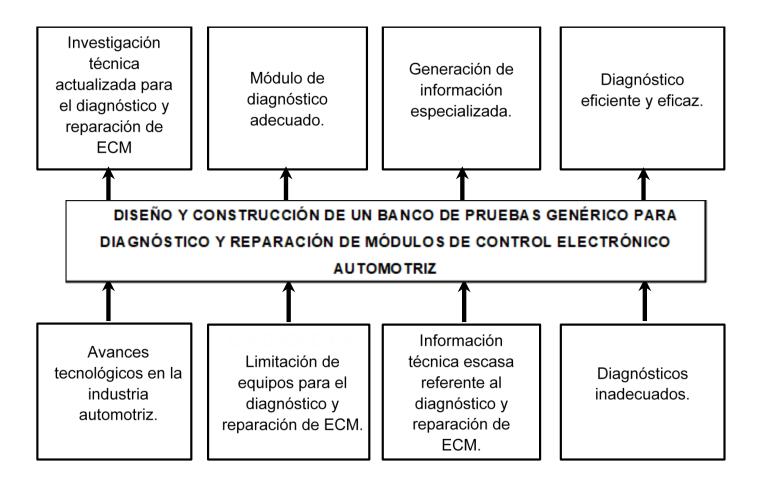
Latacunga 2021

Contenido

- Objetivos
- Planteamiento del Problema
- Metas
- Marco Teórico
- Diseño y construcción del banco de pruebas
- Pruebas de Funcionamiento
- Conclusiones
- Recomendaciones

OBJETIVO GENERAL

Diseñar y construir de un banco de pruebas genérico para diagnóstico y reparación de módulos de control electrónico automotriz

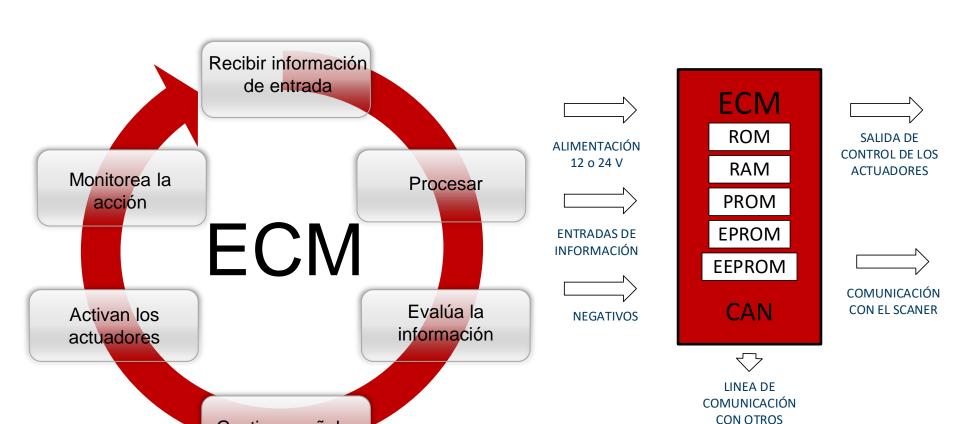


OBJETIVOS ESPECÍFICOS

- Investigar parámetros de funcionamiento de los diferentes sensores, actuadores y módulos electrónicos de las principales marcas de vehículos que existen en Ecuador, cuyas ECUS sean reparables.
- Diseñar los diferentes circuitos electrónicos, aplicados en ingeniería automotriz referentes al proyecto y simular en el Software Livewire para comprobar la funcionalidad de los mismos.
- Dimensionar, diseñar, ensamblar el armazón y los circuitos eléctricos electrónicos del banco de pruebas.
- Desarrollar pruebas de verificación en los módulos electrónicos mediante la polarización adecuada de los mismos.
- Generar un manual técnico de funcionamiento del banco de pruebas para diagnóstico de módulos de control electrónico automotriz.

PLANTEAMIENTO DEL PROBLEMA

META


 Desarrollar e implementar un banco de pruebas genérico para diagnóstico de módulos de control electrónico que cubran al menos un 80 % de marcas, y realizar un diagnóstico efectivo al 90% garantizando su confiabilidad.

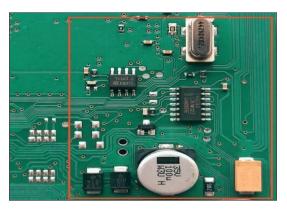
MARCO TEÓRICO

MÓDULO DE CONTROL ELECTRÓNICO

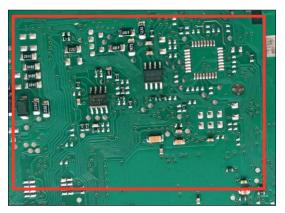
Gestiona señales

de acción

SISTEMAS


CONSTITUCIÓN

Circuito Fuente

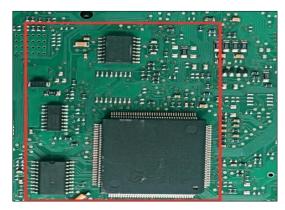

Proteger, suministra y mantiene la tensión estable en el Módulo, se compone de condensadores, regulador de voltaje, diodos, etc.

Circuito de entrada

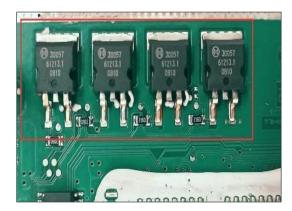
Recibe las señales de entrada de los diferentes sensores del vehículo, consta de conversores analógicos y digitales, amplificadores, filtros, entre otros.

Circuito Fuente

Circuito de Control


CONSTITUCIÓN

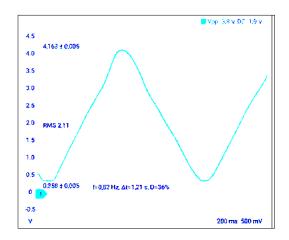
Circuito de Control


Recibe la información del bloque de entrada, controla todas las entradas y salidas del módulo, se encarga de realizar el procesar, evaluar, gestionar datos.

Circuito Driver

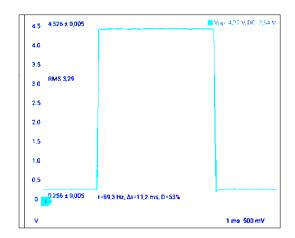
Es el bloque de salida de las señales procesadas por el ordenador, envía indicadores de ejecución a los actuadores.

Circuito Control


Circuito Driver

Sensores

Analógico


Este tipo de sensores genera una señal continua, sus valores de voltajes varia en el tiempo de acuerdo al valor su resistencia interna.

Señal Analógica

Digital

Toman valores fijos, generan señales cuadradas de acuerdo a la tensión de alimentación o ausencia de la misma.

Señal Digital

Protocolo OBDII

Sirven para detectar fallas químicas, eléctricas y mecánicas que afecten las emisiones de gases contaminantes del vehículo.

Emite una alerta cuando el nivel de las emisiones de gases son 1,5 superior al de los parámetros establecidos.

Sensor O2

Luz MIL

Protocolo de Comunicación

SAE J1850 PWM

Exclusiva para vehículos Ford.

SAE J1850 VPM

Exclusiva para General Motors.

ISO 9141-2

Marcas como BMW, Volvo, Porsche,

Mercedes Benz,

ISO 14230-4

Marcas como Renault, Peugeot.

CAN (ISO 11898)

Ford Explorer, Ecos Sport, Malibu GM,.

1 – Sin uso 9 – Sin uso

2 - J1850 Bus positivo 10 - J1850 Bus negativo

3 – Sin uso 11 – Sin uso 4 - Tierra del Vehículo 12 – Sin uso

5 – Tierra de la Señal 13 – Tierra de la señal

6 - CAN High 14 - CAN Low

7 - ISO 9141-2 - Línea K 15 - ISO 9141-2 - Línea L

8 – Sin uso 16 - Batería - positivo

Terminales del conector OBDII

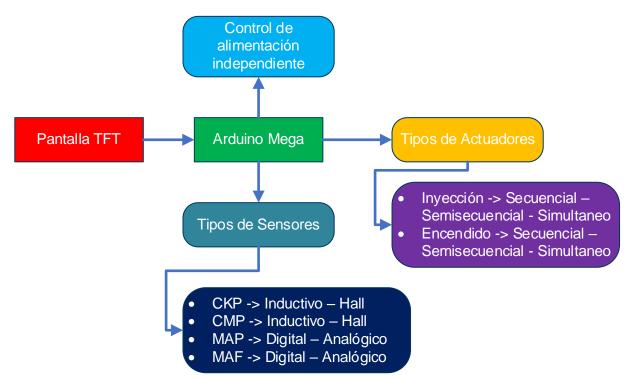
Diseño y construcción del banco de pruebas

Descripción general del proyecto

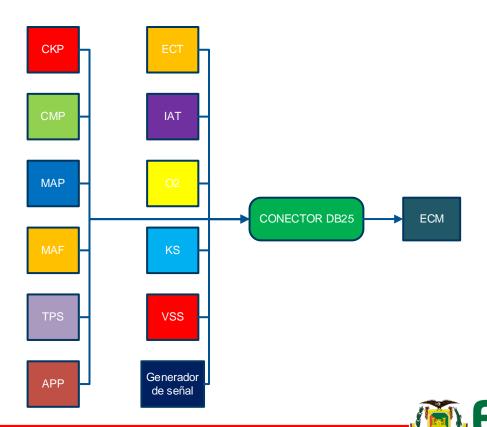
 El banco de pruebas es un equipo que permite simular parámetros de operación del vehículo, es decir simula electrónicamente las señales de los principales sensores que son enviadas a los Módulos de Control Electrónico los cuales procesan información y gestionan la acción de los actuadores, cuenta con una fuente de alimentación de 12V y 2000 mA y con un regulador de voltaje a 5V para alimentar directamente a los sensores simulados.

Sistema de Alimentación.

• El banco cuenta con una fuente de alimentación de 12V que alimenta a la computadora y a los Actuadores además posee un regulador de 5V que permite la alimentación del sistema de control del banco.

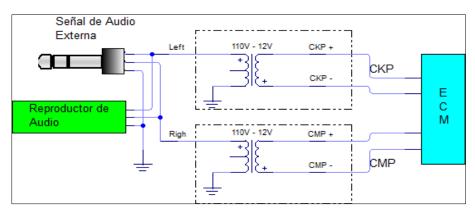


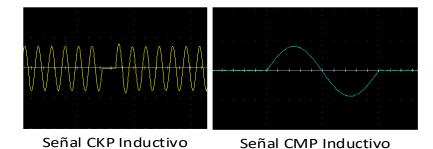
Sistema de Control.

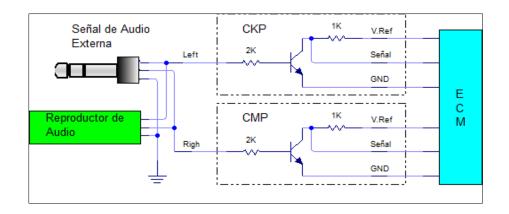

 Gestionado por una interfaz mediante una pantalla táctil la cual controla a la tarjeta Arduino Mega permitiendo seleccionar en sensores el tipo de señal analógica o digital y en actuadores el tipo de inyección para una mejor visualización de funcionamiento.

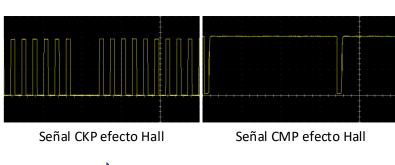
Señales de salida del Banco (Sensores)

El banco genera señales digitales y analógicas que varían sus parámetros de funcionamiento de acuerdo a la manipulación de potenciómetros simulando las condiciones de operación de un vehículo, enviando las señales a la ECM por medio del puerto de salida DB25 en conjunto con sus líneas de conexión.

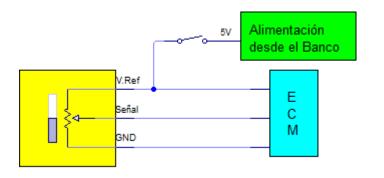



INNOVACIÓN PARA LA EXCELENCIA

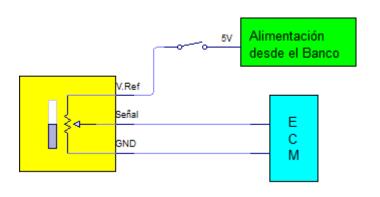

Circuitos simulación CKP

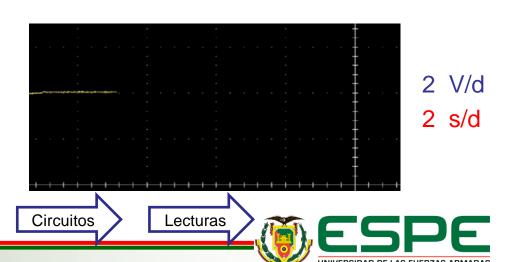

Inductivo

Efecto Hall

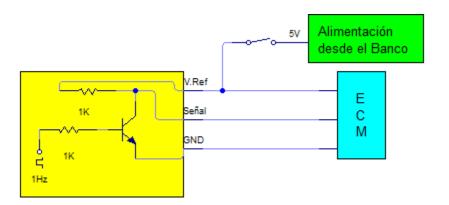


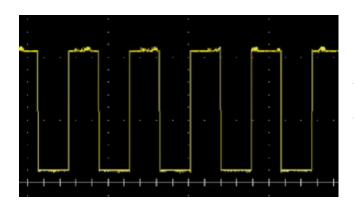
Sensores Analógicos


Circuitos simulación MAP, MAF, TPS, APP.



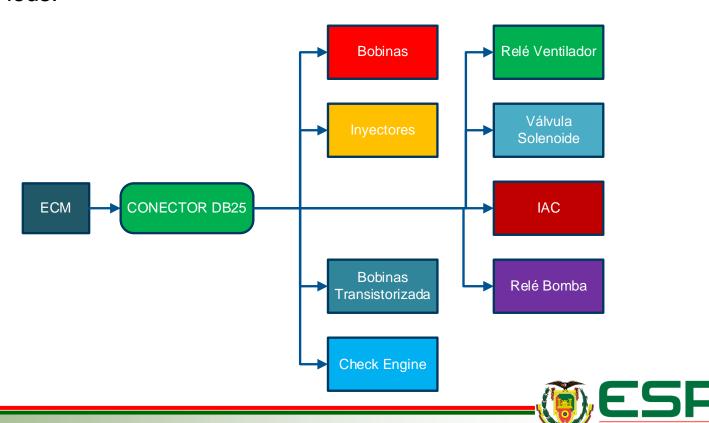
INNOVACIÓN PARA LA EXCELENCIA


Circuitos simulación ECT, IAT

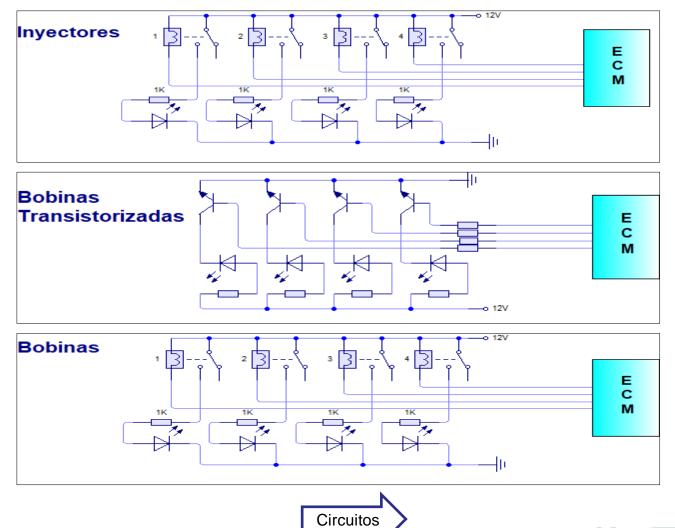


Sensores Digitales

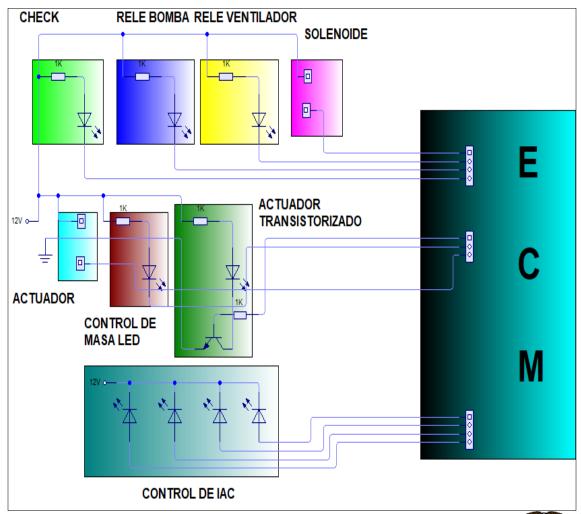
Circuitos simulación MAP, MAF


2 V/d20 ms/d

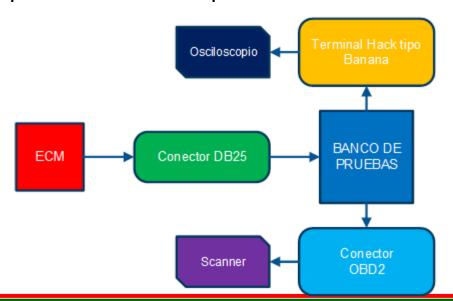
Lecturas


Señales de entrada al Banco desde los ECM (Actuadores)

La placa electrónica que simula los actuadores posee relés, transistores, resistencias que reciben las señales procedentes de la ECU polarizando estos componentes eléctricos permitiendo visualizar su funcionamiento a través de indicadores leds.


INNOVACIÓN PARA LA EXCELENCIA

Circuitos de simulación de actuadores


Circuitos de simulación de actuadores

Sistema de comunicación entre el Banco y ECM.

Para que exista una comunicación entre la ECM y el banco de pruebas es necesario la utilización de conectores DB25 que permita la interacción de datos entres si, para realizar una fácil medición y comprobación de funcionamiento de señales de entrada y salida se incorpora terminales tipo banana que posibilitan la lectura por medio del osciloscopio, por ende, también es necesario un protocolo de comunicación entre la computadora y el scanner por lo cual se incorporó un conector OBDII.

Pruebas de Funcionamiento

Equipos de medición

- Osciloscopio Hantek 1008C
- Multímetro
- Scanner ELM 327
- ECU Chevrolet Aveo Activo 1.6
- ECU KIA Xcited 1.4
- Banco de pruebas
- Diagramas eléctricos de las ECUS
- Laptop

Equipo de Diagnostico

<u>Designación</u>	Ν°	Designación
Pantalla de Control	11	Simulador de Bobinas transistorizadas
Medidor digital	12	Simulador de Bobinas
Tomas de alimentación	13	Simulador de Inyectores
Interruptores de encendido	14	Simulador de Check Engine, Relé Bomba, Relé ventilador y Solenoide
Tomas de medición CKP y CMP	15	Simulador IAC
Mando y tomas de medición MAP y MAF	16	Simulador Actuador 1, 2 y3
Mando y tomas de medición APP y TPS	17	Conector OBDII
Mando y tomas de medición ECT y IAT	18	Conectores BD25
Mando y tomas de medición KS y O2	19	Jack Audio desde la PC
Mando y tomas de medición VSS y G.S.	20	Conector de Programación

ECU Chevrolet Aveo Activo 1.6

Distribución de pines ECU Chevrolet Aveo Activo 1.6

Conector A			Conector B		
Pin#	Designación	Pin#	Designación		
1-2	Tierra	1	Baja referencia		
3	Señal del sensor de golpeteo (KS)	2	Voltaje positivo de la batería		
4	Control de la válvula de recirculación de gases de escape (EGR)	3	Voltaje de ignición 1		
5	Sin uso	4-6	Sin uso		
6	Baja referencia	7	Señal del sensor de presión del refrigerante A/C (ACP)		
7	Señal del sensor de posición del acelerador (TPS)	8	Señal del interruptor de octanos		
8	Control del inyector de combustible 3	9	Señal de velocidad del motor		
9	Control del inyector de combustible 1	10	Señal de solicitud de A/C		
10	Baja referencia	11	Sin uso		
11	Señal del sensor de temperatura del refrigerante del motor (ECT)	12	Control del relevador del ventilador de alta velocidad		
12	Baja referencia del sensor de oxígeno (HEGO)	13	Sin uso		
13	Control alto de la bobina B del control de aire en marcha mínima (IAC)	14	Datos seriales altos de red CAN		
14	Sin uso	15	Datos seriales DLC		
15	Referencia de 5 voltios	16	Sin uso		
16	Baja referencia	17	Referencia de 5 voltios		
17	Tierra	18	Voltaje positivo de la batería		
18	Control de la bobina de ignición 1 y 4	19	Indicador de combustible		
19	Control de la bobina de ignición 2 y 3	20- 21	Sin uso		

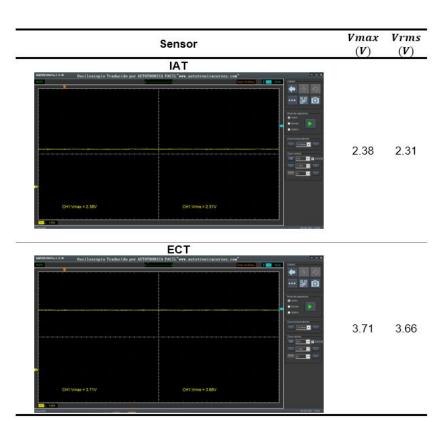
20	Control del solenoide de purga del depósito de emisión de gases (EVAP)	22	Señal del interruptor de octanos
21	Señal del sensor de posición del cigüeñal (CKP)	23	Señal de velocidad del vehículo (transmisión manual)
22	Control del inyector de combustible 2	24	Señal del indicador del sensor de temperatura del refrigerante del motor (ECT)
23	Referencia de 5 voltios del sensor de temperatura de aire de admisión (IAT)	25	Sin uso
24	Señal del sensor de presión absoluta del múltiple de admisión (MAP)	26	Control del relevador de la bomba de combustible
25	Señal del sensor de posición del árbol de levas (CMP)	27	Control del relevador del ventilador de baja velocidad
26	Control del inyector de combustible 4	28	Voltaje de bobina del embrague del compresor de A/C
27	Señal del sensor de oxígeno (EGO)	29	Sin uso
28	Control alto de la bobina A del control de aire en marcha mínima (IAC)	30	Datos seriales bajos de red CAN
29	Control bajo de la bobina B del control de aire en marcha mínima (IAC)	31	Señal del sensor de nivel de combustible
30	Control bajo de la bobina A del control de aire en marcha mínima (IAC)	32	Control de la luz del indicador de mal funcionamiento (MIL)
31	Referencia de 5 voltios		
32	Baja referencia		

Diagrama Eléctrico

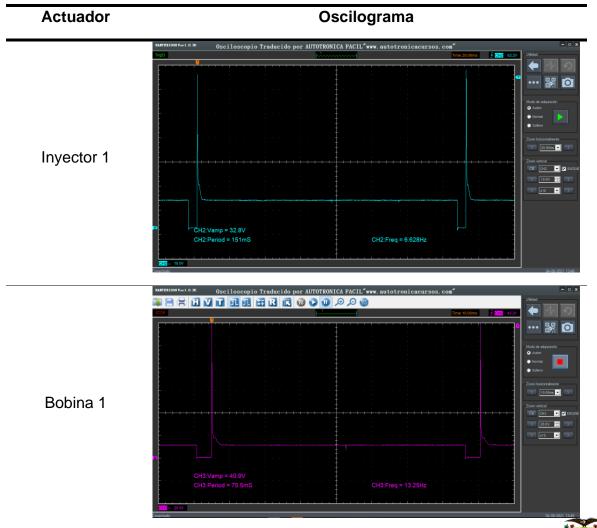
Prueba de activación de los actuadores

N°	Actuador	Indicador	Estado	Observación
1	Bobina 1	B-1	Inactivo	No Conectado
2	Bobina 2	B-2	Activo	La ECU activa la bobina 2 y 3 enviando pulsos de activación
3	Bobina 3	B-3	Inactivo	No Conectado
4	Bobina 4	B-4	Activo	La ECU activa la bobina 1 y 4 enviando pulsos de activación
5	Inyector 1	INY-1	Activo	La ECU activa el inyector 1 correctamente
6	Inyector 2	INY-2	Activo	La ECU activa el inyector 2 correctamente
7	Inyector 3	INY-3	Activo	La ECU activa el inyector 3 correctamente
8	Inyector 4	INY-4	Activo	La ECU activa el inyector 4 correctamente
9	Check Engine	Check Engine	Activo	El Check Engine se activa al alimentar la ECU
10	Relé Bomba	Relé Bomba	Activo	El relé de la bomba se activa 3s al alimentar la ECU y se activa todo el tiempo al iniciar la simulación.
11	Relé del Ventilador	Relé del Ventilador	Activo	EL relé del ventilador se activa cuando la temperatura es mayor a 86°C
12	IAC	IAC	Activo	La ECU envía pulsos de activación a la válvula IAC de acuerdo a las condiciones del vehículo




Parámetros de entrada a la ECU

Sensor	Vmax (V)	Vmin (V)	<i>Vpp</i> (<i>V</i>)	Vrms (V)	Frecuencia (Hz)
CKP The latest freeze	10	-5.70	15.7	5.97	811.6
CMP Som flags in Elife Continue of Tay Contin	11.9	0.9	11	11.3	6.6
O2 See I from the Device of the Control of the Con	1.34	0.5	0.84	1.02	# C \$


Parámetros de entrada a la ECU

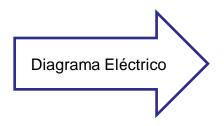
Señales de inyectores y bobinas

Resultados

Actuador	Periodo	Tiempo Activación	Frecuenci a	Amplitud	
	(ms)	(ms)	(Hz)	(V)	
Inyector 1	151	5	6.62	32.8	
Bobina 1	75.5	4.5	13.25	40.9	

Actuador	Estado	Observación
Check	Activo	Se activa al momento de alimentar
Engine	ACIIVO	a la ECU
Relé de la	A ativo	Se activa al enviar la señal del CKP
Bomba	Activo	a la ECU
Relé del	Inactivo	Temperatura del refrigerante del
Ventilador	mactivo	motor menor a 86 °C.
IAC	Activo	Semiabierto

Unidad	Valor
Rev/min	795
in/Hg	19.6
°C	-3
°C	44
%	0
V	0.45
V	0.44
Grados	2
%	9
	Rev/min in/Hg °C °C V V Grados



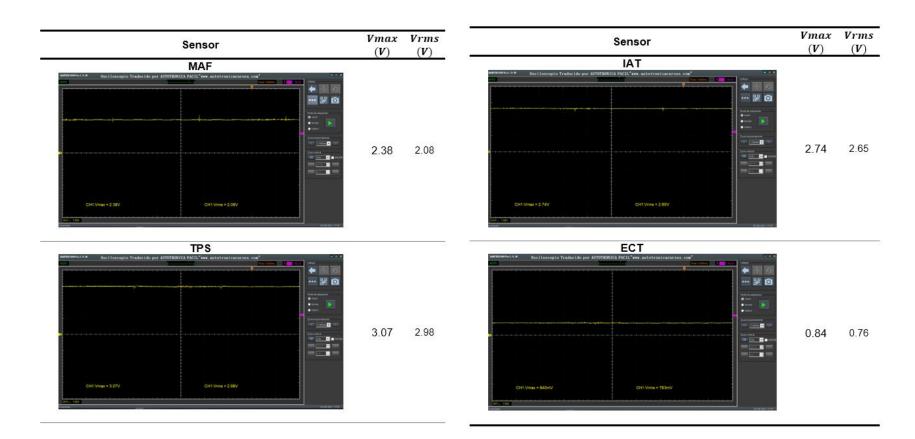
ECU Kia Xcite 1.4

Distribución de pines ECU Kia Xcite 1.4

Pin#	Designación	Pin#	Designación
1	Control de la bobina de ignición 1 y 4	59	Referencia de 5 voltios
2	Tierra	60	Referencia de 5 voltios
3	Control de la bobina de ignición 2 y 3	62	CAN LOW
6	Voltaje positivo de la batería	68	Control del inyector de combustible 4
19	Señal del Sensor de Flujo de Aire (MAF)	70	Control de la luz del indicador de mal funcionamiento (MIL)
22	Voltaje positivo de la batería	73	Tierra
24	Control del inyector de combustible 3	77	Señal del sensor de temperatura del refrigerante del motor (ECT)
25	Control de válvula IAC (Cerrar)	82	Voltaje positivo de la batería
33	Tierra	83	Interruptor de Encendido
36	Señal del sensor de oxígeno (HEGO)	84	CAN HIGH
39	Señal del sensor de posición del acelerador (TPS)	86	Señal del sensor de posición del cigüeñal (CKP) [B]
43	Señal del sensor de temperatura de aire de admisión (IAT)	87	Señal del sensor de posición del cigüeñal (CKP) [A]
46	Control del relevador de la bomba de combustible	90	Control de válvula IAC (Cerrar)
47	Control del inyector de combustible 2	91	Control del inyector de combustible 1
51	Tierra		

Prueba de activación de los actuadores

N°	Actuador	Indicador	Estado	Observación
1	Bobina 1	B-1	Inactivo	No conectado
2	Bobina 2	B-2	Activo	La ECU activa la bobina 2 y 3 enviando pulsos de activación
3	Bobina 3	B-3	Inactivo	No Conectado
4	Bobina 4	B-4	Activo	La ECU activa la bobina 1 y 4 enviando pulsos de activación
5	Inyector 1	INY-1	Activo	La ECU activa el inyector 1 correctamente
6	Inyector 2	INY-2	Activo	La ECU activa el inyector 2 correctamente
7	Inyector 3	INY-3	Activo	La ECU activa el inyector 3 correctamente
8	Inyector 4	INY-4	Activo	La ECU activa el inyector 4 correctamente
9	Check Engine	Check Engine	Activo	El Check Engine se activa al alimentar la ECU
10	Relé Bomba	Relé Bomba	Activo	El relé de la bomba se activa 3s al alimentar la ECU y se activa todo el tiempo al iniciar la simulación.
11	Relé del Ventilador	Relé del Ventilador	Inactivo	No Conectado
12	IAC	IAC	Activo	La ECU envía pulsos de activación a la válvula IAC de acuerdo a las condiciones del vehículo



Parámetros de entrada a la ECU

Sensor	Vmax (V)	Vmin (V)	<i>Vpp</i> (<i>V</i>)	Vrms (V)	Frecuencia (Hz)
CKP antimativa 1 9 Oscil Isocopia Treducido per Altrificación PALIL res autoresi cacarrans. cos 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.26	-6.81	13.1	4.36	744
Ozel linerapie Traducido per All'Ottolico MCLL'era, estat resistance esta con Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta con Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta con Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta con Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta con Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance esta Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance estat Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance estat Osel linerapia Traducido per All'Ottolico MCLL'era, estat resistance estat resistan	1.05	0.17	0.86	0.72	

Parámetros de entrada a la ECU

Señales de inyectores y bobinas

Actuador

Oscilograma

Osciloscopio Traducido por AUTOTRONICA PACIL ** www. autotrosicacursos. com*

Topo

Traducido por AUTOTRONICA PACIL ** www. autotrosicacursos. com*

Tradicion ** of the company o

Inyector 1

CH3.Vamp = 63.4V
CH3.Period = 28.4mS

CH3.Feq = 35.24Hz

Osciloscopio Traducido por AUTOTRONICA FACIL "www. autotronicacursos. com

Bobina 1

Resultados

Actuador	Periodo (ms)	Tiempo Activación (ms)	Frecuenci a (Hz)	Amplitud (V)
Inyector 1	56.7	5.5	17.65	78.1
Bobina 1	28.4	6.8	35.24	63.4

Actuador	Estado	Observación
Check Engine	Inactivo	Se activa durante 3 segundos
Relé de la Bomba	Activo	Se activa al enviar la señal del CKP a la ECU
Relé del Ventilador	Inactivo	No Conectado
IAC	Activo	Cerrado

<u>Designación</u>	Unidad	Valor
RPM	Rev/min	2019
MAF	in/Hg	15.2
ECT	°C	102
IAT	°C	21
TPS	%	64.3
O2 Banco1	V	0.46
O2 Banco2	V	0.45
Avance de		
sincronización de	Grados	29
encendido - Cilindro 1		
Carga del motor	%	76

CONCLUSIONES

- Frente a la evidencia presentada, se diseñó y construyó satisfactoriamente un banco de pruebas para diagnóstico y reparación de Módulos de Control Electrónico Automotriz, capaz de simular señales de los principales sensores del vehículo cubriendo más del 80% en marcas, permitiendo la polarización de las ECM activando a los diferentes actuadores de simulación, dando lugar a un diagnóstico efectivo del 90% de confiabilidad.
- Existen marcas de vehículos que utilizan un voltaje de referencia para el sensor MAF, MAP, VSS, CMP, todos de efecto Hall de 5 ó 12 voltios, para ello se realizó un estudio previo acerca de los parámetros de funcionamiento de los sensores y actuadores.
- El diseño en software para esquemas de circuitos eléctricos y electrónicos permite manipular a conveniencia el circuito y todos los componentes a utilizar, evitando el despilfarro de dinero por ende el de elementos, conjuntamente con la opción de simulación asiste a depurar errores y optimizar los mismos.
- La utilización de placas electrónicas brinda orden, seguridad y un cómodo montaje de los componentes, así como también un fácil acople de cables de conexión evitando el cableado tipo spaghetti.

- Se utilizó el programa para diseño asistido por computador, SOLIDWORKS, el cual ayuda a tener una previsualización del armazón, de tal manera mejorar la presentación y perfeccionar la calidad del diseño del equipo para diagnostico EDA.
- De acuerdo a la información recopilada en los Datasheet se incorporó un patrón genérico de designación de pines al equipo de diagnóstico, facilitando la conexión con las unidades de control del mismo modo se realizó cables de comunicación libre con el fin de evitar cortocircuito.
- Mediante la polarización de computadoras automotrices y el pin Data correspondiente se comprobó la activación de las bobinas, inyectores, check engine, relé de la bomba, relé del ventilador, solenoides, válvulas IAC permitiendo visualizar su funcionamiento a través de indicadores led obteniendo datos en tiempo real por medio del scanner.
- Se generó un manual técnico de funcionamiento donde el operador puede informarse de las funcionalidades, características, interfaz de control, mandos, requerimientos, advertencias y virtudes que dispone el equipo de diagnóstico.

RECOMENDACIONES

- Para un adecuado uso del equipo se recomienda que el operador lea detenidamente el manual técnico de funcionamiento y se relacione con los mando y la interfaz de control para inicio de la simulación.
- Utilizar la fuente de alimentación especificada en el diseño del equipo, en el caso de que se vaya a ocupar otra fuente asegurarse que el voltaje se encuentre en el rango de 11 a 14 voltios en corriente continua, puesto que el banco está diseñado por componentes eléctricos que no soportan un voltaje mayor.
- Es indispensable que el operador cuente con la distribución de pines específico del módulo de control electrónico que se va a diagnosticar, debido a que no contar con el listado de pines correcto existe la posibilidad de que se genere un cortocircuito interno al alimentar la computadora.
- Conectar todas las líneas de alimentación y de masa de manera correcta de acuerdo al pinado, tomando en cuenta que en algunas marcas de ECUs requieren conectar a masa el chasis de la computadora.
- El equipo dispone de una fuente de alimentación independiente para los sensores, sin embargo, también proporciona la opción de alimentar desde el módulo de control con el fin de evitar numerosas conexiones.

- Se debe seleccionar apropiadamente la configuración de los sensores con el que trabaja el módulo de control, puesto que el equipo dispone de señales analógicas y digitales según requiera el funcionamiento de la ECM, en el caso de que la configuración sea incorrecta no generará los parámetros adecuados de operación.
- Si el medidor de voltaje Digital marca un amperaje mayor a 3000mA apagar inmediatamente el equipo.
- No conectar fuentes de voltaje, masa, en los terminales tipo Jack.
- En el caso de que el equipo no encienda, reemplazar el fusible (3A) del circuito fuente ubicado en la parte posterior del banco.
- Para medir señales de las bobinas e inyectores mediante un osciloscopio es indispensable usar atenuadores para evitar daños en el equipo de medición, puesto que generan picos de voltaje excesivos.
- El equipo se diseñó para mantenerse en forma horizontal, se recomienda usar el banco en lugares estáticos para evitar caídas o daños en el mismo.

VIDEO

