

DEPARTAMENTO DE CIENCIAS ESPACIALES CARRERA DE TECNOLOGÍA MECÁNICA AERONÁUTICA MENCIÓN AVIONES

MONOGRAFÍA: PREVIO A LA OBTENCIÓN DEL TÍTULO DE TECNÓLOGO EN: MECÁNICA AERONÁUTICA MENCIÓN AVIONES

AUTOR: GANCHALA CALVA, ADÁN MARCELO

DIRECTOR: TLGO. INCA YAJAMÍN, GABRIEL SEBASTIÁN

TEMA: "INSPECCIÓN DEL SISTEMA ALTIMÉTRICO, DE ACUERDO A LA INFORMACIÓN TÉCNICA ESPECIFICADA EN LA RDAC 043 "MANTENIMIENTO", APLICABLE A LA AERONAVE HAWKER SIDDELEY 125-400 PERTENECIENTE A LA UNIDAD DE GESTIÓN DE TECNOLOGÍAS ESPE-UGT".

PLANTEAMIENTO DEL PROBLEMA DE INVESTIGACIÓN

Antecedentes: Escuela de Técnicos en Mantenimiento Aeronáutico RDAC 067

Planteamiento del problema: Tareas de mantenimiento limitadas por falta de equipos que deben ser utilizados tal como lo especifica la información técnica.

Justificación e Importancia: Adquisición de un equipo con tecnología de punta, factibilidad con los recursos necesarios para la consolidación del proyecto.

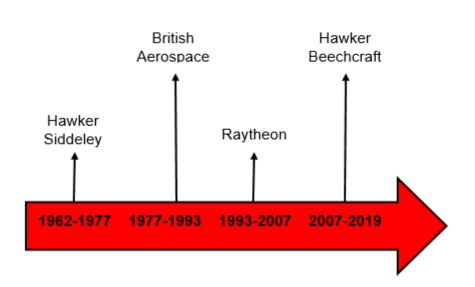
Alcance: adecuada formación teórica-práctica, calibración de los instrumentos de vuelo en base a la información técnica disponible vigente en el estado ecuatoriano

OBJETIVO GENERAL

 Inspeccionar el sistema altimétrico, de acuerdo a la información técnica especificada en la RDAC 043 "Mantenimiento", aplicable a la aeronave Hawker Siddeley 125-400 perteneciente a la Unidad de Gestión de Tecnologías ESPE-UGT.

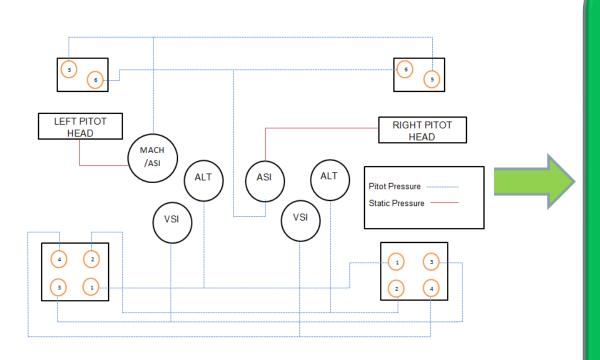
OBJETIVOS ESPECIFÍCOS

Recopilar toda la información técnica necesaria para la inspección del sistema altimétrico de la aeronave Hawker Siddeley 125-400.


Implementar el equipo de pruebas del sistema pitot estático, el cual permitirá brindar soporte técnico adecuado al sistema altimétrico.

Realizar la inspección el sistema altimétrico en base a la RDAC 043 (Apéndice 3), a través de la utilización del equipo de pruebas.

HISTORIA DE LA AERONAVE HAWKER SIDDELEY 400-125


Birreactor de transporte ejecutivo, diseñado originalmente por de Havilland a inicios de los años 60 del pasado siglo, como DH. 125 Jet Dragon, es producido en serie por Hawker Siddeley tras el vuelo del prototipo el 13 de agosto de 1962.

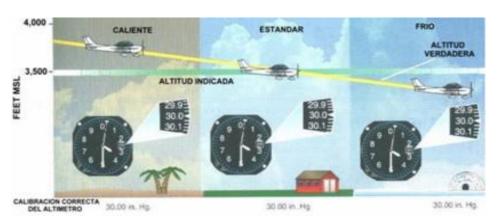
Fabricante	Hawker Siddeley Aviation Ltd.
Propósito	Transporte ejecutivo de mediano alcance.
Tripulación	Dos
Capacidad	Siete pasajeros
	Dimensiones
Envergadura	14,32 mts.
Largo	14,42 mts.
Alto	5,03 mts.
Peso	10555 Kgs.
	Prestaciones
Velocidad Máxima	695 Kph
Alcance	2600 Km
Autonomía	2 horas y media
Motor	2 turborreactores Rolls Royce Viper 522 de 1525 kg de empuje.

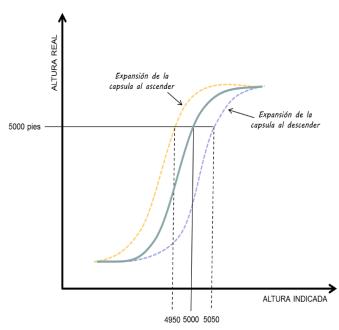
SISTEMA PITOT ESTÁTICO DE LA AERONAVE HAWKER SIDDELEY 400-125.

sistema pitotestático es un sistema que mediante la presión del aire de impacto que recibe la toma de pitot y la presión estática del aire que recibe la toma estática proporcionan información adecuada a cada uno de los instrumentos de vuelo operados a presión.

ALTÍMETRO, INDICADOR DE VELOCIDAD DEL AIRE, INDICADOR DE ASCENSO VERTICAL

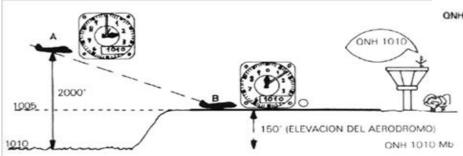




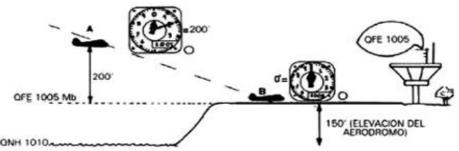


TIPOS DE ERRORES ALTÍMETRICOS

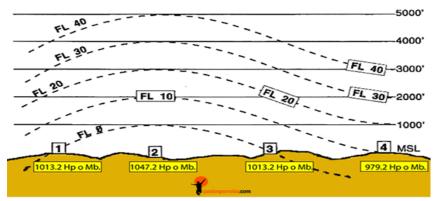
Error de histéresis.



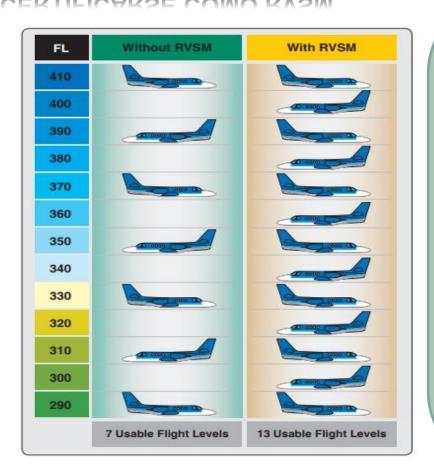
Error de temperatura media de la columna de aire.



TIPOS DE PRESIÓN REFERENCIAL


QFE (código para la presión atmosférica en la elevación del aeródromo).

QNE (código para la distancia atmosférica desde un aeródromo dado a la capa isobárica de 1013.2 mb).



QNH (código para la presión atmosférica a nivel del mar).

SEPARACIÓN VERTICAL MÍNIMA REDUCIDA, OBJETIVO, REQUISITOS PARA CERTIFICARSE COMO RVSM

- El avión debe ser fabricado según un diseño nominalmente idéntico, y ser aprobado bajo el mismo certificado de tipo, una enmienda del certificado de tipo o un certificado de tipo suplementario, según corresponda;
- El sistema estático de cada avión debería ser nominalmente idéntico y ser instalado de tal manera y posición que sea igual a los de los otros aviones del grupo. Las correcciones del error de la fuente estática (SSE) deberían ser idénticas para todos los aviones del grupo; y
- Las unidades de aviónica instaladas en cada avión, para que cumplan los requisitos del equipo mínimo RVSM de este apéndice deben ser: |A. Fabricadas con la misma especificación del fabricante y deben tener el mismo número de parte; o B. De otro fabricante o de un número de parte diferente, si el solicitante demuestra que el equipo proporciona una performance de sistema equivalente. (RDAC 091).

REGULACIÓN TÉCNICA RDAC 043 "MANTENIMIENTO".

APÉNDICE 3 "INSPECCIONES Y PRUEBAS DE SISTEMA ALTIMÉTRICO.

La regulación aeronáutica de aviación civil 043, mediante su apéndice 3 establece lo siguiente, la información contenida en el presente documento es aplicable cuando los manuales de mantenimiento de la aeronave no han desarrollado esta prueba. (CIVIL, 2017).

PRUEBAS DE ALTIMETRÍA							
INFORMACIÓN ESTABLECIDA EN LAS NORMATIVA DE AVIACIÓN CIVIL							
	Inspección de equipos e Instrumentos						
	Cuando no se encuentra información técnica por parte del						
	fabricante para períodos de inspección, el explotador debe						
RDAC 91	realizar la siguiente inspección:						
	Por lo menos una inspección al sistema altimétrico cada						
	24 meses, en concordancia al Apéndice 3 de la RDAC						
	043.						

BANCOS DE PRUEBA PARA EL SISTEMA ALTIMÉTRICO, CARACTERISTÍCAS.

BANCOS DE PRUEBA PITOT STATICO							
Equipo	PRESTON PRESSURE	BARFIELD DPS	BARFIELD DPS 500				
Características	PS 525 A	450					
Rango de altitud	-1000 a 50000 ft	-2000 a 60000 ft	-3000ft a 105000 ft				
Rango de velocidad	18 a 650 knots	0.00 - 650.0	20 a 850 knots				
		knots					
Temperatura de	-32°F a 150°F	32°F a 122°F	14°F a + 122°F				
operación							
Operación de la	-1000 a 50000 ft	-2000 a 60000 ft	80000 ft				
bomba							
Mach/epr	0,00 - 1.00/ 0.07 - 6.00	0.16 a 2.8/ 0.1 a	0.16 a 6.5 / 0.1 a 10				
		10.0					
Peso	20 lbs (9kg)	33 lbs (15 kg)	63.8 lbs (28.9 kg)				
Costo	5495.00 USD	18975.00USD	27392.00 USD				

DESARROLLO DEL TEMA

Ponderación del equipo de pruebas pitot-estático, Selección.

N°	EQUIPO CARACTERÍSTICAS	PREST	ON PRESSU	JRE PS	BARFIELD DPS 450		BARFIELD DPS 500		DPS 500	
1	Rango de altitud	20%	3	0.6	20%	3	0.6	20%	4	0.8
2	Rango de velocidad	15%	2	0.3	15%	3	0.45	15%	4	0.6
3	Temperatura de operacion	5%	3	0.15	5%	2	0.1	5%	4	0.2
4	Operación de la bomba	15%	2	0.3	15%	3	0.45	15%	4	0.6
5	Mach/EPR	5%	2	0.1	5%	3	0.15	5%	4	0.2
6	Peso	10%	4	0.4	10%	2	0.2	10%	1	0.1
7	Costo	30%	4	1.2	30%	2	0.6	30%	1	0.3
	Seleccion Prevista	100%		3.05	100%		2.55	100%		2.8

Chequeo de Tránsito, Remoción, limpieza.

Inspección, instalación.

información obtenida en el AC 43.13-1B (Inspección del sistema) y a la información del AMM 34-11-00 Pág 201-207

Pruebas al sistema altimétrico de la aeronave Hawker Siddeley 400-125.

Alimentación de altímetros del aeronave al equipo de pruebas PS 525 A.

Ajueste de los altímetros.

Energizado de la aeronave Hawker Siddeley 400-125.

Alimentación y encendido del equipo de pruebas PS 525 A.

Prueba de error de escala de altímetros.

Altitud (Pies)	Presion equivalente(Pulgadas)	Tolerancia +(Pies)	Comandan te	Operativo	Primer oficial	Operativo
-1000	31.018	20	-1000	Si	-1000	Si
0	29.921	20	0	Si	0	Si
500	29.385	20	510	Si	500	Si
1000	28.856	20	1000	Si	1020	Si
1500	28.335	25	1500	Si	1520	Si
2000	27.821	30	2010	Si	2000	Si
3000	26.817	30	3020	Si	3000	Si
4000	25.842	35	3650	No	4000	Si
6000	23.978	40	6000	Si	6030	Si
8000	22.225	60	8010	Si	8000	Si
10000	20.577	80	10010	Si	10000	Si
12000	19.029	90	12000	Si	12000	Si
14000	17.577	100	14000	Si	14000	Si
16000	16.216	110	16020	Si	16040	Si
18000	14.942	120	18040	Si	18000	Si
20000	13.750	130	19600	No	20040	Si
22000	12.636	140	22100	Si	22040	Si
25000	11.104	155	25050	Si	25060	Si
30000	8.885	180	30000	Si	30000	Si
35000	7.041	205	34775	No	35000	Si

Prueba a 4000ft altímetro izquierdo.

Prueba a 20000ft altímetro izquierdo.

Prueba a 35000ft altímetro izquierdo.

Prueba a 4000ft altímetro derecho.

Prueba a 20000ft altímetro derecho.

Prueba a 35000ft altímetro derecho.

Error de escala barométrica.

Presión (Pulgada s de hg)	Diferencia de Altitud (pies)	Tolerancia Altitud (pies)	Comandante Altitud (pies)	Operativo	Primer Oficial Altitud (pies)	Operativo
28,10	-1.727	25 ft	6900 ft	Si	6900 ft	Si
28,50	-1.340	25 ft	7300 ft	Si	7300 ft	Si
29,00	-863	25 ft	7780 ft	Si	7780 ft	Si
29,50	-392	25 ft	8255 ft	Si	8260 ft	Si
29,92	0	25 ft	8640 ft	Si	8640 ft	Si
30,50	+531	25 ft	9170 ft	Si	9170 ft	Si
30,90	+893	25 ft	9530 ft	Si	9530 ft	Si
30,99	+974	25 ft	9600 ft	Si	9600 ft	Si

Prueba de diferencia de presión- altitud 29,50 Inhg.

		•		•
Cálculo	Instrumento	Tolerancia	Criterio de operación	
8640ft-392ft= 8248ft	8255ft	+25ft	Operativo	8

Prueba de diferencia de presión- altitud 29,92 Inhg.

Cálculo	Instrumen to	Tolerancia	Criterio de operación
8640ft-0ft= 8640ft	8640ft	+25ft	Operativo

Prueba de diferencia de presión- altitud 30,50 Inhg.

Cálculo	Instrumento	Tolerancia	Criterio de oeración
8640ft+531ft=9710ft	9710ft	+25ft	Operativo

Observaciones en los instrumentos de altímetro.

Durante las pruebas al que fue sometido el sistema altimétrico de la aeronave se observo que la caja del altímetro del lado izquierdo presentó una falla en la perilla que permite el ajuste de la presión referencial, para lo cual se requiere una reparación que debe ser realizado por personal aeronáutico debidamente capacitado y habilitado para reparaciones de cajas altimétricas.

Resultados de las pruebas de altimetría.

Mediante la información técnica establecida en el apéndice 3 de la RDAC 043, nos manifestó realizar una prueba de un rango de entre 1 minuto a 10 minutos para lo cual se aplicó pruebas de un rango de 2 minutos, mismos rangos de pruebas determinaron que los altímetros de la aeronave Hawker Siddeley 400-125, se encuentran dentro de los parámetros de prueba de error de escala barométrica establecidos en la tabla IV.

CONCLUSIONES

- Con la información técnica obtenida en el AMM de la aeronave Hawker Siddeley 400-125, se realizó la inspección visual en las cañerías del sistema pitot-estático, mediante la inspección se logró constatar que las cañerías de la toma pitot y toma estática se encontraban conectados sin ninguna discrepancia por corrosión e inseguridad de instalación.
- Al obtener la información necesaria sobre tres equipos de pruebas del sistema pitot-estático y posterior análisis de estudio de los diferentes parámetros tanto de operación, peso, costo, etc., se tomó la decision de adquirir un equipo de pruebas PRESTON PRESSURE PS 525 A.

CONCLUSIONES

Con la información técnica establecida en la RDAC 043 "Mantenimiento" Apéndice 3, y mediante la utilización del equipo PSP 525 A, se permitió realizar las pruebas al sistema altimétrico de la aeronave Hawker Siddeley 400-125, perteneciente a la Unidad de Gestión de Tecnologías UGT-ESPE, mismas pruebas determinaron que los altímetros presentaban condiciones optimas de operación y que el altímetro del comandante presentaba un defecto operacional en la perilla que permite el ajuste de la escala de la presión barométrica, el altímetro del primer oficial no presenta defectos operacionales ni funcionales.

RECOMENDACIONES

Implementar adecuadas instalaciones de trabajo y preservación de las aeronaves, conexiones 220 voltios, Implementar acoples de pitot acorde al número de parte del pitot de la aeronave Hawker Siddeley 400-125 para mantener la precisión en las pruebas de altímetros, indicadores de velocidad del aire, sistemas pitot-estáticos y otros dispositivos de vacío y baja presión, implementar una planta externa trifásica para energizar las aeronaves.

RECOMENDACIONES

- Capacitar a los docentes de carrera mediante exposiciones y demostraciones de las diferentes operaciones de pruebas del equipo PSP 525 A, debiéndose leer el manual del equipo previa a la manipulación del mismo, para evitar daños en los instrumentos a probarse y en el equipo PSP 525 A de pruebas.
- Utilizar los respectivos equipos de protección, información técnica y legal aplicable a la aeronave y equipo de pruebas PSP 525 A, utilizar la herramienta y materiales adecuados para realizar las debidas inspecciones sobre las cañerías del sistema de pitot-estatico, mantener el area de trabajo limpia y organizada.

MUCHAS GRACIAS POR SU ATENCIÓN

