# CAPÍTULO 6 PRUEBAS DE FUNCIONAMIENTO

## **6.1 SISTEMA MECÁNICO**

Una vez que se ha completado el montaje total de la máquina, está lista para trabajar y comprobar sus diferentes sistemas, en el caso del sistema mecánico, es decir el sistema motriz que incluyen las catalinas, cadena, eje motriz, rodamientos, además la estructura soporte, las primeras pruebas deben realizarse con cuidado; para el caso de la extrusora, por recomendaciones y experiencia las pruebas se realizaron de la siguiente manera en orden secuencial:

Tabla 6.1 Método de prueba de funcionamiento del sistema mecánico

| Acción                                                                                | Partes mecánicas<br>involucradas | Verificación                                                             | Observaciones                                                                                                                  |
|---------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Precalentar el tornillo a través de las bandas calefactoras treinta minutos a 260 °C. | Tornillo extrusor                | El tornillo soporta altas temperaturas, incluso más de 260 °C            | El material ingresa en forma de escamas, en el caso del PET, se trabaja a                                                      |
|                                                                                       | Camisa                           | El material de la camisa soporta altas temperaturas                      | una temperatura de 260<br>°C                                                                                                   |
| Arrancar a baja                                                                       | Tornillo extrusor                | Entre el tornillo y la camisa<br>no se escucha ningún ruido<br>irregular | El variador de frecuencia                                                                                                      |
| velocidad y sin carga                                                                 | Moto-reductor                    | El moto-reductor trabaja<br>normalmente                                  | controla la velocidad a la<br>que trabaja el moto-<br>reductor, baja velocidad<br>es un rango considerado<br>entre 15 y 20 rpm |
|                                                                                       | Camisa                           | Entre el tornillo y la camisa<br>no se escucha ningún ruido<br>irregular |                                                                                                                                |

Tabla 6.1 Método de prueba de funcionamiento del sistema mecánico (continuación)

| Acción                                      | Partes mecánicas involucradas | Verificación                                                                                                                                                                   | Observaciones                                                                                            |
|---------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                             | Estructura soporte            | La estructura soporte no presenta ninguna alteración, la placa soldada a la estructura y empernada al moto-reductor, trabaja en óptimas condiciones.                           |                                                                                                          |
| Arrancar a baja<br>velocidad y sin<br>carga | Rodamientos                   | Los rodamientos tienen un comportamiento normal                                                                                                                                | El variador de frecuencias<br>controla la velocidad a la<br>que trabaja el moto-                         |
|                                             | Catalinas                     | Las catalinas transmiten el movimiento                                                                                                                                         | reductor, baja velocidad<br>es un rango considerado<br>entre 15 y 20 rpm                                 |
|                                             | Cadena                        | La cadena trabaja<br>normalmente                                                                                                                                               |                                                                                                          |
|                                             | Eje motriz                    | El eje motriz transmite el<br>movimiento al tornillo en<br>óptimas condiciones                                                                                                 |                                                                                                          |
|                                             | Tornillo extrusor             | Entre el tornillo y la camisa<br>no se escucha ningún ruido<br>irregular, nos da la pauta<br>para saber que el juego<br>existente es regular, el<br>tornillo no topa la camisa | La velocidad es baja, se introduce material en forma de escamas, puede                                   |
| Mantener la<br>velocidad e incluir<br>carga | Moto-reductor                 | El moto-reductor trabaja normalmente                                                                                                                                           | ser material molido o<br>pelletizado, en lo posible<br>de grano pequeño para no<br>estancar la máquina y |
|                                             | Camisa                        | Entre el tornillo y la camisa<br>no se escucha ningún ruido<br>irregular, nos da la pauta<br>para saber que el juego<br>existente es regular, el<br>tornillo no topa la camisa | para que no se produzcan<br>roturas o fisuras en el<br>tornillo                                          |

Tabla 6.1 Método de prueba de funcionamiento del sistema mecánico (continuación)

| Acción                                | Partes mecánicas involucradas | Verificación                                                                                                                                                                              | Observaciones                                                                                                                       |
|---------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                       | Estructura soporte            | La estructura soporte no presenta ninguna alteración, la placa soldada a la estructura y empernada al moto-reductor, trabaja en óptimas condiciones pesar de que las vibraciones aumentan | La velocidad es baja, se introduce material en                                                                                      |
| Mantener la velocidad e incluir carga | Rodamientos                   | Los rodamientos tienen un comportamiento normal                                                                                                                                           | forma de escamas, puede<br>ser material molido o<br>pelletizado, en lo posible<br>de grano pequeño para no<br>estancar la máquina y |
|                                       | Catalinas                     | Las catalinas transmiten el movimiento                                                                                                                                                    | para que no se produzcar<br>roturas o fisuras en e<br>tornillo                                                                      |
|                                       | Cadena                        | La cadena trabaja<br>normalmente                                                                                                                                                          |                                                                                                                                     |
|                                       | Eje motriz                    | El eje motriz transmite el<br>movimiento al tornillo en<br>óptimas condiciones                                                                                                            |                                                                                                                                     |
|                                       | Tornillo extrusor             | Entre el tornillo y la camisa<br>no se escucha ningún ruido<br>irregular, el tornillo no topa<br>la camisa a pesar de<br>aumentar la velocidad                                            | La velocidad se aumenta<br>en un rango de 20 a 50<br>rpm, que es la salida del                                                      |
| Aumentar la<br>velocidad con<br>carga | Moto-reductor                 | El moto-reductor trabaja<br>normalmente, así se<br>aumente la velocidad                                                                                                                   | moto-reductor, sin embargo gracias al variador de frecuencias se pueden llegar a obtener velocidades muy altas                      |

Tabla 6.1 Método de prueba de funcionamiento del sistema mecánico (continuación)

| Acción                          | Partes mecánicas involucradas | Verificación                                                                                                                                                                                                     | Observaciones                                                                                                  |
|---------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Aumentar la velocidad con carga | Camisa                        | Entre el tornillo y la camisa<br>no se escucha ningún ruido<br>irregular, nos da la pauta<br>para saber que el juego<br>existente es regular, el<br>tornillo no topa la camisa                                   |                                                                                                                |
|                                 | Estructura soporte            | La estructura soporte no presenta ninguna alteración, la placa soldada a la estructura y empernada al moto-reductor, trabaja en óptimas condiciones pesar de que las vibraciones aumentan y la velocidad también | La velocidad se aumenta<br>en un rango de 20 a 50<br>rpm, que es la salida del                                 |
|                                 | Rodamientos                   | Los rodamientos tienen un comportamiento normal                                                                                                                                                                  | moto-reductor, sin embargo gracias al variador de frecuencias se pueden llegar a obtener velocidades muy altas |
|                                 | Catalinas                     | Las catalinas transmiten el<br>movimiento, se escucha un<br>pequeño ruido producto de<br>las vibraciones                                                                                                         |                                                                                                                |
|                                 | Cadena                        | La cadena trabaja<br>normalmente                                                                                                                                                                                 |                                                                                                                |
|                                 | Eje motriz                    | El eje motriz transmite el<br>movimiento al tornillo en<br>óptimas condiciones, a<br>pesar del incremento de<br>velocidad                                                                                        |                                                                                                                |

Tabla 6.1 Método de prueba de funcionamiento del sistema mecánico (continuación)

| Acción                                                                                | Partes mecánicas involucradas | Verificación                                                                           | Observaciones                                                                                                                                                                  |
|---------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                       | Tornillo extrusor             | El tornillo extrusor se<br>detiene normalmente al<br>apagar el motor                   |                                                                                                                                                                                |
|                                                                                       | Moto-reductor                 | El moto-reductor se apaga normalmente                                                  |                                                                                                                                                                                |
|                                                                                       | Camisa                        | La camisa está caliente, sin<br>embargo, no ha sufrido<br>alteraciones                 |                                                                                                                                                                                |
| Apagar el motor y<br>el sistema de<br>calefacción                                     | Estructura soporte            | La estructura no presenta ningún fallo                                                 | La velocidad se reduce er<br>forma gradual hasta<br>obtener la velocidad<br>menor permitida de 15<br>rpm y se proceden a<br>apagar tanto calefactores<br>como el moto-reductor |
| cuando el material<br>dentro de la<br>camisa haya sido<br>extruido en su<br>totalidad | Rodamientos                   | Los rodamientos mantienen<br>sus propiedades, sin<br>ninguna alteración                |                                                                                                                                                                                |
|                                                                                       | Catalinas                     | Las catalinas no sufren alteraciones                                                   |                                                                                                                                                                                |
|                                                                                       | Cadena                        | La cadena se detiene<br>normalmente sin sufrir daño<br>alguno                          |                                                                                                                                                                                |
|                                                                                       | Eje motriz                    | El eje motriz se detiene, no<br>sufre ninguna alteración y<br>mantiene sus propiedades |                                                                                                                                                                                |

Al no haber anormalidades se procede a comprobar el sistema eléctrico electrónico, para comenzar el funcionamiento normal.

## 6.2 SISTEMA ELÉCTRICO - ELECTRÓNICO

Para la comprobación del sistema eléctrico-electrónico, se realizaron las mismas acciones que en el sistema mecánico como a continuación se indica, esta vez las partes involucradas en las verificaciones de funcionamiento son las eléctrico-electrónicas.

Tabla 6.2 Método de prueba de funcionamiento del sistema eléctrico-electrónico

| Acción                                                                                | Partes eléctrico-<br>electrónicas<br>involucradas | Verificación                                                                                                                                                                       | Observaciones                                                                                                              |
|---------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                                                                       | Termocuplas                                       | Las termocuplas sensan sin ninguna anomalía, se comprueba la temperatura con una termocupla externa                                                                                |                                                                                                                            |
|                                                                                       | Bandas calefactoras                               | Las bandas calefactoras trabajan normalmente calientan más a medida que transcurre el tiempo                                                                                       |                                                                                                                            |
| Precalentar el tornillo a través de las bandas calefactoras treinta minutos a 260 °C. | Controles digitales de temperatura                | Los controles digitales trabajan sin ninguna anomalía, se visualiza claramente la temperatura que sensan las termocuplas                                                           | Es importante conectar la máquina a una red de 220 v trifásica, puesto que el motor trabaja con ese voltaje y es trifásico |
|                                                                                       | Contactores                                       | Los contactores trabajan perfectamente, apagan los controles de temperatura cuando se excede de lo establecido o los prende cuando se bajan de lo señalado con el indicador manual |                                                                                                                            |

Tabla 6.2 Método de prueba de funcionamiento del sist. eléctrico-electrónico (continuación)

| Acción                                      | Partes eléctrico-<br>electrónicas<br>involucradas | Verificación                                                                                                                                                  | Observaciones             |
|---------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                             | Variador de<br>frecuencias                        | El variador trabaja con<br>normalidad se empieza<br>desde cero subiendo la<br>frecuencia y la velocidad de<br>giro aumenta como se<br>esperaba                |                           |
|                                             | Moto-reductor                                     | El moto-reductor enciende normalmente                                                                                                                         |                           |
|                                             | Termocuplas                                       | Las termocuplas sensan sin<br>ninguna anomalía, se<br>comprueba la temperatura<br>con una termocupla externa                                                  |                           |
| Arrancar a baja<br>velocidad y sin<br>carga | Bandas calefactoras                               | Las bandas calefactoras<br>aumentan la intensidad de<br>calor sin ninguna novedad                                                                             |                           |
|                                             | Controles digitales de<br>temperatura             | Los controles digitales trabajan sin ninguna anomalía, se visualiza claramente la temperatura que sensan las termocuplas                                      |                           |
|                                             | Contactores                                       | Los contactores mantienen la temperatura que es indicada mediante los controles de temperatura, encendiendo o apagando el paso de corriente según se necesite |                           |
| Mantener la<br>velocidad e incluir<br>carga | Variador de<br>frecuencias                        | El variador mediante una perilla se establece la velocidad a la que trabajará y permanece constante mientras se requiera sin ningún imprevisto                | i camisa por medio de las |

Tabla 6.2 Método de prueba de funcionamiento del sist. eléctrico-electrónico (continuación)

| Acción                                | Partes eléctrico-<br>electrónicas<br>involucradas | Verificación                                                                                                                                                  | Observaciones                                                                                                            |
|---------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                       | Moto-reductor                                     | El moto-reductor continúa<br>trabajando normalmente                                                                                                           | temperatura alcanzada<br>en el interior de la<br>camisa por medio de las<br>bandas calefactoras y                        |
|                                       | Termocuplas                                       | Las termocuplas sensan sin<br>ninguna anomalía, se<br>comprueba la temperatura<br>con una termocupla externa                                                  |                                                                                                                          |
| Mantener la velocidad e incluir       | Bandas calefactoras                               | funcionan normalmente a la                                                                                                                                    |                                                                                                                          |
| carga                                 | Controles digitales de temperatura                | Se baja o sube la temperatura según requerimientos visuales en el material, y los controles funcionan con total normalidad                                    |                                                                                                                          |
|                                       | Contactores                                       | Los contactores mantienen la temperatura que es indicada mediante los controles de temperatura, encendiendo o apagando el paso de corriente según se necesite |                                                                                                                          |
| Aumentar la<br>velocidad con<br>carga | Variador de<br>frecuencias                        | Mediante la perilla se<br>aumenta de frecuencia y por<br>lo mismo de velocidad,<br>trabaja perfectamente                                                      | El variador de frecuencias trabaja en Hertzios, hay que hacer una conversión para saber en que velocidad angular estamos |
|                                       | Moto-reductor                                     | El moto-reductor trabaja<br>normalmente, así se<br>aumente la velocidad                                                                                       | angular estamos<br>trabajando, la<br>conversión es por cada<br>Hz que se aumenta la<br>velocidad angular sube<br>1.5 rpm |

Tabla 6.2 Método de prueba de funcionamiento del sist. eléctrico-electrónico (continuación)

| Acción                                                                                                                | Partes eléctrico-<br>electrónicas<br>involucradas | Verificación                                                                                                                                                                 | Observaciones                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aumentar la<br>velocidad con<br>carga                                                                                 | Termocuplas                                       | Las termocuplas sensan sin ninguna anomalía, se comprueba la temperatura con una termocupla externa                                                                          | El variador de frecuencias trabaja en Hertzios, hay que hacer una conversión para saber en que velocidad angular estamos trabajando, la conversión es por cada Hz que se aumenta la velocidad angular sube 1.5 rpm |
|                                                                                                                       | Bandas calefactoras                               | Las bandas calefactoras funcionan normalmente a la temperatura esperada y funden el material                                                                                 |                                                                                                                                                                                                                    |
|                                                                                                                       | Controles digitales de temperatura                | Se baja o sube la temperatura según requerimientos visuales en el material, y los controles funcionan con total normalidad                                                   |                                                                                                                                                                                                                    |
|                                                                                                                       | Contactores                                       | Los contactores mantienen la<br>temperatura que es indicada<br>mediante los controles de<br>temperatura, encendiendo o<br>apagando el paso de<br>corriente según se necesite |                                                                                                                                                                                                                    |
|                                                                                                                       | Variador de<br>frecuencias                        | Se baja la velocidad con la perilla hasta alcanzar frecuencia cero, no se suscita ningún problema se detiene con normalidad                                                  |                                                                                                                                                                                                                    |
| Apagar el motor y el sistema de calefacción cuando el material dentro de la camisa haya sido extruido en su totalidad | Moto-reductor                                     | El moto-reductor se apaga normalmente                                                                                                                                        | La velocidad se reduce<br>en forma gradual hasta<br>obtener velocidad cero                                                                                                                                         |
|                                                                                                                       | Termocuplas                                       | Las termocuplas dejan de<br>sensar y se apagan<br>normalmente                                                                                                                | y se proceden a apagar<br>tanto calefactores como<br>el moto-reductor                                                                                                                                              |
|                                                                                                                       | Bandas calefactoras                               | Las bandas calefactoras dejan de proveer calor a la camisa, se apagan normalmente                                                                                            |                                                                                                                                                                                                                    |

Tabla 6.2 Método de prueba de funcionamiento del sist. eléctrico-electrónico (continuación)

| Acción                                                                  | Partes eléctrico-<br>electrónicas<br>involucradas | Verificación                                                           | Observaciones                                                              |
|-------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Apagar el motor y<br>el sistema de<br>calefacción<br>cuando el material | Controles digitales de temperatura                | Los controles de temperatura<br>se apagan sin ninguna<br>irregularidad | La velocidad se reduce<br>en forma gradual hasta<br>obtener velocidad cero |
| dentro de la<br>camisa haya sido<br>extruido en su<br>totalidad         | Contactores                                       | Los contactores se apagan con normalidad                               | y se proceden a apagar<br>tanto calefactores como<br>el moto-reductor      |

### 6.3 VERIFICACIÓN DE PARÁMETROS DE FUNCIONAMIENTO

Para evaluar el funcionamiento de la máquina, se procedió a verificar los parámetros importantes en el proceso de extrusión, es decir, la temperatura, el flujo de material en su recorrido a través de la extrusora y como influye la variación de velocidad angular.

#### 6.3.1 TEMPERATURA ALCANZADA CON LOS CALEFACTORES

La máxima temperatura a la que se trabajó en la máquina fue de 280 °C, al extruir el material en estudio, PET. Los calefactores respondieron a medida que se incrementaba la temperatura mediante los controles digitales, obteniendo en un tiempo estimado de 25 minutos 280 °C, de igual forma la temperatura descendía si así eran los requerimientos en forma óptima, es decir tanto contactores, pirómetros y controles digitales han trabajo de la forma esperada. El elemento delgado de los calefactores flexibles, o abrazaderas, transfiere el calor eficientemente sobre la superficie de la camisa, además se ha comprobado que a pesar de las altas temperaturas no se degrada el material de las abrazaderas que es acero inoxidable, lo importante de éstas abrazaderas es su versatilidad, ya que, permite que abrace cualquier pieza, pues son adaptables en diámetro, longitud, formas, voltaje y potencia; éstos elementos resisten a la corrosión, vibración y condensación de humedad.



Fig. 6.1 Bandas de alta potencia y estándares



Fig. 6.2 Controles digitales de temperatura

#### 6.3.2 FLUJO DE MATERIAL FUNDIDO EN EL EXTRUSOR

El flujo de material a la salida de la boquilla o del cabezal, se lo regula través de dos parámetros principalmente, de la velocidad angular del tornillo principal controlada mediante el variador de frecuencia y de las temperaturas existentes en las bandas calefactoras examinadas mediante los controles digitales de temperatura; mediante la experiencia en las pruebas realizadas con PET, se ha llegado a la conclusión que el material debe salir de la boquilla manteniendo una aceptable viscosidad, debe tener una consistencia moldeable, es decir no debe

ser un fluido líquido, tampoco se debe permitir un fluido de material por gotas. Mediante la experiencia, también se ha observado que el flujo de material es óptimo si a medida que sale de la boquilla adquiere un color transparente; el color adquirido además significa en qué condiciones se encuentra el material a la salida, es decir influye sobre las características finales del material extruido.

Se ha observado que la forma final del material extruido se consigue mediante la forma de la boquilla, en este caso redonda. El flujo de material incide sobre la forma final ya que al no ser un flujo controlado pueden obtenerse formas irregulares, no deseadas, ya sean muy finas, muy gruesas o con diferentes espesores; por esto es de suma importancia el control sobre el flujo de material, para obtener la forma deseada y un material con características óptimas.



Fig. 6.3 Salida del material extruido

#### 6.3.3 VARIACIÓN DE LA VELOCIDAD ANGULAR DEL TORNILLO PRINCIPAL

Se ha observado en las pruebas de funcionamiento que si el material se adhiere al husillo y resbala sobre la pared de la camisa, entonces el arrastre es cero, y el material gira con el husillo. Si, el material no resbala con la pared de la camisa y resbala con el husillo, entonces el arrastre es máximo y el transporte de material ocurre.

El polímero experimenta fricción tanto en la pared de la camisa como en el husillo, las fuerzas de fricción determinan el arrastre que sufrirá el polímero, la variación de la velocidad que regula el variador de frecuencia aumenta el caudal o lo disminuye, así mismo permite el mayor o menor tiempo de residencia del material dentro de la camisa.

La variación de la velocidad angular en el husillo determinada a través de la velocidad a la que gira el eje motriz trabaja con normalidad, la facilidad de obtener velocidades a nuestra conveniencia se ven reflejadas en la calidad de un material final, influye de gran forma en el material obtenido.



Fig. 6.4 Variador de frecuencia

# 6.4 CORRECCIÓN DE ERRORES Y CALIBRACIÓN

El principal problema dentro de las pruebas de funcionamiento de la máquina ha sido las presiones generadas por el fluido, que en el caso del PET, para obtener un material con buenas propiedades, se necesita un fluido viscoso como se había explicado antes, lo cual provoca presiones estimables dentro de la camisa, por efecto del arrastre las presiones aumentan, y al salir por la boquilla se produce una caída de presión. Para las primeras pruebas se usó un cabezal de extrusión

que contiene una placa con perforaciones, llamada placa rompedora, el cabezal se lo ha roscado al tubo soldado a la camisa; las pruebas con una capacidad de producción baja, y con un recorrido grande de material para que se llene el cabezal, como en el caso de las pruebas que se han realizado, generaron un cúmulo de material dentro del cabezal lo que provocó la plastificación antes de la salida. Al provocarse determinada plastificación se generó una obstrucción y una sobrepresión, por lo cual se generaron grandes presiones dentro del cabezal, provocando el rompimiento de parte del tubo soldado a la camisa, en el cual estaba alojado el cabezal; se realizó el diseño de una nueva boquilla con dimensiones acordes con la capacidad de producción y se procedió a realizar varias pruebas, con velocidades altas y bajas, la boquilla nueva permite el paso normal de fluido y trabaja normalmente. Es recomendable limpiar la boquilla una vez al mes, para controlar el cúmulo de material dentro de la boquilla, sin ser una obligación puesto que se la trabajó durante días seguidos y por varias horas, sin tener ya el problema suscitado con el cabezal.



Fig. 6.5 Cabezal de extrusión en funcionamiento



Fig. 6.6 Boquilla de extrusión en funcionamiento

Una vez finalizado el montaje total del prototipo y concluidas las pruebas de funcionamiento, se procedió a realizar varias pruebas de extrusión para determinar la calidad del material reciclado. Para esto se utilizó PET molido de diferente naturaleza: lavado, contaminado y lavado/secado. Adicionalmente se realizaron ensayos mecánicos en el material original de los envases PET para determinar sus propiedades.

Inicialmente se realizó la extrusión a una temperatura de 260 °C y 250 °C (temperaturas de entrada y salida, respectivamente) y una velocidad de giro del tornillo de 45 rpm, obteniendo un material reciclado frágil que se caracteriza por su coloración grisácea.



Fig. 6.7 Material reciclado frágil

Posteriormente se fijaron las temperaturas de extrusión en 240 °C y 230 °C, junto con una velocidad de giro del tornillo de 33 rpm, obteniendo un material reciclado (filamentos) de tipo transparente que presentó mejores propiedades de resistencia. Estas temperaturas se mantuvieron luego para las siguientes pruebas.



Fig. 6.8 Filamentos transparentes de PET reciclado

Estos filamentos de tipo transparente se obtuvieron a partir de PET molido lavado; seguidamente se realizó una prueba con PET molido contaminado (sin proceso de lavado, con presencia de etiquetas, tapas, etc.) y se obtuvo filamentos de coloración opaca con propiedades de resistencia bajas.



Fig. 6.9 Filamentos de coloración opaca de PET reciclado

Finalmente se realizó la extrusión del PET molido, lavado y secado, obteniendo los mejores resultados en cuanto a las propiedades mecánicas. Para esta prueba fue necesario elevar las temperaturas de extrusión a 280 °C y 280 °C (temperaturas de entrada y salida, respectivamente), y se mantuvo la velocidad de rotación del tornillo en 33 rpm. El proceso de secado de las escamas de PET fue realizado en un horno tipo mufla a una temperatura de 150 °C durante un tiempo aproximado de 4 horas.