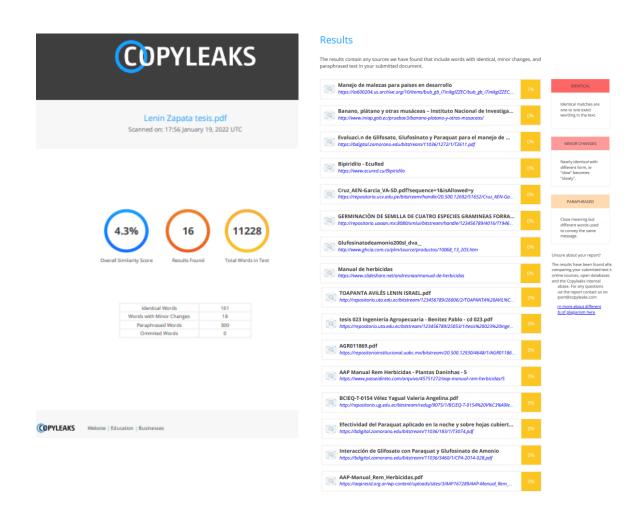


Determinación de las dosis óptimas de glifosato, glufosinato y paraquat para el control de malezas en plátano de alta densidad

Zapata Morales, Lenin Israel

Departamento de Ciencias de la Vida y la Agricultura


Carrera de Ingeniería Agropecuaria

Trabajo de titulación, previo a la obtención de del título de Ingeniero Agropecuario

Ulloa Cortázar, Santiago Miguel, PhD

02 de febrero del 2022

Reporte de verificación de contenido

Dr. Ulloa Cortázar Santiago Miguel, PhD
DIRECTOR

DEPARTAMENTO DE CIENCIAS DE LA VIDA Y LA AGRICULTURA CARRERA DE INGENIERIA AGROPECUARIA

CERTIFICADO DEL DIRECTOR

Certifico que el trabajo de titulación, "Determinación de las dosis óptimas de glifosato, glufosinato y paraquat para el control de malezas en plátano de alta densidad" fue realizado por el señor Zapata Morales Lenin Israel, el cual ha sido revisado y analizado en su totalidad por la herramienta de verificación de similitud de contenido; por lo tanto cumple con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, razón por la cual me permito acreditar y autorizar para que lo sustente públicamente.

Santo Domingo de los Tsáchilas, 02 de febrero de 2022

Dr. Ulloa Cortázar Santiago Miguel, PhD

C.C.: 1710450584

DEPARTAMENTO DE CIENCIAS DE LA VIDA Y LA AGRICULTURA CARRERA DE INGENIERIA AGROPECUARIA

RESPONSABILIDAD DE AUTORÍA

Yo, **Zapata Morales Lenin Israel**, con cedula de ciudadanía n° 1726625732 declaro que el contenido, ideas y criterios del trabajo de titulación: "**Determinación de las dosis óptimas de glifosato, glufosinato y paraquat para el control de malezas en plátano de alta densidad**" es de mi autoría y responsabilidad, cumpliendo con los requisitos legales, teóricos, científicos, técnicos, y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, respetando los derechos intelectuales de terceros y referenciando las citas bibliográficas.

Santo Domingo de los Tsáchilas, 02 de febrero de 2022

Zapata Morales Lenin Israel

C.C.: 1726625732

DEPARTAMENTO DE CIENCIAS DE LA VIDA Y LA AGRICULTURA CARRERA DE INGENIERIA AGROPECUARIA

AUTORIZACIÓN DE PUBLICACIÓN

Yo, **Zapata Morales Lenin Israel**, con cedula de ciudadanía nº 1726625732 autorizo a la Universidad de las Fuerzas Armadas ESPE publicar el trabajo de titulación: "**Determinación de las dosis óptimas de glifosato, glufosinato y paraquat para el control de malezas en plátano de alta densidad**" en el Repositorio Institucional, cuyo contenido, ideas y criterios son de nuestra responsabilidad.

Santo Domingo de los Tsáchilas, 02 de febrero de 2022

Zapata Morales Lenin Israel

ford Links

C.C.: 1726625732

Dedicatoria

Esta tesis la dedico a mi madre Deysi Morales por brindarme su apoyo incondicional, su motivación, su cariño que siempre ha estado presente a lo largo de mi vida, gracias por siempre creer y confiar en mí.

A mi padre Juan Zapata por enseñarme los valores correctos que han sido de ayuda en mi vida, su motivación y sobre todo por su sacrificio que me han permitido llegar a culminar mi carrera.

A mis hermanos Juan y Sebastián por estar presentes durante esta etapa de mi vida, por brindarme su motivación y ánimo para enfrentar los desafíos que se han presentado a lo largo de mi vida.

A mis amigos que han estado presente en todo este proceso académico, por sus consejos que me ayudaron a no rendirme y seguir adelante, su cariño, su apoyo y guía para seguir por el camino correcto.

Agradecimiento

En primer lugar, agradezco Dios, por guiarme durante todo este proceso académico y durante toda mi vida, por brindarme salud, bienestar que me permitieron alcanzar mis objetivos y culminar mi carrera.

A la Universidad de las Fuerzas Armadas "ESPE", Extensión Santo Domingo, por permitirme realizar la esta investigación dentro de sus instalaciones.

Agradezco a mis docentes de la Universidad de las Fuerzas Armadas que me enseñaron y brindaron sus experiencias, gracias por sus consejos y su guía durante todo mi proceso de formación académica.

Por último expreso mi agradecimiento al Dr. Santiago Ulloa, por ser parte de todo este proceso, por brindarme su guía, su paciencia, y conocimientos que permitieron culminar este trabajo.

Índice de contenidos

Carátula	1
Reporte de verificación de contenido	2
Certificación	3
Responsabilidad de Autoría	4
Autorización de Publicación	5
Dedicatoria	6
Agradecimiento	7
Índice de contenidos	8
Índice de figuras	11
Índice de tablas	12
Resumen	14
Abstract	15
Capítulo I	16
Introducción	16
Capítulo II	18
Marco teórico	18
El plátano en Ecuador	18
Malezas	19
Control de Malezas	19
Herbicidas	19

Glifosato	20
Glufosinato	21
Paraquat	21
Resistencia a los herbicidas	22
Tolerancia a los herbicidas	23
Factores que aumentan el riesgo de resistencia	23
Efectos de competencia por malezas	24
Control químico en malezas	25
Capítulo III	26
Metodología	26
Ubicación del área experimental	26
Ubicación política	26
Ubicación geográfica	26
Ubicación ecológica	27
Materiales	27
Instalación del ensayo	27
Recolección de muestras, pesaje y secado	27
Métodos	28
Diseño Experimental	28
Análisis estadístico	30
Métodos específicos del manejo de la investigación	32

Capítulo IV34
Resultados y Discusión
Biomasa fresca34
Dosis óptima biomasa37
Biomasa seca39
Diagnostico visual42
Dosis óptima control visual5
Composición botánica53
Capítulo V6
Conclusiones6
Recomendaciones62
Bibliografía6

Índice de figuras

Figura 1 Ubicación geográfica del lugar donde se instalo y se llevo a cabo el ensayo26
Figura 2 Distribución de las unidades experimental dentro del área de investigación29
Figura 3 Comparación de la biomasa fresca, obtenida a los 28 días, bajo diferentes dosis
de Glifosato, Glufosinato y Paraquat36
Figura 4 Dosis óptima en base a la reducción de biomasa fresca de malezas en plátano
con mezclas de Glifosato, Glufosinato y Paraquat38
Figura 5 Comparación de la biomasa seca obtenida en las parcelas de plátano con
mezclas de Glifosato, Glufosinato y Paraquat41
Figura 6 Figura 6 Evaluación visual del control de malezas en plátano con Glifosato,
Glufosinato y Paraquat a los 7 dias44
Figura 7 Evaluación visual del control de malezas en plátano con Glifosato, Glufosinato y
Paraquat a los 14 dias46
Figura 8 Evaluación visual del control de malezas en plátano con Glifosato, Glufosinato y
Paraquat a los 21 dias48
Figura 9 Evaluación visual del control de malezas en plátano con Glifosato, Glufosinato y
Paraquat a los 28 dias50
Figura 10 Figura 10 Dosis óptima en base al control visual de malezas en plátano con
mezclas de Glifosato, Glufosinato y Paraquat52
Figura 11 Composición botánica inicial del área experimental53
Figura 12 Composición botánica a los 28 días bajo diferentes dosis de Glifosato55
Figura 13 Composición botánica a los 28 días bajo diferentes dosis de Glufosinato58
Figura 14 Composición botánica a los 28 días bajo diferentes dosis de Paraquat60

Índice de tablas

Tabla 1 Materiales utilizados para la instalación del ensayo27
Tabla 2 Materiales y equipos utilizados para la recolección pesaje de las muestras
recolectadas de malezas27
Tabla 3 Descripción de los tratamientos a comparar
Tabla 4 Esquema del análisis de varianza30
Tabla 5 Escala de clasificación de los niveles de control de malezas del 0 al 10031
Tabla 6 Dosis de herbicidas en 2,4 litros de agua
Tabla 7 Análisis de varianza de la biomasa fresca de malezas, obtenida a los 28 días de
evaluación34
Tabla 8 Coeficientes del modelo de Weibull de la biomasa fresca de malezas presentes
en las parcelas de plátano con Glifosato a los 28 días34
Tabla 9 Coeficientes del modelo de Weibull de la biomasa fresca de malezas presentes
en las parcelas de plátano con Glutosinato a los 28 días
Tabla 10 Coeficientes del modelo de Weibull de la biomasa fresca de malezas presentes
en las parcelas de plátano con Paraquat a los 28 días35
Tabla 11 Dosis de las mezclas de Glifosato, Glufosinato y Paraquat necesarias para
obtener 90% de reducción de biomasa fresca de malezas en plátano37
Tabla 12 Análisis de varianza de la biomasa seca de malezas, obtenida a los 28 días de
evaluación39
Tabla 13 Coeficientes del modelo de Weibull de la biomasa seca de malezas presentes
en las parcelas de plátano con Glifosato39

Tabla 14 Coeficientes del modelo de Weibull de la biomasa seca de malezas presentes
en las parcelas de plátano con Glufosinato40
Tabla 15 Coeficientes del modelo de Weibull de la biomasa seca de malezas presentes
en las parcelas de plátano con Paraquat40
Tabla 16 Análisis de varianza del control visual de malezas en plátano42
Tabla 17 Coeficientes del modelo de Weibull del control visual de malezas en las parcelas
de plátano con Glifosato, Glufosinato y Paraquat a los 7 días43
Tabla 18 Coeficientes del modelo de Weibull del control visual de malezas en las parcelas
de plátano con Glifosato, Glufosinato y Paraquat a los 14 días45
Tabla 19 Coeficientes del modelo de Weibull del control visual de malezas en las parcelas
de plátano con Glifosato, Glufosinato y Paraquat a los 21 días47
Tabla 20 Coeficientes del modelo de Weibull del control visual de malezas en las parcelas
de plátano con Glifosato, Glufosinato y Paraquat a los 28 días49
Tabla 21 Dosis de las mezclas de Glifosato, Glufosinato y Paraquat necesarias para
obtener 90% de reducción de biomasa fresca de malezas en plátano51
Tabla 22 Pesos obtenidos de las malezas presentes antes de iniciar el experimento53
Tabla 23 Pesos de las especies de malezas obtenidas a los 28 días de control cor
glifosato54
Tabla 24 Pesos de las especies de malezas obtenidas a los 28 días de control cor
glufosinato57
Tabla 25 Pesos de las especies de malezas obtenidas a los 28 días de control cor
paraquat59

Resumen

En el Ecuador el plátano es un cultivo de gran importancia económica, tanto para el productor como para la población. Las malezas compiten con el cultivo provocando que la producción disminuya. Los herbicidas convencionales no logran controlar de manera eficaz las malezas, por lo que en esta investigación se presente determinar la dosis óptima de glifosato, glufosinato y paraquat para el control de malezas en plátano de alta densidad, esto se realizó en función de la biomasa de malezas presentes luego de cada una de las aplicaciones y evaluaciones visuales que se realizaron cada siete días durante veintiocho día que duro la investigación. El diseño de experimento empleado fue en un diseño de bloques completamente al azar. Las dosis evaluadas fueron 0,25, 0,5, 1 y 2 l/ha con cada uno de los herbicidas evaluados. Las regresiones no lineales fueron basadas en la ecuación de Weibull de 4 parámetros. Además, la estimación de dosis efectiva se hizo utilizando el programa estadístico R. Las dosis efectivas para el control de maleza (90%) en función del control visual fue de 1,30 l/ha para glufosinato, mientras que los otros herbicidas glifosato y paraquat no alcanzaron el 90% de control. Para lograr una efectividad del 90%, necesitaron dosis de 2,40 y 2,80 l/ha para glifosato y paraquat respectivamente.

Palabras clave:

- GLIFOSATO
- PARAQUAT
- GLUFOSINATO
- PLATANO
- MALEZA

Abstract

In Ecuador, the banana is a crop of great economic importance, both for the producer and for the population. Weeds compete with the crop causing production to decrease. Conventional herbicides fail to effectively control weeds, so in this research it is presented to determine the optimal dose of glyphosate, glufosinate and paraquat for weed control in high-density bananas, this was done based on the biomass of weeds presents after each of the applications and visual evaluations that were carried out every seven days during the twenty-eight days of the investigation. The experimental design used was a completely randomized block design. The doses evaluated were 0.25, 0.5, 1 and 2 l/ha with each of the herbicides evaluated. Nonlinear regressions were based on the 4-parameter Weibull equation. In addition, the effective dose estimation was made using the statistical program R. The effective doses for weed control (90%) based on visual control was 1.30 l/ha for glufosinate, while the other herbicides glyphosate and paraquat did not reach 90% control. To achieve 90% effectiveness, doses of 2.40 and 2.80 l/ha were needed for glyphosate and paraquat, respectively.

Keywords:

- GLYPHOSATE
- PARAQUAT
- GLYPHOSINE
- PLANTAIN
- UNDERGROWTH

Capítulo I

Introducción

En el Ecuador el plátano se han constituido en uno de los cultivos de mayor

importancia socio-económica, llevando al Ecuador alcanzar el cuarto lugar como productor a nivel mundial, representando la seguridad alimentaria y un importante sostén como generador de divisas e ingresos a la economía del país (González, 2015). En el Ecuador las principales variedades de plátano empleadas son Dominico y Barraganete, que se destina a la exportación y Maqueño que se usa principalmente para el consumo interno. El cultivo de plátano se localiza principalmente, en Las

Provincias del Guayas, Los Ríos, Manabí, El Oro y Santo Domingo de los Tsáchilas

(Ulloa, 2015).

El efecto de la competencia por las malezas en el cultivo pasa inadvertida para el agricultor, esto durante el primer ciclo de producción del plátano, y se ve solo al momento de la cosecha, debido a que ocasiona un bajo peso de los racimos y una mala calidad del fruto, además que las malezas en el cultivo del plátano reducen la producción y dificultan las diferentes labores que deben realizarse durante el establecimiento del cultivo (Castellanos, 2010).

El 75% de los productores aplican herbicidas para el control de malezas como el glisofato o paraquat. Martinez (2017) Menciona que los agricultores no tienen el conocimiento del tipo de herbicida que se puede utilizar y la dosis aplicar para realizar un correcto control, provocan que la maleza genere resistencia debido a un mal uso de los herbicidas.

La resistencia a los herbicidas es la capacidad que han desarrollado las poblaciones de malezas previamente susceptibles a un cierto herbicida para resistir a ese compuesto y completar su ciclo biológico cuando el herbicida es aplicado en sus dosis normales; esta capacidad se ha incrementado seriamente en los últimos años (Heap y LeBaron, 2001).

La resistencia de las malezas a los herbicidas ha llegado a evolucionar a ciertas formas que tienen un impacto económico negativo sobre algunos cultivos específicos como el plátano.

Debido a la creciente resistencia que está teniendo las malezas sobre los herbicidas, y la nula información sobre cuál es la dosis correcta para el control de malezas en el cultivo de plátano esta investigación está destinada a determinar la dosis óptima, utilizando tres herbicidas; glifosato, glufosinato y paraquat, en distintas dosis, esto evaluado en función a la biomasa que estén presentes luego de las aplicaciones y evaluaciones visuales cada siete días por 28 días, que nos permitirá conocer y realizar un adecuado control de malezas.

Capítulo II

Marco teórico

El plátano en Ecuador

El Ecuador es un país en donde el sector agrícola es un motor productivo de la economía ecuatoriana, este cuenta con diversos productos agrícolas, y uno de los más importantes es el cultivo de plátano, llegando a representar el 32% (plátano y banano) del comercio a nivel mundial.

El cultivo del plátano en el Ecuador genera fuentes estables de trabajo, además de ser soporte en la seguridad alimentaria y la socio-economía, también sirve como un alimento rico en energía para la población campesina (Alvares, 2020).

Según INEC (2011), en el país existe 144981 ha de plátano, las cuales se dividen en monocultivo que representan 86712 ha que se encuentran bajo este sistema y 58269 ha se encuentran asociadas con otros cultivos.

De acuerdo con INIAP (2016), la mayor parte de la producción del plátano se da en Manabí con 52.612 ha, Santo Domingo con 14.249 y Los Ríos con 13.376 ha, a esto se lo conoce como el triángulo platanero del Ecuador.

Las principales variedades que son explotadas en el Ecuador son el "Dominico", el cual es destinado al consumo interno y el "Barraganete" el cual se destina a la exportación, se estima que anualmente se exportan alrededor de 90000 ™ de esta variedad (Paz, 2013).

Malezas

En una plantación se llega a considerar maleza a la planta que puede llegar a competir por ciertos factores con el cultivo de interés, como el agua, luz, los nutrientes, y el espacio, llegando a afectar la producción y calidad del cultivo (Castellanos, 2010).

La maleza, además de competir con el cultivo alberga enfermedades y plagas, provocando que los costos de producción aumenten.

Control de Malezas

Realizar un buen control de malezas es indispensable debido a que la mayoría de estas pueden mantener enfermedades y plagas que pueden llegar a perjudicar al cultivo de plátano.

Este control se debe realizar temprano, cuando las malezas esta pequeñas y causan menos efecto sobre el cultivo, por lo que facilita su control (EDA, 2007).

Herbicidas

Los herbicidas interfieren en los procesos bioquímicos, tal como la fotosíntesis que tiene lugar en el simplasto, lo que provoca la destrucción de la maleza, para que la acción de un herbicida tenga efecto tendrá que haber la cantidad adecuada de ingrediente activo para que este ingrese en la maleza y sea transportado al lugar correcto para que realice su acción (FAO, 1996).

La forma de aplicación que se utiliza con los herbicidas puede ser al suelo o al follaje.

Los herbicidas que son aplicados directamente al suelo generalmente afectan la germinación de nuevas malezas, por lo que tienen que persistir por algún tiempo para que estos sean efectivos, por lo que se los denomina herbicidas residuales (FAO, 1996).

Los herbicidas que se aplican al follaje llegan afectar solamente la parte donde fue aplicado el producto, por lo que se lo denominan herbicidas de contacto,

Los herbicidas que se trasladan del follaje hacia cualquier otro lugar de acción o de la planta se los denominan herbicidas sistémicos (FAO, 1996).

Glifosato

El glifosato es un herbicida de postemergencia no selectivo más extensamente usado en el campo agrícola, bloquea la síntesis de aminoácidos aromáticos. El glifosato entra en la planta a través de los tejidos verdes de las plantas y se moviliza por el apoplasto y en el simplasto rápidamente hacia los meristemos, en donde detiene el crecimiento, esto provoca los síntomas foliares de clorosis y necrosis en pocos días (FAO, 1996).

Realiza un control en la mayoría de las malezas, anuales y perennes, al igual que en algunas especies leñosas. Penetra el follaje con relativa lentitud y llega a ser vulnerable durante la lluvia porque se realizaría un lavado del producto aplicado (FAO, 1996).

Regularmente se requiere un tiempo de seis horas sin lluvia luego de la aplicación, esto para asegurar un efecto fitotóxico óptimo en las malezas. Si la dosis se reduce el periodo sin lluvia después de la aplicación que se tiene que esperar es más prolongado (FAO, 1996).

Glufosinato

El glufosinato es un herbicida no selectivo de post-emergencia, que se absorbe por el follaje de las plantas. El glufosinato llega a ser resistente a las lluvias de cuatro hasta seis horas, se lo usa después de la cosecha para el control de la maleza, en forma de aspersión en algunos cultivos perennes (FAO, 1996).

El mecanismo de acción del glufosinato consta en inhibir la actividad de glutamina sintetasa, lo que causa una acumulación de amonio en la maleza aplicada, así destruye las células, al momento también inhibe reacciones en el fotosistema I y II.

Los síntomas que presentan las plantas a las que se les aplicó el producto son clorosis, marchitamiento que se presenta de 3 a 5 días después de la aplicación y necrosis que se presenta entre la primera y segunda semana (Martinez, 2017).

Paraquat

Paraquat al ser un herbicida de contacto no selectivo se lo utiliza para controlar una amplia variedad de malezas en muchos cultivos. Su mecanismo de acción consiste en la destrucción de las membranas celulares, esto se debe su molécula la cual es aceptor de electrones en la fotosíntesis (Martinez, 2017).

El paraquat atraviesa al follaje de las malezas, además pueden ser resistentes a la lluvia después de 10 minutos de la aplicación en la mayoría de las situaciones (FAO, 1996).

Al ser de la familia de los bipiridilos es adsorbido rápidamente por suelo, por lo cual su persistencia en el suelo es alta (1000 días) y no se lixivia (Martinez, 2017).

Los bipiridilos son cationes que se fijan fuertemente a los coloides del suelo, por lo que no manifiestan actividad a través del mismo. Son menos móviles cuando se los aplican bajo la presencia de la radiación solar intensa y en los trópicos se llega a obtener controles más prolongados de las perennes mediante aplicación al atardecer (FAO, 1996).

Los síntomas del paraquat en la planta son la necrosis, marchitamiento y luego provoca desecamiento total a los tres días post-aplicación (Martinez, 2017).

Resistencia a los herbicidas

La resistencia que puede obtener la maleza se debe a un proceso de selección.

Las malezas pueden llegar a poseer biotipos que son resistentes provocado por alguna mutación que ocurrió naturalmente (Villalba, 2009).

Las malezas que pueden llegar a desarrollar resitencia a ciertos herbicidas, esto lo realizan mediante un mecanismo bioquímico, el cual es un proceso evolutivo, por el cual la maleza puede anular la actividad fitotóxica del herbicida aplicado, es decir la maleza evita la absorción, transporte o actividad metabólica de la materia activa, convirtiéndose así en una planta resistente a los herbicidas (CEDRSSA, 2020).

El uso repetido de un mismo herbicida expone a la población de malezas a una selección que obliga a un aumento del número de individuos resistentes, esto quiere decir que los biotipos susceptibles mueren mientras que los resistentes sobreviven produciendo propágulos (Villalba, 2009).

Algunos autores afirman que existen tres mecanismos naturales que pueden provocar una resistencia, el primero es a través de la eliminación de la fito-toxina del

herbicida, la segunda es atravesó de la detoxificación por metabolización y por último, por la reducción de reducción de absorción, transporte y aislamiento.

Un problema que puede causar la resistencia en malezas es la respuesta habitual que tienen los agricultores, que es aumentar la dosis del mismo herbicida cuando llegan a notar que esta no se elimina, esta práctica provoca que se acelere aún más el proceso de desarrollo de la resistencia (Menza, 2007).

Esto provoca que la eficacia de la aplicación de un herbicida se reduzca una vez que aparece la resistencia, por esto prevenir y poder evitar estas malas prácticas también es responsabilidad que tienen los productores (Salazar, 2007).

Tolerancia a los herbicidas

Esta es una característica innata que puede tener una especie de maleza, con la cual hereda la capacidad que poseen todas las poblaciones para sobrevivir y reproducirse luego de una aplicación de algún herbicida (Díaz, 2021).

Cuando se utiliza un herbicida se observa que algunas especies son bien controladas y otras no tanto, estas últimas podrán sobrevivir con una ventaja al contrario de las otras especias que son más susceptibles, si se continua usando el mismo herbicida con la misma dosis y frecuencia estas malezas pueden llegar a dominar dentro de la comunidad (INTA, 2008).

Factores que aumentan el riesgo de resistencia

La tolerancia o resistencia que pueden presentar las malezas a los herbicidas proviene de una consecuencia de realizar un uso inadecuado de los herbicidas, por eso es indispensable tener un mayor conocimiento de los mismos, lo cual permita razonar y

hacer una mejor utilización de los mismos, además de adoptar una actitud positiva y activa frente a las resistencias (FAO, 2007).

Existen algunos factores propios de un herbicida que pueden provocar que el riesgo de generar resistencias en las malezas sea aún mayor, estos factores son:

- Actuar sobre un mismo punto de acción.
- Utilizar un mismo herbicida en el mismo punto de acción, si hacer ciclos.
- Que las malezas metabolizen fácilmente el herbicida.
- Que el herbicida sea aplicado en extensiones grandes y de forma continuada por mucho tiempo o que sea repetida en un ciclo de cultivo.
- No utilizarse fuera de acuerdo con a las condiciones de uso de la etiqueta,
 exagerar la dosis o aplicar fuera del tiempo establecido por el fabricante.

Efectos de competencia por malezas

En el cultivo plátano, durante su primer ciclo de producción el efecto provocado por la competencia de la maleza pasa desapercibido por el agricultor, estos efectos se evidencian solo al momento de la cosecha, donde genera un bajo peso de los racimos y por ende una mala calidad de frutos (Castellanos, 2010).

En algunas investigaciones de ha podido determinar que en el cultivo de plátano Dominico Hartón hay un periodo crítico de competencia de malezas, este periodo se ubica entre los primeros siete meses después de la siembra.

Esto quiere decir que durante este periodo se tiene que realizar el manejo de malezas, para evitar efectos como el retraso de floración, una baja en el peso y calidad de los racimos. Por esta razón se recomienda realizar un control químico desde el momento de la siembra del cultivo de plátano (Castellanos, 2010).

Las malezas llegan a causar la mayor parte del daño en los cultivo en ciertas etapas de su desarrollo, lo que se conoce como periodo crítico de competencia, conocer este periodo es de gran importancia para poder hacer una intervención y poder prevenir las pérdidas del rendimiento y calidad del racimo (Quintero, 2015).

El grado de interferencia entre el cultivo y la maleza va a depender de algunos factores como la variedad, la densidad de siembra que se estableció en el cultivo, la época en el que se encuentra el cultivo y las malezas, tanto en especie como en densidad de estas, hay que tener en cuenta que todos estos factores ya mencionados pueden variar, esto va a depender de las condiciones edáficas, climáticas, nutricionales y manejar que se está teniendo en el cultivo (Carbonó, 2015).

Control químico en malezas

Se realiza un control químico cuando la maleza que se encuentra en el cultivo de plátano no supera los 20 centímetros, si la plantación es joven, es decir tiene menos de tres meses, es recomendable aplicar paraquat con una dosis de 100 cm3 por bomba de 20 litros. Se puede usar otros herbicidas una vez la plantación vaya creciendo, uno de los productos más común usado por los agricultores es el glifosato, sin embargo para tener un control adecuado de malezas se recomienda alternar los herbicidas paraquat y glifosato para evitar formar resistencia en las malezas (Ulloa, 2015).

Capítulo III

Metodología

Ubicación del área experimental

Ubicación política

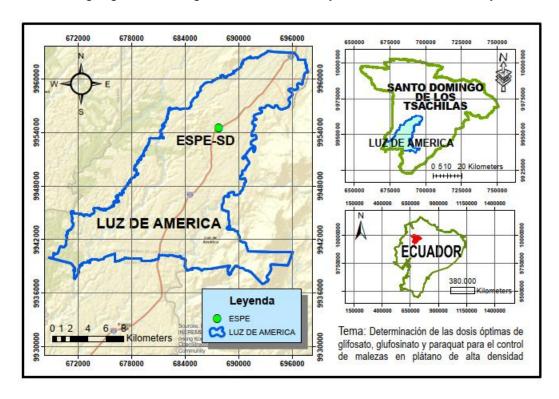
País: Ecuador

• Provincia: Santo Domingo de los Tsáchilas

• Cantón: Santo Domingo de los Colorados

Parroquia: Luz de América

Dirección: Km 24 vía Santo Domingo- Quevedo


Ubicación geográfica

La Hda. Zoila Luz se encuentra a una altitud de 270 m.s.n.m. en las coordenadas

UTM 9954241 Este, 688477 Norte

Figura 1

Ubicación geográfica del lugar donde se instaló y se llevó a cabo el ensayo.

Ubicación ecológica

• Clima: Bosque Húmedo Tropical

• Temperatura: 24-26 °C

• Humedad: 89%

• Pluviosidad: 2980 mm anuales

Altitud: 270 msnm
Heliofanía: 660 horas luz

Materiales

Instalación del ensayo

Tabla 1

Materiales utilizados para la instalación del ensayo.

Materiales/insumos	Reactivos
Estacas (80 cm de largo)	Glifosato (Guadaña) 1 I
 Botellas (3 l) 	 Paraquat (Gramoxone) 1 I
 Jarra medidora (1 l) 	 Glufosinato (Fascinante)1I
 Bomba de mochila (20 l) 	
 Boquillas en abanico 8002 	
• Piola	
 Etiquetas 	
 Marcadores 	

Recolección de muestras, pesaje y secado.

Tabla 2

Materiales y equipos utilizados para la recolección pesaje de las muestras recolectadas de malezas.

Materiales/insumos	Equipos	Muestras
Fundas de papel	Estufa	Muestras botánicas
Cuadrante de madera (0,5 m²) Grapadora	Balanza analítica	de malezas
Marcador permanente negro		
Cuaderno de campo		

Métodos

Diseño Experimental

Factores a Probar.

H: Herbicidas (Glifosato, Paraquat y Glufosinato)

D: Dosis (0 l/ha, 0,25 l/ha, 0,5 l/ha, 1 l/ha, 2 l/ha).

Tratamientos a comparar.

Tabla 3Descripción de los tratamientos a comparar

Tratamientos	Descripción			
T1	Herbicida Glifosato (0 l/ha)			
T2	Herbicida Glufosinato (0 l/ha)			
Т3	Herbicida Paraquat (0 I/ha)			
T4	Herbicida Glifosato (0,25 l/ha)			
T5	Herbicida Glufosinato (0,25 l/ha)			
T6	Herbicida Paraquat (0,25 l/ha)			
T7	Herbicida Glifosato (0,50 l/ha)			
Т8	Herbicida Glufosinato (0, 50 l/ha)			
Т9	Herbicida Paraquat (0, 50 I/ha)			
T10	Herbicida Glifosato (1 l/ha)			
T11	Herbicida Glufosinato (1 l/ha)			
T12	Herbicida Paraquat (1 I/ha)			
T13	Herbicida Glifosato (2 l/ha)			
T14	Herbicida Glufosinato (2 l/ha)			
T15	Herbicida Paraquat (2 l/ha)			

Tipo de diseño.

Diseño de bloques completamente al azar (DBCA) dispuesto en arreglo Factorial A x B donde A seria el herbicida y B la dosis que se va a evaluar.

Repeticiones.

El ensayo contará con cuatro repeticiones por cada tratamiento a evaluar

Características de las unidades experimentales.

•	Número de tratamientos:	15
•	Número de repeticiones:	4
•	Número de unidades experimentales	60
•	Forma de la unidad experimental:	Rectangular
•	Ancho de la unidad experimental:	3 m
•	Largo de la unidad experimental:	9 m
•	Área de la unidad experimental:	27 m^2
•	Área neta del ensayo	1620 m^2
•	Área total del ensayo	1822 m^2

Croquis de diseño.

Figura 2

Distribución de las unidades experimental dentro del área de investigación

T5R1	T10R1	T2R2	T5R2	T1R3	T6R3		T1R4	T3R4	T10R5	T1R5	T7R6	T2R6
T4R1	T9R1	T10R2	T9R2	T3R3	T4R3	С	T6R4	T8R4	T8R5	T9R5	T9R6	T10R6
T3R1	T8R1	T4R2	T7R2	T2R3	T9R3	A L L	T10R 4	T9R4	T3R5	T2R5	T1R6	T4R6
T2R1	T7R1	T5R2	T4R2	T8R3	T3R3	Е	T5R4	T7R4	T7R5	T6R5	T6R6	T5R6
T1R1	T6R1	T3R2	T10R2	T6R3	T5R3		T4R4	T2R4	T5R5	T4R5	T8R6	T3R6

Análisis estadístico

Esquema del análisis de varianza.

Tabla 4Esquema del análisis de varianza

Fuentes de variación	Fórmula	Grados de libertad
Bloque	b-1	3
Herbicida	h-1	2
Dosis	d-1	4
Herbicida * Dosis	h*d	8
Error Experimental	(n-1) - (b-1)-(T-1)	42
Total	n-1	59

Análisis funcional.

Para eso se utilizó regresiones no lineales aplicando la ecuación de Weibull con cuatro parámetros:

$$f(x) = c + (d - c)exp\left(-exp\left(b(\log(x) - \log(e))\right)\right)$$

Variables a medir.

Composición botánica inicial.

Con ayuda de un cuadrante de madera de 0,5 m² se lanzó al azar dentro del área a evaluar, la maleza dentro del cuadrante fue recolectada, las cuales fueron identificadas por especie y se colocó en las fundas de papel. Esta variable se evaluó después de la delimitación del área experimental pero antes de la aplicación de los tratamientos.

Peso fresco inicial.

Las muestras recolectadas en la composición botánica inicial fueron pesadas con ayuda de una balanza analítica, se registraron los datos obtenidos.

Evaluación visual.

Se realizó una evaluación visual cada semana luego de las aplicaciones de las dosis correspondientes de cada herbicida, durante 28 días, por lo cual se registraron 4 evaluaciones a los 7, 14, 21 y 28 días para evaluar el control de las dosis sobre las malezas.

Tabla 5Escala porcentual de clasificación de los niveles de control de malezas del 0 al 100

Puntaje	Descripción de las categorías principales	Descripción detallada	
0	Sin efecto alguno	Sin control	
10		Control muy pobre	
20	Efectos ligeros	Control pobre	
30		Control pobre a deficiente	
40		Control deficiente	
50	Efectos moderados	Control deficiente a moderado	
60		Control moderado	
70		Control por debajo de lo satisfactorio	
80	Efectos severos	Control satisfactorio a bueno	
90		Control muy bueno a excelente	
100	Efecto completo	Control total	

Nota: esta tabla fue tomada de Frans et al., (1986, págs. 29-46).

Composición botánica a los 28 días.

Con ayuda de un cuadrante (0,5m2) se lanzó de manera al azar dentro de cada unidad a evaluar dentro del ensayo, se identificó y recolecto las malezas que estaban dentro del cuadrante, se colocó dentro de sobres de papel para después proceder

Peso fresco a los 28 días.

Las muestras recolectadas a los 28 días después de los tratamientos de cada unidad experimental, se pesaron con ayuda de una balanza analítica.

Peso seco a los 28 días.

Las muestras recolectadas y previamente pesadas se introdujeron en una estufa a 50°C durante 3 días, luego se volvieron a pesar en una pesa analítica.

Métodos específicos del manejo de la investigación

Calibración de bomba.

Para la calibración se colocó 1,8 litros de agua, la cual representa a la cantidad de agua que salió al bombear durante en un minuto, después se determinó el tiempo que se toma realizando un fumigación de prueba a paso constante con la bomba vacía, el tiempo que se demoró e fue 80 segundos en recorrer 72 pasos en ir y volver en un terreno plano, esto representa un área de 108m².

Con esto se calculó que para los 80 segundos que tomaban en ir y volver en cada unidad experimental se necesitan 2,4 litros de agua, por lo que se dosifico cada dosis en 2,4 litros, quedando de la siguiente manera:

Tabla 6

Dosis de herbicidas en 2,4 litros de agua

Tratamientos	Dosis de herbicidas por	Dosis de herbicidas en 2,4 litros	
	hectárea	de agua.	
T4	Glifosato (0,25 l/ha)	Glifosato (2,5 ml)	
T5	Glufosinato (0,25 l/ha)	Glufosinato (2,5 ml)	
T6	Paraquat (0,25 l/ha)	Paraquat (2,5 ml)	
T7	Glifosato (0,5 l/ha)	Glifosato (5 ml)	
T8	Glufosinato (0,5 l/ha)	Glufosinato (5 ml)	
T9	Paraquat (0,5 l/ha)	Paraquat (5 ml)	
T10	Glifosato (1 l/ha)	Glifosato (10 ml)	
T11	Glufosinato (1 l/ha)	Glufosinato (10 ml)	
T12	Paraquat (1 l/ha)	Paraquat (10 ml)	
T13	Glifosato (2 l/ha)	Glifosato (20 ml)	
T14	Glufosinato (2 l/ha)	Glufosinato (20 ml)	
T15	Paraquat (2 l/ha)	Paraquat (20 ml)	

Delimitación de unidades experimentales.

El área experimental posee un distanciamiento siembra del plátano de 3x3 m, para realizar la delimitación con ayuda de una cinta tomatera se dividió cuatros bloques, para lo cual se realizó tomando un árbol de cada extremos simulando un poste para la delimitación, luego se señaló cada unidad experimenta con una estaca enumerada.

Aplicación de las mezclas de herbicidas.

Se preparó la solución en botellas de 3 litros, donde se aforo los 2,4 litros y se mezcló con la dosis correspondiente de cada herbicida, teniendo un total de 12 botellas, que se llevaron al área del ensayo para su aplicación correspondiente.

Capítulo IV

Resultados y Discusión

Biomasa fresca

Tabla 7

Análisis de varianza de la biomasa fresca de malezas, obtenida a los 28 días de evaluación.

Fuentes de variación	Grados de libertad	Suma de cuadrados	Cuadrados medios	Fc	p-valor
Bloque	3	7979	2660	1.782	0.175
Herbicida	2	1682	841	0.563	0.576
Dosis	4	80444	26815	17.965	1.6e-0***
Herbicida:Dosis	8	7036	1173	0.786	0.589
Total	26	38808	1493		

Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns

En la Tabla 7 se observa que tanto las dosis como los herbicidas de Glifosato, glufosinato y Paraquat tuvieron efecto estadísticamente significativo sobre la pérdida de peso de la biomasa que se obtuvo a la cuarta semana en el cultivo de plátano.

Tabla 8

Coeficientes del modelo de Weibull de la biomasa fresca de malezas presente

Coeficientes del modelo de Weibull de la biomasa fresca de malezas presentes en las parcelas de plátano con Glifosato a los 28 días.

Parámetro	Estimado	Error standard	t-valor	p-valor
Pendiente (b)	1.685352	0.188739	8.9295	0.0710*
Límite inferior (c)	19.657635	1.483372	13.2520	0.04795*
Límite superior (d)	86.070806	1.911437	45.0294	0.01414*
Punto de inflexión (e)	0.417512	0.021541	19.3824	0.03282*
		Error es	Error estándar residual	

Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns

Tabla 9

Coeficientes del modelo de Weibull de la biomasa fresca de malezas presentes en las parcelas de plátano con Glufosinato a los 28 días

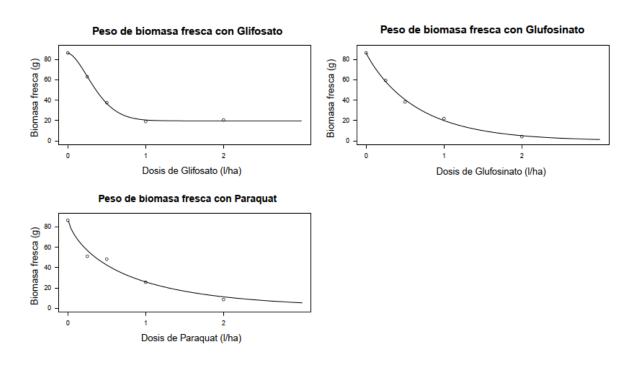
Parámetro	Estimado	Error standard	t-valor	p-valor
Pendiente (b)	0.94421	0.19466	4.8505	0.1294
Límite inferior (c)	-0.28854	9.05112	-0.0319	0.9797
Límite superior (d)	86.36724	3.29838	26.1847	0.0243*
Punto de inflexión (e)	0.67428	0.16999	3.9666	0.1572
		Error es	Error estándar residual	

Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns

Tabla 10

Coeficientes del modelo de Weibull de la biomasa fresca de malezas presentes en las parcelas de plátano con Paraquat a los 28 días

Parámetro	Estimado	Error standard	t-valor	p-valor
Pendiente (b)	0.75877	0.17365	4.3695	0.048590*
Límite superior (d)	85.45996	5.93633	14.3961	0.004791**
Punto de inflexión (e)	0.78526	0.13968	5.6217	0.030216*
		Error est	Error estándar residual	


Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns

Nota: el límite inferior (c) fue igual a 0.

En las tablas 8, 9 y 10 se puede observar los parámetros de regresión de la biomasa fresca que se obtuvo a los 28 días, para esto se utilizó el modelo matemático de Weibull de cuatro parámetros en cada herbicida que fue aplicado.

Figura 3

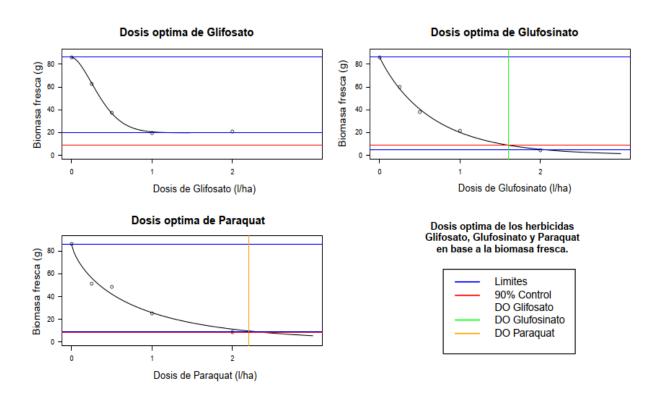
Comparación de la biomasa fresca, obtenida a los 28 días, bajo diferentes dosis de Glifosato, Glufosinato y Paraquat.

En la figura 3, se puede ver reflejado la notable pérdida de biomasa con el glufosinato, se observa como la biomasa va disminuyendo conforme se va elevando la dosis, esto al igual que con la aplicación de paraquat, a diferencia de lo que pasa con el glifosato, es todo lo contrario, se obtiene una pérdida de biomasa notable hasta la dosis de (1l/ha), después de eso se estabiliza, en la gráfica se puede observar que aun con la dosis máxima que es 2l/ha no se disminuye la biomasa, esto puede ser causa a que en el área de aplicación existen malezas que presentan resistencia al glifosato.

Dosis óptima biomasa.

Tabla 11

Dosis de Glifosato, Glufosinato y Paraquat necesarias para obtener 90% de reducción de biomasa fresca de malezas en plátano.


Herbicida	Pendiente (b)	Error estándar	ED ₈₅ (± SE)	ED ₉₀ (± SE)
Glifosato	1.685352	0.188739	ND	ND
Glufosinato	0.94421	0.19466	1.31 (± 0,10)	1.61 (± 0,15)
Paraquat	0.75877	0.17365	1.83 (± 0,44)	2.36 (± 0,67)

Nota: La función ED (Estimated effective doses) fue calculado en el programa estadístico R. "ND" no hay datos.

En la tabla 11 se observa que la aplicación del glifosato no logró sobrepasar el 85% de pérdida de biomasa fresca, por lo que no se determinó la dosis efectiva del glifosato por medio de este parámetro, con el glufosinato si se alcanzó el 85% de reducción de biomasa de la biomasa (ED85) con la dosis de 1.31 (\pm 0,10) l/ha y logro el 90% de control (ED90) en la dosis de 1.61 (\pm 0,15)l/ha y con el paraquat igual se alcanzó el 85% de reducción de biomasa (ED85) con la dosis de 1.83 (\pm 0,44)l/ha y 90% de control (ED90) en la dosis de 2.36 (\pm 0,67).

Figura 4

Dosis óptima en base a la reducción de biomasa fresca de malezas en plátano con Glifosato, Glufosinato y Paraquat.

En la figura 4 se observa como la pérdida de biomasa fresca producida por la acción de las distintas dosis de glifosato, glufosinato y paraquat, en donde se ve reflejado que solo el glufosinato logró tener un efecto en donde provoca que se pierda el 90% de biomasa, por otro lado el glufosinato y paraquat no lograron sobrepasar el 90% de pérdida de biomasa aun con la dosis más alta aplicada.

Biomasa seca

Tabla 12

Análisis de varianza de la biomasa seca de malezas, obtenida a los 28 días de evaluación.

Fuentes de variación	Grados de libertad	Suma de cuadrados	Cuadrado medios	- ⊢	p-valor
Bloque	3	432.3	144.1	2.980	0.0497*
Herbicida	2	86.1	43.1	0.891	0.4225
Dosis	4	2577.6	859.2	17.772	1.76e-06***
Herbicida:Dosis	8	297.5	49.6	1.025	0.4311
Total	29	1257.0	48.3		

Códigos de significancia: '*** 0,1%, '** 1%, '* 5%, '.' 10%, 'ns'

En la Tabla 12 se observa que existe diferencia significativa entre bloques esto puede ser ocasionado por que hubo un control previo de malezas en uno de los bloques. Por otro lado tanto las dosis como los herbicidas de glifosato, glufosinato y paraquat tuvieron efecto estadísticamente significativo sobre la pérdida de peso de la biomasa que se obtuvo a la cuarta semana en el cultivo de plátano.

Tabla 13

Coeficientes del modelo de Weibull de la biomasa seca de malezas presentes en las parcelas de plátano con Glifosato

Parámetro	Estimado	Error standard	t-valor	p-valor
Pendiente (b)	1.2901702	0.0207818	62.082	0.010254*
Límite inferior (c)	6.3091810	0.0361345	174.603	0.003646**
Límite superior (d)	17.3579266	0.0397538	436.636	0.001458**
Punto de inflexión (e)	0.3944446	0.0033679	117.117	0.005436**
Error estándar residual 0.039797				

Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns

Tabla 14

Coeficientes del modelo de Weibull de la biomasa seca de malezas presentes en las parcelas de plátano con Glufosinato

Parámetro	Estimado	Error standard	t-valor	p-valor
Pendiente (b)	1.143988	0.127023	9.0061	0.07040*
Límite inferior (c)	2.536749	0.623754	4.0669	0.15349
Límite superior (d)	17.398103	0.379268	45.8728	0.01388*
Punto de inflexión (e)	0.638315	0.061587	10.3644	0.06123*
Error estándar residual 0.383				

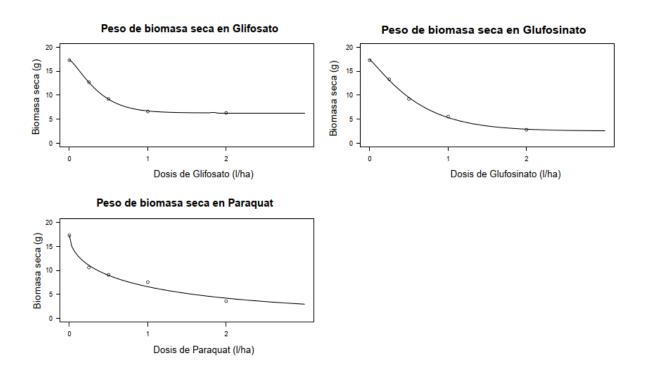
Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns

Tabla 15

Coeficientes del modelo de Weibull de la biomasa seca de malezas presentes en las parcelas de plátano con Paraquat

Parámetro	Estimado	Error standard	t-valor	p-valor
Pendiente (b)	0.55221	0.11066	4.9904	0.037887*
Límite superior (d)	17.29518	0.88461	19.5511	0.002606**
Punto de inflexión (e)	1.07086	0.18964	5.6469	0.029958*
		Error e	estándar residual	0.8798531

Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns


Nota: el límite inferior (c) fue igual a 0.

En las Tablas 13, 14 y 15 se utilizó el modelo matemático de Weibull de cuatro parámetros en cada herbicida que fue aplicado, de donde se obtuvieron los parámetros de regresión de la biomasa a los 28 días, se puede observar que en la tabla 13 indica que la aplicación de glifosato tuvo significancia estadística, de igual manera la tabla 14 y 15, de glufosinato y paraquat muestran que existe significancia estadística en sus parámetros.

Figura 5

Comparación de la biomasa seca obtenida en las parcelas de plátano con Glifosato,

Glufosinato y Paraquat

En la figura 5 se observa la notable pérdida de biomasa con el glufosinato, se observa como la biomasa va disminuyendo conforme se va elevando la dosis, por otro lado la perdida de biomasa con el glifosato, una vez que llega la dosis de (1 l/ha), se estabiliza y no pierde más biomasa, sucede lo mismo que observamos en la figura 3.

Diagnostico visual

Tabla 16

Análisis de varianza del control visual de malezas en plátano.

Fuentes de variación	Grados de libertad	Suma de cuadrados	Cuadrados medios	Fc	p-valor
Bloque	3	419	140	0.407	0.7479
Herbicida	3	50541	16847	49.193	<2e-16 ***
Dosis	1	112686	112686	329.045	<2e-16 ***
Día	3	2679	893	2.608	0.0532 .
Herbicida:Dosis	2	1620	810	2.366	0.0968 .
Herbicida:Día	9	5544	616	1.799	0.0713 .
Dosis:Día	3	3572	1191	3.477	0.0172*
Herbicida:Dosis:Día	6	554	92	0.270	0.9505
Total	177	60616	342		

Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns

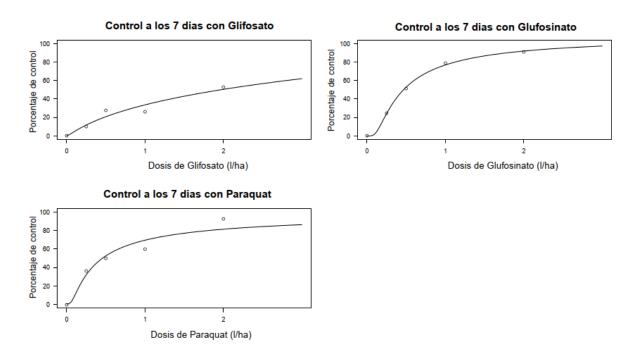
En la tabla 16, se puede observar que en el análisis de varianza existen altos niveles de significancia en los herbicidas y dosis que fueron aplicados en el ensayo, por lo que los herbicidas no tuvieron los mismos resultados al igual que los días en los que se evaluó el ensayo si infirieron en los resultados.

Además en el análisis de varianza se puede ver que cuando se compara los herbicidas aplicadas contra los días evaluados existe poca diferencia significativa, al igual que la comparación entre herbicida con dosis existe poca diferencia significativa, en la comparación de las dosis con los días presentaron un alto nivel de significancia.

Tabla 17

Coeficientes del modelo de Weibull del control visual de malezas en las parcelas de plátano con Glifosato, Glufosinato y Paraquat a los 7 días.

Días de control	Herbicida	Parámetro	Estimado	Error estándar	t-valor	p-valor
		Pendiente (b)	-0.53961	0.19923	-2.7084	0.1136
7	Glifosato	Límite inferior (c)	0.22917	8.39059	0.0273	0.9807
,	Gillosato	Límite superior (d)	_	-	=	-
		Punto de inflexión (e)	1.09873	0.42293	2.5979	0.1217
		Error estándar residual		8.38	31715	
		Pendiente (b)	-1.06563	0.22799	-4.6740	0.13418
7	Glufosinato	Límite inferior (c) Límite superior (d)	0.13669 -	3.10434 -	0.0440 -	0.97199 -
		Punto de inflexión (e)	0.36627	0.04574	8.0077	0.07909*
		Error estándar residual		3.09	94729	
		Pendiente (b)	-0.82685	0.27653	-2.9900	0.09601*
7	Danasusat	Límite inferior (c)	0.57685	11.22599	0.0514	0.96369
7	Paraquat	Límite superior (d)	-	-	-	-
		Punto de inflexión (e)	0.29527	0.11300	2.6131	0.12054
		Error estándar residual		3.18	32623	


Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns

Nota: el límite inferior (c) fue igual a 0.

En la tabla 17, podemos ver los parámetros de regresión de la evaluación visual que fueron evaluados la primera semana, para esto se utilizó el modelo matemático de Weibull de cuatro parámetros en cada herbicida aplicado, en la tabla se puede observar que en el glifosato no presenta diferencia estadística, mientras que en el glufosinato y paraquat si se obtuvo diferencia estadística, los parámetros de regresión se obtuvieron utilizando el modelo matemático de Weibull de cuatro parámetros en cada herbicida que fue aplicado.

Figura 6

Evaluación visual del control de malezas en plátano con Glifosato, Glufosinato y Paraquat
a los 7 días

En la figura 6, se puede observar el comportamiento de las diferentes dosis de glifosato, glufosinato y paraquat a los siete días de evaluación, es notable que la respuesta al glifosato en la primera semana no llega a superar el 60% de control, a diferencia de los otros herbicidas que si lo superan, esto se debe a que los síntomas que presentan es una clorosis leve en los tejidos jóvenes de las malezas que luego se transforma en necrosis de los 7 a 14 días después de la aplicación del herbicida.

En la segunda grafica de la figura 6 es evidente el resultado del glufosinato desde la primera semana, donde llega a superar el 90% de control en las malezas, según Álvarez (2020) el mecanismo de acción es la inhibición de la enzima glutamina sintetiza en el metabolismo del nitrógeno, al bloquear esta enzima se acumula amoniaco en las plantas lo que destruye las membranas celulares.

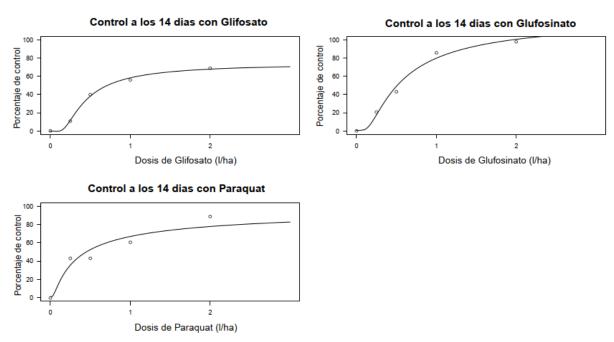
Según Martínez (2017) los síntomas que presentan las plantas a las que se les aplico glufosinato son clorosis, marchitamiento que se presenta de 3 a 5 días después de la aplicación y necrosis que se presenta entre la primera y segunda semana, es por esta razón que el glufosinato actúa rápido y tiene un control de eficacia mayor al 90% en la primera semana de evaluación.

Por ultimo podemos ver que el efecto del paraquat, al igual que el glufosinato supera el 90% de control en los primeros 7 días desde su aplicación, el paraquat mata a las plantas afectando la fotosíntesis ya que interfiere el transporte de electrones en el fotosistema I al aceptar los electrones, por lo que una mayor translocación del paraquat puede aumentar el control de malezas (Wersal et al. 2 2010).

Tabla 18

Coeficientes del modelo de Weibull del control visual de malezas en las parcelas de plátano con Glifosato, Glufosinato y Paraquat a los 14 días.

Días de control	Herbicida	Parámetro	Estimado	Error estándar	t-valor	p-valor
		Pendiente (b)	-1.468481	0.362215	-4.0542	0.15396
14	Glifosato	Límite inferior (c)	-0.263851	3.167298	-0.0833	0.94709
14	Gillosato	Límite superior (d)	73.939258	6.995181	10.5700	0.06005*
		Punto de inflexión (e)	0.374911	0.042421	8.8378	0.07173*
		Error estándar residual		3.216	097	
		Pendiente (b)	-1.08885	0.63128	-1.7248	0.03345*
14	Glufosinato	Límite inferior (c)	0.89214	9.91949	0.0899	0.9429
14	Giulosiliato	Límite superior (d)	-	-	-	-
		Punto de inflexión (e)	0.46933	0.17051	2.7525	0.2218
		Error estándar residual		9.608	082	
		Pendiente (b)	-0.68505	0.28449	-2.4080	0.1377
1.1	Doroguet	Límite inferior (c)	0.65849	12.50959	0.0526	0.9628
14	Paraquat	Límite superior (d)	-	-	-	-
		Punto de inflexión (e)	0.26605	0.14188	1.8752	0.2016
		Error estándar residual		12.33	656	


Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns

Nota: el límite inferior (c) fue igual a 0.

En la tabla 17, podemos ver los parámetros de regresión de la evaluación visual que fueron evaluados los 14 días, en la tabla se puede observar que en el glifosato presenta diferencia estadística al igual que en el glufosinato mientras que en el paraquat no se obtuvo diferencia estadística, los parámetros de regresión se obtuvieron utilizando el modelo matemático de Weibull de cuatro parámetros en cada herbicida.

Figura 7

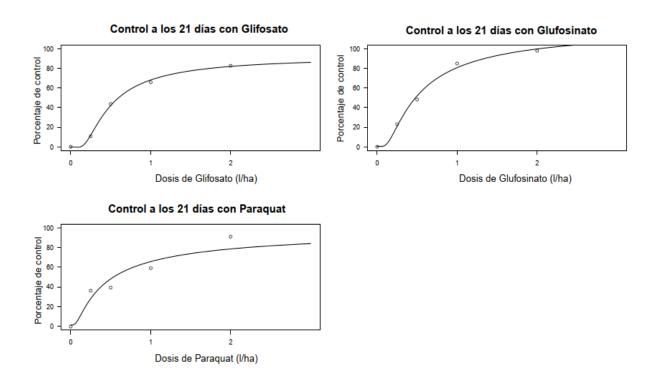
Evaluación visual del control de malezas en plátano con Glifosato, Glufosinato y Paraquat a los 14 días.

En la figura 7, se observa el comportamiento de las diferentes dosis de glifosato, glufosinato y paraquat a los 14 días de evaluación, es notable que la respuesta al glifosato en la segunda semana sigue sin superar el 60% de control, mientras que el paraquat llega a perder eficiencia bajando a 89% de control al igual que la segunda semana de evaluación a diferencia del glufosinato que se mantiene constante y subiendo el porcentaje de control a 98%.

Tabla 19

Coeficientes del modelo de Weibull del control visual de malezas en las parcelas de plátano con Glifosato, Glufosinato y Paraquat a los 21 días.

Días de control	Herbicida	Parámetro	Estimado	Error estándar	t-valor	p-valor
		Pendiente (b)	-1.375287	0.287055	-4.7910	0.13100
21	Clifocoto	Límite inferior (c)	-0.344356	3.118627	-0.1104	0.92999
۷1	Glifosato	Límite superior (d)	92.039876	8.278212	11.1183	0.05710*
		Punto de inflexión (e)	0.415664	0.043309	9.5976	0.06609*
		Error estándar residual		3.182	623	
		Pendiente (b)	-1.05504	0.42030	-2.5102	0.2413
04	Olyfosinata	Límite inferior (c)	0.43895	6.54136	0.0671	0.9573
21	Glufosinato	Límite superior (d)	-	-	-	-
		Punto de inflexión (e)	0.42966	0.11044	3.8905	0.1602*
		Error estándar residual		6.461	39	
		Pendiente (b)	-0.80724	0.31954	-2.5263	0.1274
04	Danamat	Límite inferior (c)	1.21179	13.54674	0.0895	0.9369
21	Paraquat	Límite superior (d)	-	-	-	-
		Punto de inflexión (e)	0.34632	0.16235	2.1332	0.1665*
		Error estándar residual		13.14	436	


Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns

Nota: el límite inferior (c) fue igual a 0.

En la tabla 19, podemos ver los parámetros de regresión de la evaluación visual que fueron evaluados los 21 días, en la tabla se puede observar que en el glifosato si presenta diferencia estadística, la evaluación con el glufosinato también presenta diferencia estadística y en el paraquat igual se obtuvo diferencia estadística a los 21 días de evaluación, los parámetros de regresión se obtuvieron utilizando el modelo matemático de Weibull de cuatro parámetros en cada herbicida que fue aplicado.

Figura 8

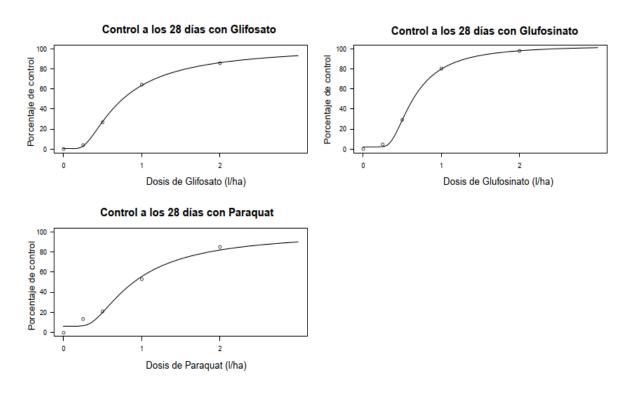
Evaluación visual del control de malezas en plátano con Glifosato, Glufosinato y Paraquat a los 21 días.

En la figura 9, se observa el comportamiento de las diferentes dosis de glifosato, glufosinato y paraquat a los 21 días de evaluación, es notable que la respuesta al glifosato en la tercera semana logra superar el 60% de control a diferencia de la segunda semana como se observa en la figura 8, el glufosinato se mantiene con un control del 98% al igual que el paraquat se mantiene con un control del 89% como en la segunda semana de evaluación.

Tabla 20

Coeficientes del modelo de Weibull del control visual de malezas en las parcelas de plátano con Glifosato, Glufosinato y Paraquat a los 28 días.

Días de control	Herbicida	Parámetro	Estimado	Error estándar	t-valor	p-valor
		Pendiente (b)	0.154215	-9.5058	0.06673	0.154215
28	Clifocoto	Límite inferior (c)	1.144848	0.5020	0.70379	1.144848
20	Glifosato	Límite superior (d)	4.989190	20.5440	0.03096	4.989190 *
		Punto de inflexión (e)	0.025326	23.9848	0.02653	0.025326 *
		Error estándar residual	1.247483			
		Pendiente (b)	-2.332148	0.504863	-4.6194	0.13572
28	Glufosinato	Límite inferior (c)	2.402517	2.493640	0.9635	0.51185
20	Giulosiliato	Límite superior (d)	-	-	-	-
		Punto de inflexión (e)	0.564621	0.030778	18.3450	0.03467 *
		Error estándar residual		9.60	8082	
		Pendiente (b)	-1.59200	0.41211	-3.8631	0.06095
28	Doroguet	Límite inferior (c)	6.44844	5.40201	1.1937	0.35498
20	Paraquat	Límite superior (d)	-	-	-	-
		Punto de inflexión (e)	0.75700	0.11021	6.8687	0.02054 *
		Error estándar residual		6.99	7653	


Códigos de significancia: '***' 0,1%, '**' 1%, '*' 5%, '.' 10%, ' ' ns

Nota: el límite inferior (c) fue igual a 0.

En la tabla 20, podemos ver los parámetros de regresión de la evaluación visual que fueron evaluados los 28 días, en la tabla se puede observar que en el glifosato si presenta diferencia estadística, la evaluación con el glufosinato también presenta diferencia estadística y en el paraquat igual se obtuvo diferencia estadística a los 28 días de evaluación, los parámetros de regresión se obtuvieron utilizando el modelo matemático de Weibull de cuatro parámetros en cada herbicida que fue aplicado.

Figura 9

Evaluación visual del control de malezas en plátano con Glifosato, Glufosinato y Paraquat a los 28 días

En la figura 9, se observa el comportamiento de las diferentes dosis de glifosato, glufosinato y paraquat a los 28 días de evaluación, se puede ver una notable respuesta al glifosato en la cuarta semana logra alcanzar el 86% pero sin lograr alcanzar el 90% de control, esto se debe a que según la FAO (1996), la forma de actuar del glifosato es entrando en la planta a través de los tejidos verdes de las plantas para movilizarse por el apoplasto y en el simplasto, en donde detiene el crecimiento, provocando clorosis y necrosis entre pocos días y una semana, por eso el glifosato comienza con un control bajo como se ve en la figura y con el tiempo aumenta su control sobre la maleza.

El glufosinato se mantiene con un control del 98% desde la tercera semana como se puede observar en la figura 7 y 8, mientras que el paraquat en la cuarta semana de evaluación reduce su control sobre las malezas del 89% al 85%.

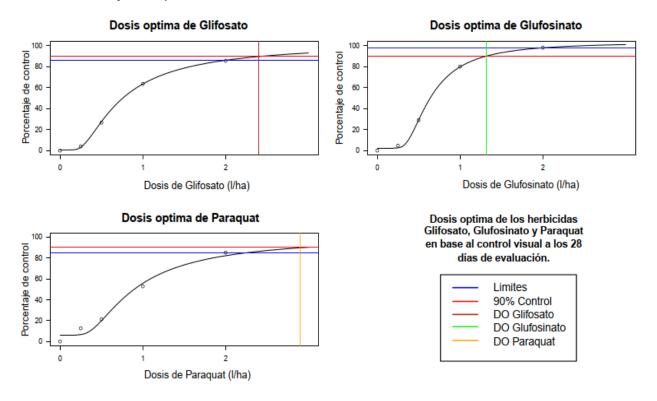
Dosis óptima control visual

Tabla 21

Dosis de las mezclas de Glifosato, Glufosinato y Paraquat necesarias para obtener 90% de reducción de biomasa fresca de malezas en plátano.

Herbicida	Pendiente (b)	Error estándar	ED ₈₅ (± SE)	ED ₉₀ (± SE)
Glifosato	0.154215	-9.5058	1.94 (± 0,06)	2.57 (± 0,10)
Glufosinato	-2.332148	0.504863	1.12 (± 0,08)	1.34 (± 0,11)
Paraquat	-1.59200	0.41211	ND	ND

La tabla 21 demuestra que si se desea alcanzar un 85% de efectividad con el glifosato se necesitara una dosis de 1.94 l/ha de glifosato, pero si se desea tener un control efectivo del 90% de las malezas presentes será necesaria una dosis de 2.57 l/ha con un error estándar de ±0,10.


Para el caso del glufosinato, la dosis que alcanza el 90% de efectividad es 1.34 l/ha con un error estándar de $\pm 0,11$.

En cuando al paraquat no logró alcanzar el 85% de efectividad en el control de maleza como se observa en la figura 10, por lo que no se determinó la dosis efectiva por medio de este parámetro.

Figura 10

Dosis óptima en base al control visual de malezas en plátano con mezclas de Glifosato,

Glufosinato y Paraquat

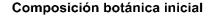
En la figura 8 se refleja que la dosis efectiva para alcanzar el 90% de efectividad sobre el control de malezas será es de 1,30 l/ha de glufosinato, por lo que tendría un control muy bueno a excelente según la escala visual descrita por Frans et al., (1986). No obstante con la dosis de 2 l/ha el glufosinato supera el 90% de control, llegando a tener un porcentaje de efectividad del 98% hasta los 28 días de evaluación, tal como se muestra en la gráfica.

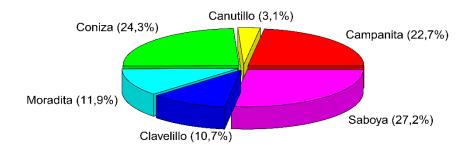
En el caso de glifosato podemos observar que la dosis que alcanzó el 90% de efectividad sobre el control de malezas fue de 2,40 l/ha. Por consiguiente, se determina que la dosis óptima con efectividad de control de malezas al 90% de plátano es la dosis de 2 l/ha de glifosato.

En el Paraquat se observa que para poder alcanzar la efectividad del 90% de control, la dosis optima que necesita es de 2,80 l/ha. Por lo que con la dosis máxima que se empleó que fue de 2 l/ha tiene un porcentaje de efectividad del 80%, por lo que tendría un control satisfactorio según la escala visual descrita por Frans et al., (1986).

Composición botánica

 Tabla 22


 Pesos obtenidos de las malezas presentes antes de iniciar el experimento.

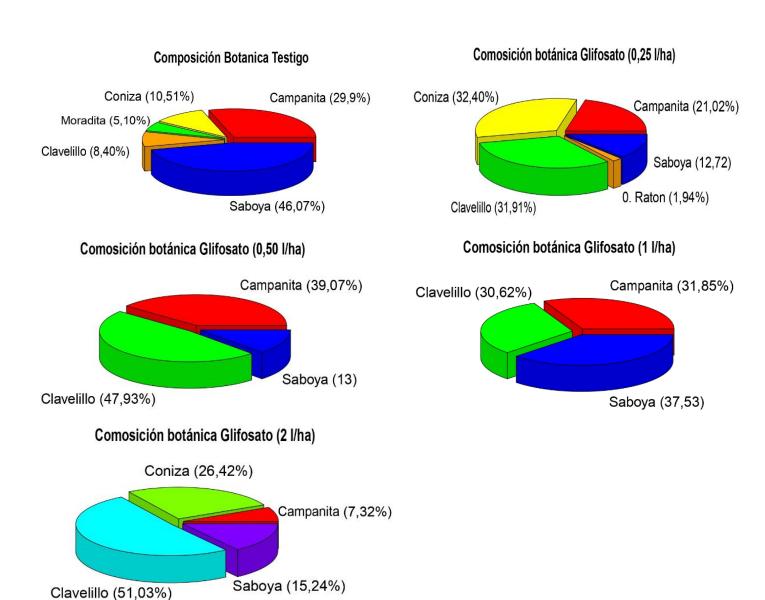

Nombre científico	Nombre común	Peso fresco (g)	Peso Relativo
Asystasia gangetica alba	Campanita	88,125	0,227
Commelina diffusa	Canutillo	12,01	0,031
Conyza bonariensis	Coniza	94,37	0,243
Cuphea strigulosa	Moradita	46,285	0,119
Emilia fosbergii	Clavelillo	41,665	0,107
Panicum maximun	Saboya	105,625	0,272
TOTAL		388,08	1

La tabla 22 indica el peso y el promedio obtenido en cada bloque correspondiente a la cantidad obtenida de las especies que fueron encontradas en la toma de muestras de la composición botánica inicial en toda el área experimental.

Figura 11

Composición botánica inicial del área experimental.

En la figura 11 se observa el porcentaje de las malezas que se encontraron en el área donde se realizó el ensayo, estos datos son antes de iniciar el experimento. La maleza que representa el mayor porcentaje es la Saboya con 27,2% y la que menos se encontró en el área fue el Canutillo que represento el 3,1%.


Tabla 23Pesos de las especies de malezas obtenidas a los 28 días de control con glifosato

Tratamiento	Nombre científico	Nombre común	Peso fresco promedio	Peso total	Peso relativo
Agua	Asystasia gangetica alba	Campanita	100,070	334,420	0,299
Agua	Conyza bonariensis	Coniza	35,160		0,105
Agua	Cuphea strigulosa	Moradita	17,040		0,051
Agua	Emilia fosbergii	Clavelillo	28,090		0,084
Agua	Panicum maximun	Saboya	154,060		0,461
Glifosato (0,25 L)	Asystasia gangetica alba	Campanita	58,635	278,910	0,210
Glifosato (0,25 L)	Conyza bonariensis	Coniza	90,360		0,324
Glifosato (0,25 L)	Emilia fosbergii	Clavelillo	89,005		0,319
Glifosato (0,25 L)	Hydrocotyle bonplandii	Oreja de ratón	5,420		0,019
Glifosato (0,25 L)	Panicum maximun	Saboya	35,490		0,127
Glifosato (0,50 L)	Asystasia gangetica alba	Campanita	40,703	104,188	0,391
Glifosato (0,50 L)	Emilia fosbergii	Clavelillo	49,940		0,479
Glifosato (0,50 L)	Panicum maximun	Saboya	13,545		0,130
Glifosato (1 L)	Asystasia gangetica alba	Campanita	15,340	48,170	0,319
Glifosato (1 L)	Cuphea strigulosa	Moradita	14,750		0,306
Glifosato (1 L)	Sphagneticola trilobata	Margarita rastrera	18,080		0,375
Glifosato (2 L)	Asystasia gangetica alba	Campanita	5,353	73,153	0,073
Glifosato (2 L)	Conyza bonariensis	Coniza	19,325		0,264
Glifosato (2 L)	Emilia fosbergii	Clavelillo	37,330		0,510
Glifosato (2 L)	Panicum maximun	Saboya	11,145		0,152

La tabla 23 detalla la composición botánica final que se obtuvo en cada uno de los tratamientos evaluados con el glifosato, al igual que el peso de la biomasa fresca que se tomó con ayuda del cuadrante de 0,5 m². El peso relativo está relacionado con el peso total de la muestra.

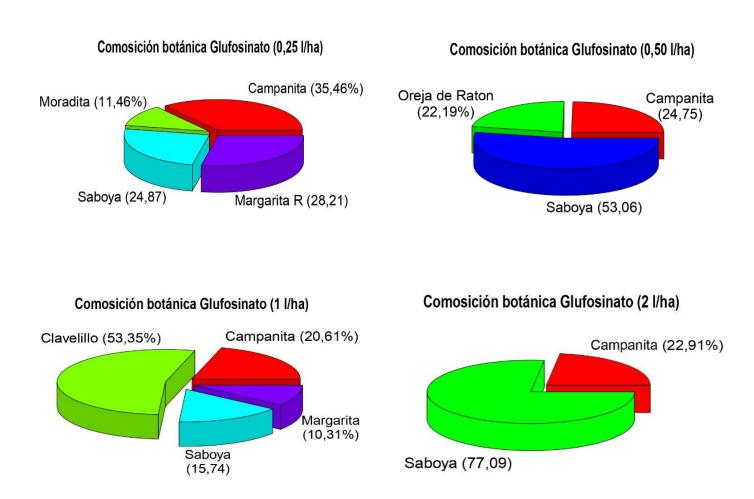
Figura 12

Composición botánica de malezas a los 28 días bajo diferentes dosis de Glifosato

En la figura 12 se puede observar cómo fue cambiando el porcentaje de la composición botánica final a los 28 días de evaluación según la dosis de glifosato que se aplicó, es evidente que algunas especies presentaron mayor tolerancia al glifosato que otras. Se puede observar que a medida que la dosis del glifosato va aumentando el número de malezas presentes en el área va disminuyendo, con eso también la cantidad de cada una de ellas.

Hay que tener en cuenta que dentro de la composición botánica del área donde se realizó la investigación existían especies como *Conyza bonariensis* y *Sphagneticola trilobata* y las cuales presentan resistencia a al glifosato según menciona Villalba (2009).

Esto se puede ser causa de un mal uso del glifosato, según Villalba (2009) realizar un uso repetido de un mismo herbicida expone a la población de malezas a una selección que obliga a un aumento del número de individuos resistentes, esto quiere decir que los biotipos susceptibles mueren mientras que los resistentes sobreviven como es el caso de *Conyza bonariensis* y *Sphagneticola trilobata* que sobrevivieron hasta el final del ensayo.


Tabla 24Pesos de las especies de malezas obtenidas a los 28 días de control con glufosinato

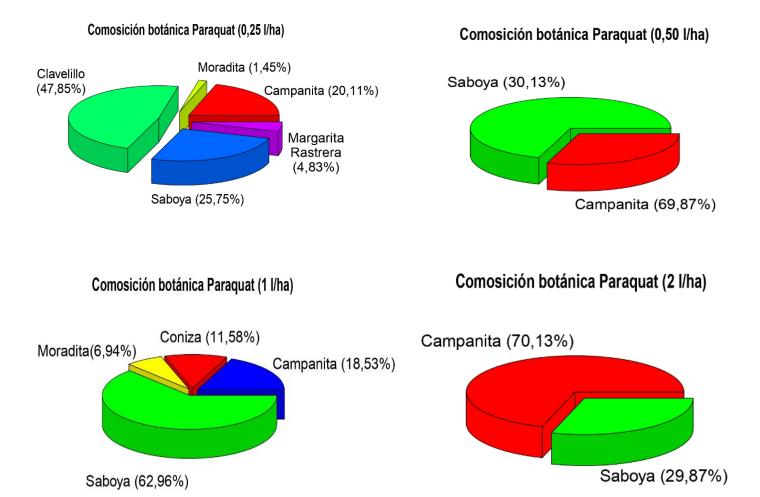
Tratamiento	Nombre científico	Nombre común	Peso fresco promedio	Peso total	Peso relativo
Agua	Asystasia gangetica alba	Campanita	100,070	334,42	0,2992
Agua	Conyza bonariensis	Coniza	35,160		0,1051
Agua	Cuphea strigulosa	Moradita	17,040		0,051
Agua	Emilia fosbergii	Clavelillo	28,090		0,084
Agua	Panicum maximun	Saboya	154,060		0,4607
Glufosinato (0,25 L)	Asystasia gangetica alba	Campanita	69,240	195,23	0,3546
Glufosinato (0,25 L)	Cuphea strigulosa	Moradita	22,370		0,1146
Glufosinato (0,25 L)	Panicum maximun	Saboya	48,555		0,2487
Glufosinato (0,25 L)	Sphagneticola trilobata	Margarita rastrera	55,070		0,2821
Glufosinato (0,50 L)	Asystasia gangetica alba	Campanita	22,963	92,78	0,2475
Glufosinato (0,50 L)	Hydrocotyle bonplandii	Oreja de ratón	20,590		0,2219
Glufosinato (0,50 L)	Panicum maximun	Saboya	49,227		0,5306
Glufosinato (1 L)	Asystasia gangetica alba	Campanita	15,935	77,33	0,2061
Glufosinato (1 L)	Emilia fosbergii	Clavelillo	41,260		0,5335
Glufosinato (1 L)	Panicum maximun	Saboya	12,170		0,1574
Glufosinato (1 L)	Sphagneticola trilobata	Margarita rastrera	7,970		0,1031
Glufosinato (2 L)	Asystasia gangetica alba	Campanita	0,960	4,190	0,2291
Glufosinato (2 L)	Panicum maximun	Saboya	3,230		0,7709

La tabla 24 detalla la composición botánica final que se obtuvo en cada uno de los tratamientos evaluados con el glufosinato, al igual que el peso de la biomasa fresca que se tomó con ayuda del cuadrante de 0,5 m². El peso relativo está relacionado con el peso total de la muestra.

Figura 13

Composición botánica de malezas a los 28 días bajo diferentes dosis de Glufosinato

En la figura 12 se puede observar cómo fue cambiando el porcentaje de la composición botánica final a los 28 días de evaluación según la dosis de glufosinato que se aplicó, es evidente que a medida que la dosis del glufosinato va aumentando el número de malezas presentes en el área va disminuyendo, con eso también la cantidad de cada una de ellas. Algunas especies presentaron mayor tolerancia al glifosato que otras, como es el caso del *Panicum maximun* y *Asystasia gangetica alba* que persistieron aun con la dosis más elevada de dos l/ha.


Tabla 25Pesos de las especies de malezas obtenidas a los 28 días de control con paraquat

Tratamiento	Nombre científico	Nombre común	Peso fresco promedio	Peso total	Peso relativo
Agua	Asystasia gangetica alba	Campanita	100,070	180,36	0,2992
Agua	Conyza bonariensis	Coniza	35,160		0,1051
Agua	Cuphea strigulosa	Moradita	17,040		0,051
Agua	Emilia fosbergii	Clavelillo	28,090		0,084
Paraquat (0,25 L)	Asystasia gangetica alba	Campanita	44,238	219,92	0,2011
Paraquat (0,25 L)	Cuphea strigulosa	Moradita	3,180		0,0145
Paraquat (0,25 L)	Emilia fosbergii	Clavelillo	105,240		0,4785
Paraquat (0,25 L)	Panicum maximun	Saboya	56,637		0,2575
Paraquat (0,25 L)	Sphagneticola trilobata	Margarita rastrera	10,630		0,0483
Paraquat (0,50 L)	Asystasia gangetica alba	Campanita	54,580	78,12	0,6987
Paraquat (0,50 L)	Panicum maximun	Saboya	23,535		0,3013
Paraquat (1 L)	Asystasia gangetica alba	Campanita	17,280	105,96	0,1853
Paraquat (1 L)	Conyza bonariensis	Coniza	10,800		0,1158
Paraquat (1 L)	Cuphea strigulosa	Moradita	6,470		0,0694
Paraquat (1 L)	Panicum maximun	Saboya	58,720		0,6296
Paraquat (2 L)	Asystasia gangetica alba	Campanita	8,900	12,69	0,7013
Paraquat (2 L)	Panicum maximun	Saboya	3,790		0,2987

La tabla 25 detalla la composición botánica final que se obtuvo en cada uno de los tratamientos evaluados con el paraquat, al igual que el peso de la biomasa fresca que se tomó con ayuda del cuadrante de 0,5 m². El peso relativo está relacionado con el peso total de la muestra.

Figura 14

Composición botánica de malezas a los 28 días bajo diferentes dosis de Paraquat

En la figura 14 se puede observar cómo fue cambiando el porcentaje de la composición botánica final a los 28 días de evaluación según la dosis de Paraquat que se aplicó, aun con la dosis más elevada del tratamiento de dos l/ha las malezas *Panicum maximun* y *Asystasia gangetica alba* presentaron mayor tolerancia al paraquat, estas mismas malezas fueron resistentes al glufosinato como se observa en la figura 13.

Capítulo V

Conclusiones

El glufosinato en la dosis de 2 litros por hectárea presentó mayor efecto sobre la biomasa fresca provocando una mayor pérdida de la misma, al igual que la evaluación visual a los 28 días en la dosis de 2 litros por hectárea de glufosinato presento mayor eficacia sobre las malezas.

Mediante la evaluación visual se concluyó que la dosis óptima para alcanzar el 90% de control de malezas es de 1,30 litros por hectárea de glufosinato.

El glifosato y paraquat con la dosis de 2 litros por hectárea no alcanzaron la dosis óptima del 90% para el control de malezas, para esto se requiere una dosis mayor a 2 litros por hectárea, sin embargo con dicha dosis alcanzaron el 80% de control sobre las malezas.

El uso de glifosato para el control de malezas en plataneras, no es muy eficiente debió a que existen malezas que presentan resistencia por lo tanto no tiene el mismo efecto de control que los herbicidas de contacto, estos ejercen mayor control de malezas.

Se determinó que la dosis más efectiva para realizar un control de malezas en el cultivo es la de 1,30 litros por hectárea de glufosinato, debido a que esta mantuvo un mayor control desde los siete días hasta los 28 días de evaluación.

Recomendaciones

La dosis recomendada para el control de malezas en plátano de alta densidad es de 1,30 l/ha de Glufosinato.

Optar por el glufosinato para realizar nuevas investigaciones que estén relacionadas con el control de malezas en el cultivo de plátano de alta densidad.

Se recomienda realizar un control químico con rotaciones incluyendo glufosinato en la dosis recomendada (1.3 l/ha), con otros herbicidas diferentes mecanismos de acción con el fin de no formar resistencia en las malezas que están dentro de la plantación y evitar que el uso continuo de un mismo herbicida incremente las semillas de especies resistentes.

Repetir esta investigación durante la época lluviosa en plátano de alta densidad con el fin de evaluar la efectividad de los mismos herbicidas en otra época del año.

Bibliografía

- Alvares, E. (18 de Junio de 2020). *Journal of Business and entrepreneurial*. Obtenido de Evaluación socioeconómica de la producción de:
 - file:///C:/Users/WELCOME/Downloads/Dialnet-
 - Evaluacion Socio economica De La Produccion De Platano En L-7888294%20 (1). pdf
- Álvarez, M. (20 de Enero de 2020). *GLUFOSINATO DE AMONIO*. Obtenido de DVA:

 https://dva.com.co/wp-content/uploads/2017/03/FT-GLUFOSINATO-DE
 AMONIO-200-SL-DVA.pdf
- Carbonó, E. (Diciembre de 2015). Panorama del manejo de malezas en cultivos de banano. Obtenido de Universidad del Magdalena, Santa Marta (Colombia).: http://www.scielo.org.co/pdf/rcch/v9n2/v9n2a12.pdf
- Castellanos, P. (13 de Septiembre de 2010). *Platano del Quindio*. Obtenido de Manejo de malezas en platano: http://www.platanodelquindio.com/2010/09/manejo-demalezas.html
- CEDRSSA. (Mayo de 2020). CEDRSSA. Obtenido de Centro de estudios para el desarrollo rural sustentable y soberania alimentaria:

 http://www.cedrssa.gob.mx/files/b/13/76Herbicidas.pdf
- Díaz, J. (2021). Especies de malezas tolerantes y resistentes al herbicida glifosato.

 Obtenido de INIA:

 https://biblioteca.inia.cl/bitstream/handle/123456789/67785/NR42562.pdf?seque

 nce=1

- EDA. (Mayo de 2007). *EDA*. Obtenido de Producción de platano de alta densidad: https://santic.rds.hn/wp-content/uploads/2013/06/Manual-de-Produccion-de-Platano_05_07.pdf
- FAO. (1996). FAO. Obtenido de Manejo de Malezas para Países en Desarrollo: https://www.fao.org/3/t1147s/t1147s0e.htm
- FAO. (2007). FAO. Obtenido de Manejo de poblaciones de malezas resistentes a herbicidas: https://www.fao.org/3/a1422s/a1422s.pdf
- González, I. (Julio de 23 de 2015). *ICIA*. Obtenido de Cultivo del plátano en Ecuador: https://www.icia.es/icia/download/noticias/Presentacion_Ignacio_Armendariz.pdf
- INIAP. (2016). *INIAP*. Obtenido de Banano, plátano y otras musáceas: http://www.iniap.gob.ec/pruebav3/banano-platano-y-otras-musaceas/
- INTA. (24 de 08 de 2008). *INTA*. Obtenido de Malezas tolerantes y resistentes a herbicidas: https://www.agrositio.com.ar/noticia/38212-malezas-tolerantes-y-resistentes-a-herbicidas#:~:text=Tolerancia%3A%20es%20la%20capacidad%20innata,herbicida%20nunca%20antes%20fueron%20susceptibles.
- Martinez, F. (10 de Marzo de 2017). COMPARACIÓN DE GLIFOSATO, PARAQUAT Y

 GLUFOSINATO EN. Obtenido de

 http://repositorio.espe.edu.ec/bitstream/21000/12966/1/T-ESPE-002803.pdf
- Menza, H. (2007). Obtenido de Alternativas de control químico para la resistencia de arvenses al glifosato:
 - https://www.cenicafe.org/es/publications/arc058%2802%29091-098.pdf

Paz, R. (Noviembre de 2013). Revista Científica YACHANA. Obtenido de POTENCIALIDAD DEL PLÁTANO VERDE EN LA NUEVA MATRIZ PRODUCTIVA DEL ECUADOR:

http://revistas.ulvr.edu.ec/index.php/yachana/article/view/47/42

- Quintero, I. (Julio de 2015). Panorama del manejo de malezas en cultivos de banano.

 Obtenido de Universidad del Magdalena, Santa Marta (Colombia):

 http://www.scielo.org.co/pdf/rcch/v9n2/v9n2a12.pdf
- Salazar, L. (2007). Alternativas de control químico para la resistencia de arvenses al glifosato. Obtenido de https://www.cenicafe.org/es/publications/arc058%2802%29091-098.pdf
- Ulloa, S. (Febrero de 2015). Obtenido de

 https://www.researchgate.net/publication/272166398_Manual_para_el_cultivo_d
 e_platano_de_exportacion
- Ulloa, S. (07 de Septiembre de 2015). Acta agronoma. Obtenido de Efecto de la densidad sobre el crecimiento y rendimiento en plátano: https://www.redalyc.org/journal/1699/169951832009/
- Villalba, A. (Noviembre de 2009). *Ciencia, Docencia y Tecnología,*. Obtenido de Resistencia a herbicidas: https://www.redalyc.org/pdf/145/14512426010.pdf