

DEPARTAMENTO DE ENERGIA Y MECÁNICA INGENIERÍA AUTOMOTRIZ

TRABAJO DE UNIDAD DE INTEGRACIÓN CURRICULAR, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AUTOMOTRIZ

TEMA: "ANÁLISIS DEL DISEÑO DEL MECANISMO BIELA MANIVELA DE UN MOTOR A GASOLINA DE TRES CILINDROS UTILIZANDO PROGRAMAS COMPUTACIONALES"

AUTOR: CHIMBO PILATASIG, ALEX EDUARDO

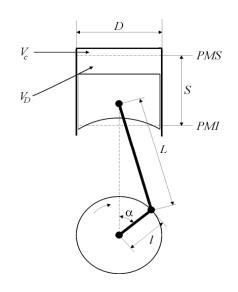
TUTOR: ING. LARA NÚÑEZ, MARIO ALCIDES

LATACUNGA, MARZO 2021

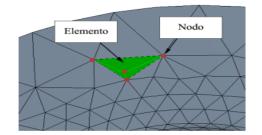
CÓDIGO: GDI.3.1.004

VERSIÓN: 1.0

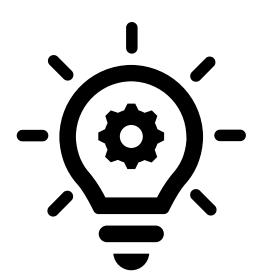
- 1 Introducción
 - 2) Justificación
 - 3 Objetivos
 - 4) Metodología
 - **5** Resultados
 - 6 Conclusiones
- 7 Recomendaciones



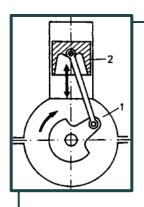
- 1 Introducción
 - 2 Justificación
 - 3 Objetivos
 - 4) Metodología
 - **5** Resultados
 - 6 Conclusiones
- 7 Recomendaciones



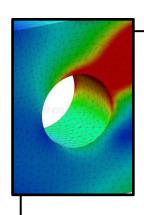
> INTRODUCCIÓN


Mecanismo biela - manivela

Ciclos del motor 4 tiempos Programas computacionales



- 1 Introducción
 - 2 Justificación
 - 3 Objetivos
 - 4) Metodología
 - **5** Resultados
 - 6 Conclusiones
- 7 Recomendaciones



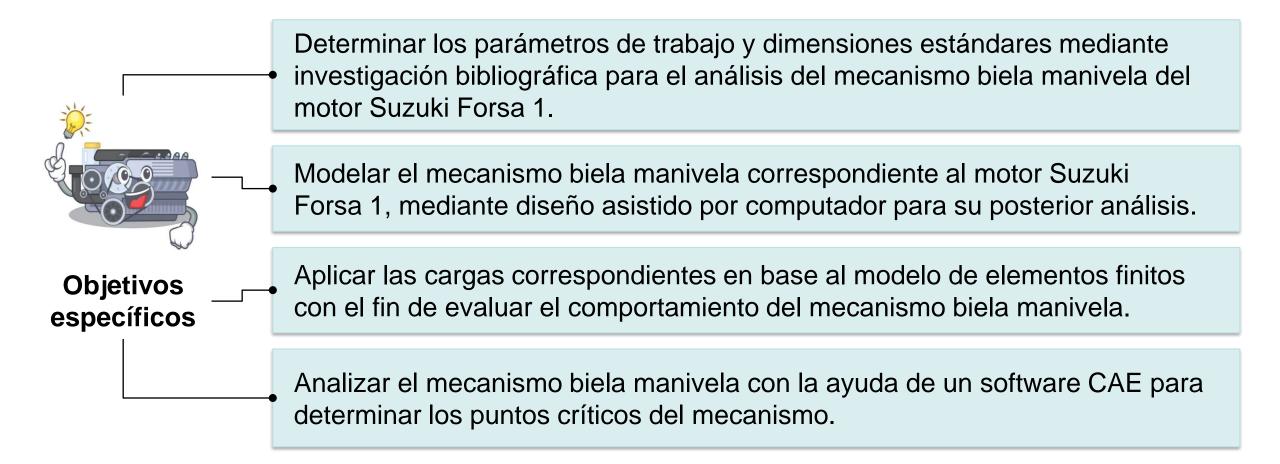
> JUSTIFICACIÓN

El mecanismo biela-manivela está sometido a cargas que causan fracturas en los elementos mecánicos, repercutiendo así en el funcionamiento del motor, causando que su diseño pueda presentar sobredimensiones en la geometría de sus elementos, afectando así la potencia y consumo de combustible especialmente del motor Suzuki Forza uno.

El análisis del diseño del mecanismo biela manivela, permite determinar si se pueden realizar modificaciones en sus componentes, tanto para su geometría o reducción de masa con materiales alternos, de esta manera optimizar las prestaciones del motor en beneficio al medio ambiente.

- 1 Introducción
 - 2) Justificación
 - 3 Objetivos
 - 4) Metodología
 - **5** Resultados
 - 6 Conclusiones
- 7 Recomendaciones

> OBJETIVOS

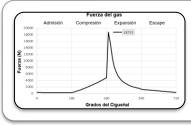

OBJETIVO GENERAL

Analizar el diseño del mecanismo biela manivela correspondiente al motor a gasolina de tres cilindros utilizando programas computacionales.

> OBJETIVOS



- 1 Introducción
 - 2) Justificación
 - 3 Objetivos
 - 4) Metodología
 - **5** Resultados
 - 6 Conclusiones
- 7 Recomendaciones



Obtención de medidas

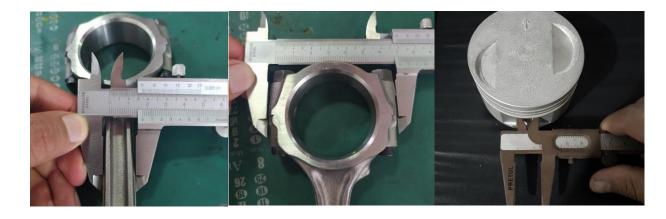
- Datos técnicos del motor
- Toma de medidas del mecanismo

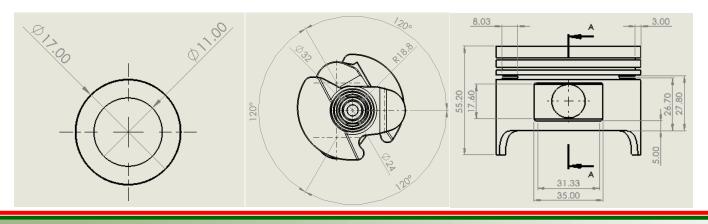
Cálculos

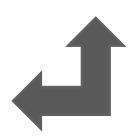
- Parámetros geométricos
- Parámetros termodinámicos

Modelado del mecanismo

- Modelado de los elementos del mecanismo
- Ensamblaje del mecanismo biela manivela


Análisis del mecanismo


- Análisis de la deformación y tensión del mecanismo
- Obtención del factor de seguridad

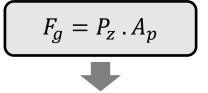


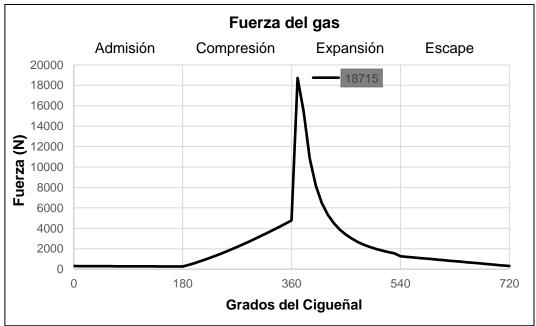
Inicialmente se presenta varios datos que corresponde al motor Suzuki Forsa 1, además de las medidas principales obtenidas en la toma de medidas.

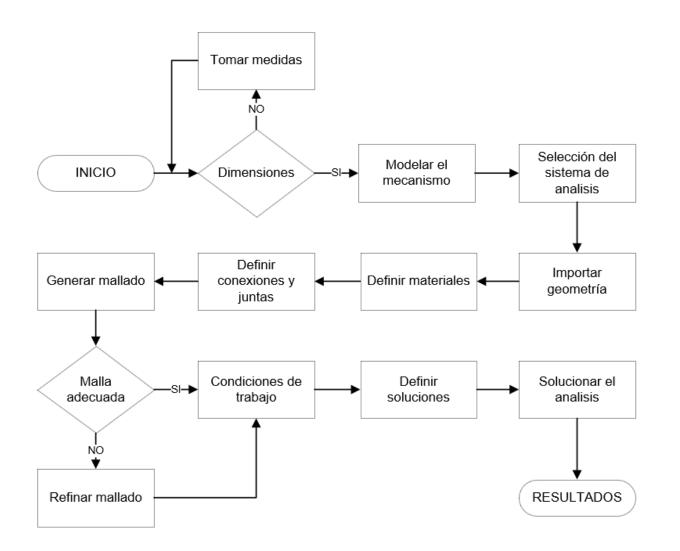
Motor G10A			
Cilindrada	993 cc		
Numero de cilindros	3		
Relación de compresión	8,8:1		
Año	84 - 89		

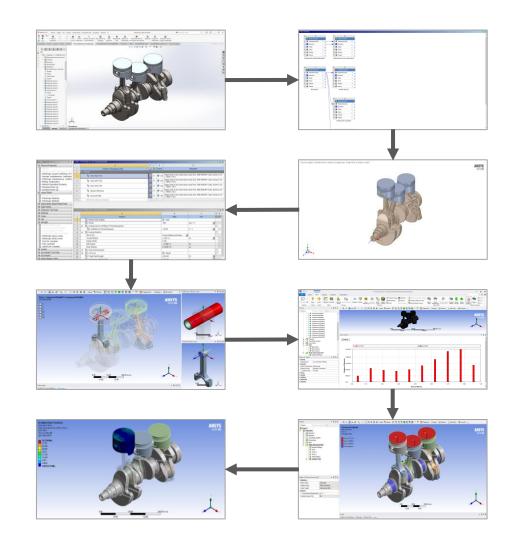
Con la utilización de ecuaciones matemáticas se obtienen dimensiones necesarias para el modelado, así como también se comprueba parámetros especificados por el fabricante:

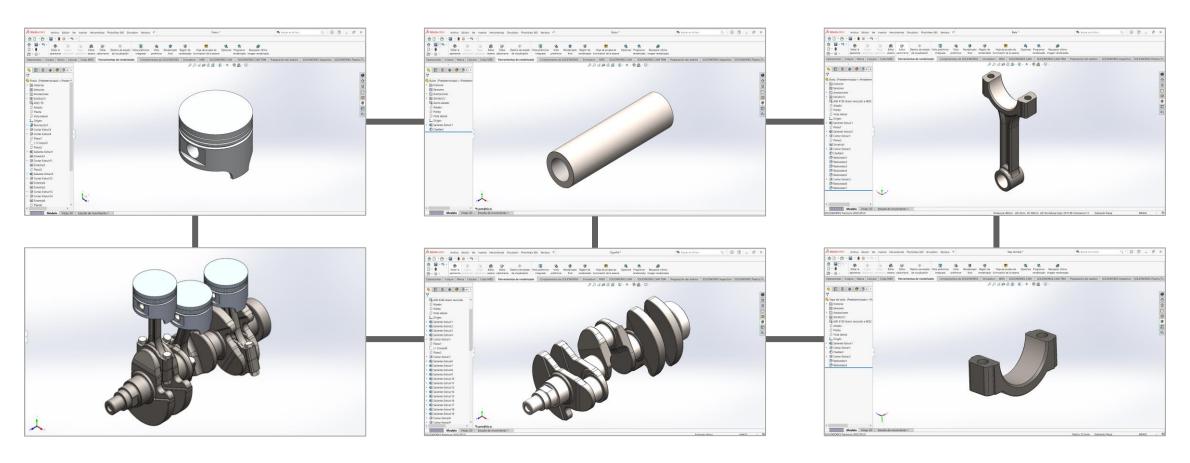
Parámetro	Valor	Unidad	
Diámetro del pistón	73.6	mm	
Carrera del pistón	77	mm	
Longitud de la biela	120	mm	




Parámetro	Ecuación	Valor	Unida
Longitud de la manivela	S = 2l	38.5	mm
Superficie del pistón	$A_p = \frac{\pi D^2}{4}$	42.5	cm ²
Cilindrada unitaria	$V_D = A_p S$	331.1	cm ³
Volumen de la cámara	$V_c = \frac{V_D}{r-1}$	42.4	cm ³
Cilindrada total	$V_T = z \cdot V_D$	993.4	cm ³

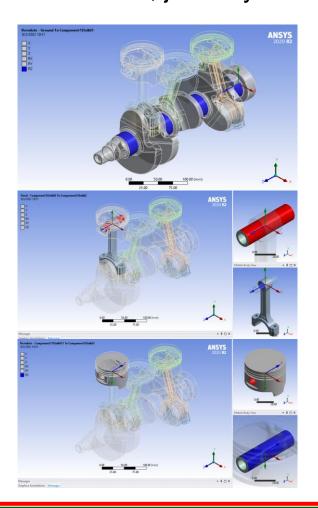

Los valores obtenidos con respecto al ciclo termodinámico del motor a gasolina, son representados en la siguiente tabla:

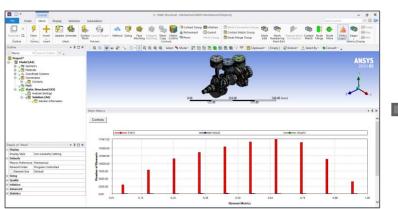

Parámetro	Unidad	Valor	
Presión admisión	Мра	0.06	
Temperatura admisión	K	344.7	
Presión compresión	Мра	1.12	
Temperatura compresión	K	722	
Presión explosión	Мра	4.39	
Temperatura explosión	K	2632	
Presión escape	Мра	0.296	
Temperatura de escape	K	1562	

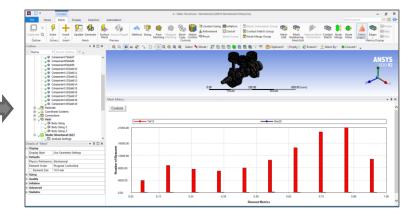


Modelado de los elementos del mecanismo y ensamblaje del mismo:

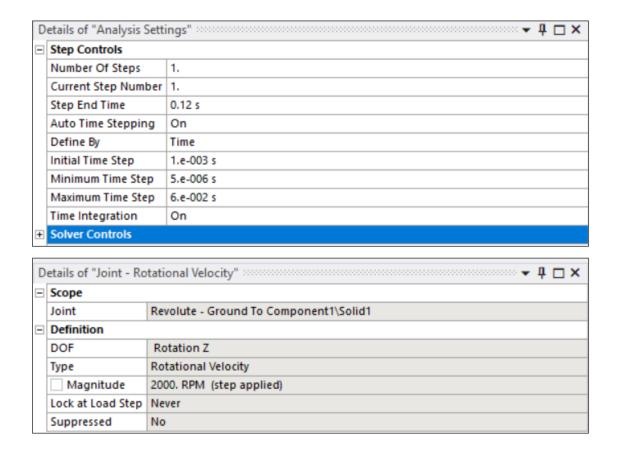
Selección de los materiales que conforman el mecanismo:

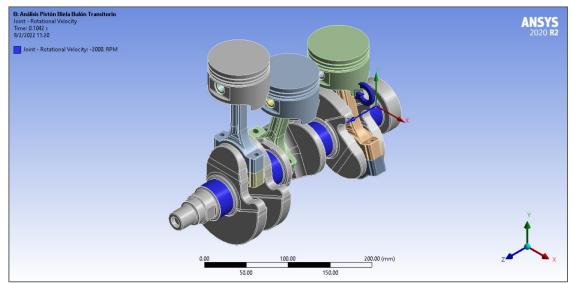

Elemento		Pistón	Bulón	Biela	Cigüeñal	Cojinetes
Material	Material		Acero	Acero		Acero
Propiedad	Uni.	AC-47100	AISI 4130	AIS	SI 4340	AISI 3140
Densidad	Kg/m ³	2990	7870		7870	7900
Módulo de Young	GPa	265	210		210	212
Coeficiente de Poisson	-	0,35	0,333	().333	0.295
Resistencia de tracción	MPa	225	1240 1980		1980	985
Limite elástico	MPa	220	1140		1650	660
Conductividad térmica	W/mC	140	50		44	50
Calor especifico J/k		830	460		475	486




Outline	of Schematic A2, B2, C2: Engineering Data			
	A	В		
1	Contents of Engineering Data	<u></u>		
2	■ Material			
3	🍑 Acero AISI 3140	₹		
4	🍑 Acero AISI 4130	▼		
5	🍑 Acero AISI 4340	▼		
6	Naluminio AC-47100	▼		
7	🗞 Structural Steel	▼		
*	Click here to add a new material			

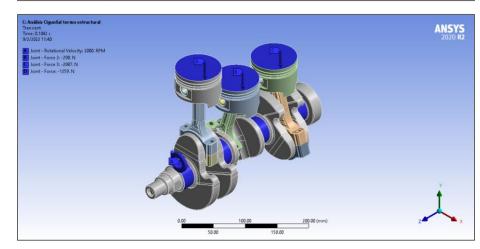
Conexiones, juntas y mallado del mecanismo biela manivela:

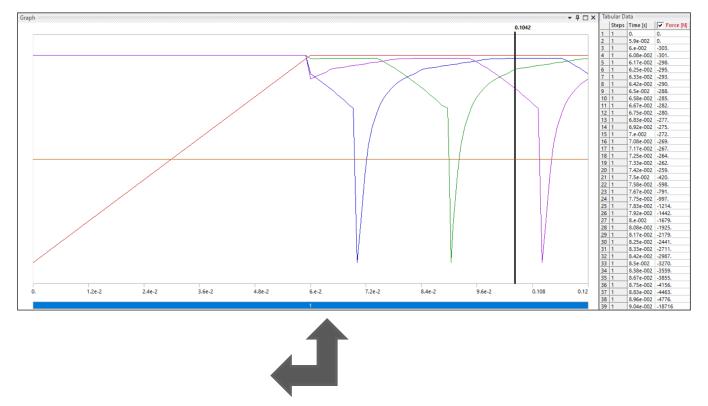




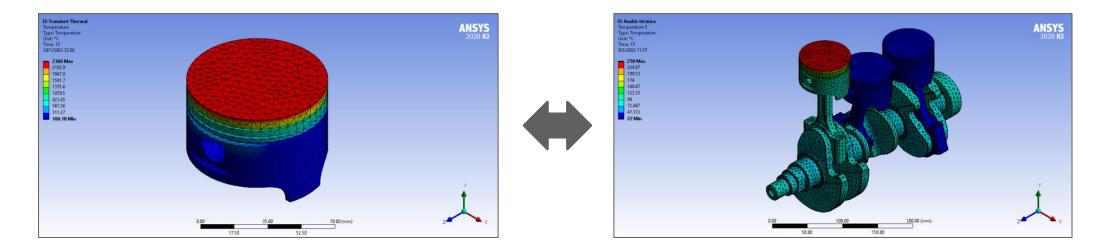
Mallado automático			
Elementos 65427			
Nodos 121588			
Mallado refinado			
Elementos 110834			
Nodos	194492		

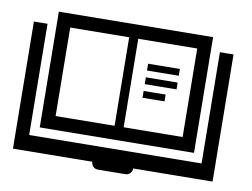
Condiciones transitorias, con respecto al intervalo de tiempo del análisis:



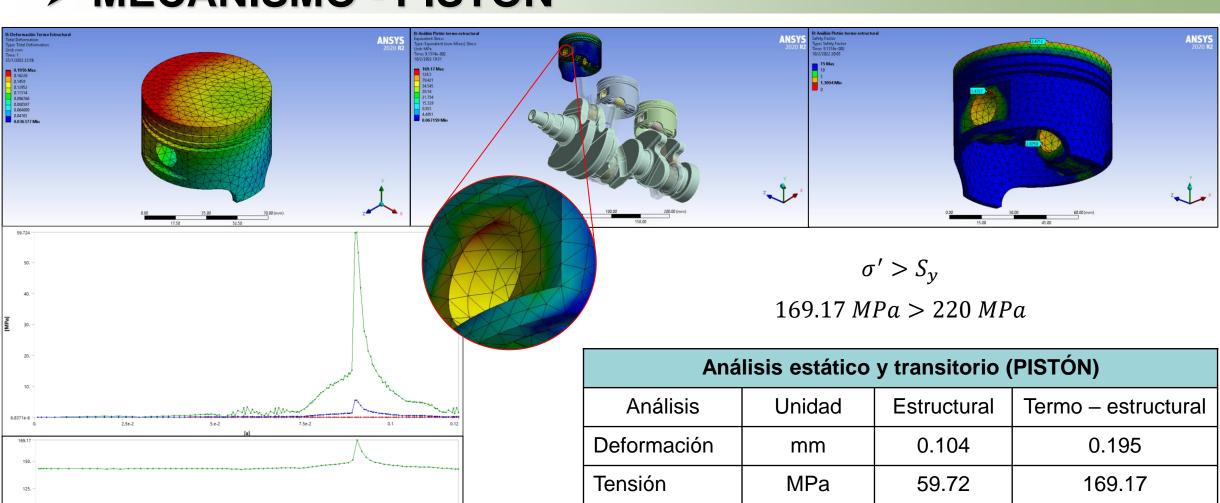


Condiciones transitorias, con respecto a las fuerzas actuantes:


D	Details of "Joint - Force" ▼ 月 □ X				
Ξ	Scope				
	Joint Translational - Ground To Component17\Solid17				
Ξ	- Definition				
DOF X Displacement Type Force		X Displacement			
		Force			
Magnitude Tabular Data					
	Lock at Load Step	Never			
	Suppressed	No			

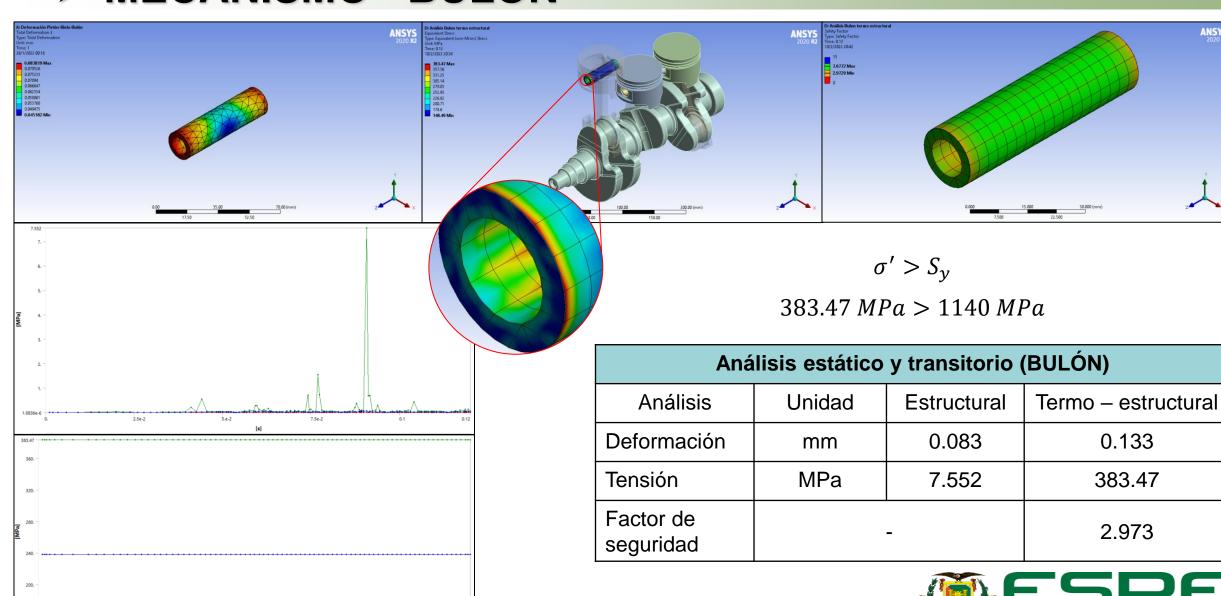

Condiciones térmicas de los elementos del mecanismo:

Asignación de temperatura			
Componente Temperatura (°C)			
Pistón	150		
Biela	120		
Cigüeñal	100		



- 1 Introducción
 - 2) Justificación
 - 3 Objetivos
 - 4) Metodología
 - 5 Resultados
 - 6 Conclusiones
- 7 Recomendaciones

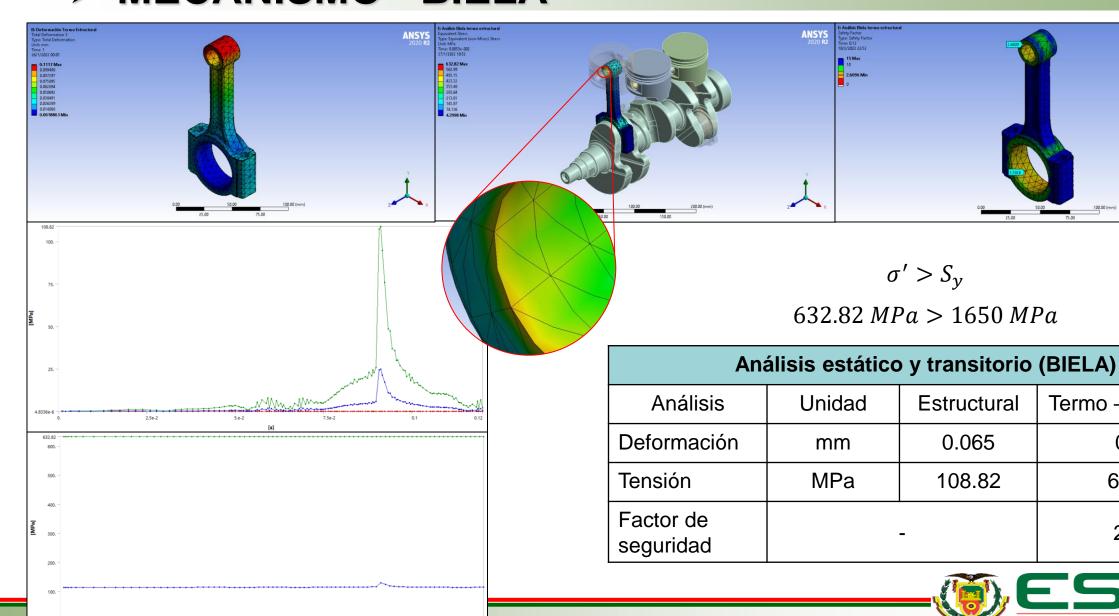
> MECANISMO - PISTÓN


Factor de

seguridad

1.30

> MECANISMO - BULÓN



0.133

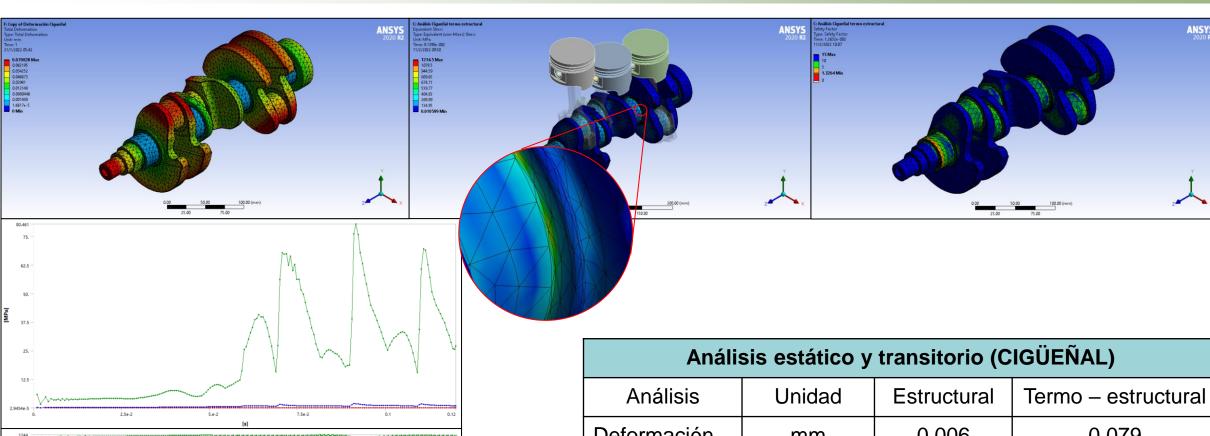
383.47

2.973

> MECANISMO - BIELA

Termo – estructural

0.111


632.82

Estructural

0.065

108.82

> MECANISMO - CIGÜEÑAL

Análisis estático y transitorio (CIGÜEÑAL)					
Análisis	Unidad	Estructural	Termo – estructural		
Deformación	mm	0.006	0.079		
Tensión	MPa	80.744	1244		
Factor de seguridad		-	1.326		

- 1 Introducción
 - 2) Justificación
 - 3 Objetivos
 - 4) Metodología
 - **5** Resultados
 - 6 Conclusiones
- 7 Recomendaciones

> CONCLUSIONES

Los parámetros considerados para el análisis del mecanismo, es la presión del gas en cada ciclo termodinámico del motor y la temperatura de trabajo de los elementos del mecanismo, los cuales son obtenidos a partir de ecuaciones matemáticas, considerando factores como la altura de la ciudad de Quito sobre el nivel del mar y datos técnicos del motor que corresponde al objeto de estudio.

Mediante diseño asistido por computador se desarrollaron los elementos que componen el mecanismo biela – manivela, considerando las dimensiones obtenidas mediante investigación de campo, para posteriormente ser modeladas en el software, el mismo que brinda varias herramientas para una mayor aproximación a los elementos reales, con el fin de obtener simulaciones con resultados próximos a los reales.

> CONCLUSIONES

El software CAE considera varios parámetros para la simulación, estos dependen del análisis que se seleccione, de este modo se tiene el análisis estático y transitorio estructural los cuales consideran la máxima fuerza del gas (18716 N) y la variación de la misma sobre la superficie del pistón correspondientemente, permitiendo obtener las deformaciones y esfuerzos de Von Mises en los elementos del mecanismo, mientras que el análisis estático y transitorio termo estructural, considera la fuerza sobre la superficie del pistón y la temperatura de trabajo de los elementos de mecanismo, dicho análisis permite obtener las deformaciones, esfuerzos y factor de seguridad de forma más aproximada a la real, debido a que se considera la temperatura de trabajo además de la máxima fuerza actuante del mecanismo.

> CONCLUSIONES

El elemento más cercano a presentar falla por fluencia es el pistón, ya que presenta un factor de seguridad de 1.3, debido a que está sometido a altas temperaturas, presentando mayor esfuerzos en la superficie del pistón y los extremos donde ingresa el bulón, por otro lado el cigüeñal presenta un factor de seguridad de 1.326, lo que define un diseño adecuado, sin embargo, dicho elemento presenta una concentración de esfuerzos en los codos de biela y bancada, debido a la fuerza que ejerce el mecanismo sobre dichas partes; otro elemento a considerar es la biela, esta presenta un factor de seguridad de 2.6, lo que hace de este un elemento factible para rediseño con el objetivo de optimizarlo, tomando en cuenta que la concentración de esfuerzos se presenta en el pie de biela y en el extremo de la cabeza de biela lo cual no permite reducir el volumen de dichas zonas, por último, el bulón es el elemento que presenta el mayor factor de seguridad 2.97, haciendo de este el elemento que menos probabilidad tenga de presentar falla, basándose en la teoría de falla por energía de distorsión.

- 1 Introducción
 - 2) Justificación
 - 3 Objetivos
 - 4) Metodología
 - **5** Resultados
 - 6 Conclusiones
- 7 Recomendaciones

> RECOMENDACIONES

Realizar un estudio basado en el análisis de fatiga de cada elemento del mecanismo, es indispensable para obtener una mayor aproximación de las posibles fallas de los elementos del mecanismo, ya que este se encuentra sometido a cargas variables que pueden producir rotura de los elementos.

Realizar un estudio, basándose en las fuerzas actuantes sobre cada elemento del mecanismo por medio de ecuaciones matemáticas e investigación bibliográfica, con el fin de realizar un estudio unitario sobre cada elemento, aplicando las cargas encontradas en el estudio matemático.

> RECOMENDACIONES

Realizar un estudio de comparación al variar los parámetros del análisis del mecanismo, partiendo con una diferencia en la altura a nivel del mar y con una varianza en el octanaje del combustible a utilizar.

Realizar un estudio acerca de los materiales cerámicos metálicos utilizados en la industria automotriz, que tiene como fin la aportación de propiedades mecánicas a los materiales utilizados en los componentes del motor, específicamente en las camisas de los cilindros del motor.

