

Departamento de Ciencias de la Energía y Mecánica

Carrera de Petroquímica

TEMA: "DISEÑO DE UNA RED DE INTERCAMBIADORES DE CALOR PARA EL PROCESO DE SEPARACIÓN DE ESPECIES QUÍMICAS DEL REFORMADO EN FASE LÍQUIDA DEL GLICEROL"

AUTORA: Bastidas Bastidas, Kelly Michelle

TUTOR: Tuza Alvarado, Pablo Vinicio, D. Sc

SISTEMAS DE SEPARACIÓN

Freire (2021) obtiene la separación de especies químicas del reformado de glicerol, empleando el software de simulación PRO II, mediante dos sistemas de separación.

Figura 1

Primer sistema de separación.

SISTEMAS DE SEPARACIÓN

Figura 2 Segundo sistema de separación.

OBJETIVO GENERAL

Diseñar una red de intercambiadores de calor para el proceso de separación de especies químicas del reformado en fase líquida del glicerol.

OBJETIVOS ESPECÍFICOS

- Colectar información de corrientes calientes y frías que se emplearán para el diseño de la red de intercambiadores de calor.
- Revisión bibliográfica sobre el diseño de redes de intercambiadores de calor.
- Revisión bibliográfica sobre el proceso de reformado en fase líquida del glicerol.
- Optimizar el número de intercambiadores de calor en función del costo del proceso.
- Diseñar una red de intercambiadores de calor óptimo para el proceso de separación de especies químicas del reformado en fase líquida del glicerol.
- Analizar el costo y los beneficios del diseño de la red de intercambiadores de calor para dicho proceso.

Primer sistema de separación

Tabla 1

Temperaturas en el primer sistema de separación.

	T1	T2	Т3	T4
Temperatura en el	250,40	316,1	412,7	464,5
destilado [°F] Temperatura en el fondo [°F]	281,60	477,8	531,6	607,2

Se toma en cuenta la segunda ley de la termodinámica

Se emplearon las Heurísticas descritas por Seider et al. (2009).

Análisis de las temperaturas en el tope y en el fondo de todas las columnas del primer sistema de separación para evaluar con cuáles equipos se podrá realizar la integración.

La integración se realizó entre el hervidor de T1 con los condensadores de las columnas T3 y T4.

Para reducir el calor del reboiler en las columnas se realizó un precalentamiento.

El paquete termodinámico empleado fue NRTL, este fue tomado en base al trabajo obtenido por Freire (2021).

INTEGRACIÓN DE CALOR EN EL PRIMER SISTEMA DE SEPARACIÓN

Figura 7

10

Integración de calor en el primer sistema.

Del plato 25 de la primera columna de destilación sale un flujo de líquido, el cual atraviesa el tren de intercambiadores de calor.

La corriente que sale del Reboiler E9 es una mezcla líquido-vapor (S39), razón por la cual se utiliza un separador flash (F1) para obtener solo vapor (S40), el cual ingresa la columna, y el líquido que se tiene es el producto del fondo (S3).

INTEGRACIÓN DE CALOR EN EL PRIMER SISTEMA DE SEPARACIÓN

Controlador Feedback

El controlador se empleó para regular el flujo de líquido que se genera en el Reboiler de la columna T1, para que el flujo del fondo sea el mismo obtenido en la simulación de Freire (2021),variando en este caso el calor en el Reboiler.

Figura 8

Especificaciones en el Controlador Feedback

UOM Range Help Overview Status Notes	
Unit: CN1 Description:	
Specification Stream S3 Flowrate of All Components on a Wet basis in Ib-mol/hr = 128.52 within the default tolerance	!
Variable Heat Exchanger E9 Duty in x 10^6 BTU/hr Step 5	s and Sizes
Parameters Maximum Number of Iterations: 40 ◊ Print Results for Each Iteration Action if Minimum/Maximum Limits are reached Accept as Solved if Limits are Reached Image: Solved if Limits are Reached Image: Solved if Limits are Reached Fail Unit and Stop Calculations if Limits are Reached Image: Solved if Limits are Reached Image: Solved if Limits Calculations if Limits are Reached Image: Solved Iterations if Limits are Reached Image: Solved Iterations if Limits are Reached	
Invext Unit Calculated after Control Variable is Changed: Calculated Image: I	

SEGUNDO SISTEMA DE SEPARACIÓN

Tabla 2

Temperaturas en el segundo sistema de separación.

	T1	T2	Т3
Temperatura del destilado [°F]	340,21	413,29	265,9
Temperatura del fondo [°F]	477,43	531,71	606,68

En el segundo sistema de separación obtenido por Freire (2021) no fue posible realizar la integración de calor entre los hervidores y los condensadores de dichas columnas, ya que las correspondientes temperaturas no permiten cumplir con la segunda ley de la termodinámica.

Se realizó el precalentamiento en la alimentación para reducir la carga energética en el reboiler.

Obtención de curvas de calentamiento y enfriamiento

Figura 9

Obtención de curvas de calentamiento y enfriamiento.

Para obtener las curvas de enfriamiento y calentamiento de un intercambiador en PRO/II se realiza el procedimiento que se muestra en la Figura 9.

Una vez ya obtenidos los valores, se hace uso de la herramienta de Excel para obtener los gráficos (Δ H vs T).

COSTOS EQUIPOS

Para estimar los costos de compra de los equipos, se utilizó la metodología establecida por Seider et al. (2009).

OBTENCIÓN DE UTILIDADES

Obtener bfw, ips y fuel oil se coloca una corriente de agua a 90 °F y 60 psia.

bfw	110 °C
ips	195 °C
fuel oil	100 °C

Figura 10

Especificaciones en la corriente de entrada bfw.

Stream Data

UOM	Range	Help	Tag		Overview	Status	Notes	
Strea	m: S31			Description	: [
ToU	nit:	E5						
Stre	am Type—							
L Co Pel	mposition E troleum Ass) efined		Flowrate	and Compo	osition]	
Spi	ferenced to	o Stream		Strea	am Solids Da	ata		
50	lias Uniy St	ream		Stream	n Polymer D	ata		
The Firs	ermal Condi t Specifica	ition tion:						
Te	mperature		~		9	10 F		
Sec	cond Speci	ification:						
Pre	essure		~		6	i0 psia		
Them	nodynamic	System:	Dete	ermined From	Connectivity	,	~	
				OK		Cancel		
Luit Man			II data					

Conseguir bfw, un líquido a 110 °C se usa un controlador Feedback

Figura 11

Especificaciones en el controlador para obtener bfw.

Feedback Controller

UOM Range Help	Overview	Status	Notes	
Unit: CN1	Description:			
⊂ Specification Stream S32 Temperature in F <u>=</u> 230	.00 within <u>the default tol</u>	erance		
Variable <u>Stream S31 Flowrate in Ib/hr</u>				Limits and Step Sizes
Parameters Maximum Number of Iterations:	10 0	Print Resul	ts for Each Iteration	
Action if Minimum/Maximum Lim	its are reached e Reached			
O Fail Unit and Stop Calculation	ns if Limits are Reached			
Fail Unit and Continue Calcul	lations if Limits are Reac	hed		
Next Unit Calculated after Co	ntrol Variable is Change	± [Calculated	~
_	OK	Can	cel	
Exit the window after saving all data				

Exit the window after saving all dat

COSTO DE UTILIDADES

Costo de utilidad ips

 $C_{U,IPS} = ips_{costo} * Q$

 ips_{costo} se tomó de Seider et al. (2009) que es igual a 0,003 \$/kg.

Costo de utilidad bfw

$$C_{bfw} = \frac{Q_{bfw} * V * bfw_{costc}}{\Delta H_{v}}$$

 ΔH_{V} se tomó de la Tabla A-4 del libro de Termodinámica (Cengel & Boles, 2012).

 bfw_{costo} es igual a 0,5 \$/m³ se tomó de Seider et al. (2009).

Costo de utilidad fuel oil

- Eficiencia térmica del 70%
- Factor de operación de la planta de 0,9
- Poder calorífico bruto HHV de 139,000 Btu/gal
- Costo de fuel oil \$1.50/gal, estos valores fueron tomados de Seider et al. (2009).

RED DE INTERCAMBIADORES EN EL PRIMER SISTEMA DE SEPARACIÓN

Figura 12

Sistema de separación con integración de calor.

Curva de calentamiento y enfriamiento

En la Figura se muestra las curvas de calentamiento y enfriamiento con las cuales se verifica el cumplimiento de la diferencia de temperatura en el interior de los intercambiadores de calor.

Tabla 3

Datos de las temperaturas y calor en el primer sistema de separación.

	T1	T2	Т3	T4
Temperatura en el destilado [°F]	250,40	316,06	412,74	464,54
Temperatura en el fondo [°F]	281,60	477,78	531,64	607,17
Calor en el condensador [Btu/h]	-114333600	-1105100	-2168200	-937200
Calor en el reboiler [Btu/h]	130912400	2432300	2336500	1112900
Calor en el reboiler [Btu/h] ^a	114583000	1527800	2224100	1114900
Porcentaje de reducción de calor ^b	12,47 %	37,18 %		

^a Calor obtenido luego de realizar la integración de calor.

^b Porcentaje de reducción por la integración de calor.

En la Tabla 3 se muestra el calor de los hervidores luego de realizar la integración de calor y los porcentajes de reducción de calor.

Tabla 4

Datos de las propiedades de las corrientes en el primer sistema de separación con integración de calor.

Nombre de la	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10
corriente										
Fase	Líquida	Vapor	Líquida	Vapor	Líquida	Vapor	Líquida	Vapor	Líquida	Líquida
Temperatura	77	250,41	291,3	331,17	476,12	412,88	531,11	466,51	607,06	221,788
[°F]										
Presión [psia]	47,53	30	32,5	28,89	31,93	30,28	32,6	30,56	31,61	42,53
Flujo másico	98282,24	120771,14	10523,6	5066,74	8290,88	7007,42	6059,58	3257,09	4158,56	98282,24
[lb/h]										
Composición										
másica [lb/h]										
Agua	95825,19	120771,14	305,18	572,54	0	0	0	0	0	95825,18
Ciclopentanona	0	0	0	0	0	0	0	0	0	0
Acetol	589,69	0	2430,95	4494,2	33,16	105,11	0	0	0	589,69
1,2-	589,69	0	2367,81	5,06	2503,84	6874,27	6,05	16,28	0	589,69
propilenglicol										
1,2-butanodiol	0	0	10,52	0	8,29	28,02	0	0	0	0
Ácido láctico	393,12	0	1725,87	0	1823,99	7	1920,88	3234,29	0	393,12
Glicerol	884,54	0	3604,3	0	3921,58	0	4132,63	6,51	4158,56	884,54

Nombre de la corriente	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20
Fase	Líquida	Líquida	Líquida	Mezcla	Líquida	Líquida	Líquida	Mezcla	Líquida	Líquida
Temperatura	97	408,62	308,04	325,63	408,62	341,36	358,04	405,31	375,63	247,48
[°F]										
Presión [psia]	25	30,28	41,05	36,05	30,28	25,28	25,56	31,05	26,61	30
Flujo másico	87750,06	7007,42	10523,36	10523,36	4775,3	2232,11	1900,99	10523,36	4158,56	120767,12
[lb/h]										
Composición										
másica [lb/h]										
Agua	87750,06	0	305,17	305,17	0	0	0	305,17	0	120767,12
Ciclopentanona	0	0	0	0	0	0	0	0	0	0
Acetol	0	105,11	2430,89	2430,89	71,62	33,48	0	2430,89	0	0
1,2-	0	6874,27	2367,75	2367,75	4685,56	2189,69	9,5	2367,75	0	0
propilenglicol										
1,2-butanodiol	0	28,02	10,52	10,52	19,1	8,92	0	10,52	0	0
Ácido láctico	0	7	1725,83	1725,83	4,77	2,23	1887,69	1725,83	0	0
Glicerol	0	0	3704,22	3704,22	0	0	3,8	3704,22	4158,56	0

Nombre de la	S21	S22	S23	S24	S25	S26	S27	S28	S29	S30
corriente										
Fase	Líquida	Líquida	Líquida	Líquida	Líquida	Líquida	Líquida	Líquida	Líquida	Líquida
Temperatura	247,48	247,48	314,29	314,29	314,29	408,62	462,33	462,33	462,33	291,36
[°F]										
Presión [psia]	30	30	28,89	28,89	28,89	30,28	30,56	30,56	30,56	46,05
Flujo másico	33012,06	87755,06	5065,97	2834,26	2231,7	2232,11	3257,09	1356,09	1900,99	10523,36
[lb/h]		-	-	-	-			-	-	-
Composición										
másica [lb/h]										
Agua	33012,06	87755,06	572,45	320,27	252,18	0	0	0	0	305,17
Ciclopentanona	0	0	0	0	0	0	0	0	0	0
Acetol	0	0	4493,51	2513,98	1979,51	33,48	0	0	0	2430,89
1,2-	0	0	5,06	2,83	2,23	2189,69	16,28	6,78	9,5	2367,75
propilenglicol				-			-	-		-
1,2-butanodiol	0	0	0	0	0	8,92	0	0	0	10,52
Ácido láctico	0	0	0	0	0	2,23	3234,29	1346,59	1887,68	1725,83
Glicerol	0	0	0	0	0	0	6,51	2,71	3,8	3704,22

Nombre de la	S31	S32	S33	S34	S35	S36	S37	S38	S39	S40
corriente										
Fase	Líquida	Líquida	Líquida	Líquida	Líquida	Líquida	Mezcla	Mezcla	Mezcla	Vapor
Temperatura	247,47	314,28	408,62	462,32	261,87	261,85	267,19	264,68	291,30	291,30
[°F]										
Presión [psia]	28,5	27,39	28,78	29,06	37	32,5	35,5	34	32,5	32,5
Flujo másico	120767,12	5065,97	7007,42	3257,09	174193,47	174193,47	174193,47	174193,47	174193,47	163670,20
[lb/h]										
Composición										
másica [lb/h]										
Agua	120767,12	572,45	0	0	151896,7	151896,7	151896,7	151896,7	151896,7	145339,13
Ciclopentanona	0	0	0	0	0	0	0	0	0	0
Acetol	0	4493,51	105,11	0	15851,6	15851,6	15851,6	15851,6	15851,6	14566,64
1,2-	0	5,06	6874,27	16,28	4006,44	4006,44	4006,44	4006,44	4006,44	3109,73
propilenglicol										
1,2-butanodiol	0	0	28,02	0	0	0	0	0	0	0
Ácido láctico	0	0	7	3234,29	1219,35	1219,35	1219,35	1219,35	1219,35	654,68
Glicerol	0	0	0	6,51	1219,35	1219,35	1219,35	1219,35	1219,35	163,67

Nombre de la corriente	S41	S42	S43	S44
Fase	Líquida	Líquida	Líquida	Mezcla
Temperatura	90	212	90	230
[°F]				
Presión [psia]	60	55	60	55
Flujo másico	212552,90	212552,90	81,98	81,98
[lb/h]				
Composición				
másica [lb/h]				
Agua	212552,90	212552,90	81,98	81,98
Ciclopentanona	0	0	0	0
Acetol	0	0	0	0
1,2-	0	0	0	0
propilenglicol				
1,2-butanodiol	0	0	0	0
Ácido láctico	0	0	0	0
Glicerol	0	0	0	0

Resultados de costos

Tabla 5

Costo de compra de los intercambiadores de calor.

Equipo	Costo de compra [\$]
E1	842950,71
E3	326063,10
E4	261439,4
E5	234150,31
E6	1707488,08
E7	229600,43
E2	230074,02
E8	248827,92
Costo total [\$]	4080593,99

Tabla 6

Costo de los hervidores del primer tren de separación.

Equipo	Costo de hervidores sin integración de calor Cp [\$]	Costo de hervidores con integración de calor Cp [\$]	Porcentaje de reducción de costo
Hervidor en T1	4628786,24	4080170,23	11,85 %
Hervidor en T2	378504,29	339617,2	10,27 %
Hervidor en T3	374495,78	370668,192	1,02 %
Hervidor en T4	324206,52	324433,452	
Total Cp [\$]	5705993	5114889,08	10,35 %

Resultados de costos

Tabla 7

Costo de utilidad ips en los hervidores en el primer sistema de separación.

Equipo	Costo ips sin integración de calor [\$]	Costo ips con integración de calor [\$]	Porcentaje de reducción del costo del ips
T1	1676061,86	1473120,11	12,1%
T2	31140,55	19238,95	38,21%
Total	1707202,41	1492359,07	12,58%

Tabla 8

Costo de utilidad ips en los hervidores en el segundo sistema de separación.

Equipo	Costo ips sin integración de calor [\$]	Costo ips con integración de calor [\$]	Porcentaje de reducción del costo del ips
T1	45548,97	24525,2865	46,15%

INTEGRACIÓN DE CALOR EN EL SEGUNDO SISTEMA DE SEPARACIÓN

Figura 13

Integración de calor en el segundo sistema de separación.

INTEGRACIÓN DE CALOR EN EL SEGUNDO SISTEMA DE SEPARACIÓN

Tabla 9

Temperaturas y calor mostrados con la integración y sin la integración de calor del segundo sistema de separación.

	T1	T2	Т3
Temperatura en el	339,32	412,73	464,54
destilado [°F]			
Temperatura en el	477,69	531,86	606,95
fondo [°F]			
Calor en el	-902900	-2097600	-988700
condensador			
[Btu/h]			
Calor en el reboiler	3557700	2267600	1162400
[Btu/h]			
Calor en el reboiler	1915600	2278800	1162800
[Btu/h]ª			
Porcentaje de	46,15%	0,49%	0,03%
reducción de calor ^b			

^a Calor en el reboiler luego de la integración de calor.

^b Porcentaje de reducción por la integración de calor.

Tabla 10

Datos de las propiedades de las corrientes en el segundo sistema de separación con integración de calor.

Nombre de la	S1	S2	S3	S4	S5	S6	S 7	S 8	S 9	S10
corriente										
Fase	Líquido	Sólido	Líquido	Líquido	Líquido	Vapor	Líquido	Vapor	Líquido	Vapor
Temperatura	77	31	31	31,19	79,50	340,35	477,43	413,4	531,71	466,42
[°F]										
Presión [psia]	14,7	14,7	14,7	55,078	50,07	30,4	31,9	30,26	32,75	30,67
Flujo másico	98282,24	87828,7	10453,54	10453,54	10453,54	5296,55	8253,06	7129,51	6052,86	3426,21
[lb/h]										
Composición										
másica [lb/h]										
Agua	95825,18	87828,702	0	0	0	0	0	0	0	0
Ciclopentanona	0	0	10,45	10,45	10,45	21,86	0	0	0	0
Acetol	589,69	0	2477,48	2477,48	2477,48	5270,06	0	7,12	0	0
1,2-	589,69	0	2414,76	2414,76	2414,76	5,29	2492,42	0	0	3,42
propilenglicol										
1,2-butanodiol	0	0	10,45	10,45	10,45	0	8,25	7086,73	0	0
Ácido láctico	393,12	0	1756,19	1756,19	1756,19	0	1823,92	7,12	1918,75	3415,35
Glicerol	884,54	0	3784,18	3784,18	3784,18	0	3920,20	0	4134,10	3,42

Continuación de la Tabla 10.

Nombre de la	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20
corriente										
Fase	Líquido	Líquido	Líquido	Líquido	Líquido	Líquido	Líquido	Líquido	Líquido	Líquido
Temperatura	606,72	336,81	81,19	157,24	129,5	213,87	207,24	376,47	263,87	336,81
[°F]										
Presión [psia]	31,53	30,4	25,4	45,07	25,26	40,07	25,67	35,07	26,53	30,4
Flujo másico	4161,42	5296,55	2200,48	10453,54	2200,19	10453,54	1891,43	10453,54	4161,42	2200,48
[lb/h]										
Composición										
másica [lb/h]										
Agua	0	0	0	0	0	0	0	0	0	0
Ciclopentanona	0	21,18	8,8	10,45	0	10,45	0	10,45	0	8,8
Acetol	0	5270,06	2189,47	2477,48	2,2	2477,48	0	2477,48	0	2189,47
1,2-	0	5,29	2,2	2414,76	2186,98	2414,76	1,89	2414,76	0	2,2
propilenglicol										
1,2-butanodiol	0	0	0	10,45	8,8	10,45	0	10,45	0	0
Ácido láctico	4,16	0	0	1756,19	2,2	1756,19	1887,64	1756,19	4,16	0
Glicerol	4157,25	0	0	3784,18	0	3784,18	1,89	3784,18	4157,25	0

.

Nombre de la	S21	S22	S23	S24	S25	S26	S27	S28	S29	S30
corriente										
Fase	Líquido									
Temperatura	336	410,10	410,10	410,10	462,74	462,74	462,74	336,81	410,10	462,73
[°F]										
Presión [psia]	30,4	30,26	30,26	30,26	30,67	30,67	30,67	28,9	28,76	29,17
Flujo másico	3096,07	7129,51	4929,3	2200,19	3426,21	1534,77	1891,43	5296,55	7129,51	3426,21
[lb/h]										
Composición										
másica [lb/h]										
Agua	0	0	0	0	0	0	0	0	0	0
Ciclopentanona	12,38	0	0	0	0	0	0	21,18	0	0
Acetol	3080,59	7,12	4,92	2,2	0	0	0	5270,06	7,12	0
1,2-	3,09	7086,73	4899,72	2186,98	3,42	1,53	1,89	5,29	7086,73	3,42
propilenglicol										
1,2-butanodiol	0	28,51	19,71	8,8	0	0	0	0	28,51	0
Ácido láctico	0	7,12	4,92	2,2	3419,35	1531,7	1885,7	0	7,12	3419,35
Glicerol	0	0	0	0	3,42	1,53	1,89	0	0	3,42

Nombre de la corriente	S31	S32	S33	S34	S35	S36
Fase	Líquido	Líquido	Líquido	Vapor	Líquido	Vapor
Temperatura [°F]	90	230	90	382,99	90	383
Presión [psia]	60	55	60	55	60	55
Flujo másico [lb/h]	9127,81	9127,81	1850,65	1850,65	869,02	869,02
Composición másica [lb/h]						
Agua	9127,81	9127,81	1850,65	1850,65	869,02	869,02
Ciclopentanona	0	0	0	0	0	0
Acetol	0	0	0	0	0	0
1,2-	0	0	0	0	0	0
propilenglicol						
1,2-butanodiol	0	0	0	0	0	0
Ácido láctico	0	0	0	0	0	0
Glicerol	0	0	0	0	0	0

Resultados de costos

Tabla 11

Costo de compra de los intercambiadores de calor.

Equipo	Costo de compra [\$]
E1	302872,85
E2	693670,40
E3	251494,29
E4	208697,73
E5	234409,44
E6	232024,27
E7	245655,94
Costo total [\$]	2168824,95

Tabla 12

Costo de los hervidores del primer tren de separación.

Equipo	Costo de hervidores sin integración de calor Cp [\$]	Costo de hervidores con integración de calor Cp [\$]	Porcentaje de reducción de costo
Hervidor en T1	278864,991	234287,939	15,98%

Resultado de costos de utilidades

Tabla 13

Costos de las utilidades bfw e ips en los sistemas de separación.

bfw e ips en el segundo sistema de separación								
	bfw en E7ª	bfw en E5	ips en E6	ips en E7				
C _{bfw}	13054,76	12193,65	27044,90	12699,22				
^a es el cos	es el costo de bfw en el primer sistema de separación.							

El valor de fuel oil de 33 °API obtenido en el primer sistema de separación en el condensador E6 es de 6848810,94 \$

Costo de capital de los intercambiadores de calor

En cuanto al primer sistema de separación se obtiene ahorro de dinero por las utilidades producidas de 8354224,78 \$. Esta cantidad de ahorros servirá para cubrir los gastos de compra de los intercambiadores de calor empleados para obtener la red de intercambiadores de calor en este sistema.

Cabe enfatizar que el capital para comprar los intercambiadores de calor adicionales a los intercambiadores de calor de la red reportado por Freire (2021) para cada sistema de separación se recuperará con el ahorro de energía generado por la producción de ips, por el ahorro de ips en los hervidores, por la producción de bfw y por el ahorro de fuel oil de 33 °API.

CONCLUSIONES

- En el presente estudio se colectó información de corrientes calientes y frías que se emplearán para el diseño de la red de intercambiadores de calor. Con este análisis se demostró que en el segundo sistema de separación no se puede realizar la integración de calor. Esto último se debe a que las temperaturas de las corrientes de tope y fondo no cumplen con la segunda ley de la termodinámica. En cambio, en el primer sistema de separación fue posible la integración de calor entre los condensadores y los reboiler de las columnas de destilación.
- Se diseñó una red de intercambiadores de calor para el proceso de separación de especies químicas del reformado en fase líquida del glicerol y como resultado se obtuvieron reducciones en la carga energética en los Reboiler de las columnas de destilación. En el primer sistema de separación se obtiene una reducción de costo de los rehervidores de \$ 591103,76 que representa un 10,35 %. Por otra parte, en el segundo sistema de separación se obtuvo un ahorro de \$ 67405,96 que equivale a un 15,98 % de ahorro.

CONCLUSIONES

- Mediante el diseño de la red de intercambiadores de calor, se obtuvo un costo total de \$4080593,99 por la compra de intercambiadores de calor en el primer sistema de separación. En el segundo sistema de separación, el costo de compra de los intercambiadores de calor usados para la integración de calor es de \$2168824,95.
- El costo de utilidad ips en los hervidores en el primer sistema de separación es de \$ 1492359,07, que representa un ahorro de un 12,58%, mientras que, en el segundo sistema de separación se consigue un costo de ips de \$ 24525,2865 que representa un ahorro de 46,15%. Se generó la utilidad bfw en el segundo sistema de separación obteniéndose un costo de \$ 12193,65.
- . En el primer sistema de separación se ahorró fuel oil de 33° API, en un valor de \$6848810,94 /año.

RECOMENDACIONES

- Obtener una red de intercambiadores de calor usando los resultados obtenidos en el presente trabajo, aplicando el método de intervalo de temperatura, reducción de ciclos, particiones de corrientes, programación lineal de enteros mixtos, y utilidades múltiples.
- Obtener la presente red de intercambiadores de calor para el proceso de separación de especies químicas del reformado en fase líquida del glicerol usando control automático de los dos sistemas, empleando el software SimCentral.
- En la corriente de agua a la salida del condensador de la segunda columna de destilación, correspondiente al primer sistema de separación generar la utilidad bfw a 230 °F.

REFERENCIAS BIBLIOGRÁFICAS

AVEVA. (2020). PRO/II Process Engineering 10.2. Retrieved January 16, 2022 from

www.aveva.com/en/products/pro-ii-simulation/.

Callison, J., Subramanian, N. D., Rogers, S. M., Chutia, A., Gianolio, D., Catlow, C. R. A., Wells, P. P., & Dimitratos, N. (2018). Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles. *Applied Catalysis B: Environmental*, *238*, 618–628. <u>https://doi.org/10.1016/j.apcatb.2018.07.008</u>.

Cengel, Y., & Boles, M. (2012). Termodinámica (7ma ed.). McGraw-Hill.

Freire, D. (2021). Separación de especies químicas del reformado de glicerol, empleando el software de simulación PRO II. [Investigación de campo, Universidad de las Fuerzas Armadas ESPE]. Repositorio Institucional.

- Seider, W., Seader, J., Lewin, D., & Widagdo, S. (2009). *Product and Process Design Principles Synthesis, Analysis and Evaluation* (Third ed.) John Wiley & Sons, Inc.
- Tuza, P. V., Manfro, R. L., Ribeiro, N. F. P., & Souza, M. M. V. M. (2013). Production of renewable hydrogen by aqueous-phase reforming of glycerol over NieCu catalysts derived from hydrotalcite precursors. *Renewable Energy*, *50*, 408–414. https://doi.org/10.1016/j.renene.2012.07.006

GRACIAS POR SU ATENCIÓN

