

Aislamiento y caracterización de bacterias ácido lácticas en el mosto de piña, considerando dos variedades: (Golden Sweet y Ananas comosus), para la bioconservación de distintos vegetales frescos.

Autora: Cordovilla Yaguargo, Erika Sofia

Directora: Sánchez Llaguno, Sungey Naynee, PhD.

Santo Domingo

2022

INTRODUCCIÓN

Exportación alrededor de 20 tipos de frutas.

Productos de calidad.

Métodos de conservación se utilizan para evitar que los alimentos sufran el ataque de agentes patógenos.

Alargar la vida útil

Mejora la calidad microbiológica.

La utilización de las BAL en los alimentos contribuye al desarrollo de las propiedades organolépticas y reológicas.

Ambientes poco favorables para el desarrollo de microorganismos.

OBJETIVOS

OBJETIVO GENERAL

Aislamiento y caracterización de bacterias ácido lácticas en el mosto de piña, considerando dos variedades: (Golden Sweet y *Ananas comosus*), para la bioconservación de distintos vegetales frescos.

OBJETIVOS ESPECÍFICOS

Aislar y caracterizar bacterias ácido lácticas presentes en el mosto de piña *(Ananas comosus)*, considerando dos variedades: (Golden Sweet y Hawaiana).

Evaluar el efecto de la aplicación de las bacterias ácido lácticas para la bioconservación de distintos vegetales frescos (I Gama): Tomate riñón (Solanum lycopersicum) y guineo (Musa x paradisiaca AA).

Determinar mediante análisis fisicoquímicos y microbiológicos la influencia del bioconservante aplicado en los distintos vegetales frescos (I Gama): Tomate riñón (Solanum lycopersicum) y guineo (Musa x paradisiaca AA).

HIPÓTESIS

FACTOR A

Ho: La obtención de bacterias ácido lácticas presentes en la fermentación de mosto de piña no influye como bioconservante protector.

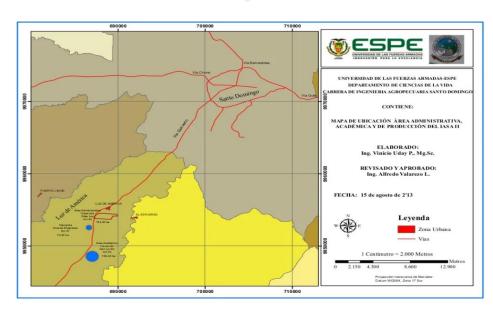
Ha: La obtención de bacterias ácido lácticas presentes en la fermentación de mosto de piña influye como bioconservante protector.

FACTOR B

Ho: La bioconservación con bacterias ácido lácticas no influye en el tipo de fruta.

Ha: La bioconservación con bacterias ácido lácticas influye en el tipo de fruta.

FACTOR C


Ho: Las propiedades físico-químicas de las frutas no varían con el tipo de acondicionamiento utilizado para la bioconservación.

Ha: Las propiedades físico-químicas de las frutas varían con el tipo de acondicionamiento utilizado para la bioconservación.

UBICACIÓN GEOGRÁFICA

(Uday, 2014)

UBICACIÓN ECOLÓGICA

- Zona de vida: Bosque húmedo tropical
- Altitud: 224 msnm
- Temperatura media: 24.6 °C
- Precipitación: 2860 mm/año
- Humedad relativa: 85%
- Heliofanía: 680 horas luz/año
- Suelo: Franco Arenoso

FUENTE: Estación Metereológica Puerto Ila Vía Quevedo Km 34

DISEÑO EXPERIMENTAL

Factores y niveles de estudio

Factores	Simbología	Niveles				
Variedad de mosto de	a0	Lactobacillus brevis (Golden sweet)				
piña (A)	a1	Lactobacillus plantarum (Hawaiana)				
	b0	Tomate				
Fruta (B)	b1	Guineo				
Acondicionamiento	c0	Refrigeración				
(C)	c1	Sin refrigeración				

Tratamientos

N°	Tratamientos	Combinaciones
T1	a1b1c1	Lactobacillus brevis (G. S.) + Tomate + Refrigeración
T2	a1b1c2	Lactobacillus brevis (G. S.) + Tomate + Sin Refrigeración
Т3	a1b2c1	Lactobacillus brevis (G. S.) + Guineo + Refrigeración
T4	a1b2c2	Lactobacillus brevis (G. S.) + Guineo + Sin Refrigeración
T5	a2b1c1	Lactobacillus plantarum (H.) + Tomate + Refrigeración
Т6	a2b1c2	Lactobacillus plantarum (H.) + Tomate + Sin Refrigeración
T7	a2b2c1	Lactobacillus plantarum (H.) + Guineo + Refrigeración
T8	a2b2c2	Lactobacillus plantarum (H.) + Guineo + Sin Refrigeración

Tipo de diseño

Modelo trifactorial (2x2x2), conducido en un diseño DBCA

Repeticiones

Tres repeticiones por cada tratamiento

U.E

24 unidades experimentales

Análisis funcional

Prueba de significancia de Tukey (p<0,05),

Fermentación del mosto de piña

Recepción y lavado de las piñas

Extracción del mosto

Método del globo

Fermentación durante 72 horas

Golden sweet

Hawaiana

Aislamiento de Bacterias Ácido Lácticas

Aislamiento

Diluciones 10 ⁻⁶ en agua peptona

Siembra

Agar MRS -37° C -48 hrs

Golden sweet

Hawaian a

Tinción Gram

Prueba de catalasa

Secuenciación

Molecular Evolutionary Genetics Analysis

Solución Bacteriana

Caldo MRS 24 hrs – 37°C

buffer de ácido cítricocitrato de sodio (pH 3,8)

Centrifugación a 1000 rpm - 15 min

Preparación de solución

Bioconservación

Lavado y desinfección de las frutas

Conservación durante 10 días en acondicionamiento a temperatura ambiente y en refrigeración.

VARIABLES DE ESTUDIO

pН

Norma INEN 389

Acidez titulable

de Na al 0,1 N

Norma INEN 381

Sólidos solubles_{Brix}

Refractómetro

Pérdida de peso

Peso inicial – Peso final *100Peso final

Recuento de poblaciones microbianas

Agua

Petrifilm

Unidad

Piña Golden sweet 3,84 y piña Hawaiana 3,50 respectivamente (Martínez, 2015).

Resultados de 0,53% para la variedad Golden sweet y 0,87 para la variedad Hawaiana (Martínez, 2015).

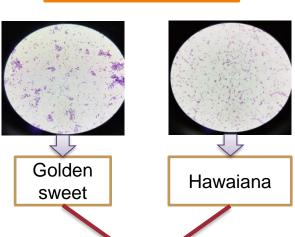
Caracterización físico-química del mosto de piña

Obtuvo cantidades de 13,5 y 10,6°Brix respectivamente (Martínez, 2015).

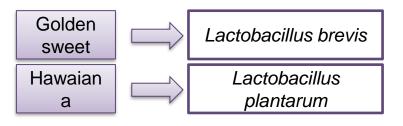
٠ ,	1 arametro	Officad	11636	U	i crincinado			
			Golden sweet	Hawaiana	Golden sweet	Hawaiana		
	рН		3,97	3,73	3,75	3,73		
	Sólidos solubles	°Brix	16	14	7	6		
	Acidez titulable	%	0,56	0,61	0,83	0,89		
	Densidad	g/cm ³	1,065	1,055	1,010	1,000		
	relativa	9,0111	1,000	1,000	1,010	1,000		

Fresco

A medida que aumentan los °Brix, la densidad relativa también va a aumentar (Panchi, 2013).


Parámetro

Fermentado


Identificación de las bacterias ácido lácticas

Pruebas microbiológicas

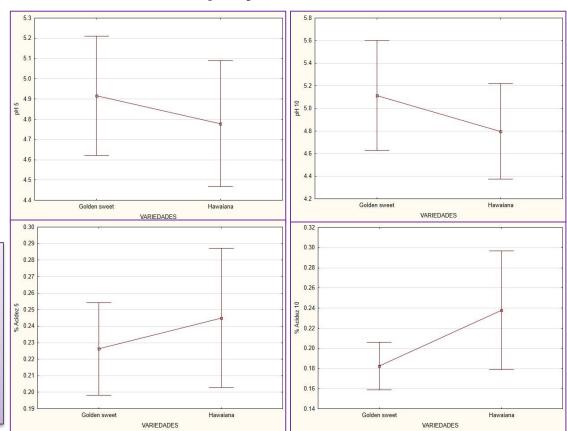
- Gram positivos
- Bacilos
- Catalasa negativa

Secuenciación

Similitud a Lactobacillus pentosus

Presentes en la secreción de diversas sustancias de carácter antimicrobiano.

(Pedraza & Arenal, 2017).

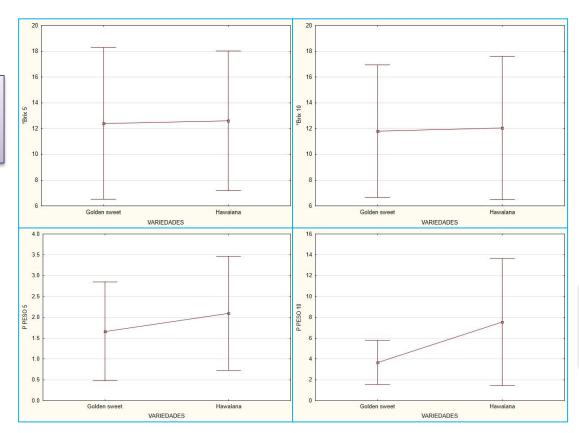

Tepache de piña

(Ramírez, 2020).

FACTOR A

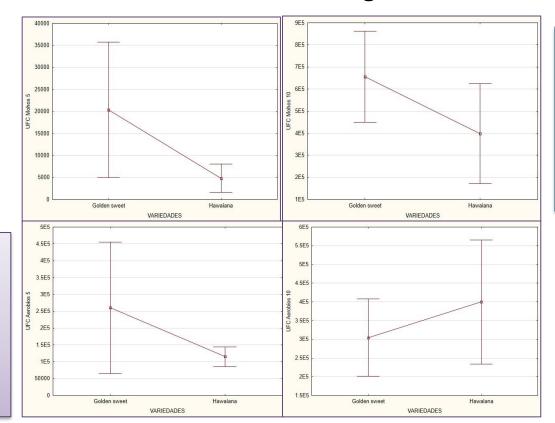
pH y Acidez

Al disminuir el valor de pH de un producto, favorece el periodo de conservación (Hanna, 2014).


La acidificación constituye, pues, una manera de conservación de los alimentos que controla la proliferación de bacterias y mantienen la calidad del alimento (Chavarrías, 2013).

Grados brix y pérdida de peso

Aumento de producción de sacarosa (Arvensis, 2014).



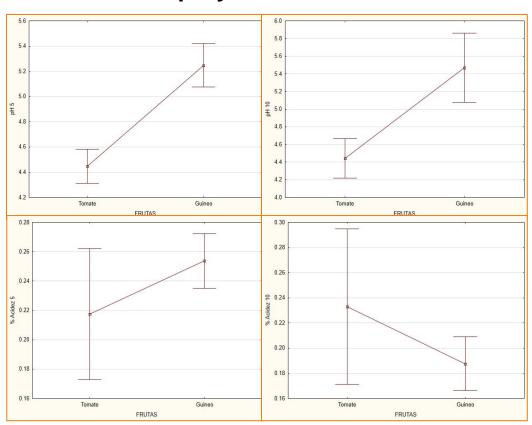
Característica de la cinética de deshidratación de la fruta (Fernández, 2013).

FACTOR A

Variables microbiológicas

El contenido de humedad permite ya sea que la fruta tenga mejor apariencia o que se promueva la formación de mohos u otras características poco deseables(HVACR, 2022).

Las bacterias
Lactobacillus, tienen la
capacidad de colonizar
primero el fruto,
asegurando una alta
capacidad antagonista
contra hongos
patógenos (López,
2021).



FACTOR B

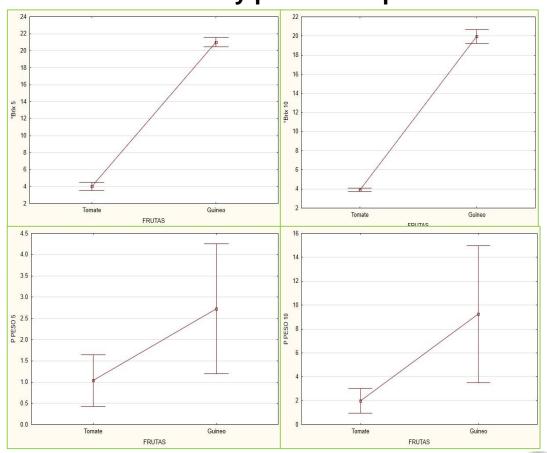
pH y Acidez

El pH del tomate se sitúa normalmente entre 4,2 y 4,4; lo que asegura la estabilidad microbiológica durante el procesado en la elaboración de conservas (García y otros, 2009).

Los plátanos y bananas tienen significativamente niveles de acidez bajos, normalmente entre 0.1 y 0.3% (ATAGO, s.f.).

La disminución del pH y aumento de la acidez titulable en el plátano, está relacionado con la degradación de almidón en azúcares reductores o su conversión en ácido pirúvico (Azcón-Bieto y Talón 2009).

El nivel de acidez en tomates suele encontrarse entre 0,3 a 0,8 % (ATAGO, s.f.).

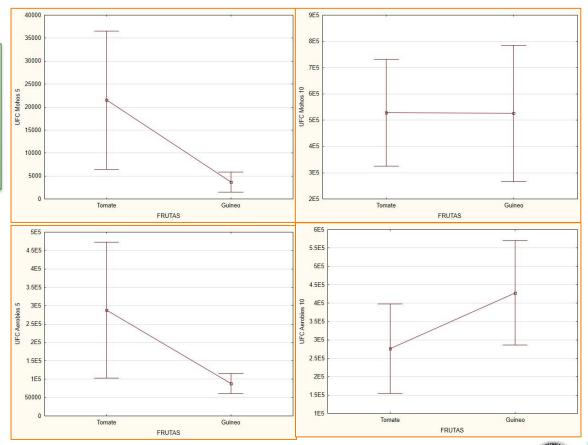

El pH de una fruta se eleva cuando madura (Decco, 2018).

FACTOR B

Grados brix y pérdida de peso

La mayor parte de variedades de tomate contienen entre 4,5 y 5,5°Brix (García y otros, 2009).

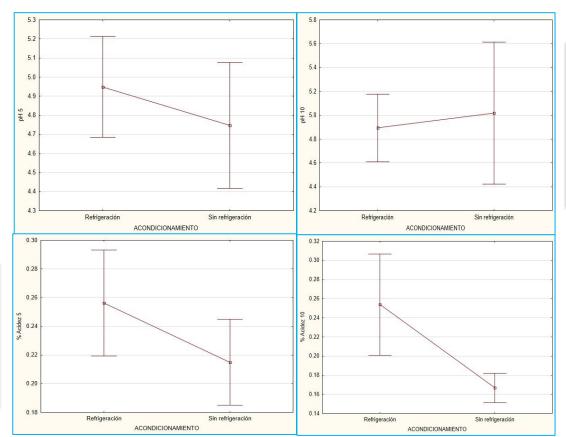
El contenido de sólidos solubles varía entre los cultivares y entre los grados de madurez (Millán & Ciro, 2011).


Pérdida de peso por evaporación o por deshidratación de las frutas (Millán & Ciro, 2011).

FACTOR B

Variables microbiológicas

Esos factores pueden estar relacionados con las características del alimento (extrínsecos) (OPS & OMS, s.f.).

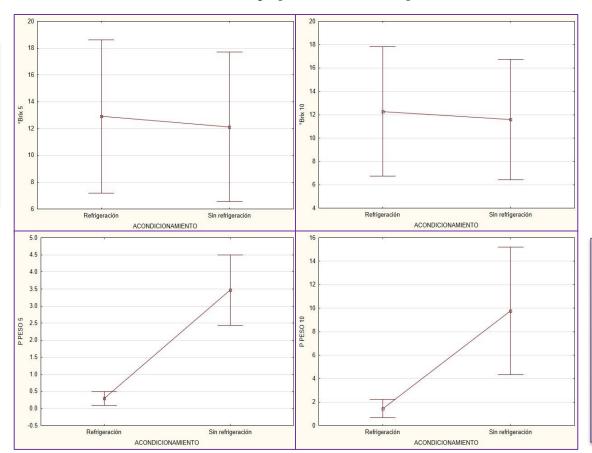


Con el ambiente en el cual dicho alimento se encuentra(extrínsec os) (OPS & OMS, s.f.).

FACTOR C

pH y acidez

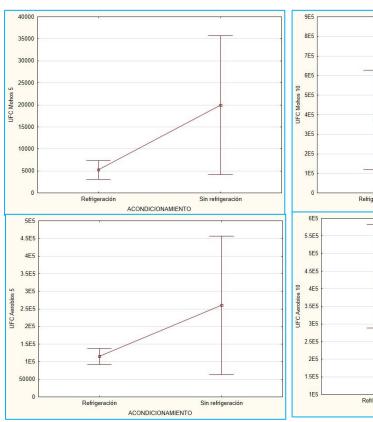
Cuando la temperatura se encuentra por encima de los 25°C se reduce el pH y en aquellos casos en que las soluciones están por debajo de los 25°C se eleva el pH (Crisol,2019).

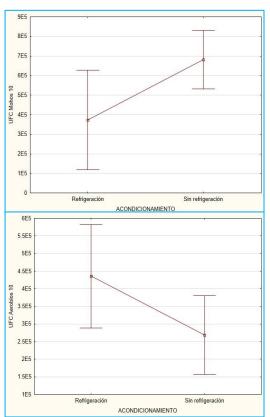

La acidez titulable disminuye en algunas frutas debido al efecto amortiguador del ácido cítrico (Torres y otros, 2013).

FACTOR C

Grados brix y pérdida de peso

Mientras el tiempo de conservación sea mayor, la pérdida de sólidos solubles también será mayor (Carranza y otros, 2012).

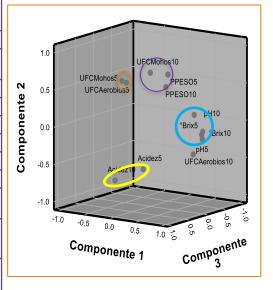

Estas pérdidas ocurren por el intercambio de masa entre el producto y el medio que lo rodea. Relación entre el producto y el ambiente a una temperatura dada (Quirós, 2016).



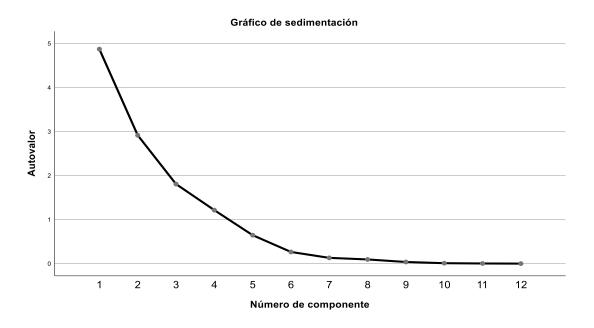
Variables microbiológicas

Cuando las bacterias cuentan con nutrientes (comida), humedad y temperaturas favorables; crecen con rapidez aumentando su número (Blogia, 2011).

INTERACCIÓN A*"B*C


	pH 5	pH 10	Acidez 5	Acidez 10
A0B0C0	4.65 a	4.70 abc	0.190 ab	0.205 ab
A0B0C1	4.36 a	4.52 ab	0.190 ab	0.165 ab
A0B1C0	5.38 a	4.95 abc	0.280 cd	0.215 b
A0B1C1	5.28 a	6.29 d	0.245 bc	0.145 a
A1B0C0	4.47 a	4.45 ab	0.330 d	0.390 c
A1B0C1	4.30 a	4.10 a	0.160 a	0.171 ab
A1B1C0	5.29 a	5.48 cd	0.225 bc	0.205 ab
A1B1C1	5.05 a	5.15 bc	0.265 c	0.185 ab
	Brix 5	Brix 10	P peso 5	P peso 10
A0B0C0	3.50 a	4.15 b	0.19 b	0.49 a
A0B0C1	3.70 a	4.10 b	1.83 d	4.05 e
A0B1C0	22.20 c	20.80 d	0.11 a	1.40 b
A0B1C1	20.25 b	18.15 c	4.52 f	8.74 f
A1B0C0	5.15 a	3.75 ab	0.06 a	0.52 a
A1B0C1	3.75 a	3.60 a	2.07 e	2.88 c
A1B1C0	20.75 c	20.40 d	0.82 c	3.39 d
A1B1C1	20.80 c	20.45 d	5.45 g	23.41 g

	Mohos 5	Mohos 10	Aerobios 5	Aerobios 10	
A0B0C0	7500.00 c	1012500 d	139000.0 b	375000.0 d	
A0B0C1	60500.00 e	516500 c	767500.0 c	68000.0 a	
A0B1C0	8000.00 c	244000 ab	75500.0 a	484000.0 e	
A0B1C1	5500.00 b	852500 d	59500.0 a	292000.0 c	
A1B0C0	5500.00 b	175500 a	88000.0 a	137000.0 ab	
A1B0C1	A1B0C1 12500.00 d		156000.0 b	525000.0 e	
A1B1C0	0.00 a	59500 a	158000.0b	748000.0 f	
A1B1C1	1250.00 a	947500 d	58000.0 a	189000.0 b	


INTERACCIÓN A*"B*C

Matriz de correlaciones												
						°Brix	P PESO	P PESO	UFC	UFC Mohos	UFC	UFC Aerobios
	% Acidez 5	% Acidez 10	pH 5	pH 10	°Brix 5	10	5	10	Mohos 5	10	Aerobios 5	10
% Acidez 5	1.000	.644	.324	.139	.389	.334	051	.134	378	264	423	263
% Acidez 10	.644	1.000	241	327	251	291	516	326	242	447	245	203
pH 5	.324	241	1.000	.771	.873	.860	.194	.259	486	037	457	.391
pH 10	.139	327	.771	1.000	.697	.685	.450	.334	329	.256	299	.126
°Brix 5	.389	251	.873	.697	1.000	.995	.389	.479	493	057	465	.352
°Brix 10	.334	291	.860	.685	.995	1.000	.391	.500	474	029	433	.372
P PESO 5	051	516	.194	.450	.389	.391	1.000	.890	066	.579	100	300
P PESO 10	.134	326	.259	.334	.479	.500	.890	1.000	178	.515	174	292
UFC Mohos 5	378	242	486	329	493	474	066	178	1.000	005	.972	493
UFC Mohos 10	264	447	037	.256	057	029	.579	.515	005	1.000	065	417
UFC Aerobios 5	423	245	457	299	465	433	100	174	.972	065	1.000	389
UFC Aerobios 10	263	203	.391	.126	.352	.372	300	292	493	417	389	1.000

INTERACCIÓN A*"B*C

- 1. Acidez día 5: 40,60%
- 2. Acidez día 10: 24,31%
- 3. pH día 5: 15,06%

El pH es un factor intrínseco de los alimentos que afecta a su deterioro, y por lo tanto a su vida útil, el nivel de acidez de un alimento es crucial a la hora de someterlo a un tratamiento para conservarlo más tiempo.

(Aconsa, 2021).

CONCLUSIONES

La variedad Golden sweet con *Lactobacillus brevis* presentó menor acidez, menor pérdida de peso y un mayor contenido de sólidos solubles en comparación a la variedad Hawaiana, es decir, que las variedades utilizadas para el aislamiento de bacterias ácido lácticas si influyen en la bioconservación de las frutas, al tener características físico-químicas diferentes.

La bioconservación del tomate presentó mejores características con respecto a los días de bioconservación en las variables físico-químicas, ya que hasta el día 10 el pH se mantuvo con el pasar de los días de conservación en 4,4 el contenido de sólidos solubles redujo mínimamente de 4,02 a 3,9 y la pérdida de peso fue menor que la del guineo. Es decir, que en la bioconservación con bacterias ácido lácticas si influye el tipo de fruta ya que presentan diferentes características físico-químicas y microbiológicas

La bioconservación en refrigeración con bacterias ácido lácticas tiene menor influencia en las características físico-químicas, ya que no se producen cambios extremos, permitiendo así alargar la vida útil de los alimentos de I Gama en los que son aplicados, en comparación a la bioconservación sin refrigeración, en la cual se produce la mayor pérdida de peso de las frutas con el pasar de los días.

RECOMENDACIONES

Realizar el aislamiento de bacterias ácido lácticas (BAL) provenientes de la variedad de piña Golden sweet para la bioconservación de alimentos de I Gama, ya que presenta mejores resultados.

Utilizar la solución bacteriana en el tomate (Solanum lycopersicum), ya que presentó mejores resultados en cuanto a las características físico-químicas y microbiológicas. Presentando mejor inhibición de mohos y aerobios.

Emplear la bioconservación en refrigeración, ya que es la más apta y recomendada para alargar la vida útil de las frutas frescas.

GRACIAS POR SU ATENCIÓN

