

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA

CARRERA DE PETROQUÍMICA

Tema:

SÍNTESIS Y CARACTERIZACIÓN DE LANI $_{0.5}$ TI $_{0.5}$ O $_3$ Y LA $_2$ NITIO $_6$ NANOPARTÍCULAS DE PEROVSKITA DOBLE

AUTOR: CORDOVA CALDERON, JOSE ANTONIO

DIRECTOR: ING. ROBALINO CACUANGO, MILTON JAVIER

an Open Access Journal by MDPI

Certificate of publication for the article titled:

Synthesis and Characterization of LaNi_{0.5}Ti_{0.5}O₃ and La₂NiTiO₆ Double Perovskite Nanoparticles

> Authored by: José Córdova-Calderón; Pablo V. Tuza; Mariana M. V. M. Souza

> > Published in:

Materials 2022, Volume 15, Issue 7, 2411

Basel, June 2022

INTRODUCCIÓN

Las perovskitas son cristales inorgánicos, que presentan interesantes estructuras como: Electrónicas que van desde aislantes a metálicas, superconductividad, además poseen ordenamientos antiferromagnéticos, ferromagnéticos.

Figura 1. Célula solar de perovskita. Fuente: Helmholtz-Zentrum Berlin y École Polytechnique Fédérale de Lausanne

INTRODUCCIÓN

Figura 2. Imagen MEB de la muestra 2, después de ser sometida a tratamiento térmico.

Formación de compuestos estables

La polimerización de quelatos básicos

Formación de una resina de alto peso molecular

Tratamiento térmico

INTRODUCCIÓN

 Técnicas usadas frecuentemente para la caracterización de perovskitas

Fluorescencia de rayos X (XRF)

 Permite conocer la composición química de las muestras en forma de oxido.

Mediciones magnéticas

 Técnica usada para determinar comportamiento antiferromagnético en las muestras.

Difracción de rayos X (XDR)

 Técnica para determinar la estructura cristalina de las muestras.

Micrografía electrónica de barrido

 Técnica usada para determinar el tamaño promedio de partículas.

Figura 3. Estructura cristalina de perovskita doble.

OBJETIVOS

OBJETIVO GENERAL

Estudiar las propiedades estructurales y magnéticas de LaNi_{0.5}Ti_{0.5}O₃ y La_2NiTiO_6 , sintetizadas con una temperatura de calcinación inferior a las correspondientes condiciones térmicas reportadas para las mismas perovskitas dobles.

OBJETIVOS

OBJETIVOS ESPECÍFICOS

• Caracterizar las perovskitas dobles sintetizadas mediante el uso de fluorescencia de rayos x, difracción de rayos x, microscopia electrónica de barrido y análisis de magnetización.

• Determinar mediante un refinamiento de Rietveld propiedades del sistema cristalino de las perovskitas dobles sintetizadas.

MATERIALES Y MÉTODOS

Formación de

ésteres

Muestra 3

MATERIALES Y MÉTODOS

Método de Rietveld

$$y_{c,i} = \sum_{\Phi} S_{\Phi} \sum_{h} \{LAPCF^2\}_{\Phi,h} \Omega(T_i - T_{\Phi,h}) + b_i$$

Funcion objetivo =
$$X^2 = \sum_i w_i (y_{c,i} - y_{o,i})^2$$

$$(y_{o,i} - |y_{o,i}|])^2 = \sigma^2 [y_{o,i}]$$

$$w_i = \frac{1}{\sigma^2 [y_{o,i}]}$$

 Φ = Fase cristalina *h*= Reflexión de Bragg S_{ϕ} = Factor de escala de fase cristalina ϕ L= Factor de polarización y multiplicidad A= Corrección de absorción P= Función de orientación preferencial C= Factor de corrección especial F = Factor de estructura $\Omega(T_i - T_{\Phi,h})$ = Función de perfil de las reflexiones b_i = Intensidad de background $y_{o,i}$ = Datos experimentales observados en ángulo 2 θ w_i = Factor de ajuste ponderado X^2 = Chi-cuadrado $|y_{o,i}|$ = Valor esperado de los datos experimentales $\sigma[y_{o,i}]$ = Incertidumbre estándar

Fluorescencia de rayos X (XRF)

Tabla 1. Composición química basada en el oxido metálico de cada muestra

	Sample 1	Sample 2	Sample 3
La ₂ O ₃ (wt%)	66.67	67.55	66.75
NiO (wt%)	16.79	16.41	16.58
TiO ₂ (wt%)	16.54	16.04	16.67

RESULTADOS Y DISCUSIONES Difracción de rayos X (XDR)

Tabla 2. Tamaño promedio de grano, parametros estructurales, factores del refinamiento de Rietveld de los datos XDR

	Sample 1	Sample 2	Sample 3	LaNi _{0.5} Ti _{0.5} O ₃ (ICSD: 88851) ^b	La ₂ NiTiO ₆ (ICSD: 95977) ^ь
Tamaño medio de cristalito (nm)	27.1	32.4	39.8		
Densidad de rayos X (g cm ⁻³)	6.643	6.640	6.681	6.631	6.605
Grupo espacial	Pbnm	Pbnm	P2 ₁ /n	Pbnm	P2 ₁ /n
V(ų)	240.2(1)	240.3(1)	239.9(1)	240.6	241.6
Chi-cuadrado (χ ²)	1.68	1.59	1.64		
Rp/Rwp/R _B	12.7/14.6/4.3	12.1/13.9/3.7	11/14.1/3.14		

Difracción de ravos X (XDR)

Figura 4. Difractograma correspondiente la perovskita $LaNi_{0.5}Ti_{0.5}O_3$ y su correspondiente estructura cristalina en 3D

Difracción de rayos X (XDR)

Difracción de rayos X (XDR)

Se pueden observar grupo espacial un distinto a la muestra muestra 2, V 1 además de una notable impureza de Dióxido de Titanio

Microscopia electrónica de barrido (MEB)

Figura 7. Imágenes MEB de las muestra 1 (a), muestra 2 (b), muestra 3 (c)

Figura 8. Variación de M junto con M⁻¹ frente a la temperatura para (a) la muestra 1, (b) la muestra 2 y (c) la muestra 3.

Análisis magnético

Tabla 3. Temperatura de Weiss (ϑ), constante de Curie (C), y momentos magnéticos efectivos (μeff) para las muestras 1, 2 y 3.

Sample	ΔТ (К)	<i>θ</i> (K)	C (emu K Oe ⁻¹ mol ⁻¹)	μ _{eff} (μ _B)
1	14-40	-15	0.207456	1.29
2	14-40	-12	0.114417	0.96
3	33-120	-23	0.944706	2.75

CONCLUSIONES

- Se sintetizaron nanopartículas de LaNi_{0.5}Ti_{0.5}O₃ y La₂NiTiO₆ mediante el método Pechini modificado. LaNi_{0.5}Ti_{0.5}O₃ se calcinó a 1073 K durante 17 h, mostrando una simetría ortorrómbica con grupo espacial Pbnm, con un tamaño medio de partícula igual a 31,9 ± 1 nm, un valor de temperatura Néel en torno a 15 K y un momento magnético de 1,29 μB.
- Cambiando el tiempo de calcinación de 17 h a 100 h, este material presentó la misma estructura cristalina y grupo espacial, con un tamaño medio de partícula igual a 50,7 ± 2 nm, un valor de temperatura Néel de aproximadamente 12 K, y un momento magnético de 0,96 µB.

CONCLUSIONES

- Por otro lado, La₂NiTiO₆ mostró una estructura cristalina monoclínica, con grupo espacial P₂1/n tamaño medio de partícula igual a 80,0 ± 5 nm, valor de temperatura Néel alrededor de 23 K, y momento magnético de 2,75 μB.
- El ordenamiento aleatorio de los cationes Ni²⁺ y Ti⁴⁺ se verificó para la muestra de LaNi_{0.5}Ti_{0.5}O₃ sintetizada con el menor tiempo de calcinación. Además,, se confirmó el orden de sal de roca de los cationes Ni²⁺ y Ti⁴⁺ para el La₂NiTiO₆.

BIBLIOGRAFÍA

- Subramani, T.; Voskanyan, A.; Jayanthi, K.; Abramchuk, M.; Navrotsky, A. A Comparison of Order-Disorder in Several Families of Cubic Oxides. In Ordered and Disordered Cubic Systems: Pyrochlore to Fluorite, Now and the Horizon; Thorogood, G. J., Finkeldei, S. C., Lang, M. K., Simeone, D., Eds.; Frontiers Media: Lausanne, Switzerland, 2022; pp. 34–54.
- Anderson, M.T.; Greenwood, K.B.; Taylor, G.A.; Poeppelmeier, K.R. B-cation arrangements in double perovskites. *Prog. Solid State Chem.* **1993**, *22*, 197–233.
- Zhang, Y.; Tao, Y.; Yu, Z.; Lu, J.; Lim, S.Y.; Shao, J. Structure and electrochemical properties of titanate perovskite with in situ exsolution as a ceramic electrode material. *J. Electroceram.* **2020**, *45*, 29–38.
- George, G.; Ede, S.R.; Luo, Z. Fundamentals of Perovskite Oxides: Synthesis, Structure, Properties and Applications, 1st ed.; CRC Press: Boca Raton, USA, 2020; pp. 185-226.
- Kalanda, M.A.; Lobanovsky, L.S.; Gurskii, L.I.; Telesh, E.V.; Kotov, D.A.; Saad, A.; Adolphi, B.; Plötner, M. Structure and magnetic properties of Sr₂FeMoO_{6±δ}. In: *Physics, Chemistry and Application of Nanostructures*; Borisenko, V.E., Gaponenko, S.V., Gurin, V.S., Eds.; World Scientific: Hackensack, USA, 2009; pp. 248-251.
- Bian, Z.; Wang, Z.; Jiang, B.; Hongmanorom, P.; Zhong, W.; Kawi, S. A review on perovskite catalysts for reforming of methane to hydrogen production, *Renewable Sustainable Energy Rev.* **2020**, *134*, 110291.
- Souza, M.M.V.M.; Aranda, D.A.G.; Schmal, M. Reforming of methane with carbon dioxide over Pt/ZrO₂/Al₂O₃. J. Catal. 2001, 204, 498–511.
- Budarin, V.; Shuttleworth, P.S.; Lanigan, B.; Clark J.H. Nanocatalysts for Biofuels. In: *Nanocatalysis Synthesis Applications*, Polshettiwar, V., Asefa T., Eds.; John Wiley & Sons, Inc.: Hoboken, USA, 2013; pp. 595–614.
- Tuza, P. V.; Souza, M.M.V.M. Steam Reforming of Methane Over Catalyst Derived from Ordered Double Perovskite: Effect of Crystalline Phase Transformation. *Catal. Lett.* **2016**, *146*, 47–53.

BIBLIOGRAFÍA

- Tuza, P. V.; Souza, M.M.V.M. B-cation partial substitution of double perovskite La2NiTiO6 by Co2+: Effect on crystal structure, reduction behavior and catalytic activity. Catal. Commun. 2017, 97, 93–97.
- Rodríguez, E.; Álvarez, I.; López, M.L.; Veiga, M.L.; Pico, C. Structural, Electronic, and Magnetic Characterization of the Perovskite LaNi1−xTixO3 (0 ≤ x ≤ 1/2). J. Solid State Chem. 1999, 148, 479–486.
- Rodríguez, E.; López, M.L.; Campo, J.; Veiga, M.L.; Pico, C. Crystal and magnetic structure of the perovskites La2MTiO6 (M = Co, Ni). J. Mater. Chem. 2002, 12, 798–2802.
- Pérez-Flores, J.C.; Ritter, C.; Pérez-Coll, D.; Mather, G.C.; García-Alvarado, F.; Amador, U. Synthesis, structures and electrical transport properties of the La2–xSrxNiTiO6–δ (0 ≤ x ≤ 0.5) perovskite series. J. Mater. Chem. 2011, 21, 13195–13204.
- Yang, W.Z.; Liu, W.Z.; Lin, Y.Q.; Chen, X.M. Structure, magnetic, and dielectric properties of La2Ni(Mn1-xTix)O6 ceramics. J. Appl. Phys. 2012, 111, 084106.
- Yang, M.; Huo, L.; Zhao, H.; Gao, S.; Rong, Z. Electrical properties and acetone-sensing characteristics of LaNi1-xTixO3 perovskite system prepared by amorphous citrate decomposition. Sens. Actuators, B 2009, 143, 111–118.
- Pérez-Flores, J.C.; Ritter, C.; Pérez-Coll, D.; Mather, G.C.; Canales-Vázquez, J.; Gálvez-Sánchez, M.; García-Alvarado, F.; Amador, U. Structural and electrochemical characterization of La2-xSrxNiTiO6-δ. Int. J. Hydrogen Energy 2012, 37, 7242–7251.
- Pérez-Flores, J.C.; Pérez-Coll, D.; García-Martín, S.; Ritter, C.; Mather, G.C.; Canales-Vázquez, J.; Gálvez-Sánchez, M.; García-Alvarado, U.; Amador, U. A- and B-Site Ordering in the A-Cation-Deficient Perovskite Series La2-xNiTiO6-δ (0 ≤ x < 0.20) and Evaluation as Potential Cathodes for Solid Oxide Fuel Cells. Chem. Mater. 2013, 25, 2484–2494.
- Pérez-Flores, J.C.; Castro-García, M.; Crespo-Muñoz, V.; Valera-Jiménez, J.F.; García-Alvarado, F.; Canales-Vásquez, J. Analysis of Performance Losses and Degradation Mechanism in Porous La2-xNiTiO6-δ: YSZ Electrodes. Materials 2021, 14, 2819.

BIBLIOGRAFÍA

- Souza, M.M.V.M.; Maza, A.; Tuza, P.V. X-ray powder diffraction data of LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites. Powder Diffr. 2021, 36, 29–34.
- Vijatović, M.M.; Bobić, J.D.; Stojanović, B.D. History and challenges of barium titanate: Part I, Sci. Sintering 2008, 40, 155–165.
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55–69.
- ICSD, Inorganic Crystal Structure Database. Available online: https://bdec.dotlib.com.br/ (accessed on 1 December 2017).
- Rodríguez-Carvajal, J., Fullprof Manual. Available online: http://www.ill.eu/sites/fullprof/ (accessed on 1 December 2017).
- Attfield, M., Barnes, P., Cockcroft, J.K., Driessen, H. Advanced Certificate in Powder Diffraction (School of Crystallography, Birkbeck College, University of London). Available online: http://pd.chem.ucl.ac.uk/pdnn/refine1/case.htm (accessed on 1 October 2021).
- Rasband, W., ImageJ, U.S. National Institutes of Health, Bethesda, Maryland. Available online: https://imagej.nih.gov/ij (accessed on 1 October 2021).
- Lidin, S. Quasicrystal Approximants. In Handbook of Solid State Chemistry; Dronskowski, R., Kikkawa, S., Stein, A., Eds.; Wiley-VCH: Weinheim, Germany, 2017; pp. 73–92.
- Le Bail, A. Monte Carlo indexing with McMaille. Powder Diffr. 2004, 19, 249–254.
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 2011, 44, 1272–1276.
- De Muro, I.G.; Insausti, M.; Lezama, L.; Pizarro, J.L.; Arriortua, M.I.; Rojo, T. Structural, Spectroscopic, Magnetic and Thermal Properties in the [SrM(C3H2O4)2(H2O)5]·2H2O (M=Mn, Fe, Co, Ni) System: Precursors of SrMO3–x Mixed Oxides. Eur. J. Inorg. Chem. 1999, 1999, 935–943.

GRACIAS