

Departamento de Ciencias de la Energía y Mecánica

Carrera de Petroquímica

"SISTEMAS DE SEPARACIÓN DE ETANOL OBTENIDAS MEDIANTE COMPUTADOR"

AUTORA: Jaya Aymacaña, Evelyn Jazmin

DIRECTOR: Tuza Alvarado, Pablo Vinicio, D. Sc

OBJETIVO GENERAL

Obtener sistemas de separación de etanol provenientes de procesos reportados en la literatura.

OBJETIVOS ESPECÍFICOS

- Colectar información de la composición de mezclas líquidas que contienen etanol reportadas en la literatura.
- Analizar y seleccionar los datos de la revisión bibliográfica realizada de mezclas con etanol.
- Determinar el grado de idealidad de las mezclas con etanol, por medio de los coeficientes de actividad y diagramas x – y, T – x – y.
- Seleccionar la secuencia óptima de separación en caso de sistemas ideales.
- Seleccionar las condiciones óptimas de operación de las columnas de destilación en el caso de sistemas no ideales.
- Sintetizar sistemas de separación en función al grado de idealidad de la mezcla con el uso de PRO/II.

EXTRACCIÓN DE DATOS

PRODUCCIÓN DE ETANOL DE GAS DE SÍNTESIS

Tabla 1

Información de la síntesis de la mezcla de etanol.

Productos	Rendimiento (%)		
Etanol	83		
Etilenglicol	0		
Glicolato de metilo	0		
dioles $(C_3 - C_4)$	17		
Condiciones de reacción			
Temperatura [K]	553		
H ₂ /DMO [mol/mol]	200		
Conversión DMO [%]	100		
Catalizador	$20 C_u/SiO_2$		
Tiempo [h]	200		

Nota. Recuperado de Synthesis of Ethanol via Syngas on Cu/SiO_2 Catalysts with Balanced $Cu^0 - Cu^+$ Sites (p. 13923), por Gong et al, 2012, Journal of the American Chemical Society.

$$\widetilde{Y}_{P} = \frac{N_{P}}{N_{RO} - N_{R}}$$
[1]

Donde,

 \widetilde{Y}_P =Rendimiento del producto p

N_P=moles del producto p al final de la reacción

N_{R0}=moles del reactivo al inicio de la reacción

N_R=moles del reactivo al final de la reacción

DETERMINAR LA IDEALIDAD DE LA MEZCLA

SISTEMAS DE SEPARACIÓN PARA MEZCLAS CASI IDEALES

Tabla 2

Números de secuencias y separadores en función del número de productos requeridos.

Número de	Número de	Número de
Productos (P)	separadores	secuencias
	en la secuencia	Diferentes (N _S)
2	1	1
3	2	2
4	3	5
5	4	14
6	5	42

Nota. Recuperado de Product and Process Design Principles: Synthesis, Analysis, and Evaluation (p. 218), por Seider et al., 2009, John Wiley and Sons, Inc.

Figura 9

Configuraciones de destilación de columnas complejas de tres especies.

Figura 8 Configuraciones de destilación de columnas complejas de tres especies.

ABC V. Prefraccionador con Destilación VI. Destilación con Corriente Lateral Inferior VI. Destilación con Corriente Lateral Inferior

Nota. Recuperado de Product and Process Design Principles: Synthesis, Analysis, and Evaluation (p. 221), por Seider et al., 2009, John Wiley and Sons, Inc.

SISTEMAS DE SEPARACIÓN PARA MEZCLAS CASI IDEALES

SISTEMAS DE SEPARACIÓN PARA MEZCLAS CASI IDEALES

Nota. Recuperado de Product and Process Design Principles: Synthesis, Analysis, and Evaluation (p. 216), por Seider et al., 2009, John Wiley and Sons, Inc.

SISTEMAS DE SEPARACIÓN PARA MEZCLAS NO IDEALES

Water

etanol - agua de temperatura de ebullición mínima, la variación de la presión es significante en la composición del azeótropo,

SIMULACIÓN MEDIANTE COMPUTADOR

de la licencia.

valores del coeficiente de actividad mayores a uno (Seider et al., 2009) o en torno de uno (Ghasem, 2015).

SIMULACIÓN DE LOS SISTEMAS DE SEPARACIÓN

Luyben (2013): por heurística R/R_min = 1,2. Para obtener una simulación rigurosa de destilación simple óptima y económica. Recuperación del 99,9% del componente mas volátil. Según AVEVA (2020b), cuando el ícono del equipo está de color azul es un indicativo de que, el programa converge sin errores, por lo tanto, la operación unitaria se resolvió.

COMPOSICIÓN DE LAS MEZCLAS DE ALIMENTACIÓN

PRODUCCIÓN DE ETANOL DE GAS DE SÍNTESIS

Tabla 3

Composición de la mezcla de etanol producida de gas de síntesis.

Compuesto	Fracción molar	Flujo molar [kmol/h]
Etanol	0,8300	83,00
1,2-propanodiol	0,0850	8,50
1,2-butanodiol	0,0850	8,50
Total	1,0000	100,00

PRODUCCIÓN DE BIOETANOL DE CASSAVA RHIZOME (YUCA)

Tabla 4

Composición de la mezcla de bioetanol producida de cassava rhizome.

Condiciones de la corriente S65			
Temperatura [K]	371,74		
Presión [kPa]	179,35		
Fracción de vapor	1,00		
Flujo total [kmol/h]	179,532		
Compuesto	Flujo molar [kmol/h]		
Etanol	90,732		
Agua	85,248		
Ácido acético	3,450		
Furfural	0,102		
Compuesto	Fracción molar		
Etanol	0,5054		
Agua	0,4748		
Ácido acético	0,0192		
Furfural	5,7114 E-04		

IDEALIDAD DE LAS MEZCLAS

Tabla 5

Datos de idealidad de los pares binarios posibles de la mezcla de etanol.

Primero	Segundo	Coeficiente de	Presencia
Componente	Componente	Componente Actividad	
			azeótropos
Etanol	1,2-propanodiol	Etanol = 1,22	No
	1,2-butanodiol	1,00	No
1,2-propanodiol	1,2-butanodiol	1,00	No

Según Seider et al. (2017), el coeficiente de actividad para una mezcla binaria con una solución líquida ideal ($\gamma_J^L = 1$). Sin embargo, cuando la mezcla forma una fase líquida no ideal ($\gamma_I^L > 1, j = 1,2$), da paso a la formación de azeótropos.

Tabla 6

Datos de idealidad de los pares binarios posibles de la mezcla de bioetanol.

Primero	Segundo	Coeficiente de	Presencia de
componente	componente	actividad	azeótropos
Etanol	Agua	Etanol = $5,20$	Si
		Agua = 1	
	Ácido acético	Etanol = $0,87$	No
		Ácido acético = 1,00	
	Furfural	1,00	No
Agua	Ácido acético	Agua = 1,73	Si
		Ácido acético = 1,00	
	Furfural	Agua = 1,54	Si
		Furfural = 1,00	
Ácido acético	Furfural	1,00	No

Heurística 3: separar primero el compuesto en mayor porcentaje.

Heurística 4: la separación más compleja de especies químicas al final de la secuencia.

Heurística 6: Separa la alimentación en partes iguales de fondo y destilado

43.07

1.93

83.12

Tabla 9

Valores del diagrama x – y del etanol agua con la variación de presión.

101,3	2 kPa	13,33	kPa	9,33	kPa	8,67	kPa
X	У	Х	У	X	У	X	У
0,888	0,888	0,979	0,980	0,989	0,990	0,989	0,990

Figura 19

Composición azeotrópica etanol - agua con variación de presión.

Figura 20

Efecto de la presión en el azótropo etanol – agua.

Figura 20 Secuencia de destilación azeotrópica predecida.

Nota. Diagrama ternario a 101,325 kPa. Recuperado de Product and Process Design Principles: Synthesis, Analysis, and Evaluation (p. 231), por Seider et al., 2009, John Wiley and Sons, Inc.

Figura 21

Trazado de la secuencia de destilación azeotrópica predecida.

Nota. Diagrama ternario a 101,325 kPa. Recuperado de Product and Process Design Principles: Synthesis, Analysis, and Evaluation (p. 231), por Seider et al., 2009, John Wiley and Sons, Inc.

Tabla 10

Fracciones molares predecidas para el sistema de destilación azeotrópica.

Simbología	Fracción molar		Total	
	Etanol	Agua	Tolueno	
F	0,5054	0,4946	0	1
M1	0,522	0,447	0,031	1
D1	0,8437	0,1062	0,05	1
M2	0,7804	0,0956	0,124	1
D2	0,6022	0,1728	0,225	1
S2	0,315	0,016	0,669	1
S1	0,6156	0,1798	0,2046	1

Se inició ubicando la composición de la alimentación de la Tabla 4 en el diagrama. Nuestro par de separación clave, etanol – agua y el agente de separación, las fracciones molares de las especies restantes, el ácido acético y furfural se sumaron al agua.

DESTILACIÓN ORDINARIA CON SECUENCIA DIRECTA

Figura 22

Tren de separación por secuencia directa para mezclas casi ideales.

DESTILACIÓN ORDINARIA CON SECUENCIA DIRECTA

Tabla 11

Resultado de las corrientes de salida de la secuencia directa.

	• •	• •		• •
Corriente	S3	S4	S5	S6
Fase	Líquido	Líquido	Líquido	Líquido
Temperatura [K]	370,77	496,889	484,005	499,242
Presión [kPa]	206,843	276,843	206,84	276,843
Flujo molar total	82,99	17,008	8,529	8,480
[kmol/h]	02,00			
Flujo por componente				
[kmol/h]				
Etanol	82,992	0,008	0,008	0,000
1,2-propanodiol	0,000	8,500	8,498	0,002
1,2-butanodiol	0,000	8,500	0,022	8,478
Composición molar				
Etanol	1,000	0,0005	0,0010	0,0000
1,2-propanodiol	0,000	0,4998	0,9964	0,0002
1,2-butanodiol	0,000	0,4998	0,0026	0,9998

Tabla 12

Resultado de los parámetros de la columna Shortcut para la secuencia directa..

Parámetros	Columna 1	Columna 2
Tipo de condensador	Total	Total
Presión del condensador [kPa]	206,843	206,843
Presión de alimentación [kPa]	241,843	
Presión del rehervidor [kPa]	276,843	276,843
Flujo molar del destilado [kmol/h]	82,992	8,520
Total de platos	33	243
Plato de alimentación	24	73
Relación de reflujo de operación	0,047	17,105

DESTILACIÓN CON RECTIFICADOR DE CORRIENTE LATERAL DE VAPOR

Figura 23

Tren de separación con rectificador de corriente lateral de vapor para mezclas casi ideales.

La ubicación del plato de salida de la corriente lateral de vapor de la columna de destilación hacia el fondo del rectificador, se conecta en el plato intermedio entre la alimentación y el último plato de dicha columna, mientras que, la alimentación de la corriente de salida de los fondos del rectificador a la columna, se colocará un plato abajo de la corriente lateral de vapor (Luyben, 2015; Wang et al., 2018; Zhao et al., 2018).

DESTILACIÓN CON RECTIFICADOR DE CORRIENTE LATERAL DE VAPOR

Tabla 13

Resultado de las corrientes de salida de la secuencia directa.

Corriente	S5_1	S6_1	S11_1	S14
Fase	Líquido	Líquido	Vapor	Líquido
Temperatura [K]	370,877	495,974	493,440	472,282
Presión [kPa]	206,843	276,843	260,689	206,843
Flujo molar total	83,120	8,597	400,000	8,290
[kmol/h]				
Flujo por componente				
[kmol/h]				
Etanol	82,887	0,000	0,121	0,113
1,2-propanodiol	0,167	0,137	34,438	8,177
1,2-butanodiol	0,066	8,460	365,441	0,000
Composición molar				
Etanol	0,9972	0,0000	0,0003	0,0136
1,2-propanodiol	0,0020	0,0159	0,0861	0,9864
1,2-butanodiol	0,0008	0,9841	0,9136	0,0000

Tabla 14

Resultado de parámetros de la columna Shortcut para la secuencia con corriente lateral.

Parámetros	Columna 1	Rectificador
Tipo de condensador	Total	Total
Presión del condensador [kPa]	206,843	206,843
Presión de alimentación [kPa]	241,843	
Presión del rehervidor [kPa]	276,843	206,843
Flujo molar del destilado [kmol/h]	82,289	8,492
Total de platos	27	81
Plato de alimentación	17	48
Relación de reflujo de operación	0,025	12,049

DESTILACIÓN POR OSCILACIÓN DE PRESIÓN

Figura 24

Tren de separación por secuencia directa para mezclas casi ideales.

DESTILACIÓN POR OSCILACIÓN DE PRESIÓN

Tabla 15

Resultado de las corrientes de la secuencia por oscilación de presión.

Corriente	S5	S 6		
Fase	Líquido	Líquido		
Temperatura [K]	301,007	316,781		
Presión [kPa]	9,332	9,332		
Flujo molar total	91.20	88,324		
[kmol/h]	8			
Flujo por componente	,			
[kmol/h]				
Etanol	90,633	0,0985		
Agua	1,449	84,673		
Ácido acético	2,788 E-19	3,450		
Furfural	0	0,103		
Composición molar				
Etanol	0,9937	1,1153 E-03		
Agua	6,3018 E-03	0,9587		
Ácido acético	0	0,0391		
Furfural	3,0570 E-21	1,1609 E-03		

Tabla 16

Resultado de parámetros de la shortcut en la destilación por oscilación de presión.

Parámetros	Columna 1		
Tipo de condensador	Total		
Presión de la columna [kPa]	9,332		
Presión de alimentación [kPa]	9,332		
Flujo molar del destilado [kmol/h]	90,731		
Total de platos	48		
Plato de alimentación	25		
Relación de reflujo de operación	1,927		

DESTILACIÓN AZEOTRÓPICA HETEROGÉNEA

Figura 25

Tren de separación por destilación azeotrópica heterogénea para mezclas no ideales con columnas Shortcut.

UNIVERSIDAD DE LAS FUERZAS ARMADAS

INNOVACIÓN PARA LA EXCELENCIA

DESTILACIÓN AZEOTRÓPICA HETEROGÉNEA

Figura 26

Trazado de la secuencia de destilación azeotrópica resultante.

DESTILACIÓN AZEOTRÓPICA HETEROGÉNEA

Tabla 17

Resultado de las corrientes de la secuencia de destilación azeotrópica heterogénea.

Corriente	S19	S17	S3	S 1	S20	S10	S11	S24	S13
Fase	Mezcla	Mezcla	Líquido	Líquido	Mezcla	Líquido	Líquido	Líquido	Líquido
Temperatura [K]	359,077	356,426	374,848	352,317	351,336	353,897	350,906	347,900	347,800
Presión [kPa]	111,458	111,458	111,458	111,458	111,458	111,458	111,458	111,458	111,458
Fracción molar	0,8926	0,7614	0,0000	0,0000	0,0013	0,0000	0,0000	0,0000	0,0000
del vapor									
Fracción molar	0,1074	0,2386	1,0000	1,0000	0,9987	1,0000	1,0000	1,0000	1,0000
del líquido									
Flujo molar total	17	211,415	80,957	130,458	148,098	65,289	82,809	2,808	80,001
[kmol/h]									
	9,532								
Flujo por compone	nte								
[kmol/h]									
Etanol	90,732	110,362	0,169	110,193	115,553	65,238	50,315	0,848	49,466
Agua	85,248	90,977	77,235	13,743	14,079	0,050	14,028	0,050	13,978
Ácido acético	3,450	3,450	3,450	0,000	0,000	0,000	0,000	0,000	0,000
Furfural	0,103	0,103	0,103	0,000	0,000	0,000	0,000	0,000	0,000
Tolueno	0,000	6,523	0,000	6,523	18,466	0,000	18,466	1,909	16,556
Composición									
molar									
Etanol	0,5054	0,5220	0,0021	0,8447	0,7803	0,9992	0,6076	0,3022	0,6183
Agua	0,4748	0,4303	0,9540	0,1053	0,0951	0,0008	0,1694	0,0179	0,1747
Ácido acético	0,0192	0,0163	0,0426	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Furfural	0,0006	0,0005	0,0013	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Tolueno	0,0000	0,0309	0,0000	0,0500	0,1247	0,0000	0,2230	0,6799	0,2070

SECUENCIAS PARA MEZCLAS NO IDEALES

La columna *Shortcut* no ofrecen un valor exacto cuando existen no idealidades significativas de la fase líquida. Si se proporciona una buena estimación inicial, La *Distillation* puede converger rápido pero con valores similares a los obtenidos en la *Shortcut* (Sinnott & Towler, 2008).

CONCLUSIONES

- Se seleccionaron dos mezclas con etanol, la primera mezcla casi ideal con etanol producida de gas de síntesis con tres especies químicas: etanol, 1,2-propanodiol y 1,2-butanodiol. La segunda mezcla no ideal con bioetanol producida de cassava rhizome con 4 especies químicas: etanol, agua, ácido acético y furfural.
- Las condiciones de alimentación empleadas para el sistema de separación de especies químicas casi ideales presentan presión de 258 kPa, la temperatura de 380,60 K y la fracción de vapor de cero. Por otra parte, las condiciones de alimentación empleadas para el sistema de separación de especies químicas no ideales indican, para la destilación por oscilación de presión, la presión de 9,33 kPa, mientras que, para la destilación azeotrópica heterogénea, la presión de 111,46 kPa.
- Para la mezcla de alimentación casi ideal se obtuvo dos secuencias de separación diferentes. Por un lado, tenemos el tren de separación por secuencia directa y el tren de separación con rectificador de corriente lateral de vapor.
- En el sistema de destilación por secuencia directa, se separaron las tres especies en fase líquida, con una composición molar de 1,000 para el etanol, 0,9964 para el 1,2-propanodiol y 0,9998 para de 1,2-butanodiol

CONCLUSIONES

- En el sistema de destilación con rectificador de corriente lateral de vapor, también se separaron las tres especies en fase líquida, pero con menor fracción molar que la destilación por secuencia directa, con composiciones de 0,9972 para el etanol, 0,9864 para el 1,2-propanodiol y 0,9841 para el 1,2-butanodiol.
- Para la mezcla de alimentación no ideal se obtuvieron dos sistemas de destilación, la destilación por oscilación de presión y la secuencia de destilación azeotrópica heterogénea, los dos sistemas con dos corrientes de salida.
- En la destilación por oscilación de presión se obtuvo una composición en fracción molar de bioetanol de 0,9937 con un flujo molar de 90,633 kmol/h en el destilado, mientras que, en la destilación azeotrópica heterogénea se obtuvo bioetanol con una fracción molar de 0,9992 y un flujo molar de 65,238 kmol/h en los fondos.
- En la separación azeotrópica heterogénea los productos se obtuvieron en los fondos, en la columna pre concentradora de agua se obtuvo una fracción molar de agua de 0,9540 con un flujo molar total de 0,9992 kmol/h y en la columna azeotrópica se reportó una fracción molar de bioetanol de 0,9992 con un flujo molar total de 65,289 kmol/h.

RECOMENDACIONES

- Para obtener una simulación rigurosa de la destilación azeotrópica heterogénea, se puede iniciar reemplazando las columnas Shortcut por Distillation.
- Implementar un diseño detallado y especificado de control automático en los sistemas de separación.
- Optar por el uso de otros simuladores, por ejemplo, Aspen Plus, envés de PRO/II, porque permite identificar azeótropos y curvas de residuo en diagramas ternarios, que pueden ayudar en el diseño y síntesis de las columnas de destilación no ideales, con una amplia base de datos de propiedades físicas (Ghasem, 2015).

BIBLIOGRAFÍA

Arturo, J. (2003). Diseño de procesos en Ingeniería Química. Reverté, S. A.

AVEVA. (20 de marzo de 2020a). AVEVA TM PRO / II TM Simulation Release Notes. https://www.aveva.com/

- AVEVA. (17 de marzo 2020b). AVEVA [™] PRO / II [™] Simulation Thermodynamic Data Keyword Manual. https://www.aveva.com/
- AVEVA. (16 de marzo de 2020c). AVEVA[™] Excel Simulation with AVEVA[™] PRO/II[™] Simulation User Guide. https://www.aveva.com/
- Brignole, E., & Pereda, S. (2013). Supercritical Fluid Science and Technology: Phase Equilibrium Engineering. In *Supercritical Fluid Science and Technology, Series Editor Erdogan Kiran* (Vol. 3). Elsevier.

Cengel, Y. A., & Boles, M. A. (2009). Termodinámica (Sexta). McGraw-Hill Companies, Inc.

Chien, I. L., Zeng, K.-L., Chao, H.-Y., & Hong Liu, J. (2004). Design and Control of Acetic Acid Dehydration System via Heterogeneous Azeotropic Distillation. *Chemical Engineering Science*, *59*(21), 4547–4567. https://doi.org/10.1016/j.ces.2004.06.041

de Haan, A. B., Eral, B., & Schuur, B. (2020). Industrial Separation Processes (Second). Deutsche Nationalbibliothek.

- Seider, W., Lewin, D., Widagdo, S., Gani, R., & Ming, K. (2017). *Product and Process Design Principles: Synthesis, Analysis, and Evaluation* (Fourth). John Wiley & Sons, Inc.
- Seider, W., Seader, J., Lewin, D., & Widagdo, S. (2009). *Product and Process Design Principles: Synthesis, Analysis and Evaluation* (Third). John Wiley and Sons, Inc.

GRACIAS POR SU ATENCIÓN

