

Análisis de constitución y procesos de reparación de ECUS automotrices de procedencia europea

Claudio Medina, Italo Lenin y Ichina Mopocita, Kevin Alexander

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Automotriz

Trabajo de Integración Curricular, previo a la obtención del Título de Ingeniero Automotriz

Ing. Erazo Laverde, Washington Germán

3 de febrero del 2022

Latacunga

Document Information

Analyzed document tesis ecu europea Ichina Claudio_ERAZO.pdf (D157773136)

Submitted 2/3/2023 6:16:00 PM

Submitted by Cristian Laverde

Submitter email claverdeguteq.edu.ec

Similarity 63

Analysis address claverde.uteg@analysis.urkund.com

Firmado digitalmente por WASHINGTON GERMAN ERAZO LAVERDE

Sources included in the report

W	URL: https://repositorio.espe.edu.ec/bitstream/21000/12408/2/ESPEL-MAI-0546-P.pdf Fetched: 2/3/2023 6:17:00 PM	88	3
W	URL: https://autosoporte.com/conociendo-los-circuitos-de-procesamiento-de-datos-de-una- ecu/ Fetched: 2/3/2023 6:17:00 PM	88	3
W	URL: https://dspace.ups.edu.ec/bitstream/123456789/10163/6/UPS%20-%20ST001793.pdf Fetched: 2/3/2023 6:17:00 PM	88	3
W	URL: https://repositorio.espe.edu.ec/bitstream/21000/14152/2/ESPEL-MAI-0626-P.pdf Fetched: 2/3/2023 6:17:00 PM	88	6
W	URL: https://colombia.com.co/como-funciona-un-circuito-fuente-de-alimentacion-de-una-ecu/ Fetched: 2/3/2023 6:17:00 PM	88	1
W	URL: https://www.encendidoelectronico.com/senales-electronicas-motor/senales-electronicas- del-motor Fetched: 2/3/2023 6:17:00 PM	88	1
w	URL: https://elatesa.com/electronica-basica-que-es-el-smd/ Fetched: 2/3/2023 6:17:00 PM	88	1
w	URL: https://www.negocioscontralaobsolescencia.com/taller/resistencias-smd-smt-como- interpretar-los Fetched: 2/3/2023 6:17:00 PM	88	1
W	URL: https://www.autoavance.co/blog-tecnico-automotriz/167-procesamiento-de-datos- controladores-y-m Fetched: 2/3/2023 6:16:00 PM	88	6
W	URL: https://todosobreecu.activo.mx/t2-tipos-de-memorias-posibles-en-una-ecu Fetched: 2/3/2023 6:16:00 PM	88	3
W	URL: https://www.ecured.cu/Memorias_de_acceso_secuencial Fetched: 2/3/2023 6:17:00 PM	88	4

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Automotriz

Certificación

Certifico que el trabajo de integración curricular: "Análisis de constitución y procesos de reparación de ECUs automotrices de procedencia europea" fue realizado por los señores Claudio Medina, Italo Lenin y Ichina Mopocita, Kevin Alexander, el mismo que cumple con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, además fue revisado y analizada en su totalidad por la herramienta de verificación de similitud de contenidos; razón por la cual me permito acreditar y autorizar para que se lo sustente públicamente.

Latacunga, 03 de febrero de 2023

Ing. Erazo Laverde, Washington German Msc.

C. C: 0501432637

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Automotriz

Responsabilidad de autoría

Nosotros, Claudio Medina Italo Lenin, y Ichina Mopocita, Kevin Alexander, con cedula de ciudadanía n° 1850190164 y 1850185792 declaramos que el contenido, ideas y criterios del trabajo de integración curricular: "Análisis de constitución y procesos de reparación de ECUs automotrices de procedencia europea" es de nuestra autoría y responsabilidad, cumpliendo con los requisitos legales, teóricos, científicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, respetando los derechos intelectuales de terceros y referenciando las citas bibliográficas.

Latacunga, 03 de febrero de 2023

Ichina Mopocita, Kevin Alexander

C.C.: 1850185792

Claudio Medina, Italo Lenin

C.C.: 1850190164

Departamento de Ciencias de la Energía y Mecánica

Carrera de Ingeniería Automotriz

Autorización de publicidad

Nosotros, Claudio Medina Italo Lenin, y Ichina Mopocita, Kevin Alexander, con cedula de ciudadanía nº 1850190164 y 1850185792 autorizamos a la Universidad de las Fuerzas Armadas ESPE publicar el trabajo de integración curricular: "Análisis de constitución y procesos de reparación de ECUs automotrices de procedencia europea" en el Repositorio Institucional, cuyo contenido, ideas y criterios son de nuestra responsabilidad.

Latacunga, 03 de febrero de 2023

Ichina Mopocita, Kevin Alexander

C.C.: 1850185792

Claudio Medina, Italo Lenin

C.C.: 1850190164

Dedicatoria

Dedico el presente trabajo de integración curricular primero a Dios y a mi familia, pilares fundamentales en mi vida, los cuales siempre me han apoyado y guiado, durante mi vida universitaria. A mi madre Martha Medina, quien con su cariño y esfuerzo siempre me apoyo para saber sobrellevar los duros momentos, haciéndome una persona de bien, quien con su trabajo duro siempre me brindo una vida digna y feliz.

A mi tío Marcelo Medina, quien se convirtió en una figura paterna, quien me cuido y enseño el camino del bien, mostrándome la importancia del trabajo duro, y la familia.

A mis tíos María y Milton, quienes me guiaron desde niño y me enseñaron el valor del trabajo y la importancia del estudio.

A mis primos Erika, Enrique y Leonela, quienes con sus palabras de aliento me guiaron en mi carrera universitaria y a siempre seguir adelante.

ITALO LENIN CLAUDIO MEDINA

Agradecimiento

Agradezco a Dios por brindarme la vida, y mantenernos en salud a mí y a mi familia, enseñarme el valor del trabajo, estudio y la fortaleza para afrontar de la mejor manera mi proceso universitario. A mi madre por apoyarme durante toda mi vida de manera desinteresada, brindándome siempre cariño y sus consejos. A mis tíos y primos quienes fueron mis pilares durante los tiempos difíciles. A todos mis compañeros con los cuales compartí mi vida universitaria, vivencias, tristezas y alegrías que ayudaron para saber sobrellevar de la mejor manera nuestra carrera. A la Universidad de las Fuerzas Armadas ESPE Sede Latacunga la cual nos acogió en sus aulas y brindo la oportunidad de desarrollarnos como los futuros profesionales del país.

Agradezco al Ing. Germán Erazo de manera muy especial, quien fue nuestro tutor de la unidad de integración curricular, y nos supo brindar su apoyo incondicional durante el desarrollo de la investigación.

ITALO LENIN CLAUDIO MEDINA

Dedicatoria

Dedico el presente trabajo de integración curricular en primer lugar a mi padre Luis Ichina (+) aunque ya no esté presente siempre ha sido motivación, a mi madre María Mopocita y hermana Susana Ichina quienes han sido las personas más importantes en mi vida estudiantil, me han brindado el apoyo y los consejos en los momentos necesario para poder superar cada obstáculo presentado en el camino.

KEVIN ALEXANDER ICHINA MOPOCITA

Agradecimiento

Agradezco a Dios por brindar la salud y la vida a mi familia y a mi durante toda mi carrera estudiantil,
dando sabiduría para afrontar todo lo presentado con fortaleza y valentía.

A mis padres que toda la vida me han aconsejado y guiado para poder cumplir cada una de mis metas, a nunca rendirme y demostrar que uno es capaz de todo, así haya muchos impedimentos a lo largo de esta vida.

A mi hermana que siempre estuvo conmigo dándome apoyo cuando hacia las cosas bien o cuando las hacia mal, siempre está conmigo aconsejándome y guiándome a realizar de la mejor forma las cosas.

A mis compañeros con los cuales se compartió toda la carrera universitaria todas las experiencias vividas fueron las mejores y sirven para sobrellevar la vida estudiantil.

A la Universidad de las Fuerzas Armadas ESPE Sede Latacunga que nos acogió en sus aulas y tuve la oportunidad de desarrollar como futuro profesional del país.

Al Ingeniero German Erazo, tutor de la unidad de integración curricular, quien me supo ayudar y apoyar durante el desarrollo de la presente investigación.

KEVIN ALEXANDER ICHINA MOPOCITA

ÍNDICE DE CONTENIDO

Carátula1
Reporte de verificación de contenido2
Certificación3
Responsabilidad de autoría4
Autorización de publicación5
Dedicatoria6
Agradecimiento7
Dedicatoria8
Agradecimiento9
Índice de contenido10
Índice de tablas18
Índice de figuras20
Resumen23
Abstract24
Capítulo I: Marco metodológico25
Antecedentes25
Planteamiento del problema26
Descripción Resumida de la investigación27
Justificación e importancia28
Objetivos29

Objetivo General29
Objetivos específicos29
Metas del proyecto29
Hipótesis30
Variables de investigación30
Variables independientes30
Variables dependientes30
Metodología de desarrollo del proyecto30
Capítulo II: Marco teórico ecus automotrices de procedencia europea32
Introducción al sistema de inyección electrónica32
Unidad de control electrónica (ECU)32
Constitución de la ECU34
Circuito fuente35
Sector de entrada (Periferia)36
Bloque de procesamiento37
Circuito de salida (Drivers)38
Parámetros de información del programa PID's38
Señales análogas y digitales40
Analógica40
Digital

	Elementos eléctrico - electrónicos de las ECUs42
	Periféricos para control/comunicación43
	Dispositivos de montaje superficial (SMD)44
	Memorias de la unidad de control electrónica ECU45
	Memoria volátil47
	Memoria RAM47
	Memoria ROM48
	Memoria de acceso secuencial RAM48
	Memoria ROM programable (PROM)49
	Memoria ROM programable y borrable (EPROM)49
	Memoria ROM programable borrable (EEPROM)50
	Memoria tipo DIL (Dual Input Line)50
	Memoria tipo SOP (Small Outline Package)51
	Memoria tipo PLCC (Plastic Lader Chip Carrier)51
	Tipos de fallas en computadoras automotrices
	Fallas físicas52
	Fallas lógicas:54
C	apítulo III: Arquitectura y constitución de ECUs de procedencia europea55
	ECU de procedencia europea55
	Levantamiento de requerimientos58

Señales y módulos de prueba59
MST-9000 Simulador profesional de señales de automóvil55
Osciloscopio HANTEK60
Estación de suelda BAKU 702L62
Scanner MS50963
Software de especificaciones65
Autodata65
ALLDATA66
Mitchell on Demand67
Constitución de bloques67
ECU Peugeot 40568
ECU Peugeot 20669
ECU Volkswagen Polo71
ECU Volkswagen Gol72
Subsistema de alimentación
ECU Peugeot 20673
ECU Volkswagen Polo74
ECU Peugeot 40574
Subsistema de procesamiento
FCU Peugeot 206

E	ECU Volkswagen Polo76
E	ECU Peugeot 40576
E	ECU Volkswagen Gol77
Perife	ria77
Driver	s78
E	FCU Peugeot 40578
E	ECU Volkswagen Polo79
E	ECU Volkswagen Gol80
E	ECU Peugeot 20681
Diagra	ma de conexión81
E	ECU Volkswagen gol82
E	ECU Peugeot 20683
E	ECU Volkswagen Polo84
E	ECU Peugeot 40585
Selecc	ión de elementos eléctricos electrónicos y bloques de pruebas86
E	ECU Peugeot 40586
E	ECU Peugeot 20686
E	ECU Volkswagen Polo87
E	ECU Volkswagen Gol88
Conoc	tor DLC

Capítulo IV: Protocolo de pruebas, banqueo y resultados de las pruebas experimentales	€
Distribución de pinesS	90
ECU Peugeot 206S	90
ECU Volkswagen Gol	9 2
ECU Volkswagen Polo9	94
ECU Peugeot 4059	9 <i>7</i>
Protocolo de pruebas de ECU europea10)1
ECU Volkswagen Gol10) <i>2</i>
ECU Peugeot 20610) <i>3</i>
Señales de entrada10)4
ECU Volkswagen Gol10)5
ECU Peugeot 20610)6
Señales de salida y activación de actuadores10)6
ECU Volkswagen Gol10) <i>7</i>
ECU Peugeot 20610	ງ9
Pruebas de la ECU europea11	l1
Pruebas con osciloscopio de baja tensión11	L2
ECU Volkswagen Gol11	12
ECU Peugeot 20611	16
Reporte de estado de los circuitos de ECU	21

ECU Volkswagen Gol	121
ECU Peugeot 206	122
Reporte de componentes de reparación y reemplazo	123
Informe de estado y reparación	123
ECU Volkswagen Gol	123
ECU Peugeot 206	124
Protocolo de reparación	124
Bloque o sector de entrada	125
Bloque de procesamiento	125
Bloque de salida	126
Punto de soldadura agrietados o con corrosión	126
Pista quemada	126
Transistor dañado	127
Medición con multímetro	127
Fallas de condensadores	127
Falla de microprocesador	127
Capítulo V: Marco administrativo	128
Recursos	128
Recursos humanos	128
Recursos tecnológicos	129

Recursos materiales	129
Recursos de apoyo	130
Análisis de costos del proyecto de investigación	130
Análisis costo – beneficio	130
Conclusiones	132
Recomendaciones	134
Bibliografía	135
Anexos	140

ÍNDICE DE TABLAS

Tabla 1 Principales marcas europeas de vehículos en el Ecuador	56
Tabla 2 Equipos y dispositivos de prueba	58
Tabla 3 Funcionalidades del equipo Hantek	60
Tabla 4 Características estación de suelda	62
Tabla 5 Características scanner.	63
Tabla 6 Bloques del programa Mitchell	67
Tabla 7 Tipos de bloques	68
Tabla 8 Identificación de bloques Peugeot 405	69
Tabla 9 Identificación de bloques Peugeot 206	70
Tabla 10 Identificación de bloques Volkswagen Polo	72
Tabla 11 Identificación de bloques Volkswagen Gol	73
Tabla 12 Identificación de componentes Peugeot 405	86
Tabla 13 Identificación de componentes Peugeot 206	86
Tabla 14 Identificación de componentes Volkswagen Polo	87
Tabla 15 Identificación de bloques Volkswagen Gol	88
Tabla 16 DLC de ECUs estudiadas	89
Tabla 17 Distribución de pines Peugeot 206	91
Tabla 18 Distribución de pines Volkswagen Gol	93
Tabla 19 Distribución de pines Volkswagen Polo	95
Tabla 20 Distribución de pines Peugeot 405	98
Tabla 21 Protocolo de pruebas Volkswagen Gol	102
Tabla 22 Protocolo de pruebas Peugeot 206	103
Tabla 23 Señales de entrada Volkswagen Gol	105

Tabla 24 Protocolo de pruebas Peugeot 206	106
Tabla 25 Señales de salida y activación de actuadores Volkswagen Gol	107
Tabla 26 Señales de salida Peugeot 206	109
Tabla 27 Señales con osciloscopio Volkswagen Gol	112
Tabla 28 Señales con osciloscopio Peugeot 206	116
Tabla 29 Comprobación de señales	121
Tabla 30 Comprobación de señales	122
Tabla 31 Reportes de componentes de reparación y reemplazo de la ECU del Peugeot 206 averiada	123
Tabla 32 Recursos humanos	128
Tabla 33 Recursos tecnológicos	129
Tabla 34 Recursos materiales	129
Tabla 35 Recursos de apoyo	130
Tabla 36 Análisis de costos del proyecto	130

ÍNDICE DE FIGURAS

Figura 1 ECU automotriz	34
Figura 2 Circuito fuente	35
Figura 3 Circuito Fuente partes	36
Figura 4 Bloque de procesamiento	37
Figura 5 Identificación de bloques en una ECU	38
Figura 6 Señal TPS	40
Figura 7 Oscilograma de una señal analógica	41
Figura 8 Oscilograma de una señal digital	41
Figura 9 Componentes de una ECU	44
Figura 10 Memoria SOP	46
Figura 11 Memoria DIL	50
Figura 12 Memoria tipo SOP	51
Figura 13 Memoria PLCC	52
Figura 14 Pista quemada	53
Figura 15 Transistor de potencia	53
Figura 16 Participación de ventas de vehículos de origen europeo	56
Figura 17 Equipos implementados	59
Figura 18 Banco de prueba MST-9000+	59
Figura 19 Osciloscopio Hantek	61
Figura 20 Estación de suelda BAKU 702L	63
Figura 21 Scanner automotriz	64
Figura 22 Software Autodata	66
Figura 23 Bloques de la FCII del Peugeot 405	69

Figura 24 Bloques de la ECU del Peugeot 206	70
Figura 25 ECU Volkswagen polo destapada	71
Figura 26 Bloques de la ECU del Volkswagen Polo	71
Figura 27 Bloques de la ECU del Volkswagen Gol	72
Figura 28 Subsistema de alimentación Peugeot 206	73
Figura 29 Subsistema de alimentación Volkswagen Polo	74
Figura 30 Subsistema de alimentación Peugeot 405	74
Figura 31 Subsistema de procesamiento Peugeot 206	75
Figura 32 Subsistema de procesamiento Volkswagen Polo	76
Figura 33 Subsistema de procesamiento Peugeot 405	76
Figura 34 Subsistema de procesamiento Volkswagen Gol	77
Figura 35 Bloque de periferia ECU Peugeot 206	78
Figura 36 Bloque de drivers Peugeot 405	78
Figura 37 Bloque de drivers Volkswagen Polo	79
Figura 38 Bloque de drivers Volkswagen Gol	80
Figura 39 Bloque de drivers Peugeot 206	81
Figura 40 Diagrama de conexión Volkswagen Gol	82
Figura 41 Diagrama de conexión Peugeot 206	83
Figura 42 Diagrama de conexión Volkswagen Polo	84
Figura 43 Diagrama de conexión Peugeot 405	85
Figura 44 Conector DLC	89
Figura 45 Pin-out Peugeot 206	90
Figura 46 Pin-out Volkswagen Gol	92
Figura 47 Pin-out Volkswagen Polo	94

Figura 48 Pin-out Peugeot 405	97
Figura 49 Conexión de cables ECU Volkswagen gol	111
Figura 50 Conexión para prueba de ECU Volkswagen gol	111
Figura 51 Uso de multímetro y osciloscopio	112
Figura 52 Control de inyección integrado 30344	124
Figura 53 Bloques de una ECU	125

Resumen

En el presente trabajo de integración curricular se propuso analizar la constitución y procesos de diagnóstico y reparación de las ECUs automotrices instaladas en vehículos de origen europeo. En el capítulo I se plantea el marco metodológico. El capítulo II establece el marco teórico donde se investigó funcionamiento, componentes internos eléctricos y electrónicos, señales que reciben y emiten, división de bloques, modo de operación y las principales fallas que pueden presentar las ECUs en caso de tener una avería. En el capítulo III se revisaron los requerimientos, donde se define equipos e instrumentos para el desarrollo de procesos de diagnóstico y reparación. También se incluyó información sobre los modelos y marcas de los vehículos, específicamente los diagramas eléctricos y la distribución de pines, arquitectura y componentes de cada bloque de las ECUs estudiadas. En el capítulo IV se utilizó el banco de pruebas para verificar el funcionamiento de estas, se alimentó la ECU para obtener los voltajes de referencia de los sensores y el voltaje de alimentación para los actuadores, obteniendo mediciones con osciloscopio y multímetro. Después de verificar el funcionamiento de las ECUs con las mediciones en pruebas realizadas, se diagnosticó y emitió el reporte de los componentes dañados. Se identificó el voltaje que no se emite y se reconoció el componente con falla dentro de la ECU, emitiendo un informe para su reparación que incluye la falla, el componente dañado y su ubicación.

Palabras clave: ECU europea, bloques y componentes de una ECU, banco de pruebas, simulación de señales, reparación y diagnóstico de ECUs.

Abstract

In the present work of curricular integration, it was proposed to analyze the constitution and processes of diagnosis and repair of automotive ECUs installed in vehicles of European origin. In Chapter I, the methodological framework is proposed. Chapter II establishes the theoretical framework where the operation, internal electrical and electronic components, signals received and emitted, division of blocks, mode of operation, and the main failures that ECUs may present in case of failure were investigated. In Chapter III, the requirements were reviewed, where the equipment and instruments for the development of diagnostic and repair processes were defined. Information on vehicle models and brands was also included, specifically electrical diagrams and pin distribution, architecture, and components of each block of the ECUs studied. In Chapter IV, the test bench was used to verify their operation, the ECU was fed to obtain the voltage signals of reference from the sensors and the voltage supply for the actuators, obtaining measurements with an oscilloscope and multimeter. After verifying the operation of the ECUs with the measurements in the tests performed, the report of the damaged components was diagnosed and issued. The voltage that is not emitted was identified and the component with a failure was recognized within the ECU, issuing a repair report that includes the failure, the damaged component, and its location.

Keywords: European ECU, ECU blocks and components, test bench, signal simulation, ECU repair and diagnosis.

Capítulo I

Marco metodológico

Antecedentes

Se hace cada vez más frecuente el interés por emprender en el campo de la electrónica automotriz; debido a la moderna inclinación de las personas por adquirir medios de transporte más amigables con el medio ambiente, que además favorezcan el traslado individual, al ser esta una alternativa más cómoda y segura en comparación con el tradicional transporte público.

Según Carrión & Ramírez (2019), los automóviles vienen equipados con una gran cantidad de componentes y unidades de control electrónico, los cuales trabajan de forma precisa gracias al intercambio permanente de datos e información para cumplir sus funciones de manera eficiente.

El parque automotriz ha ido evolucionando considerablemente con nuevas tecnologías a través de la electrónica de módulos, que comandan a todos los sensores y actuadores los cuales permiten que el vehículo funcione en óptimas condiciones, así aumenta la fiabilidad y seguridad, además minimiza el impacto ambiental.

Las computadoras automotrices controlan el sistema de inyección, para realizar esto realiza cálculos a través de información generada por el motor de combustión interna, y captada por los sensores de posición del cigüeñal, velocidad del motor, temperatura del motor, la presión del aire, etc. Los vehículos disponen de sistemas sofisticados, que requieren de un diagnóstico más complejo, es por eso por lo que se ha incursionado en la generación de los procesos, protocolos de diagnóstico y reparación de computadoras automotrices de modelos europeos que se encuentran circulando en el Ecuador, con la finalidad de contribuir con la generación de información a técnicos, profesionales del área automotriz y afines.

(Donado, 2014) El control preciso del funcionamiento de los motores llevó a los fabricantes a crear sistemas de autodiagnóstico que mediante sensores y actuadores controlan al motor, en caso de salirse de los parámetros preestablecidos, a corregir la falla hasta lograr el óptimo rendimiento mejorando el funcionamiento de sus partes.

Según Tecmovia (2012), las demandas por parte del Gobierno americano respecto a las emisiones contaminantes a finales de los años 70 y los 80, impulsaron más por necesidad que por otro motivo, a un cambio de mentalidad y un forzoso paso de lo mecánico a lo electrónico en cuanto ejecución y regulación de los diversos parámetros, antes realizados por distintos mecanismos neumáticos y mecánicos y posteriormente controlados por este unidad de control, para de esta manera poder verificar eficazmente la combustión del motor.

Planteamiento del problema

Los vehículos automotrices hoy en día disponen de un gran número de redes electrónicas de control y regulación. Conforme al avance tecnológico en estos sistemas ameritan un mayor conocimiento sobre sensores, actuadores y códigos de falla para efectuar un diagnóstico eficiente de los motores de combustión.

La ECU es el dispositivo esencial para el control del funcionamiento del motor, que por diferentes situaciones está expuesto al daño, deterioro, cambio o reparación según la condición que presente, por ende, es necesario establecer el proceso de verificación correspondiente.

La línea de vehículos de origen europeo cada vez es más creciente, su incursión en el mercado ecuatoriano hace indispensable se generen fuentes de información sobre su arquitectura, procesos de reparación y diagnóstico, que permita la detección de fallas con exactitud para establecer si la unidad de control puede o no ser reparada.

Muchos de los problemas en el automóvil son asignados a la ECU, por la escasa disponibilidad de información técnica como la falta de talleres de servicio automotriz especializados en el diagnóstico y reparación de computadoras, muchas de estas son desechadas, por lo cual a través de esta investigación se obtendrá la información para el diagnóstico y reparación de ECUs en vehículos de la línea europea.

Muchos técnicos aún no están familiarizados con estos conceptos, ya que no existe la información suficiente para realizar el diagnóstico y reparación de ECUs; es aquí en donde la investigación contribuirá con parámetros como son: estimación del tiempo de inyección de combustible, avance de encendido, entre otros, que son resultados de operación de una computadora automotriz

Con el constante adelanto tecnológico, los graduados de la Carrera de Ingeniería Automotriz están en la capacidad de desarrollar técnicas, procedimientos y proceso de verificación de ECUs de procedencia europea, bajo normas para disponer de un criterio real del diagnóstico y reparación de ECUs, en las marcas y modelos que circulan en el Ecuador.

Descripción Resumida de la investigación

A través de la UIC, se desarrolla el proyecto de graduación denominado IMPLEMENTACIÓN DEL AREA DE ANALISIS DEL PROCESO DE REPARACIÓN DE ECUS AUTOMOTRICES DISPONIBLES EN EL MERCADO ECUATORIANO, en este contexto se realiza la investigación del estado del arte en fuentes de consulta confiables para posteriormente desarrollar las siguientes tareas que conformaran el trabajo de graduación.

- Determinar la arquitectura y procesos de reparación de ECUs automotrices de procedencia europea.
- Realizar el levantamiento de requerimientos del sistema de diagnóstico y reparación de ECUs.

- Selección de elementos eléctricos, electrónicos, módulos de verificación, fuentes de señales de entrada y salida.
- Definir el uso de software de simulación y especificaciones.
- Estimar elementos de recambio y repuestos.
- Pin code de ECUs y Diagramas.
- Generar el proceso de banqueo, reparación prueba y puesta a punto

Justificación e importancia

El avance tecnológico en el área automotriz amerita que, como profesionales, se disponga con el nivel académico adecuado en el desarrollo de esta área especializada.

Los vehículos de procedencia europea que circulan en el país registran un gran número de redes electrónicas de control y regulación. Conforme al avance tecnológico en estos sistemas ameritan la obtención de un mayor conocimiento sobre sensores, actuadores y códigos de falla para efectuar un diagnóstico eficiente del vehículo.

Esta rama de la electrónica es de vital importancia, y presenta una alta gama de posibilidades, abriendo una serie de oportunidades a futuro en el campo automotriz, puesto que con el pasar del tiempo la electrónica va tomando una mayor importancia en el mundo de los automóviles modernos que cada vez aumentan en demanda.

Es debido a esto que se hace cada vez más indispensable que los profesionales y técnicos automotrices estén capacitados en lo que concierne a este campo; pero, además, surge la alta necesidad de espacios especializados en diagnóstico y reparación de ECUs automotrices.

La Unidad de Control Electrónica viene a ser un dispositivo esencial en el vehículo que por cuestiones de uso entre otros factores está expuesto al daño o deterioro cambiada o reparada según las

condiciones que presente por lo que es necesario que existan protocolos de prueba y reparación definidos en base a información técnica investigada y generada.

En muchos casos los problemas son citados a la ECU y por la escasa disponibilidad de información técnica como también la falta de talleres de servicio automotriz especializados en el diagnóstico y reparación de computadoras en el país, muchas de estas son desechadas, por lo cual con la investigación para el diagnóstico y reparación de ECUs en vehículos de la línea europea se fortalecerá la experticia de técnicos y profesionales, generando de esta manera un incremento de personal con conocimiento en este tipo de reparaciones.

Objetivos

Objetivo General

Determinar la constitución y procesos de reparación de ECUs automotrices de procedencia europea.

Objetivos específicos

- Investigar información relevante a la constitución de computadoras automotrices de procedencia europea.
- Levantar los requerimientos para verificación ECUs automotrices de procedencia europea.
- Definir la información técnica especializada de ECUs de procedencia europea.
- Establecer el proceso de diagnóstico y reparación de la ECU.

Metas del proyecto

Disponer de una estación para el diagnóstico especializado y reparación de ecus automotrices de procedencia europea.

Hipótesis

¿El desarrollo del análisis de constitución y procesos de reparación de ECUs automotrices de procedencia europea permitirá realizar el diagnostico eficiente de las mismas para que se genere el correcto funcionamiento del motor de combustión interna?

Variables de investigación

Variables independientes

• ECU automotriz de procedencia europea.

Variables dependientes

• Proceso de diagnóstico y reparación.

Metodología de desarrollo del proyecto

Para dar el soporte correspondiente al aspecto metodológico, se recopila información de fuentes confiables como libros, lugares web, artículos científicos, publicaciones, boletines de revistas, bibliotecas virtuales y espacios de investigación.

Método deductivo. Se emplea para analizar los parámetros característicos del sistema de inyección de combustible, permitiendo diagnosticar el estado real de una unidad de control electrónica de forma técnica.

Método inductivo Este método permitirá que, mediante la verificación de las diferentes ECUs, se obtenga parámetros característicos del sistema de inyección de combustible a través de la generación de señales que simulan a los sensores del vehículo, para que la ECU computadora active los diferentes actuadores generando una amplia experimentación.

Método analítico. - Se analiza y determina las variaciones de los parámetros característicos generados en la ECM con simulaciones de señales establecidas en tiempo real.

Método de síntesis. Se compila la información necesaria para emitir la explicación de los datos resultantes de las pruebas realizadas bajo la influencia de los parámetros característicos del sistema de inyección de las ECUs con sus diferentes tipos de señales de sensores y actuadores

Método experimental Se aplicó este método debido a que se van a realizar pruebas y mediciones con la implementación de una guía y un protocolo de pruebas, los cuales aportan los parámetros característicos ideales de funcionamiento del sistema de inyección de combustible.

Método comparativo. - Establecer variaciones de los parámetros característicos de la ECU de procedencia europea, basándose en datos y mediciones realizadas en condiciones normales de funcionamiento del sistema de inyección de combustible.

Método de observación directa. - Se visualiza las diferentes pruebas realizadas en el laboratorio obteniendo resultados variables de los parámetros característicos y cómo influye en el comportamiento del sistema de inyección con el uso de la ECU de procedencia europea

Método de medición se constata los valores reales de los parámetros característicos del sistema de inyección producidos en las ECUs siguiendo un protocolo de pruebas, para determinar si una unidad electrónica está funcionando correctamente, se puede reparar o reemplazar.

Capítulo II

Marco teórico ecus automotrices de procedencia europea

Introducción al sistema de inyección electrónica

La inyección electrónica se originó en la década de 1950 y 1960 en un esfuerzo por mejorar la eficiencia y el rendimiento de los motores de combustión interna. "La inyección electrónica de combustible se originó en Italia, en el año de 1940, cuando se incorporó un solenoide eléctrico como un medio para controlar el flujo de combustible hacia el motor" (Villalta Romero & Vargas Ayala, 2015).

Cuando ocurre el arranque en el vehículo, los pistones del motor suben y bajan; por otro lado, el sensor de posición señala a la unidad de comando la rotación del motor. En el proceso de descenso, se produce un vacío en el múltiple de admisión que succiona aire del ambiente y pasa por el medidor de flujo de aire y la válvula de aceleración hasta llegar a los cilindros del motor.

El medidor informa a la unidad de control sobre el volumen de aire que ha sido aspirado, y la unidad de control permite que las válvulas de inyección proporcionen la cantidad correcta de combustible para el volumen de aire, logrando una proporción aire/combustible precisa para la combustión (Yerera, y otros, 2017).

El sistema electrónico de inyección tiene como objetivo proporcionar la cantidad apropiada de combustible al motor en todas las situaciones de conducción y requerimientos del conductor.

Ofrece un suministro más uniforme de combustible a cada cilindro, lo que resulta en un mejor rendimiento del motor, un menor consumo de combustible y una menor contaminación (Jiménez & Valdivieso, 2012).

Unidad de control electrónica (ECU)

El vehículo tiene sistemas eléctricos, electrónicos comandados por un componente: "El componente clave del sistema es un dispositivo electrónico que controla las operaciones básicas del

motor a través de la lectura y procesamiento de señales de sensores situados estratégicamente en el motor" (Palena, 2015).

Incluye hardware y software (firmware) con un microcontrolador que realiza cálculos y toma decisiones, así como un EPROM o chip de memoria flash. Una ECU debe tener entradas y salidas analógicas y digitales de alta y baja potencia, dispositivos de control de potencia, al menos un protocolo de comunicación, matrices de conmutación para señales de alta y baja potencia, entre otros elementos. El mayor logro en la electrónica aplicada a los vehículos se ve en las Unidades de Control Electrónico (ECU). Estos también son conocidos por otras siglas como ECC, ECM, ECU, ECCS, CPU, entre otros (Palena, 2015)

Actualmente los vehículos disponen de varios sensores y actuadores que necesitan ser comandados: "Estas pequeñas computadoras controlan el rendimiento de los componentes mecánicos del automóvil, permitiendo que en el futuro todos los sistemas de control del vehículo puedan ser gestionados directamente por estas unidades electrónicas" (Cunalata, 2012).

En la actualidad la mayoría de los vehículos y camiones, incluyen un módulo de control electrónico gracias a las nuevas tecnologías el motor, y en si todas las partes del vehículo cuentan con sensores y actuadores controlados por este dispositivo, compuestos por elementos eléctricos que son propensos a fallos.

Es importante prestar atención a las unidades electrónicas de control ya que un problema en ellas puede resultar en que el auto no encienda y requiera su reemplazo. Estas fallas pueden ser causadas por sobretensiones, aumentos en el voltaje, o al desconectar la batería mientras las luces están encendidas, o al intentar arrancar el vehículo empujándolo (Toapanta & Jácome, 2015).

Figura 1

ECU automotriz

Nota. En la figura se muestra una ECU (Unidad Central Electrónica).

Constitución de la ECU

La Unidad Electrónica de Control está constituida por un conjunto de componentes electrónicos dispuestos en placas de circuito impreso, alojadas en una caja de aluminio, provistas de aletas para su refrigeración. Hasta la unidad llegan las diversas señales sobre el funcionamiento del motor, que son transmitidas por diferentes sensores, las evalúa y calcula las señales de activación para los elementos actuadores.

El programa de control está almacenado en la memoria. De la ejecución del programa se encarga un microcontrolador. Tanto las señales de entrada como las de salida para los diferentes actuadores se transmiten a la unidad de control por medio de un conector múltiple (Cunalata, 2012).

La mayor parte de circuitos se los encuentra en el interior de los módulos de control electrónico los mismos que cumplen la función de conservar un equilibrio a la hora de realizar el procesamiento de los datos. Lo que compone principalmente un módulo de control electrónico ECU son:

- Circuito fuente
- Sector de entrada (Periferia)

- Bloque de procesamiento
- Circuito de salida (Drivers)

Circuito fuente

Para definir el circuito fuente se tiene: "Circuito fuente Protege el módulo y mantiene un nivel de tensión estable al interior de este. Constituyen la fuente de alimentación de la ECU, transistores, diodos, condensadores, reguladores de voltaje, etc." (Sánchez & Taipe, 2018).

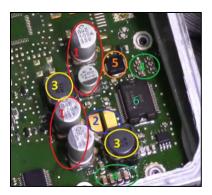
El circuito de fuente es diseñado para regular la tensión de alimentación principal del módulo de control electrónico; ajusta el voltaje de suministro de entrada a un valor apropiado para que todos los componentes del módulo puedan funcionar normalmente; ajustar el voltaje de suministro a los sensores y actuadores del vehículo que dependen del circuito fuente de la ECU.

Es la parte donde se recibe el voltaje tanto de alimentación como de salida, es decir, desde los sensores hacia los actuadores. Los voltajes pueden ser desde los 5V hasta los 26V que estos son los que son para la red CAN. Una ECU necesita recibir una alimentación estable de 12V para su funcionamiento, el circuito cuenta con diversas partes entre estas hay una destinada para que haya un suministro de energía estable (Añazco, 2021).

Figura 2

Circuito fuente

Nota. En la figura se muestra la ubicación del circuito Fuente. Tomado de (Añazco, 2021)


Este sector se encarga de proveer energía constante a los demás circuitos, tanto dentro como fuera de la placa.

Los componentes de la fuente son:

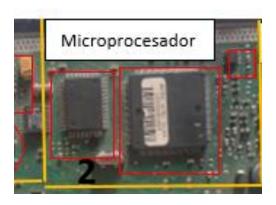
- 1. Capacitores electrolíticos (componentes de montaje superficial).
- 2. Capacitores de tantalio (los de color amarillo).
- 3. Bobinas de inductancia (trabajo de estabilidad en el circuito interno).
- 4. Capacitores cerámicos (de tipo Farah) son de menor tamaño y menor capacitancia.
- 5. Diodo rectificador, impide el paso de corriente.
- 6. Regulador de voltaje

Figura 3

Circuito Fuente partes

Nota. En la figura se identifica las partes del circuito fuente. Tomado de (Añazco, 2021)

Sector de entrada (Periferia)

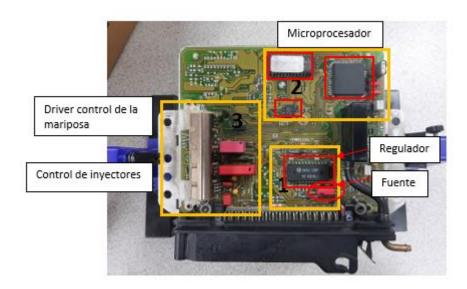

Según Serravalle (2011), El bloque de entrada es el conjunto de circuitos que reciben las señales antes de llegar al microprocesador dentro de la ECU. Estos incluyen filtros, amplificadores, conversores analógicos a digitales, comparadores, limitadores, entre otros componentes. Estos circuitos procesan las

señales antes de que sean tratadas por el microprocesador. Los circuitos a lo largo de "el camino hacia el microprocesador" se llaman bloques de entrada.

Bloque de procesamiento

El bloque de procesamiento es: "la parte lógica y operacional del módulo en donde se encuentran almacenados datos de funcionamiento (Memoria) y el (procesador) encargado de operar controles y señales del módulo" (Sánchez & Taipe, 2018).

Figura 4Bloque de procesamiento



Nota. En la figura se ubica el bloque de procesamiento.

Según Serravalle (2011), dice que la ECUs se subdividen en diferentes bloques y estos a su vez desempeñan diversas funciones: "los efectos de simplificar el entendimiento del circuito completo de una ECU automotriz, resulta particularmente importante, efectuar una división del circuito general en áreas o bloques, con funciones diferenciadas"

Todo el circuito que desarrolla la función de programación consiste en el circuito del procesador, la memoria y cualquier circuito involucrado en la ejecución del software, llamado unidad de procesamiento.

Figura 5 *Identificación de bloques en una ECU*

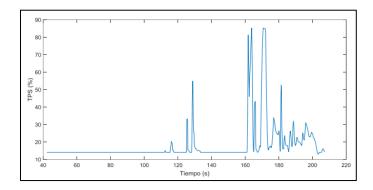
Nota. En la figura se determina los bloques de una ECU: 1 Bloque Fuente, 2 Bloque de procesamiento, 3 Bloque de potencia o drivers.

Circuito de salida (Drivers)

Según Serravalle (2011) menciona que: existen circuitos que se encuentran entre las salidas del microprocesador y los diferentes elementos que van a ser actuados. Se encuentran amplificadores, circuitos de potencia con transistores, conocidos como drivers o controladores, entre otros. Es decir, aquellos que, bajo el control del microprocesador, actúan sobre los diferentes componentes de potencia, como bobinas de encendido, inyectores, relés, etc.

Parámetros de información del programa PID's

PID, que significa Process Identification en inglés, se refiere a la entrada en tiempo real de datos analógicos o digitales de las salidas y entradas de la ECU, también conocido como flujo de datos. Con este modo es posible ver, por ejemplo, la temperatura de motor o el voltaje generado por una sonda lambda. La información que brindan las señales PID's en un vehículo que se


encuentra en continúa marcha, están sometidas a influencias externas que alteran su comportamiento, lo que provoca la difícil detección de fallas; estas señales se encuentran influenciadas por los comportamientos de las maniobras de conducción lo que genera errores en el diagnóstico. Cuando se produce averías; en su etapa inicial éstas no generan síntomas, conforme avanza el tiempo se comienzan a agravar volviéndose significativas, lo que genera un aumento en los agentes contaminantes y la disminución del rendimiento del motor por lo que es necesario proponer un sistema de detección y análisis de las señales dadas por los sensores ante eventos generados durante la conducción (Gavidia & López, 2019, pág. 50).

Posterior al protocolo adquisición de datos, se procede al manejo normal bajo carga dinámica, que se realiza en la conducción del vehículo en zonas urbanas, el cual graba y almacena de manera automática. Una vez guardados los datos en la memoria se los ingresa a un script desarrollado por (Abelardo, 2018). Esta programación se encarga de clasificar los datos provenientes de distintos sensores (TPS, IAT, MAP, VSS, ECT), estos son filtrados, procesados y se obtienen graficas de su comportamiento; es decir señales PID's, guardándolos en diferentes vectores de datos (Gavidia & López, 2019, como se cito en Abelardo, 2018, p. 50).

Ejemplo:

Parámetro de identificación (PID) del sensor TPS. Por medio del programa de adquisición de datos, se puede verificar el funcionamiento que tiene el sensor al monitorear la posición de la mariposa de aceleración, la señal que se muestra es de carácter transitoria, que opera entre 0 al 100% (Gavidia & López, 2019, pág. 50).

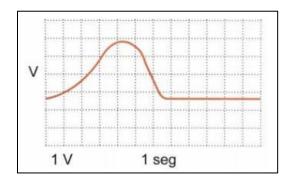
Figura 6
Señal TPS

Nota. En la figura se establece la gráfica de la señal del TPS. Tomado de (Gavidia & López, 2019, pág. 50)

Señales análogas y digitales

Corriente de señal: La función de esta corriente es trasladar información, a través de sus variantes eléctricas, como, la frecuencia, la intensidad o el voltaje. Esta corriente es la que recibe la ECU por parte de los sensores. La computadora es capaz de leer solo señales de voltaje. Los programas empleados por las ECUs son grabados en circuitos integrados (chips) usando una secuencia de números. Estos números representan varias combinaciones de valores de voltaje que la computadora interpreta (Crespo & León, 2017)

La corriente que se utiliza en la gestión electrónica dentro de la ECU automotriz está clasificada en:

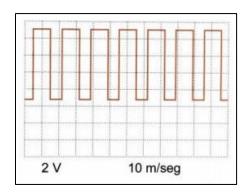

Analógica

El voltaje identificado como analógico puede variar en diferentes valores, la misma que está presente en la mayoría de los sensores como son: la sonda lambda, sensor de presión, etc.

Según Betobooster (2015), se puede decir que una señal que varía continuamente y sin interrupción a lo largo del tiempo es una señal analógica.

Figura 7

Oscilograma de una señal analógica


Nota. En la figura es posible apreciar como el voltaje vario constantemente en función del tiempo. Tomado de (Crespo & León, 2017)

Digital

Una señal que representa solamente dos niveles de voltaje se conoce como digital. Una señal digital únicamente tiene dos estados. La señal NO es continuamente variable. Los dos únicos estados en los que puede existir una señal digital se pueden representar así: máximo y mínimo; 0 y 5 voltios o 0 y 12 voltios (Betobooster, 2015).

Figura 8

Oscilograma de una señal digital

Nota. En la figura es posible apreciar como el voltaje tiene un punto máximo y mínimo. Tomado de (Crespo & León, 2017)

Elementos eléctrico - electrónicos de las ECUs

Las placas de la unidad de control están compuestas de varios componentes que se encargan de rectificar, amplificar y filtrar ondas estas dependen del fabricante y se pueden encontrar: "Todos los componentes se encuentran integrados en un gabinete sellado, conocido como módulo de la computadora o unidad de control electrónico (ECU)" (Auto Soporte [AS], 2022).

Memoria EEPROM es una memoria programable para leer datos borrados electrónicamente, que es una memoria no volátil ubicada en la placa de la ECU (es decir, soldada); requiere un equipo electrónico especial, como un escáner, para eliminarlo.

Memoria PROM es una Memoria programable de solo lectura, tipo de dispositivo de almacenamiento, volumen del cilindro, combustible y otras características. Los reemplazables suelen ser memorias sin soldadura que se conectan a un zócalo especial.

Procure no tocar este dispositivo, ya que la tecnología que se usa en estos dispositivos suele ser muy sensible a la electricidad estática del cuerpo humano.

Memoria RAM es una Memoria de lectura y modificación, en algunos modelos, se encuentran dentro de la memoria PROM; se trata de una memoria temporal que realiza tres principales funciones. La primera tarea del ECU es funcionar como un cuaderno de notas, y cuando se requiere realizar un cálculo matemático, el ECU utiliza la memoria RAM. La segunda función es almacenar información; en ella se almacenan datos como la temperatura del motor, señal de presión del múltiple de admisión, etc. (Mainato & Acero, 2013).

Memoria ROM es la memoria de solo lectura, un tipo de memoria utilizada para almacenar información de forma permanente es la parte de la ECU que contiene el conjunto principal de instrucciones que ejecuta la computadora. Esta es la sección que dice: "cuando veo que esto sucede, tengo que hacer que este otro suceda". El microprocesador que contiene estas

instrucciones de la ROM es un chip no volátil. Esto significa que el programa diseñado en él no se puede borrar al desconectar la energía (Mainato & Acero, 2013).

El microprocesador en él se realizan las operaciones matemáticas y decisiones lógicas. Puede considerarse el corazón de una computadora, porque lleva a cabo, junto con la memoria, la función esencial del procesamiento de datos. Se encarga de coordinar las señales que recibe; por lo tanto, basándose en su memoria, que puede ser otro microprocesador ubicado fuera de él o en su periferia, controla diferentes componentes y sistemas del automóvil, como los actuadores (Mainato & Acero, 2013).

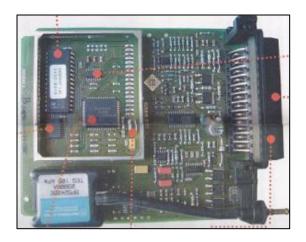
Cristal Es como el "corazón" del microprocesador principal. Sin él, no se tiene una frecuencia de trabajo del microprocesador. Se localiza a un lado del microprocesador principal.

Conector de diagnóstico es la conexión por medio de la cual un escáner se comunica con la computadora, para conocer las posibles fallas de la unidad y datos de componentes como sensores, interruptores o actuadores. Está ubicado en la parte inferior del tablero y está conectado a la ECU a través de un conector de datos. Su forma varía dependiendo del sistema de autodiagnóstico utilizado en el vehículo.

Luz de diagnóstico se realiza por medio de una luz indicadora de falla en el tablero.

Anteriormente, se le llamaba power loss, check engine, mil. Indica una falla electrónica de la unidad, etc. Cuando esta luz se prende en el tablero, indica un código de falla que debe ser reparado y revisado con un escáner; pero a veces, no todas las fallas las indica la unidad con una señal en el tablero, por ejemplo, cuando la falla es por causa mecánica (Mainato & Acero, 2013).

Periféricos para control/comunicación


- Puertos E/S: Analógicos o digitales.
- Conversor A/D (los convertidores D/A suelen ser externos ya que son más baratos).

- Timers: Cuentan eventos externos, señal interna de clock.
- PWM: Pulse-with Modulation
- Comparadores analógicos
- Comunicaciones: BUS CAN, BUS LIN, UART

Flash es la mejor solución que la EEPROM cuando se requieren grandes cantidades de memoria no volátil. Más rápida, mayor número de ciclos/escritura.

Figura 9

Componentes de una ECU

Nota. En la figura se indica los componentes de la unidad de control electrónica ECU. Tomado de (Auto Soporte [AS], 2022).

Dispositivos de montaje superficial (SMD)

Según ELATE SA, CIRCUITOS IMPRESOS (2019) menciona que el tipo de componente SMD, Surface Mounting Device, es un dispositivo de montaje superficial refiriéndose a una forma de encapsulado de los componentes electrónicos. Tradicionalmente los componentes se montaban sus patas en un agujero y soldándolas al otro lado de la pata, en los SMD ya no es así ya que se suelda directamente al cobre de la placa.

La tecnología SMD (o por sus siglas SMT del inglés surface-mount technology, montaje superficial o en superficie) es el método de construcción de dispositivos electrónicos más utilizado actualmente (Resistencias SMD (SMT).

Se define la tecnología SMD: "Este método de montaje es válido para componentes activos como pasivos, es decir no solo para resistencias y condensadores, así que cualquiera de los elementos construidos con este sistema puede ser llamados dispositivos de montaje en superficie o superficial" (Mora, 2018).

Hay dos tipos de componentes de montaje en superficie: Tipo 1 y Tipo 2. Y a su vez en tres clases: Clase A, Clase B y Clase C. Esto ha sido necesario para diferenciar dónde se montan los componentes, en una cara o en dos caras, y el tipo de componente utilizados, para inserción y/o SMT. La Clase B y la Clase C también se pueden subdividir en compleja y simple.

- Tipo 1. Componentes montados en una sola cara de la PCB.
- Tipo 2. Componentes montados en ambas caras de la PCB.
- Clase A. Sólo componentes de inserción.
- Clase B. Sólo componentes de montaje superficial.
- Clase C. Una mezcla de ambos tipos de componentes.

Memorias de la unidad de control electrónica ECU

En el Módulo de Control Electrónico (ECM), se encuentra unos circuitos integrados que se encargan del procesamiento de datos. Estos circuitos integrados son dos elementos esenciales en la ECM, que son la memoria y el procesador. Estos componentes reciben la información enviada por los sensores, la analizan y luego envían señales a los actuadores para mejorar el funcionamiento del motor

Entre las diversas memorias instaladas en el módulo de control electrónico del automóvil (ECM, PCM), se pueden crear tres grupos bien definidos. Es posible identificar las memorias por sus características físicas y clasificarlas en tres tipos: DIL, PLCC y SOP.

Memoria tipo DIL este paquete es uno de los primeros que se utilizan en un automóvil equipado con inyección electrónica desde 1990. Como se muestra en la imagen, tiene 2 cables con pines o pines de acceso, puede ser de 28 o 32 pines.

Memoria tipo PLCC este tipo de paquete es uno de los segundos tipos de paquete más utilizados para terminales automotrices, tiene un tamaño más pequeño y una configuración de 4 lados envuelta en pines, a diferencia de su predecesor (DIL), la cantidad de pines puede ser 32, 44, 48.

Memoria tipo SOP este tipo de encapsulación es uno de los más comúnmente utilizados en la actualidad. Tiene una capacidad de almacenamiento que va desde 2 hasta 32 megas en aplicaciones automotrices. Este tipo de encapsulación ha logrado un equilibrio entre costo, capacidad y espacio, adoptado por los fabricantes de electrónica automotriz. La cantidad de pines utilizados es de 44 o 48 terminales, también posee una marca el cual nos indica la posición del pin 1. Esta Memoria puede borrarse eléctricamente (Auto Avance [AA], 2013).

Figura 10

Memoria SOP

Nota. En la figura se reconoce la memoria tipo SOP (AUTO AVANCE, 2013).

Memoria volátil

Al realizar la desconexión de la unidad de control por el interruptor de encendido, esta memoria pierde todos los datos almacenados (memoria volátil). Los valores de adaptación (valores aprendidos sobre estados del motor y de servicio) tienen que determinarse de nuevo en este caso al conectar otra vez la unidad de control (Paredes, 2011)

Memoria RAM

La RAM se utiliza para almacenar temporalmente información que el procesador utilizará para realizar cálculos u otras operaciones lógicas. La RAM de un microcontrolador usa SRAM, lo que evita la implementación de un sistema de actualización como en las computadoras personales que usan mucha memoria, generalmente alguna tecnología DRAM.

Ambos tipos de RAM difieren en la tecnología utilizada para almacenar datos, siendo la RAM dinámica la más común. La RAM dinámica requiere ser actualizada repetidamente en una tasa de miles de veces por segundo, mientras que la RAM estática no necesita actualizar y es más veloz, pero también es más cara. Ambos tipos de RAM no son volátiles, lo que significa que pierden su contenido cuando se apaga la computadora.

Memoria SRAM la Static Random Access Memory (SRAM), o Memoria Estática de Acceso Aleatorio, Se trata de un tipo de memoria que utiliza semiconductores y se diferencia de la memoria DRAM por su capacidad de mantener los datos al estar conectada a la corriente eléctrica sin necesidad de un proceso de refresco constante.

Memoria DRAM la memoria DRAM (Dynamic Random Access Memory) Se refiere a un tipo de memoria RAM dinámica con acceso aleatorio que se utiliza ampliamente en módulos RAM y otros dispositivos, como en la memoria principal del sistema. Se llama dinámico porque

para guardar los datos es necesario revisarlos y cargarlos periódicamente durante el ciclo de actualización (Foro Activo [FA], 2016).

Memoria ROM

Memoria de programa: El microcontrolador necesita de un programa (software) que este almacenado en una memoria de valor fijo (no volátil) como las memorias ROM o EPROM. ROM significa una memoria solo de lectura, este microprocesador contiene el programa básico de la ECU, en esta memoria están datos individuales, curvas y campos característicos. Se trata, en este caso, de datos invariables que no pueden ser modificados durante el servicio del vehículo (Paredes, 2011)

Memoria de acceso secuencial RAM

Las memorias tienen diversos usos entre estos en el ámbito automotriz y sirven: "Para la lectura o escritura de una determinada célula, es preciso leer todas las células que le preceden físicamente" (Ecu Red [ER], 2022).

Clasificación de las memorias de acceso secuencial:

Memorias FIFO (First In - First Out) se trata de un conjunto de registros en los que los datos se almacenan y se recuperan en el orden en que fueron introducidos, es decir, el primer dato almacenado es el primer dato que se lee. Los datos se leen en el mismo orden en que se escribieron. Permiten que los datos se escriban a una velocidad y se lean a otra (Ecu Red [ER], 2022).

Memorias LIFO (Last In - First Out) Se refiere a dispositivos en los que el primer dato a recuperarse es el último dato almacenado. También llamadas memorias pila.

Memorias CCD (Charge-Coupled Device, dispositivo de carga acoplada) Son dispositivos formados por una gran cantidad de condensadores, semiconductores denominados canales. La información se introduce en serie por el canal, y se desplaza a lo largo del canal a una velocidad fijada por una señal de reloj. Se utilizan en las cámaras de vídeo digitales (Ecu Red [ER], 2022).

Memoria ROM programable (PROM)

Memoria ROM programable, se suministra sin programación para que el usuario programe su contenido en función del trabajo que le interese desarrollar en su equipo. Una vez grabada se convierte en ROM. Se usa mucho para grabar constante que dependen de cada usuario particular pero que son totalmente permanentes una vez definidos sus valores, tal como la programación de manejo de una máquina una secuencia de luces de texto en un aviso, etc. (Arciniega & Fueltan, 2020)

Memoria ROM programable y borrable (EPROM)

EPROM Es un chip de memoria de computadora. Los chips EPROM se pueden quitar de los dispositivos integrados, reprogramados y reinsertados. Muchos sistemas de motores de automóviles utilizan chips EPROM para controlar varias funciones del motor. Los sintonizadores, que son personas que ajustan y modifican los coches para mejorar su rendimiento, compran e instalan chips EPROM del mercado de accesorios que están programados con valores diferentes a los de las fichas EPROM originales. Al instalar diferentes chips EPROM, los sintonizadores pueden modificar y personalizar el rendimiento del motor del automóvil (Ingeniería Automotriz [IA], 2020).

Memoria ROM programable borrable (EEPROM)

Es una memoria que permite borrar y programar a través de la aplicación de un determinado impulso eléctrico, "las EEPROM se pueden programar y borrar velozmente dentro del propio circuito final para propósitos de reprogramación" (Cuascota & Estrada, 2022)

Memoria tipo DIL (Dual Input Line)

Las memorias no solo se encargan de cambiar de velocidad con la que se transfieren los datos también permiten borrar los mismo como en el caso de un tipo DIL: "Posee 2 líneas con pines de acceso, estas pueden ser de 28 o 32 pines. Una muesca se puede observar en su encapsulado, el mismo muestra la orientación de su numeración y la ubicación del pin número 1" (Semanate, 2020).

Se puede ver una marca o muesca en el revestimiento del dispositivo, la cual se utiliza como referencia para identificar la numeración y ubicación del pin 1 de la memoria. También se encuentra una ventana en el medio del componente el cual nos indica que se puede borrar los datos de esta con rayos ultravioletas (AA, 2013).

Figura 11

Memoria DIL

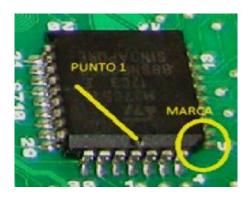
Nota. En la figura se indica la memoria tipo DIL (AA, 2013).

Memoria tipo SOP (Small Outline Package)

Este tipo de memoria es muy utilizada en el campo automotriz por su capacidad de almacenamiento de 2 a 32 megas. Dispone de 44 a 48 pines de conexión, para reconocer el primer pin la memoria dispone de un punto en la parte superior de la misma, para fines de reprogramación su información es modificada a partir de pulsos eléctricos (AA, 2013).

Figura 12 *Memoria tipo SOP*

Nota. La figura nos muestra una memoria del tipo SOP con sus pines que pueden ser 44 o 48 y nos indica donde se encuentra el pin 1 (AA, 2013).


Memoria tipo PLCC (Plastic Lader Chip Carrier)

Las memorias tienen diferentes funciones, pero también tienen una disposición de pines y estos cuentan con: "un tamaño reducido y la configuración de sus pines envuelve los 4 lados a diferencia de la memoria tipo DIL la cantidad de pines puede ser de 32, 44 y 48" (Semanate, 2020).

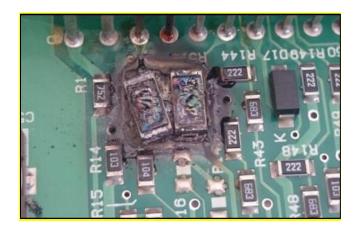
La peculiaridad de esta configuración es que los pines miran hacia adentro y se montan en la superficie de la placa base. Esto simplifica el tamaño que ocupa en la placa base y además proporciona más potencia interna. Este tipo de memorias se borran eléctricamente. Sobre un lateral posee una marca que nos indica la posición pin 1. Pueden ser encontradas montadas directamente sobre la placa como también sobre un zócalo (AA, 2013).

Figura 13

Memoria PLCC

Nota. En la figura se muestra la memoria tipo PLCC. (AA, 2013)

Tipos de fallas en computadoras automotrices


Fallas físicas

En una ECU de un vehículo se puede presentar las fallas físicas de las cuales se habla a continuación:

Punto de soldadura agrietado o corrosión por óxido esta falla se produce en los componentes electrónicos de la ECU, los cuales han sido fijados por medio de soldaduras. Lo mencionado puede causar una interrupción momentánea de la conexión, generando daños intermitentes en el sistema de inyección electrónica; o, en ciertos casos, que el vehículo, momentáneamente, no encienda.

Pista quemada, una pista quemada puede llevar a una falla continua del sistema de inyección por sobrecarga, la cual provoca quemadura en el área de la pista, interrumpiendo el paso de corriente impidiendo su funcionamiento (Cajisaca & Pinos, 2016).

Figura 14 *Pista quemada*

Nota. En la figura se puede observar cómo se encuentra una pista quemada dentro de la ECU (Cajisaca & Pinos, 2016).

Otra falla común es un: "transistor averiado los transistores tienden a dejar de funcionar porque reciben demasiado voltaje o no reciben suficiente corriente para funcionar. Para corregir este error, debe encontrar el transistor defectuoso, identificar su nomenclatura de pines, verificarlo y reemplazarlo" (Cajisaca & Pinos, 2016).

Figura 15 *Transistor de potencia*

Nota. En la figura se observa dos transistores de potencia (Cajisaca & Pinos, 2016).

Falla de condensadores se pueden presentar dos tipos de fallas en los condensadores:

- Fallas por la pérdida de la capacidad pierden su capacidad de almacenar energía debido a que se encuentran sometidos a temperaturas muy altas.
- Fallas por daños físicos del condensador se produce a causa de una sobrecarga sobre éste. Esta avería se la identifica fácilmente, puesto que el condensador presenta una deformación en su parte física.

En cualquiera de los dos casos indicados se debe reemplazar el condensador por otro de iguales características, teniendo en cuenta su polaridad.

Fallas del microprocesador este tipo de falla es la más crítica debido a que el microprocesador es el componente principal de la ECU, al cual no se lo encuentra fácilmente debido a que es exclusivo de cada fabricante. Es necesario reemplazar el microprocesador o sustituir la ECU

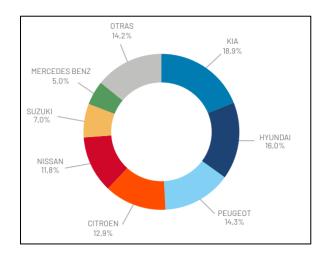
Fallas lógicas:

Estas fallas se generan en la base de datos del programa interno, por lo que no es necesario desarmar la ECU, únicamente realizar la reprogramación de la información de esta.

"La reprogramación ocurre cuando se ha encontrado fallas en los sistemas de control del motor; consiste en actualizar la información del microprocesador, la cual, generalmente, es proporcionada por los fabricantes automotrices" (Cajisaca & Pinos, 2016).

Capítulo III

Arquitectura y constitución de ECUs de procedencia europea


ECU de procedencia europea

La importación de vehículos europeos se ha incrementado tanto en lo referente a número de unidades importadas como en lo que respecta a la proporción de estos vehículos en relación con el resto de los automotores de procedencia extranjera señalando que los vehículos europeos pasaron de representar el 7,32% de las importaciones al 9,3% de éstas. En cuanto al número de unidades importadas La cantidad de vehículos importados desde la UE pasó de 3.398 en 2017 a 6.105 en 2018, lo cual representa un incremento del 79,7 %, lo cual es un porcentaje notoriamente mayor (Pozo, 2020)

En tanto, según cifras de la Aeade, Peugeot surge como la marca de vehículos europea, procedente de la UE, con el mayor número en ventas con cuatro modelos que suman 1366 unidades comercializadas entre enero y noviembre del año pasado. Peugeot creció más del 200% en ventas en Ecuador en 2018. Citroën ocupa el segundo puesto en ventas con 1287 unidades vendidas, seguido por Mercedes Benz con 398 vehículos vendidos. Fiat también está entre las marcas con más ventas, con 287 unidades de sus modelos 500 y 500 X. Hay otras marcas también presentes en el mercado. (Franco, 2020)

Las ventas del sector automotor de vehículos de origen europeo cayeron a 7 % frente a las ventas del 2020. Sin embargo, hay que recordar que en el 2020 el mercado automotor cayó drásticamente por la crisis del Covid-19, pero las ventas de vehículos europeos ganaron participación (Asociación de Empresas Automotrices del Ecuador [AEADE], 2021, p. 64).

Figura 16Participación de ventas de vehículos de origen europeo

Nota. En la gráfica se establece el porcentaje de ventas marcas europeas que se encuentran en el mercado ecuatoriano. Tomada de (AEADE, 2021, p. 64)

Tabla 1Principales marcas europeas de vehículos en el Ecuador

Marca	Logotipo	País donde se	Principales autos
		fabrica	vendidos en Ecuador
Volkswagen		Alemania	Volkswagen Polo Hb
			Volkswagen Gol
			Volkswagen Virtus
	Volkswagen		Volkswagen Jetta
			Volkswagen Amarok
Peugeot	NE	Francia	Peugeot 3008
			Peugeot 301
			Peugeot 2008
	PEUGEOT		Peugeot 208
			Peugeot 5008

Marca	Logotipo	País donde se	Principales autos
		fabrica	vendidos en Ecuador
Citroën		Francia	CITROËN C3 AIRCROSS
			NEW CITROËN C3
			CITROËN C5 AIRCROSS
			SUV CITROËN BERLINGO
	CITROËN		MULTISPACE
Renault		Francia	Renault Logan
			Renault Sandero Renault
			Stepway Renault Duster
			Renault Clio
	RENAULT		
Mercedes Benz		Alemania	Mercedes Benz Clase C
			Mercedes Benz Clase GLC
			Mercedes Benz Clase A
BMW	M	Alemania	BMW X1
	Q W		BMW 228
			BMW X7
			BMW Serie 3
			BMW X5
Audi		Alemania	Audi Q3
			Audi Q7
			Audi A4
	Audi		

Nota. Marcas de vehículos más comercializados en el Ecuador de procedencia europea.

Levantamiento de requerimientos

Para la comprobación y diagnóstico de ECUs automotrices es necesario la implementación de los equipos:

Tabla 2 *Equipos y dispositivos de prueba*

Equipo	Breve descripción
Bancos de pruebas	Deben de disponer de fuentes de alimentación:
	5V-12V-24V, señales variables de voltaje entre 0
	y 5V, entre 0 y 12V continuos y entre 0 y 1V para
	la parte de sensores de oxígeno.
Fuente de ondas cuadradas	De 0 a5V y 0 a 12V con frecuencia de 10 a 120 Hz.
Dispositivos actuadores	como solenoides, lámparas, electroválvulas,
	motores DC y paso a paso.
Equipos de prueba	dispositivos de medición de voltaje y consumo de
	corriente.
Dispositivos de verificación	Comprobación de funcionamiento a través de
	leds o displays.
Equipos de medición y prueba	como voltímetro, osciloscopio, scanner e
	interfaces de prueba.
Estación de suelda.	Debe contar con un cautín y pistola de aire
	caliente.
Equipo de visualización y alumbrado.	Lámparas o focos de alumbrado y lupas.
Consumibles varios	estaño, pomada, trenza de cobre, chupa sueldas
Comprobador de corriente	Foco de prueba

Nota. Breve descripción de los implementos necesarios para la comprobación y diagnóstico de las ECUs.

Figura 17 *Equipos implementados*

Nota. En la figura se observa todos los equipos necesarios para el diagnóstico y comprobación de ECUs.

Señales y módulos de prueba

MST-9000 Simulador profesional de señales de automóvil

Es una herramienta de reparación de ECU de coche. El dispositivo permite un diagnóstico en tiempo real de diferentes componentes del automóvil, como el sensor, motor, transmisión, ABS, aire acondicionado, immo, etc. Es útil para la reparación de la ECU, la formación de conductores, investigación y desarrollo en el sector automotriz. Además, esta herramienta de simulación de señales es compatible con automóviles de varias marcas provenientes de Asia, Europa y EE. UU.

Figura 18

Banco de prueba MST-9000+

Nota. En la figura se muestra el auto generador de señales para ECUs automotrices MST-9000+

Osciloscopio HANTEK

El Osciloscopio Hantek 1008 está diseñado para uso automotriz. Consta de 3 funciones de diagnóstico automotriz: Diagnostico del vehículo, osciloscopio y generador de señales.

El software dispone de una base de datos con medidas predefinidas y más de 80 tipos de funciones de diagnóstico. Tiene una función de diagnóstico que puede mostrar señales de muestra de referencia (gráficos de forma de onda) para cada función de diagnóstico de los motores de gasolina y diésel.

Tabla 3Funcionalidades del equipo Hantek

Características	Especificaciones principales	El set incluye
	del osciloscopio Hantek 1008	
Osciloscopio para automoción		
de 8 canales: La escala de voltaje se		Osciloscopio con una
puede ajustar independientemente en		autonomía de 8
cada canal y activar o desactivar	Velocidad de muestreo: 2,4Gsa/s.	canales.
canales.		
3 funciones de diagnóstico automotriz		
Contiene más de 80 tipos de		
funcionalidades de diagnóstico		
específicas del automóvil (encendido,	Resolución vertical: 12 bits/canal.	8 cables BCN con
inyectores, sensores, detección Bus,		pinzas de cocodrilo.
arranque y circuitos de carga.		
Consta de conexión mediante USB al		
PC.		
Puede grabar las señales y el		
almacenamiento de los resultados		
proporcionados.		

Características	Especificaciones principales	El set incluye
	del osciloscopio Hantek 1008	
Generar un informe de diagnóstico,	Impedancia: 1M ohm.	Cable USB.
imprimir o tomar una captura de		
pantalla.		
Si se requiere el Generador	Rango de voltaje:	
programable puede generar señales	(10 mV a 5 V/Div @ x 1 sondas)	
de entre 0 a 250Khz de frecuencia.	(100 mV a 50 V/Div @ x 10 sondas)	
Con el botón "guía rápida" el usuario	(200 mV a 100 V/Div @ x 20 sondas)	
puede acceder a un video para cada	(10 V a 5000 V/Div @ x 1000 sondas)	CD instalación del
función a través de un código QR que	(100 V a 50000 V/Div @ x 10000	software.
se muestra el método de cableado,	sondas)	
ajuste, forma de onda de referencia		
etc.		

Nota. Descripción de las funciones que presenta el equipo.

Figura 19
Osciloscopio Hantek

Nota. En la figura se observa el osciloscopio de la marca Hantek de ocho canales.

Estación de suelda BAKU 702L

Una estación de soldadura es una herramienta que te permite soldar varios puntos de conexión existentes en equipos electrónicos, dependiendo del circuito en el que vayas a trabajar, debes elegir un soldador que se adapte a tus necesidades, ya que el sobrecalentamiento puede dañar los componentes electrónicos.

Para realizar este tipo de trabajos se suele usar un cautín que se encuentre entre los 25 a 45 watts de potencia, se puede trabajar de manera general en casi cualquier circuito, en algunas secciones su puede encontrar con soldaduras bastante gruesas por lo cual se deberá contar con un cautín más potente de unos 60 a 100 watts de potencia.

Tabla 4Características estación de suelda

Características	El set incluye
Marca: Baku	
Modelo: BK-702L	
Tipo de carcasa: de sobremesa	5 boquillas
Temperatura del soldador: 100°C – 450°C	
Potencia de pistola de aire: 480°C	
Potencia de la bomba: 45W	
Tipo de compresor: diafragma	1 Cautín
Tensión nominal: 220 V CA.	
Consumo de energía: 270 W.	
Ventilador: ventilador sin escobillas.	
Volumen de aire: 120 l/m (máximo).	
Peso: 5Kg	Base para cautín

Nota. Elementos y características de la estación de suelda BAKU 702L.

Figura 20 *Estación de suelda BAKU 702L*

Nota. En la presente figura se observa la estación de suelda BAKU 702L y su panel principal.

Scanner MS509

El escáner automotriz es una herramienta que permite la exploración de todos los componentes eléctricos de un vehículo. Este detecta los fallos eléctricos que se pueden suscitar en el ordenador a bordo gracias a las señales de los sensores ya que registran los errores de funcionamiento mediante un patrón o código.

El fin del escáner como herramienta de diagnóstico automotriz es delimitar los errores y repararlos después. Hay casos donde estos fallos no se pueden corregir, esto puede generarse debido a problemas mecánicos del coche.

Tabla 5Características scanner.

Características		Cobertura de Vehículos	El set
		con protocolo	incluye
Identifica ágilmente la	Muestra datos de	SAE J1850 PWM	1 - Unidad OBD2
causa de la luz del	prueba del sensor O2	(41.6Kbaud)	Autel MS509
motor (MIL)			

Características		Cobertura de Vehículos	El set
		con protocolo	incluye
Recupera códigos	Menú multilingüe:	SAE J1850 VPW	1 - CD con
genéricos (PO, P2, P3, y	inglés, español,	(10.4Kbaud)	definiciones de DTC,
U0) y códigos del	francés, alemán		manual del usuario
fabricante del			
específico.			
Desactiva el indicador	Realiza pruebas en los	ISO9141-2(5 baud	1 - Manual de
de luz de Check Engine	módulos presentes	init,10.4Kbaud)	instrucciones
(MIL), elimina los			
errores.			
Monitor de	Protocolos de OBDII	ISO15765-4 CAN (11bit ID,	1 - Estuche
exhibiciones y estado		500 Kbaud)	
de I/M			
Identifica los códigos	Biblioteca de	ISO15765-4 CAN (29bit ID,	
pendientes.	búsqueda	500 Kbaud)	
	incorporada en OBDII		
	DTC		

Nota. Descripción de cada una de las partes del scanner automotriz MS509.

Figura 21

Scanner automotriz

Nota. En la gráfica presentada se muestra el Scanner MS509 y sus conectores.

Software de especificaciones

Autodata

Autodata brinda información técnica completa para la realización de procedimientos completos de revisión, mantenimiento, diagnóstico y reparación de vehículos, la información registrada en este software contiene esquemas eléctricos, procedimientos técnicos detallados, especificaciones técnicas, datos de terminales del módulo de control de una gran variedad de vehículos.

Ofrece todo tipo de dato técnico del vehículo que se encuentre dentro del sistema proporciona:

- Identificación del vehículo: cilindrada, potencia, tipo de combustible, localización de VIN
 y código de motor.
- Reglaje y emisiones: orden de encendido, ajustes básicos de encendido, régimen de ralentí, niveles de emisiones.
- Ajustes de servicio/revisión: tipo de bujía, separación del electrodo, calibración de válvulas, compresión de los cilindros, presión de aceite.
- Capacidades y lubricantes: especificaciones y capacidades del aceite del motor, aceite de transmisión y diferencial.
- Pares de apriete: de culata, cojinetes principales, cojinetes de cabeza de biela, cárter de aceite, bomba de aceite, piñón de árbol de levas, polea de cigüeñal, etc.
- Reparaciones eléctricas: esquemas eléctricos, ubicación de componentes eléctricos, distribución de pines del módulo central.

Figura 22
Software Autodata

Nota. En la figura se observa la pantalla de inicio del software Autodata.

ALLDATA

Es paquete de diagnóstico de OEM (fabricante de equipos originales, por sus siglas en inglés) está basado en la nube para ayudar a las empresas de automoción a realizar examinaciones de vehículos basadas en la información de reparación que proporciona el paquete, a través de cableado de color didáctico o diagramas de OEM. Los técnicos pueden revisar y analizar imágenes de alta calidad, observar diagramas para inspecciones, resaltar u descartar componentes y alternar diagramas de OE (equipo original, por sus siglas en inglés), además pueden utilizar equipos que no son solo para compararlos.

Los propietarios pueden usar la solución ALLDATA Diagnostics con el fin de realizar escaneos de DTC (códigos de diagnóstico de problemas, por sus siglas en inglés), exportar y descargar informes en PDF previos y posteriores al escaneo y acceder a artículos de reparación relevantes. Con la aplicación móvil ALLDATA, los técnicos pueden revisar y decodificar el VIN (número de identificación del vehículo, por sus siglas en inglés), otra de las características es acercar o alejar diagramas para un mejor análisis, migrar desde un DTC identificado al procedimiento de prueba requerido y utilizar el diagnóstico OBDII

(diagnóstico a bordo, por sus siglas en inglés) para ver códigos P, los datos de sensores en vivo, los niveles de emisión y más.

Mitchell on Demand

Esta compañía cuenta con más de 90 años de experiencia en el ámbito de sector automotriz suministra información técnica para facilitar el trabajo de técnicos y mecánicos automotrices.

Mitchell es un programa que cuenta con la mayoría de las marcas de vehículos que se puede encontrar en el mercado automotor, la información que se encuentra es muy completa y de gran ayuda. Esta información se divide en cuatro bloques principales, estos son: reparación, presupuestos, boletines de servicio, mantenimiento programado.

Tabla 6Bloques del programa Mitchell

Reparación	Contiene toda la información técnica requerida para realizar reparaciones
	correctivas sobre el vehículo. Presenta manuales de despiece, diagramas
	eléctricos y electrónicos, códigos de falla y procedimientos de solución.
	Procedimientos de desarme del fabricante.
Presupuestos	Esta herramienta permite acceder a información sobre tiempos de
	ejecución de los diferentes trabajos para distintas marcas y modelos, es
	muy útil para talleres que trabajan con rangos de tiempo o por hora.

Nota. Descripción de los cuatro bloques del programa.

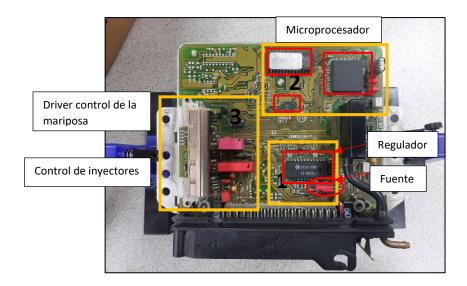
Constitución de bloques

Las ECUs automotriz en su interior están compuestos por bloques, los cuales son encargados de diferentes funciones que son importantes para el funcionamiento correcto del vehículo. Para la identificación de los bloques constituidos, a continuación, se determinan los bloques que se encuentra y los componentes que contienen cada uno, así para ser identificados de la mejor manera.

Tabla 7 *Tipos de bloques*

Bloque	Componentes
Bloque fuente y regulador	Condensadores: pueden ser electrolítico y
	tantalio.
	Resistencias térmicas
	Reguladores de tensión diodos.
Bloque de filtrado	Filtro: resistencias SMD y condensadores
	cerámicos
Bloque de preprocesamiento	Convertidores A/D, sistemas LATCH,
	multiplexores
Bloque de procesamiento	Microcontrolador, microprocesador, memorias
Bloque de potencia	Transistores, drivers, Smart drivers,
	condensadores, diodos, resistencias térmicas
Bloque de comunicación	Transceiver, optoacoplador, resistencia

Nota. Elementos en cada uno de los bloques presentes en una ECU de un vehículo.


Una vez determinados los bloques que tiene una ECU se procede a la identificación de estos en la ECUs que se tiene a disposición, a continuación, presentadas:

ECU Peugeot 405

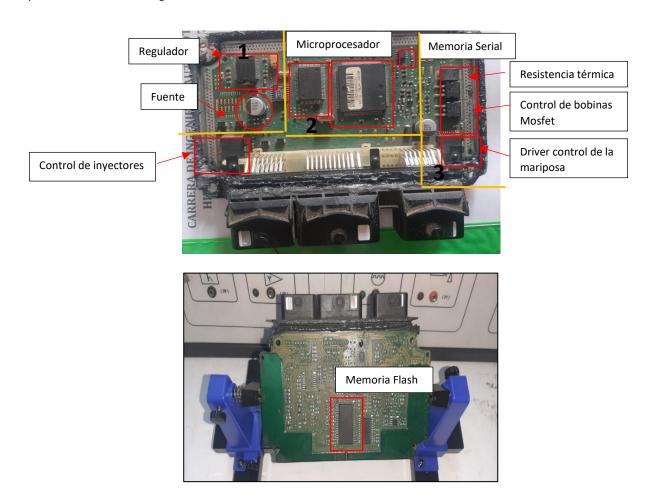
Esta unidad de control electrónico lo implementa la marca europea Peugeot en su modelo 405 específicamente, es necesario conocer los diversos elementos que van a constituir cada uno de los bloques presentes en la ECU como son: bloque de fuente y regulación y bloque de potencia.

Figura 23

Bloques de la ECU del Peugeot 405

Nota. En la gráfica se muestra la repartición de los bloques presentes en la ECU.

Tabla 8 *Identificación de bloques Peugeot 405*


Numero	Identificación de bloque
1	Bloque fuente y regulador
2	Bloque de procesamiento y preprocesamiento
3	Bloque de potencia

Nota. Identificación de los bloques de la ECU del Peugeot 405 y los componentes de cada bloque.

ECU Peugeot 206

Esta unidad de control electrónico lo implementa la marca europea Peugeot en su modelo 206 específicamente, es necesario conocer los diversos elementos eléctricos que constituyen cada uno de los bloques presentes en la ECU.

Figura 24Bloques de la ECU del Peugeot 206

Nota. En la figura se muestra los bloques identificación presentes en la ECU.

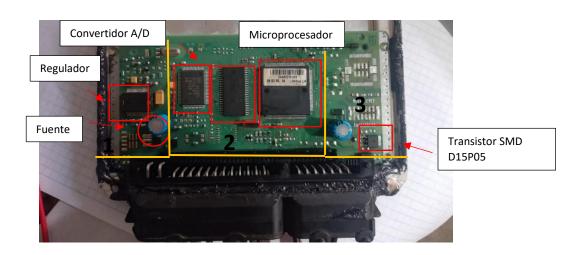
Tabla 9 *Identificación de bloques Peugeot 206*

Numero	Identificación de bloque
1	Bloque fuente y regulador
2	Bloque de procesamiento y preprocesamiento
3	Bloque de potencia

Nota. Identificación de los bloques de la ECU del Peugeot 206 y los componentes de cada bloque.

ECU Volkswagen Polo

Figura 25


ECU Volkswagen polo destapada

Nota. En el grafico se observa el proceso de determinación de los bloques de la ECU.

Figura 26

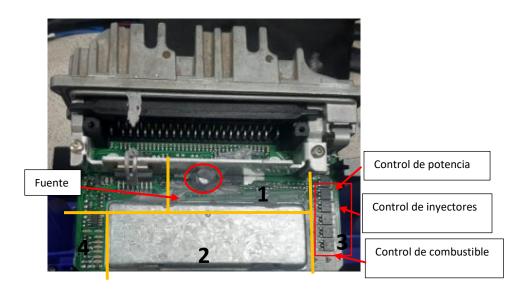
Bloques de la ECU del Volkswagen Polo

Nota. En la figura se mira la identificación de los bloques presentes en la ECU.

Esta unidad de control electrónico lo implementa la marca europea Volkswagen en su modelo Polo específicamente, la identificación de cada uno de los bloques que presenta:

Tabla 10 *Identificación de bloques Volkswagen Polo*

Numero	Identificación de bloque
1	Bloque fuente y regulador
2	Bloque de procesamiento y preprocesamiento
3	Bloque de potencia


Nota. Identificación de los bloques de la ECU del Volkswagen Polo y los componentes de cada bloque.

ECU Volkswagen Gol

Esta unidad de control electrónico lo implementa la marca europea Volkswagen en su modelo Gol específicamente, es necesario conocer los diversos elementos eléctricos que constituyen cada uno de los bloques presentes.

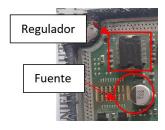
Figura 27

Bloques de la ECU del Volkswagen Gol

Nota. En la gráfica se determina los bloques identificados presentes en la ECU.

Tabla 11 *Identificación de bloques Volkswagen Gol*

Numero	Identificación de bloque	
1	Bloque fuente y regulador	
2	Bloque de procesamiento y preprocesamiento	
3	Bloque de potencia	

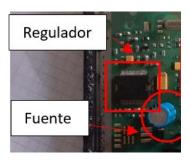

Nota. Identificación de los bloques de la ECU del Volkswagen Gol y los componentes de cada bloque.

Subsistema de alimentación

Conocido también como bloque fuente y regulador, este puede estar compuesto de condensadores: electrolítico y tantalio, resistencias térmicas, reguladores de tensión diodos. A continuación, se expone el subsistema de alimentación de cada una de las ECUs que se va a realizar el estudio.

ECU Peugeot 206

Figura 28Subsistema de alimentación Peugeot 206

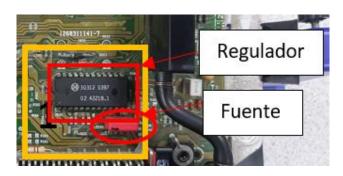

Nota. En la figura se observa el subsistema de alimentación.

El subsistema de alimentación presenta un condensador 2DK 100 50 V, este cumple la función de filtrar el voltaje y también como protección de sobre voltaje, el regulador tiene un circuito integrado 30343 su función en el módulo: regulador 5 V.

ECU Volkswagen Polo

Figura 29

Subsistema de alimentación Volkswagen Polo


Nota. En la gráfica se determina el subsistema de alimentación.

El subsistema de alimentación contiene un capacitor electrolítico 220u-M, este cumple la función de modular la señal de la fuente de alimentación, el regulador de tensión consta de un circuito integrado 30343 de la marca Bosch de 36 pines, su función en el módulo: regulador de 5 V.

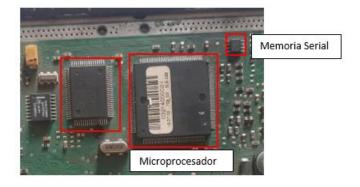
ECU Peugeot 405

Figura 30

Subsistema de alimentación Peugeot 405

Nota. En la figura se analiza el subsistema de alimentación.

El subsistema de alimentación contiene un capacitor wima mkc 4 0.1/250 HN, este es un dispositivo electrónico, que es capaz de acumular energía en su interior cuando se conecta a una fuente,


el regulador de tensión consta de un circuito integrado 30312 de la marca Bosch de 24 pines, su función en el módulo: regulador de 5 V.

Subsistema de procesamiento

Dentro de este subsistema se encuentra el bloque de preprocesamiento, donde se preparan y se acondicionan todas las señales, aquí se encuentra el convertidor analógico digital. Aquí se encuentran guardados datos de funcionamiento y el procesador el cual es encargado de operar controles y señales del módulo. Este realiza las funciones programadas y las que están constituidos electrónicamente por el procesador y memorias.

ECU Peugeot 206

Figura 31Subsistema de procesamiento Peugeot 206

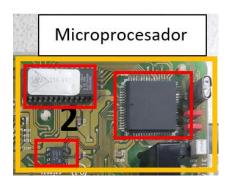
Nota. En la gráfica se muestra el subsistema de procesamiento de la ECU del Peugeot 206.

El subsistema de procesamiento consta de una memoria M29F400BB no volátil que se puede leer, borrar y reprogramar, esto lo puede realizar usando un solo suministro de 5V, usa un drive 30380 Chip de accionamiento de motor automotriz, tiene una memoria serial 95160 programable y borrable eléctricamente (EEPROM) mediante un bus compatible con SPI de alta velocidad.

ECU Volkswagen Polo

Figura 32

Subsistema de procesamiento Volkswagen Polo

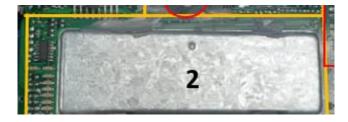

Nota. En la figura se indica el subsistema de procesamiento de la ECU del Volkswagen Polo.

Esta unidad de control usa un drive 30380 Chip de accionamiento de motor automotriz, una memoria Flash NOR AM29F400BB-90SI de 4 Mbit y 5,0 V está organizada como 524.288 bytes y el dispositivo ofrece en SO de 44 pines y un microprocesador ROM B59233 Infineon de 16 bit de 144 pines, este facilita la conectividad inalámbrica.

ECU Peugeot 405

Figura 33

Subsistema de procesamiento Peugeot 405



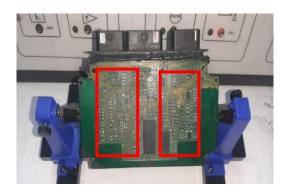
Nota. En la figura se determina el subsistema de procesamiento de la ECU del Peugeot 405.

El subsistema de procesamiento consta de un microprocesador de B 58 451 de 68 pines, una memoria serial B58 539 de 28 pines programable y borrable eléctricamente (EEPROM) mediante un bus compatible con SPI de alta velocidad y un integrado monolítico de 8 pines

ECU Volkswagen Gol

Figura 34Subsistema de procesamiento Volkswagen Gol

Nota. En la gráfica se observa el subsistema de procesamiento de la ECU del Volkswagen gol.


Esta unidad de control consta de drive 30380 Chip de accionamiento de motor automotriz, una memoria Flash NOR AM29F400BB-90SI de 4 Mbit y 5,0 V está organizada como 524.288 bytes y el dispositivo ofrece en SO de 44 pines y un microprocesador ROM B59233 Infineon de 16 bit de 144 pines, este facilita la conectividad inalámbrica.

Periferia

Bloque de entrada o periferia en este subsistema se encuentra todos los componentes o circuitos que se encuentran como receptores de las diferentes señales que ingresan a la ECU. En este bloque se encuentran filtros, amplificadores conversores análogos o digitales, comparadores, recortadores entre otros.

Las señales que van a entrar los microprocesadores e integrados, son manipuladas por todos estos tipos de circuitos.

Figura 35Bloque de periferia ECU Peugeot 206

Nota. En la figura se indica la identificación del bloque de periferia.

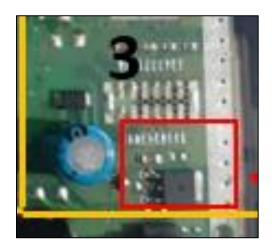
Drivers

Drivers o bloque de potencia generalmente esa consolidado por drivers, Smart drivers, condensadores, diodos, resistencias térmicas. Son elementos semiconductores cuya función es controlar la activación de elementos actuadores estos controlados por los microcontroladores.

ECU Peugeot 405

Figura 36

Bloque de drivers Peugeot 405



Nota. En la figura se indica el bloque de drivers de la ECU del Peugeot 405.

Costa de dos transistores NPN BDX53A de 3 pines fabricado de silicio, este se caracteriza por tener una resistencia termina en su caja con una disposición máxima de potencia del colector de 60 W, tensión máxima colector-base y colector-emisor 60 V, emisor-base 5 V y corriente máxima de colector de 8 A. Un transistor BDX77S NPN de bajo voltaje de saturación, se encarga de amplificación y conmutación de potencia media, con un voltaje, tensión máxima colector-base 100 V, colector-emisor 80 V, emisor-base 5 V y corriente máxima de colector de 8 A y una disipación total de la potencia de 60 W. Y un Regulador de voltaje de caída baja de 5 V SIEMENS 30191 y cumple ciertas funciones como baja corriente de reposo, restablecer salida, protección contra polaridad inversa, protección contra sobretensiones 70V, prueba de cortocircuito, adecuado para la electrónica del automóvil, amplio rango de temperatura.

ECU Volkswagen Polo

Figura 37Bloque de drivers Volkswagen Polo

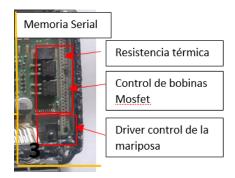
Nota. En la figura se muestra el bloque de drivers de la ECU del Volkswagen Polo.

Consta de un capacitor electrolítico 220u-M su función es la de incrementar la potencia eléctrica en instantes precisos que necesitan una fuerte descarga, y de un Fairchild D15P05 - Circuito integrado

(Drive) utilizado para reparar módulos de inyección de ECU, estos son MOSFET de potencia de canal P fabricado mediante el proceso MegaFET. Este proceso, que utiliza tamaños de características que se aproximan a los de los circuitos integrados LSI, proporciona una utilización óptima del silicio, lo que da como resultado un rendimiento sobresaliente. Fueron diseñados para su uso en aplicaciones tales como reguladores de conmutación, convertidores de conmutación, controladores de motor y controladores de relé.

ECU Volkswagen Gol

Figura 38Bloque de drivers Volkswagen Gol


Nota. En la figura se determina el bloque de drivers de la ECU del Volkswagen Gol.

Consta de un VND7NV04 MOSFET de potencia totalmente autoprotegido, modelo TO252 (DPAK) algunas de sus características son: Limitación de corriente lineal, apagado térmico, protección contra cortocircuitos, baja corriente extraída del pin de entrada, retroalimentación de diagnóstico a través del pin de entrada, acceso directo a la puerta del MOSFET de potencia (conducción analógica), cuatro circuitos integrados (Drive) L2N 06CL utilizados para reparar módulos de inyección de ECU que se encargan de controlar a los inyectores y un integrado de potencia de 1 amperio, 62 voltios, nivel lógico DPAK de canal N El MLD 1N06CL, está diseñado para aplicaciones que requieren un dispositivo de conmutación de potencia resistente con protección contra cortocircuitos que se puede conectar directamente a

una unidad de micro control (MCU). Las aplicaciones ideales incluyen el controlador de inyectores de combustible para automóviles.

ECU Peugeot 206

Figura 39Bloque de drivers Peugeot 206

Nota. En la figura se establece el bloque de drivers de la ECU del Peugeot 206.

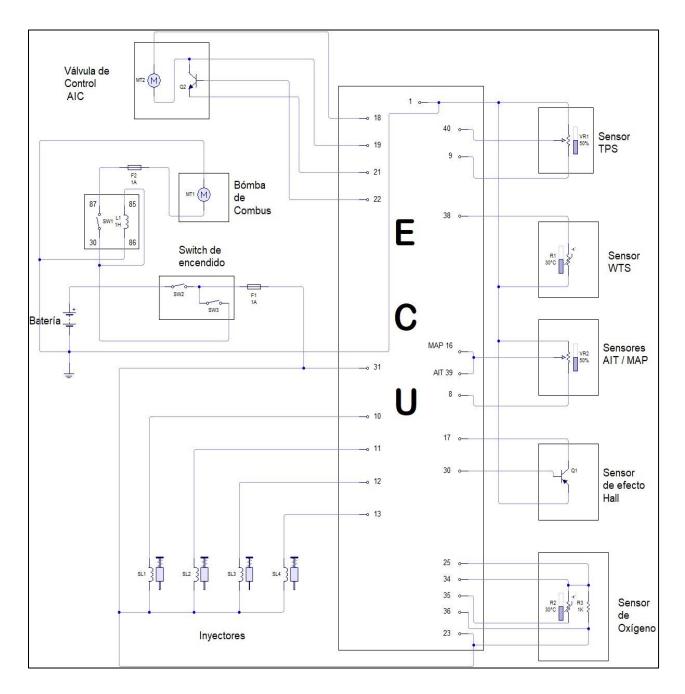
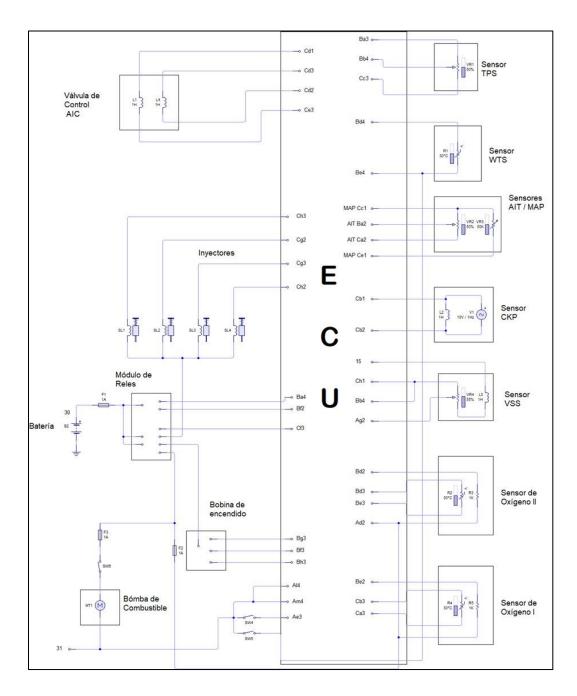

Consta de una resistencia WSR2 de tira de metal de potencia, es un encapsulado de alta temperatura moldeada, inductancia de 0,5 nH a 5 nH trabaja con una frecuencia de 50MHz, usa un integrado 30344 de 64 pines , este componente cuenta con una protección contra cortocircuito, sobrecalentamiento, interfaz SPI, que se encarga del control de inyección, dispone de dos transistores 30028 estos se encargan del control de la bobina debido a que es un sistema DIS y también un driver 30348 es un puente H completo inteligente, está diseñado para realizar el control de los motores paso a paso y de CC en aplicaciones para la seguridad y en condiciones ambientales extremas, en este caso se encarga del control de la mariposa.

Diagrama de conexión

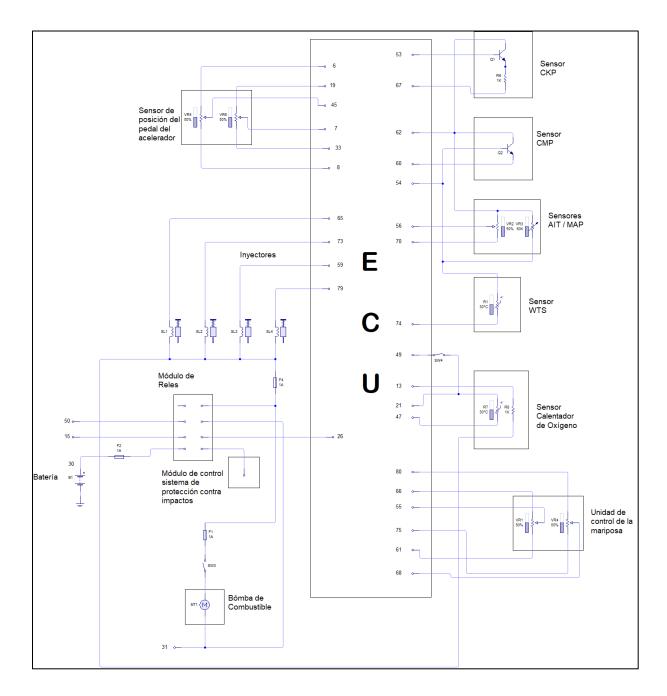
Se presenta los diagramas de conexión, se identifica cada uno de los sensores y actuadores presentes, se realiza la conexión con el número de pines correspondiente en la ECU en el software Livewire.

ECU Volkswagen gol


Figura 40Diagrama de conexión Volkswagen Gol

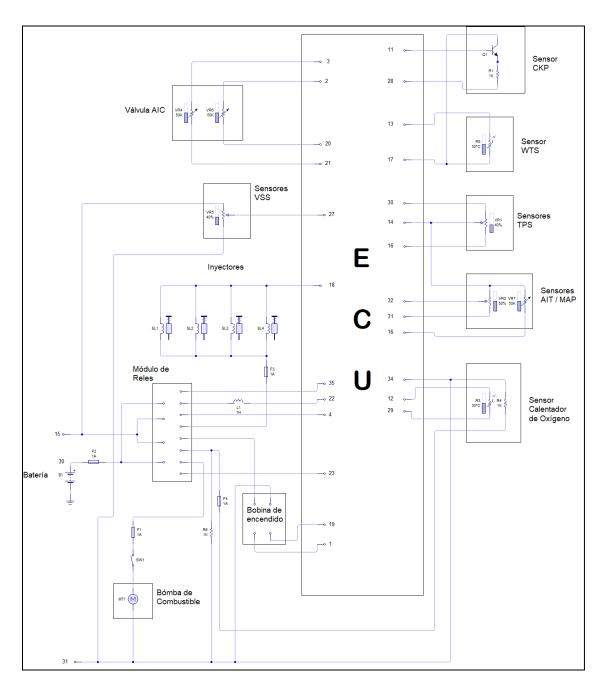
Nota. En la figura se indica la esquematización de los sensores y actuadores presentes y su conexión en la ECU del Volkswagen gol realizado en Livewire.

ECU Peugeot 206


Figura 41Diagrama de conexión Peugeot 206

Nota. En la figura se muestra la esquematización de los sensores y actuadores presentes y su conexión en la ECU en un esquema eléctrico del Peugeot 206 realizado en Livewire.

ECU Volkswagen Polo


Figura 42Diagrama de conexión Volkswagen Polo

Nota. En la figura se establece la esquematización de los sensores y actuadores presentes y su conexión en la ECU en un esquema eléctrico del Volkswagen Polo realizado en Livewire.

ECU Peugeot 405

Figura 43Diagrama de conexión Peugeot 405

Nota. En la figura se observa la esquematización de los sensores y actuadores presentes y su conexión en la ECU en un esquema eléctrico del Peugeot 405 realizado en Livewire.

Selección de elementos eléctricos electrónicos y bloques de pruebas

ECU Peugeot 405

Tabla 12 *Identificación de componentes Peugeot 405*

Numero	Identificación de bloque	Componentes
1	Bloque fuente y regulador	Condensador wima mkc 4 0.1/250 uF
		Circuito integrado 30312
2	Bloque de procesamiento y	Microprocesador B 58 451
	preprocesamiento	Integrado monolítico
		Memoria serial B58539
3	Bloque de potencia	Transistores NPN BDX53A de 3 pines
	Drivers	Transistor BDX77S NPN de bajo
		voltaje de saturación
		Regulador de voltaje de caída baja
		de 5 V SIEMENS 30191
		Driver

Nota. Identificación de los bloques de la ECU del Peugeot 405 y los componentes de cada bloque.

ECU Peugeot 206

Tabla 13 *Identificación de componentes Peugeot 206*

Numero	Identificación de bloque	Componentes
1	Bloque fuente y regulador	Condensador 2DK 100 50 V
		Circuito integrado 30343
2	Bloque de procesamiento y	Microprocesador
	preprocesamiento	Memoria serial 95160
		Memoria volátil M29F400BB

Numero	Identificación de bloque	Componentes
		Memoria flash
3	Bloque de potencia	Resistencia térmica
		Transistores 30028
		Driver 30380
		Integrado 30344 de 64 pines
		Driver 30348

Nota. Identificación de los bloques de la ECU del Peugeot 206 y los componentes de cada bloque.

ECU Volkswagen Polo

Tabla 14 *Identificación de componentes Volkswagen Polo*

Numero	Identificación de bloque	Componentes
1	Bloque fuente y regulador	Condensador electrolítico 220u-M
		Circuito integrado 30343
2	Bloque de procesamiento y	Convertidor A/D
	preprocesamiento	Microprocesador ROM B59233
		Memoria flash NOR AM29F400BB-
		90SI
		Memoria serial
3	Bloque de potencia	Fairchild D15P05 - Circuito integrado
		(Drive)
		MOSFET de potencia de canal P

Nota. Identificación de los bloques de la ECU del Volkswagen Polo y los componentes de cada bloque.

ECU Volkswagen Gol

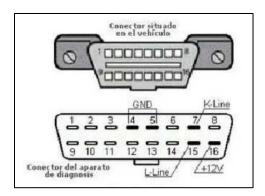
Tabla 15 *Identificación de bloques Volkswagen Gol*

Numero	Identificación de bloque	Componentes
1	Bloque fuente y regulador	Condensador 2DK 100 50 V
		Circuito integrado 30343
2	Bloque de procesamiento y	Microprocesador
	preprocesamiento	Memoria serial
		Memoria flash
3	Bloque de potencia	Mosfet
		Driver

Nota. Identificación de los bloques de la ECU del Volkswagen Gol y los componentes de cada bloque.

Conector DLC

El conector DLC (Data link connector) es un dispositivo en el cual se puede tener comunicación con todas las computadoras y módulos del vehículo, está comunicación se va a llevar a cabo con un escáner de diagnóstico y en la información que arroje como códigos de error líneas de datos se realiza el diagnóstico para verificar qué sucede con el vehículo.


Normalmente el conector se encuentra debajo del tablero de instrumentos del lado del conductor, es decir debajo del volante, en algunos modelos se encuentra en la caja de armas que alimenta parte de la cabina, se puede encontrar en marcas como Renault, se encuentra en la guantera en algunos modelos y entre la consola central de audio en Opel.

El conector además de ser el traductor del auto al técnico es también una fuente importante de información que reciben los módulos cuando son programados ya que hay generalmente se hacen

ajustes y aprendizajes cómo es el cuerpo de aceleración, reflasheos, programación de llaves entre otras cuestiones más Cómo abrir y cerrar los cilindros de electrónicos de frenos. (Cruz, 2023)

Figura 44

Conector DLC

Nota. En la figura se observa Conector DLC (Data link connector). (Cruz, 2023)

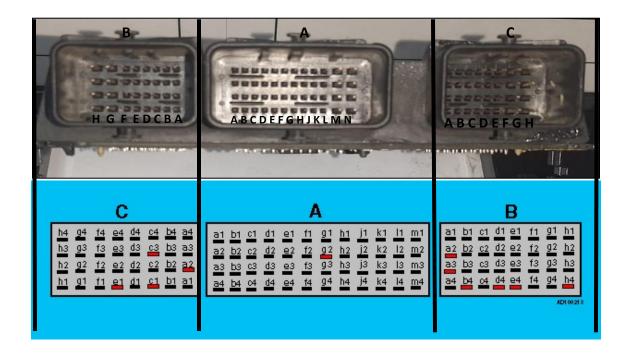
Tabla 16DLC de ECUs estudiadas

Marca	Figura
Conector DLC Peugeot 206	
Conector DLC Volkswagen Polo	For all VW / AUDI / SEAT / SKODA / PORSCHE

Nota. Conector DLC de los vehículos propietarios de las ECUs que se realiza el estudio.

Capítulo IV

Protocolo de pruebas, banqueo y resultados de las pruebas experimentales.


Distribución de pines

Es necesario conocer como está distribuido los pines que contiene una ECU automotriz, posteriormente ejecutar el banqueo de esta, se determina así cuales son los pines que alimentan la ECU, son los pines que reciben la señal de los distintos sensores y pines que envían señal a los actuadores.

ECU Peugeot 206

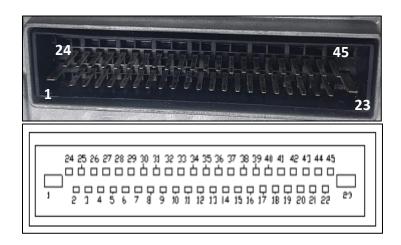
Figura 45

Pin-out Peugeot 206

Nota. En la figura se determina el Pin-out de la unidad de control electrónico del Peugeot 206.

Tabla 17Distribución de pines Peugeot 206

Pin	Descripción de circuito/componente	Estado
Bf3	Bobina de encendido	Contacto dado
Bf3	Bobina de encendido	Motor en marcha
Bg3	Bobina de encendido	Contacto dado
Bg3	Bobina de encendido	Motor a ralentí
Bh3	Bobina de encendido	Contacto dado
Bh3	Bobina de encendido	Motor ralentí
Ab4	Interruptor del encendido	Contacto dado
Ch2	Inyector 1	Contacto dado, masa conmutada
Ch2	Inyector 1	Motor al ralentí
Cg3	Inyector 2	Contacto dado, masa conmutada
Cg3	Inyector 2	Motor al ralentí
Cg2	Inyector 3	Contacto dado, masa conmutada
Cg2	Inyector 3	Motor al ralentí
Ch3	Inyector 4	Contacto dado, masa conmutada
Ch3	Inyector 4	Motor al ralentí
Al4	Masa	Circuito de masa
Am4	Masa	Circuito de masa
Ch1	Masa	Circuito de masa
Ba4	Módulo de relés	Señal de entrada
Bf2	Módulo de relés	Masa conmutada
Bf2	Módulo de relés	Masa conmutada
Cf3	Módulo de relés	Masa conmutada
Ba3	Sensor de posición de la mariposa	Masa
Bb4	Sensor de posición de la mariposa	Señal de entrada
Bb4	Sensor de posición de la mariposa	Señal de entrada
Cc3	Sensor de posición de la mariposa	Señal de salida
Cb1	Sensor de posición del cigüeñal	Señal de entrada


Pin	Descripción de circuito/componente	Estado
Cb2	Sensor de posición del cigüeñal	Señal de entrada
Ca2	Sensor de presión absoluta del colector	Circuito a masa
Cc1	Sensor de presión absoluta del colector	Señal de entrada
Cc1	Sensor de presión absoluta del colector	Señal de entrada
Ce1	Sensor de presión absoluta del colector	Señal de salida
Ba2	Sensor de temperatura del aire de admisión	Señal de entrada
Ca2	Sensor de temperatura del aire de admisión	Masa
Bd4	Sensor de temperatura del refrigerante del	Masa
	motor	
Be4	Sensor de temperatura del refrigerante del	Señal de entrada
	motor	

Nota. Designación y descripción de los pines de la ECU del Peugeot 206. Tomada de Autodata.

ECU Volkswagen Gol

Figura 46

Pin-out Volkswagen Gol

Nota. En la figura se establece el Pin-out de la unidad de control electrónico del Volkswagen Gol. Tomada de Autodata.

Tabla 18Distribución de pines Volkswagen Gol


Pin	Descripción
1	Masa principal
2	Sin uso
3	Negativo pulsante de la válvula de filtro de carbón activado
4	Sin uso
5	Masa de sensores
6	Sin uso
7	Sin uso
8	Voltaje de referencia 5V IAT/MAP
9	Voltaje de referencia 5V TPS
10	Inyector 3
11	Inyector 4
12	Inyector 2
13	Inyector 1
14	Salida de señal para el tacómetro
15	Sin uso
16	Voltaje de señal MAP
17	Voltaje de señal del sensor hall (0 o 5V) corte
18	Salida para el IAC
19	Salida para el IAC
20	Señal del relé del aire acondicionado
21	Salida para el IAC
22	Salida para el IAC
23	Alimentación positiva
24	Masa para el transformador de encendido
25	Negativo del resistor térmico sonda lambda
26	Negativo para el relé de la bomba
27	Señal del VSS

Pin	Descripción
29	Masa
30	Alimentación 12V sensor hall
31	Alimentación relé de la Bomba, Vss, amplificador de encendido
32	Apantallado (-) del sensor de detonación
34	Masa de la sonda lambda
35	Voltaje de señal de la sonda lambda
36	Apantallado (-) de la sonda lambda
37	Conexión con el inmovilizador
38	Voltaje de señal WTS
39	Voltaje de señal IAT
40	Voltaje de señal TPS
41	Positivo de la señal del aire acondicionado
42	Señal del sensor de golpeteo
43	Señal del sensor de golpeteo

Nota. Designación y descripción de los pines de la unidad de control electrónico del Volkswagen Gol.

ECU Volkswagen Polo

Figura 47 *Pin-out Volkswagen Polo*

Nota. En la figura se observa el Pin-out de la ECU del Volkswagen Polo. Tomada de Autodata.

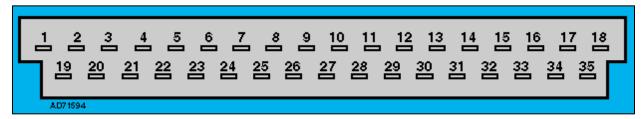
Se presenta la distribución de pines con la descripción de cada uno en la siguiente tabla:

Tabla 19Distribución de pines Volkswagen Polo

Pin	Descripción de circuito/componente	Señal
17	Aire acondicionado/módulo de control del motor del	
	ventilador del refrigerante del motor	
57	Amplificador del encendido	Señal de salida, contacto dado
57	Amplificador del encendido	Señal de salida, motor a ralentí
71	Amplificador del encendido	Señal de salida, contacto dado
71	Amplificador del encendido	Señal de salida, motor a ralentí
15	Batería	Señal de entrada, 11-14 V
23	Interruptor de posición del pedal de freno 1	Señal de entrada, 0 V
23	Interruptor de posición del pedal de freno 1	11-14 V
51	Interruptor de posición del pedal de freno 2	Señal de entrada, 0
51	Interruptor de posición del pedal de freno 2	11-14 V
27	Interruptor del encendido	Señal de entrada, contacto quitado
		0V. Contacto dado 11-14V
79	Inyector 1	Masa conmutada, ralentí
59	Inyector 2	Masa conmutada, ralentí
73	Inyector 3	Masa conmutada, ralentí
65	Inyector 4	Masa conmutada, ralentí
2	Masa	Contacto dado 0V
28	Masa	Contacto dado 0V
66	Motor de la mariposa	Señal de salida, contacto dado y
		motor a ralentí, 11-14V.
80	Motor de la mariposa	Señal de salida, contacto dado 11-
		14V durante 30 segundos, luego 3
26	Relé de la bomba de combustible	Masa conmutada, 0-1 V
		momentáneamente, después 11-
		14 V

Pin	Descripción de circuito/componente	Señal
21	Sensor calentado de oxígeno	Masa 0V
47	Sensor calentado de oxígeno	Señal de entrada
13	Sensor calentado de oxígeno - control del calentador	Masa conmutada
63	Sensor de detonación	Señal de entrada
77	Sensor de detonación	Señal de entrada
62	Sensor de posición del árbol de levas	Señal de salida 5V
54	Sensor de posición del árbol de levas	Masa 0V
60	Sensor de posición del árbol de levas	Señal de entrada, contacto dado 0
		u 11-14V
53	Sensor de posición del cigüeñal	Señal de entrada, contacto dado
		0V
62	Sensor de posición del cigüeñal	Señal de salida 5V
67	Sensor de posición del cigüeñal	Masa 0V
55	Sensor de posición del motor de la mariposa	Señal de salida 5V
61	Sensor de posición del motor de la mariposa	Masa 0V
68	Sensor de posición del motor de la mariposa	Señal de entrada. Pedal del
		acelerador suelto 0,6V, pisado 4,4V
75	Sensor de posición del motor de la mariposa	Señal de entrada. Pedal del
		acelerador suelto 04,5V, pisado
		0,7V.
6	Sensor de posición del motor de la mariposa	Señal de salida 5V
7	Sensor de posición del pedal del acelerador	Masa 0V
8	Sensor de posición del pedal del acelerador	Señal de salida 5V
19	Sensor de posición del pedal del acelerador	Masa 0V
33	Sensor de posición del pedal del acelerador	Señal de entrada, pedal acelerador
		soltado 0.8V, pisado 3.8V
45	Sensor de posición del pedal del acelerador	Señal de entrada, pedal acelerador
		soltado 0.4V, pisado 1.8V
54	Sensor de presión absoluta del colector	Masa 0V
62	Sensor de presión absoluta del colector	Señal de salida 5V

Pin	Descripción de circuito/componente	Señal
70	Sensor de presión absoluta del colector	Señal de entrada, contacto dado
		4.1V, motor ralentí 0.9V, motor en
		marcha 4.1V
54	Sensor de temperatura del aire de admisión	Masa 0V
56	Sensor de temperatura del aire de admisión	Señal de entrada 2.2V
54	Sensor de temperatura del refrigerante del motor	Masa 0V
74	Sensor de temperatura del refrigerante del motor	Señal de entrada a 20 °C 1.9V y a
		80 °C 0.5V
		80 C 0.5 V


Nota. Designación y descripción de los pines de la unidad de control electrónico del Peugeot 206. Tomada de Autodata.

ECU Peugeot 405

Figura 48

Pin-out Peugeot 405

Nota. En la figura se muestra el Pin-out de la unidad de control electrónico del Peugeot 405. Tomada de Autodata.

Tabla 20Distribución de pines Peugeot 405

Pin	Descripción de circuito/componente	Estado
8	Aire acondicionado	Motor en marcha - aire
		acondicionado encendido 11-14V
9	Aire acondicionado	Motor en marcha - compresor del
		aire acondicionado encendido11-14V
24	Aire acondicionado	Motor en marcha - compresor del
		aire acondicionado encendido11-14V
1	Bobina de encendido	Contacto dado masa conmutada 11-
		14V momentáneamente
1	Bobina de encendido	Motor al ralentí masa conmutada
19	Bobina de encendido	Contacto dado masa conmutada 11-
		14V momentáneamente
19	Bobina de encendido	Motor al ralentí masa conmutada
10	Conector de transmisión de datos	Contacto dado 11-14V
15	Conector de transmisión de datos	Contacto quitado señal de salida OV
15	Conector de transmisión de datos	Contacto dado señal de salida 11-14V
5	Conector de transmisión de datos - algunos	Terminal conectado - no hay datos
	modelos	de prueba disponibles
23	Interruptor de inercia de corte de combustible	Contacto dado masa conmutada
	- algunos modelos	
23	Interruptor de inercia de corte de combustible	Motor arrancando masa conmutada
	- algunos modelos	
23	Interruptor de inercia de corte de combustible	Motor al ralentí masa conmutada
	- algunos modelos	
18	Inyectores	Contacto dado masa conmutada
18	Inyectores	Motor al ralentí masa conmutada
34	Masa	Contacto dado 0V

Pin	Descripción de circuito/componente	Estado
19	Módulo de control del inmovilizador - algunos	Contacto dado 11-14V
	modelos	
15	Módulo de control del inmovilizador - algunos	Contacto dado 0V
	modelos	
15	Módulo de control del inmovilizador - algunos	Contacto quitado 11-14V
	modelos	
4	Módulo de relés	Contacto dado masa conmutada
4	Módulo de relés	Motor arrancando masa conmutada
4	Módulo de relés	Motor al ralentí masa conmutada
35	Módulo de relés	Contacto dado señal de entrada
35	Módulo de relés	Motor arrancando señal de entrada
35	Módulo de relés	Motor al ralentí señal de entrada 11-
		14V
23	Módulo de relés - algunos modelos	Contacto dado control de masa
23	Módulo de relés - algunos modelos	Motor arrancando control de masa
23	Módulo de relés - algunos modelos	Motor al ralentí control de masa
7	Ordenador de a bordo - algunos modelos	Terminal conectado -
26	Relé del interruptor del inhibidor del motor de	Terminal conectado - presente una
	arranque - cambio automático	señal digital aleatoria
12	Sensor calentado de oxígeno	Contacto dado masa 0V
29	Sensor calentado de oxígeno	Motor al ralentí - acelere
		brevemente señal de entrada
16	Sensor calentado de oxígeno - cable blindado	Contacto dado masa 0V
16	Sensor de detonación - algunos modelos	Contacto dado masa 0V
17	Sensor de detonación - algunos modelos	Contacto dado masa 0V
36	Sensor de detonación - algunos modelos	Motor al ralentí - acelere
		brevemente señal de entrada
34	Sensor de detonación - algunos modelos	Contacto dado masa 0V
14	Sensor de posición de la mariposa	Contacto dado señal de salida 5V
16	Sensor de posición de la mariposa	Contacto dado masa 0V

Pin	Descripción de circuito/componente	Estado
30	Sensor de posición de la mariposa	Contacto dado - mariposa cerrada
		señal de entrada 0.3 V
30	Sensor de posición de la mariposa	Contacto dado - mariposa abierta del
		todo señal de entrada 4.5V
11	Sensor de posición del cigüeñal	Motor al ralentí señal de entrada 3V
11	Sensor de posición del cigüeñal	3000 r.p.m. señal de entrada 8.5V
28	Sensor de posición del cigüeñal	Motor al ralentí señal de entrada 3V
28	Sensor de posición del cigüeñal	3000 r.p.m. señal de entrada 8.5V
17	Sensor de posición del cigüeñal - cable	Contacto dado masa 0V
	blindado	
14	Sensor de presión absoluta del colector	Contacto dado señal de salida 5V
16	Sensor de presión absoluta del colector	Contacto dado masa 0V
32	Sensor de presión absoluta del colector	Contacto dado señal de entrada 4.6V
32	Sensor de presión absoluta del colector	Motor al ralentí señal de entrada
		1.5V
32	Sensor de presión absoluta del colector	Motor al ralentí - acelere
		brevemente señal de entrada 4.5V
16	Sensor de temperatura del aire de admisión	Contacto dado masa 0V
31	Sensor de temperatura del aire de admisión	Señal de entrada 13 °C 3V
13	Sensor de temperatura del refrigerante del	Contacto dado - temp. del
	motor	refrigerante 13°C 3V
13	Sensor de temperatura del refrigerante del	Contacto dado - temp. del
	motor	refrigerante 80°C 0.5V
17	Sensor de temperatura del refrigerante del	Contacto dado masa 0V
	motor	
34	Sensor de temperatura del refrigerante del	Contacto dado masa 0V
	motor	
37	Sensor de velocidad del vehículo	Vehículo en movimiento señal de
		entrada 1.5V u 11-14V
5	Tacómetro - algunos modelos	Motor al ralentí señal de salida 30 Hz
5	Tacómetro - algunos modelos	3000 r.p.m. señal de salida 100 Hz

Pin	Descripción de circuito/componente	Estado
6	Testigo de averías	Contacto dado - testigo de averías
		encendido masa conmutada 0-1V
6	Testigo de averías	Motor en marcha - testigo de averías
		apagado
2 (20)	Válvula de control de aire de ralentí	Motor al ralentí señal de salida
3 (21)	Válvula de control de aire de ralentí	Motor al ralentí señal de salida
2	Válvula de control de aire de ralentí	Contacto dado señal de salida 1V
3	Válvula de control de aire de ralentí	Contacto dado señal de salida 11-14V
20 (2)	Válvula de control de aire de ralentí	Motor al ralentí señal de salida
21 (3)	Válvula de control de aire de ralentí	Motor al ralentí señal de salida
20	Válvula de control de aire de ralentí	Contacto dado señal de salida 11-14V
21	Válvula de control de aire de ralentí	Contacto dado señal de salida 1V
22	Válvula de control de emisiones por	Contacto dado señal de salida OV
	evaporación	

Nota. Designación y descripción de los pines de la unidad de control electrónico del Peugeot 206. Tomada de Autodata.

Protocolo de pruebas de ECU europea

El protocolo de pruebas que se presenta a continuación establece el procedimiento a seguir, se detalla cómo se realiza la conexión, identificando los pines donde entra y sale el voltaje de referencia o alimentación, resaltar si es sensor o actuador.

Se realiza el protocolo de pruebas de dos ECUs de procedencia europea en la marca Volkswagen Gol y Peugeot 206, cada uno con su procedimiento respectivo.

ECU Volkswagen Gol

Tabla 21Protocolo de pruebas Volkswagen Gol

ORD.	Procedimiento	Pin ECU
1	Verificación de voltaje de alimentación de la ECU.	Pin 1 masa principal
		Pin 5 masa de sensores
		Pin 23 alimentación positiva
2	Verificación alimentación sensor hall (12 V)	Pin 30 alimentación
		Pin 5 masa de sensores
3	Verificación voltaje de señal sensor hall	Pin 17 voltaje de señal (0 o 5V)
4	Verificación de voltaje de referencia sensor	Pin 8 voltaje de referencia 5V
	IAT/MAP	
5	Verificación de voltaje de referencia sensor TPS	Pin 9 voltaje de referencia 5V
6	Verificación de voltaje de alimentación para	Pin 18 salida para IAC
	actuador IAC	Pin 19 salida para IAC
		Pin 21 salida para IAC
		Pin 22 salida para IAC
7	Verificación de control de masa para relé de	Pin 26 negativo para relé de
	bomba	bomba
8	Verificación de voltaje de masa del sensor	Pin 34 masa de la sonda lambda
	lambda	
9	Verificación de voltaje de referencia sensor WTS	Pin 38 voltaje de referencia 5V
10	Verificación pulso de inyección	Inyector 1 Pin 13

ORD. Procedimiento	Pin ECU
	Inyector 2 Pin 12
	Inyector 3 Pin 10
	Inyector 4 Pin 11

Nota. Procedimiento para realizar prueba en la ECU del Volkswagen Gol y numero de pines a conectar.

ECU Peugeot 206

Tabla 22Protocolo de pruebas Peugeot 206

ORD.	Procedimiento	Pin ECU
1	Verificación de voltaje de alimentación de la ECU.	Pin Am4 masa principal
		Pin Ab4 alimentación positiva
2	Verificación alimentación de relés	Pin Cf3 alimentación positiva
		Pin Bf2 control de masa
3	Verificación voltaje de señal sensor CKP	Pin Cb1 voltaje de señal (0 o 5V)
4	Verificación voltaje de señal sensor VSS	Pin Ag2 voltaje de señal (0 o 5V)
5	Verificación voltaje de señal sensor WTS	Pin Be4 voltaje de señal (0 o 5V)
6	Verificación voltaje de señal sensor MAP	Pin Cc1 voltaje de señal (0 o 5V)
7	Verificación voltaje de señal sensor TPS	Pin Bb4 voltaje de señal (0 o 5V)
8	Verificación de voltaje de referencia sensor	Pin Ce1 voltaje de referencia 5V
	IAT/MAP	
9	Verificación de voltaje de referencia sensor TPS	Pin Cc3 voltaje de referencia 5V

ORD.	Procedimiento	Pin ECU
10	Verificación de voltaje de alimentación para	Pin Cd1 salida para IAC
	actuador IAC	Pin Cd2 salida para IAC
		Pin Cd3 salida para IAC
		Pin Ce3 salida para IAC
11	Verificación de control de masa para relé de	Pin Al4 negativo para relé de
	bomba	bomba
12	Verificación de voltaje de masa del sensor	Pin Bd3 masa de la sonda lambda
	lambda	
13	Verificación de control de masa del sensor	Pin Bd2 voltaje entre masas
	lambda	
14	Verificación de masa sensor WTS	Pin Bd4 voltaje de masa 0V
15	Verificación pulso de inyección	Inyector 1 Pin Ch2
		Inyector 2 Pin Cg3
		Inyector 3 Pin Cg2
		Inyector 4 Pin Ch3
16	Verificación pulso de bobina	Pin Bg3
		Pin Bh3

Nota. Procedimiento para realizar prueba en la ECU del Peugeot 206 y numero de pines a conectar.

Señales de entrada

Las señales de entrada son voltajes que envían los sensores a la ECU esto va a variar dependiendo el tipo de sensor, este voltaje es llamado voltaje de señal dependiendo el elemento eléctrico que posea el sensor este puede estar entre 0.5 y 4.5 V. También estas señales de entrada van a

tener una gráfica que se puede observar con el uso del osciloscopio. Además, se tiene como señal de entra a la ECU el voltaje que alimenta a la ECU, esta alimentación puede estar entre 5 V o 12 v.

ECU Volkswagen Gol

Tabla 23Señales de entrada Volkswagen Gol

Procedimiento	Pines ECU
Verificación voltaje de señal sensor hall.	Pin 17 voltaje de señal (0 o 5V)
Verificación de voltaje de alimentación de la ECU.	Pin 1 masa principal
	Pin 5 masa de sensores
	Pin 23 alimentación positiva 12V
Verificación voltaje de señal sensor MAP	Pin 14 voltaje de señal
Verificación voltaje de señal del VSS	Pin 27 voltaje de señal
Verificación voltaje de señal de la sonda lambda	Pin 35 voltaje de señal
Verificación voltaje de señal sensor WTS	Pin 38 voltaje de señal
Verificación voltaje de señal sensor IAT	Pin 39 voltaje de señal
Verificación voltaje de señal sensor TPS	Pin 40 voltaje de señal
Verificación voltaje de señal sensor de golpeteo	Pin 42 y pin 43 voltaje de señal
	Verificación de voltaje de alimentación de la ECU. Verificación voltaje de señal sensor MAP Verificación voltaje de señal del VSS Verificación voltaje de señal de la sonda lambda Verificación voltaje de señal sensor WTS Verificación voltaje de señal sensor IAT Verificación voltaje de señal sensor TPS

Nota. Procedimiento para verificar señales de entrada en la ECU del Volkswagen Gol y numero de pines a conectar.

ECU Peugeot 206

Tabla 24Protocolo de pruebas Peugeot 206

ORD.	Procedimiento	Pin ECU
1	Verificación de voltaje de alimentación de la ECU.	Pin Am4 masa principal
		Pin Ab4 alimentación positiva
2	Verificación alimentación de relés	Pin Cf3 alimentación positiva
		Pin Bf2 control de masa
3	Verificación voltaje de señal sensor CKP	Pin Cb1 voltaje de señal (0 o 5V)
4	Verificación voltaje de señal sensor VSS	Pin Ag2 voltaje de señal (0 o 5V)
5	Verificación voltaje de señal sensor WTS	Pin Be4 voltaje de señal (0 o 5V)
6	Verificación voltaje de señal sensor MAP	Pin Cc1 voltaje de señal (0 o 5V)
7	Verificación voltaje de señal sensor TPS	Pin Bb4 voltaje de señal (0 o 5V)

Nota. Procedimiento para realizar prueba de señales de entrada en la ECU del Peugeot 206 y numero de pines a conectar.

Señales de salida y activación de actuadores.

Las señales de salida y de alimentación de actuadores, son voltajes de salida que van a alimentar a los actuadores ya sea los inyectores, la IAC, bobinas de encendido, el relé de la bomba de combustible y otros actuadores que puede presentar un vehículo, la ECU envía el voltaje para que accione. Este voltaje puede ser de 5V o 12V.

El procedimiento de medición de los voltajes de salida y activación de los actuadores presentes en las ECUs se detallan a continuación.

ECU Volkswagen Gol

Tabla 25Señales de salida y activación de actuadores Volkswagen Gol

Ord. Procedimientos Medición con multímetro 1 Verificación de voltaje de referencia sensor IAT/MAP Pin 8 señal de salida 5V 2 Verificación de voltaje de referencia sensor TPS Pin 9 señal de salida 5V 3 Con el multímetro no se logra Verificación señal de activación de inyectores Inyector 1 Pin 13 Masa conmutada medir las señales de activación de Inyector 2 Pin 12 Masa conmutada los inyectores más adelante se Inyector 3 Pin 10 Masa conmutada muestra una gráfica en Inyector 4 Pin 11 Masa conmutada osciloscopio Verificación del voltaje de alimentación válvula IAC Pin 18 alimentación 12V Pin 19 masa 0V

Pin 21 alimentación 12V

Pin 22 masa 0V

Ord. Procedimientos Medición con multímetro Verificación control de masa relé de bomba de combustible Pin 26 masa conmutada 6 Verificación control de masa del resistor térmico sonda lambda Pin 25 masa 7 Verificación alimentación sensor hall (12 V) Pin 30 alimentación Pin 5 masa de sensores 8 Verificación de voltaje de referencia sensor WTS Pin 38 señal de salida 5V

Nota. Procedimiento para verificar señales de salida y alimentación en la ECU del Volkswagen Gol y numero de pines a conectar.

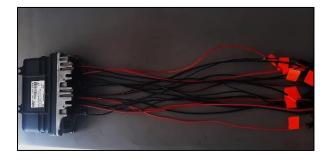
ECU Peugeot 206

Tabla 26Señales de salida Peugeot 206

ORD.	Procedimiento	Medición con el Multímetro
1	Verificación de voltaje de referencia sensor	
	IAT/MAP	21.17 21.11 Gaza Gray Gaza Gaza
	Pin Ce1 voltaje de referencia 5V	
2	Verificación de voltaje de referencia sensor TPS	BO NO
	Pin Cc3 voltaje de referencia 5V	The same of the sa
3	Verificación de voltaje de alimentación para	
	actuador IAC	
	Pin Cd1 salida para IAC	11.0 130 130 130 000 000
	Pin Cd2 salida para IAC	
	Pin Cd3 salida para IAC	
	Pin Ce3 salida para IAC	
4	Verificación de control de masa para relé de	
	bomba	
	Pin Al4 negativo para relé de bomba	

ORD. Procedimiento Medición con el Multímetro 5 Verificación de voltaje de masa del sensor lambda Pin Bd3 masa de la sonda lambda Verificación de control de masa del sensor lambda Pin Bd2 voltaje entre masas 7 Verificación pulso de inyección Inyector 1 Pin Ch2 Inyector 2 Pin Cg3 Inyector 3 Pin Cg2 Inyector 4 Pin Ch3 8 Verificación pulso de bobina

Nota. Procedimiento para realizar prueba de señales de salida en la ECU del Peugeot 206 y numero de pines a conectar.


Pin Bg3

Pin Bh3

Pruebas de la ECU europea.

Para la realización de pruebas a una ECU europea es necesario contar con la distribución de pines y el esquema eléctrico. Con estos instrumentos se procede a la conexión con ayuda de cables, indispensables para realizar a la conexión al banco de pruebas.

Figura 49Conexión de cables ECU Volkswagen gol

Nota. En la figura se muestra la conexión de cables en los pines de la ECU, los terminales deben ser los adecuados para los pines y para el banco de prueba.

La conexión de estos cables y la señalización de estos permite identificar los pines para poder realizar las pruebas en el banco MST-9000. Lo primero que se debe realizar es alimentar la ECU, se envía un voltaje de 12 V y un cable a masa, procedimiento necesario para energizar la ECU y proceder con las pruebas de cada componente.

Figura 50Conexión para prueba de ECU Volkswagen gol

Nota. En la figura se muestra la conexión de la ECU Volkswagen gol en el banco de pruebas MST-9000.

Con la alimentación que proporciona el banco de pruebas MST-9000, se verifica con un multímetro voltajes que deben estar presentes y con el uso de un osciloscopio se puede a ver las gráficas de las señales.

Figura 51

Uso de multímetro y osciloscopio

Nota. En la figura se muestra el uso de multímetro y osciloscopio para verificación de voltajes y señales que debe emitir una ECU.

Pruebas con osciloscopio de baja tensión

Con el uso del osciloscopio se continua con las mediciones de voltaje de señal, referencia y alimentación de los diferentes sensores y actuadores respectivamente. Se obtuvieron las gráficas presentadas en la tabla siguiente:

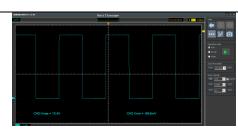

ECU Volkswagen Gol

Tabla 27Señales con osciloscopio Volkswagen Gol

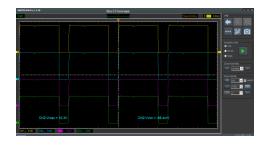
Ord	Procedimiento y pines ECU	Grafico	
1	Voltaje de señal sensor Hall		
	Pin 17 voltaje de señal		
	Pin 5 masa de sensores		

Ord **Procedimiento y pines ECU**

Grafico

2 Verificación de voltaje de alimentación ECU. Pin 23 alimentación positiva Pin 1 masa principal

Pin 5 masa de sensores


3 Señal de activación de inyectores

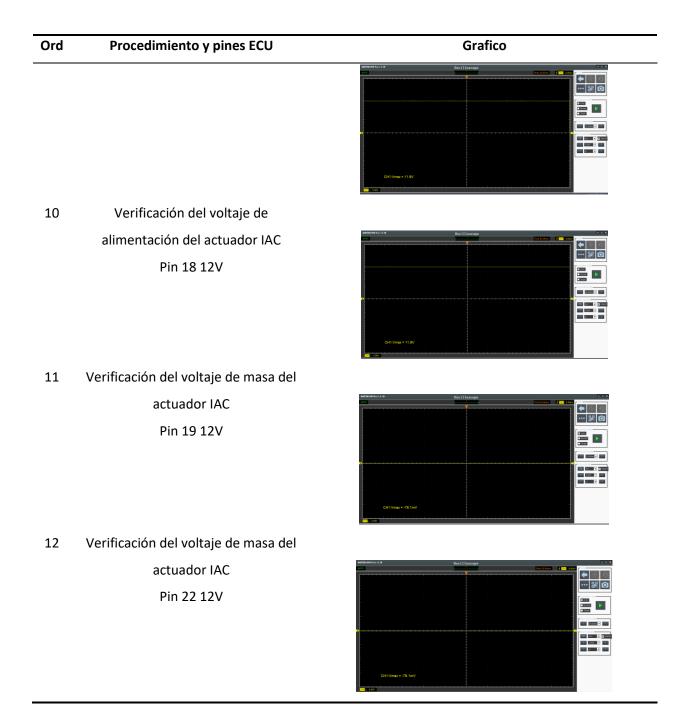
Inyector 1 Pin 13

Inyector 2 Pin 12

Inyector 3 Pin 10

Inyector 4 Pin 11

Señal de activación de inyectores 4 Inyector 1


Pin 13

5 Verificación voltaje de referencia sensor IAT/MAP Pin 8 voltaje de referencia

Procedimiento y pines ECU Ord Grafico Verificación voltaje de referencia 6 sensor TPS Pin 9 voltaje de referencia 7 Verificación voltaje de referencia sensor WTS Pin 38 Voltaje de referencia 7 Verificación voltaje de control de masa del relé de la bomba de combustible Pin 26 Control de masa Verificación del voltaje de control de 8 masa del sensor lambda Pin 25 control de masa 9 Verificación del voltaje de alimentación del actuador IAC Pin 21 12V

Nota. Procedimiento para verificar señales de salida y alimentación en la ECU del Volkswagen Gol mediante el uso del osciloscopio.

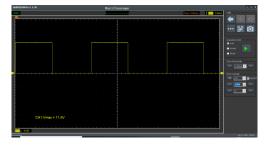
ECU Peugeot 206

Tabla 28Señales con osciloscopio Peugeot 206

iales con osciloscopio Peugeot 206 Ord Procedimiento y pines ECU

1 Verificación de voltaje de alimentación

ECU.


Pin Ab4 alimentación positiva

Pin Cf3 Modulo de Reles

Pin Bg2 alimentación positiva

Critivaga 11 SV

Voltaje de señal sensor Hall
 Pin Cb1 voltaje de señal
 Pin Cb2 voltaje de señal

Grafico

Señal de activación de inyectores

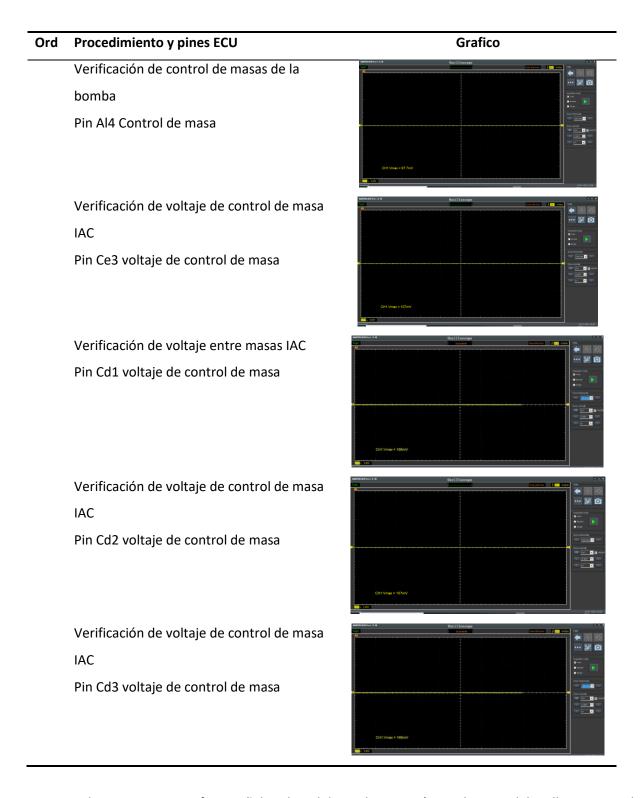
Inyector 1 Pin Ch2

Inyector 2 Pin Cg3

Inyector 3 Pin Cg2

Inyector 4 Pin Ch3

4 Verificación voltaje de referencia sensor IAT/MAP


Pin Ce1 voltaje de referencia

Procedimiento y pines ECU Ord Grafico Verificación voltaje de señal sensor AIT Pin Ba2 voltaje de señal Verificación voltaje entre masas sensor IAT Pin Ca2 voltaje entre masas Verificación voltaje de señal sensor MAP Pin Cc1 voltaje de señal Verificación voltaje entre masas sensor MAP Pin Ca2 voltaje entre masas Verificación voltaje de referencia sensor TPS Pin Cc3 voltaje de referencia

Ord Procedimiento y pines ECU Grafico Verificación voltaje de señal sensor TPS Pin Cb4 voltaje de señal Verificación voltaje de señal WTS Pin Be4 voltaje de señal Verificación voltaje entre masas sensor WTS Pin Bd4 voltaje entre masas Verificación voltaje de señal VSS Pin Ag2 voltaje de señal Verificación voltaje entre masas sensor VSS Pin Bh4 voltaje entre masas

Ord Procedimiento y pines ECU Grafico Verificación de voltaje de señal sensor de Oxigeno Pin Be3 Verificación voltaje masa sensor de oxigeno Pin Bd3 Verificación voltaje entre masa sensor oxigeno Pin Bd2 voltaje entre masa Verificación alimentación Bobina Pin Bf3 voltaje de alimentación Señal de activación de bobina DIS Pin Bg3 Cilindro 2 y 3 Señal de activación de bobina DIS Pin Bh3 Cilindro 1 y 4

Nota. Procedimiento para verificar señales de salida y alimentación en la ECU del Volkswagen Gol mediante el uso del osciloscopio.

Reporte de estado de los circuitos de ECU

Para expedir un reporte de los elementos eléctricos y electrónicos de la ECU, se determina si esta tiene algún daño en alguno de sus elementos, con las mediciones anteriores, se ha realizado un check list de los voltajes que debe salir de la ECU para alimentar cada uno de los sensores y actuadores, para su funcionamiento correcto. Así se establece que algún elemento dentro de la ECU no trabaja de manera correcta por ende no va a enviar una señal de voltaje.

ECU Volkswagen Gol

Tabla 29Comprobación de señales

Procedimiento	Buen	Mal	Observación
	estado	estado	
Pin 30 alimentación sensor hall (12 V)	✓	-	-
Pin 8 voltaje de referencia sensor IAT/MAP	✓	-	-
(5V)			
Pin 9 voltaje de referencia sensor TPS	✓	-	-
Pin 21 salida alimentación para IAC	✓	-	-
Pin 18 salida alimentación para IAC	✓	-	-
Pin 22 salida masa para IAC	✓	-	-
Pin 19 salida masa para IAC	✓	-	-
Pin 26 control de masa para relé de bomba	✓	-	-
Pin 34 voltaje de masa del sensor lambda	✓	-	-
Pin 38 voltaje de referencia sensor WTS	✓	-	-
Inyector 2 Pin 12 pulso de inyección	✓	-	-
Inyector 4 Pin 11 pulso de inyección	✓	-	-
Inyector 3 Pin 10 pulso de inyección	✓	-	-
Inyector 1 Pin 13 pulso de inyección	✓	-	-

Nota. Lista de estado de los voltajes que debe emitir la ECU se determina el número de pin y el voltaje.

ECU Peugeot 206

Tabla 30Comprobación de señales

Procedimiento	Buen	Mal	Observación
	estado	estado	
Pin Ce1 voltaje de referencia sensor	✓	-	-
IAT/MAP (5V)			
Pin Cc3 voltaje de referencia sensor TPS (5V)	\checkmark	-	-
Pin Cd1 salida para IAC	\checkmark	-	-
Pin Cd2 salida para IAC	\checkmark	-	-
Pin Cd3 salida para IAC	\checkmark	-	-
Pin Ce3 salida para IAC	\checkmark	-	-
Pin Al4 control de masa para relé de bomba	\checkmark	-	-
Pin Bd2 voltaje control de masa sensor	\checkmark	-	-
lambda			
Pin 38 voltaje de referencia sensor WTS	\checkmark	-	-
Inyector 1 Pin Ch2 pulso de inyección		×	Circuito integrado Driver no envía
			el pulso para que el inyector se
			active
Inyector 2 Pin Cg3 pulso de inyección	\checkmark	-	-
Inyector 3 Pin Cg2 pulso de inyección	\checkmark	-	-
Inyector 4 Pin Ch3 pulso de inyección		×	Circuito integrado Driver no envía
			el pulso para que el inyector se
			active
Pin Bg3 pulso de bobina	\checkmark	-	-
Pin Bh3 pulso de bobina	✓	-	-

Nota. Lista de estado de los voltajes que debe emitir la ECU se especifica el número de pin y el voltaje.

Reporte de componentes de reparación y reemplazo.

Después de identificar cuáles son las señales erróneas que emite la ECU se continua a revisar los componentes que controla este voltaje.

Tabla 31Reportes de componentes de reparación y reemplazo de la ECU del Peugeot 206 averiada

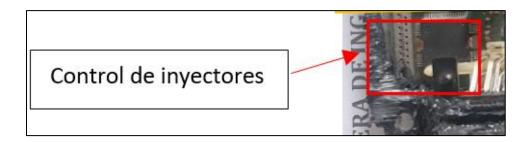
Componente	Imagen	Observación
Circuito integrado driver		El circuito integrado controla el
30344 Bosch		pulso de inyección, este no
	+ •	envía la señal correcta para dos
		inyectores por este motivo
		estos no se activan.
		En la prueba se observa que los
		pulsos de inyección enviados
		por este driver hacen funcionar
		dos inyectores y los otros dos
		no se activan.

Nota. Identificación del componente y determinación del error.

Informe de estado y reparación.

ECU Volkswagen Gol

No se encontró fallas en esta ECU ya que al momento de hacer las conexiones y colocar en el banco de pruebas se verificó voltajes de masas, de referencia y señal en los sensores, además de voltajes de alimentación y control de masas en los actuadores, mediante el uso de osciloscopio y

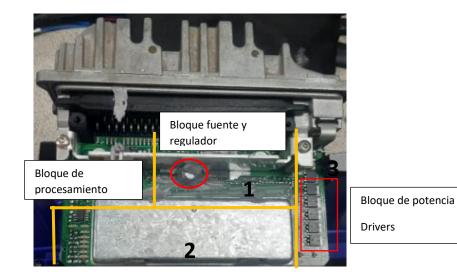

multímetro, todos los resultados obtenidos de estas pruebas concuerdan con los valores referenciales de la ECU.

ECU Peugeot 206

En esta ECU se detectó algunas fallas ya que al realizar las conexiones, verificaciones con osciloscopio, multímetro y el respectivo banqueo de la misma, se encontró fallas en el bloque de Drivers, específicamente en el control de inyectores 30344, el banco simula el funcionamiento de los mismos de modo que se encienden las luces en su respectivo posicionamiento y suena un buzzer solidario al parpadeo de las luces, este control lo realiza mediante un sistema secuencial es decir que los inyectores se activan o inyectan combustible a cada cilindro por separado, al poner en funcionamiento la ECU no se encienden los inyectores 1 y 4.

Figura 52

Control de inyección integrado 30344



Nota. En la figura se identifica el sector de la falla en la ECU Peugeot 206.

Protocolo de reparación.

Antes de realizar cualquier acción de reparación, debe contar con un conocimiento previo sobre lo que contiene interiormente una ECU, bloques o sectores que la componen, donde se puede encontrar la falla. Por eso es necesario realizar la identificación de los bloques y especificar las funciones que realizan cada uno.

Figura 53 *Bloques de una ECU*

Nota. En la figura se determina los presentes en una ECU Volkswagen Gol.

Bloque o sector de entrada

Aquí se encuentran receptores de las diferentes señales que ingresan a la ECU. Se encuentra filtros, amplificadores, conversores análogos a digital, comparadores, etc. Estos reciben señales eléctricas de los distintos sensores del vehículo.

La falla se ubicada dentro de este sector cuando:

- No hay señal de (4,5 a 5) V en algún sensor y no hay pulso de 12 V en un actuador
- Existe un voltaje mayor al necesario
- No hay comunicación con el bloque de procesamiento

Bloque de procesamiento

Existe fallas en el este sector cuando:

Si el vehículo no enciende existe una falla en el microprocesador.

- No se puede hacer conexión con el scanner automotriz.
- No da pulsos de entradas y salidas para sensores y actuadores respectivamente.

Bloque de salida

Existen circuitos que se encuentran entre las salidas del microprocesador y los distintos elementos que van a ser actuados. En este bloque aparecen amplificadores, circuitos de potencia con transistores, drivers, etc. Estos actuaran sobre bobinas, inyectores relays, etc.

Existen fallas en este sector cuando:

- Existe voltaje de (4.5 a5) V en los sensores
- No envía señal de 12 voltios a los actuadores, relés o bobinas de encendido, inyectores.

Tipos de fallas en la ECU

Punto de soldadura agrietados o con corrosión

Aunque las grietas en los puntos de soldadura no sean tan significativas es necesario repararse, estos son los generan las fallas, esto de igual forma sucede cuanto estos puntos presentan corrosión. Se puede saber que existe este fallo cuando:

- En ocasiones el vehículo enciende normalmente, y en otras ocasiones no lo hace
- Se presenta una falla del vehículo y luego esta se quita por sí misma.

La reparación correcta para este tipo de anomalía va a implicar el calentamiento de la soldadura agrietada y se debe retirar la soldadura vieja y colocar nuevamente la soldadura nueva.

Pista quemada

Este problema se soluciona haciendo puentes externos, se suelda un hilo fino sobre la pista quemada.

Transistor dañado

Para realizar el chequeo se debe proceder de la siguiente forma: base-emisor, base colector. Para verificar el transistor que este dañado se mide los valores de cada transistor y que arroje una lectura diferente será el defectuoso.

Medición con multímetro

Punta positiva en la base y punta negativa en el emisor la resistencia de subir, seguidamente la punta positiva en la base y la negativa en el colector también de subir. Se invierte la posición de las agujas negativa en base y positiva en el emisor la resistencia no debe subir, se debe mantener la punta negra en la base y colocar la roja en el colector sucede lo mismo. Esto se hace en un transistor NPN.

Fallas de condensadores

Estos pueden perder su capacidad y estar dañados físicamente. Si la ECU tiene más de 7 años de funcionamiento desconfié de los condensadores electrolíticos, si existe una pista quemada se debe proceder todos los condensadores electrolíticos. Al momento de sacarlo se debe mirar la polaridad para poder colocarlo de la misma manera.

Los condensadores dañados físicamente se reconocen de manera sencilla, están inflados en la parte superior.

Falla de microprocesador

Si la ECU logra comunicarse quiere decir que el microprocesador está funcionando, sino se logra comunicar entonces esta dañado.

Capítulo V

Marco administrativo

Para la realización del presente proyecto de investigación de forma organizada y detallada, siendo el proyecto factible, se detalla a continuación el análisis y optimización de los recursos humanos, materiales y tecnológicos.

Recursos

Se especifica los recursos necesarios los cuales se dividen de la siguiente manera: humanos, tecnológicos, materiales, de apoyo, recursos especificados a continuación.

Recursos humanos

El recurso humano que va a intervenir en la ejecución de la investigación se detalla a continuación:

Tabla 32Recursos humanos

Ord.	Descripción	Cantidad	Función
1	Ichina Mopocita Kevin	1	Investigador
	Alexander		
2	Claudio Medina Italo	1	Investigador
	Lenin		
3	Ing. Washington	1	Colaborador científico
	German Erazo Laverde		

Recursos tecnológicos

Tabla 33 *Recursos tecnológicos*

Ord.	Detalle	Cantidad	Costo total
1	Software Autodata	1	\$ 17.50
2	Software Alldata	1	\$ 50.00
4	Software Mitchell Pro	1	\$ 45.00
	Demand 5		
5	Horas de internet	320	\$ 40.00
6	Computadora personal	2	\$ 100.00
	TOTAL		\$ 252.50

Recursos materiales

Tabla 34 *Recursos materiales*

Detalle	Cantidad	Costo
MST-9000+	1	\$ 197.50
Estación de soldadura Baku 702L	1	\$ 15.00
Caja de herramientas de precisión	1	\$ 4.50
ECU Peugeot 206	1	\$ 60.00
ECU Volkswagen Gol	1	-
ECU Volkswagen Polo	1	-
Soporte para placas	1	\$ 3.75
Osciloscopio Hantek	1	\$ 15.00
Multímetro Automotriz Trisco DA-830	1	\$ 10.00
Varios (cables, terminales, jacks, etc.)		\$ 20.00
	TOTAL	\$ 325.75

Recursos de apoyo

Tabla 35 *Recursos de apoyo*

Detalle	Cantidad	Costo
Curso de reparación de ECUs	1	\$ 40.00
	TOTAL	\$ 40.00

Análisis de costos del proyecto de investigación

El análisis de costos del proyecto de investigación se presenta los costos empleados en los recursos tecnológicos. Materiales y de apoyo, estos que sirvieron para el desarrollo de este. Equipos proporcionados por la universidad fueron obviados, se procede a detallar los costos totales:

Tabla 36Análisis de costos del proyecto

Detalle	Cantidad	Costo
Recursos tecnológicos	1	\$ 252.50
Recursos materiales	1	\$ 325.75
Recursos de apoyo	1	\$ 40
Movilización	1	\$ 100
	TOTAL	\$ 718.25

Análisis costo – beneficio

Es necesario realizar el análisis costo-beneficio del presente Trabajo de integración curricular "Análisis de constitución y procesos de reparación de ECUS automotrices de procedencia europea" este tema en la actualidad es uno de los asuntos de gran importancia dentro del campo automotriz debido a

que a mayoría de vehículos cuentan con una ECU que controla todo el sistema eléctrico y electrónico del vehículo y es necesario aprender un protocolo de reparación.

Conclusiones

Se llevó a cabo un análisis exhaustivo de la información disponible en distintas fuentes bibliográficas, sitios web y libros de investigación, con el fin de comprender en profundidad la estructura y funcionamiento de las ECUs automotrices de procedencia europea. Se destacaron los aspectos relevantes, incluyendo la constitución, la identificación de bloques y la función de cada uno, así como los componentes eléctricos y electrónicos que conforman gran parte de la ECU.

Se identificaron y evaluaron los recursos necesarios para llevar a cabo la investigación en cuestión, incluyendo un banco de pruebas MST-9000+ un generador de señales de sensores y actuadores para simular la función de una ECU. Se utilizó un multímetro y un osciloscopio para verificar las señales de sensores y actuadores.

Recopilación e interpretación de la información técnica útil para la verificación, con softwares que contienen datos técnicos de las distintas marcas de vehículos, se resaltó los diagramas eléctricos y distribución de las ECUs automotrices de procedencia europea usadas en el proceso de conexión y posterior verificación.

Se implementó un protocolo de verificación y diagnóstico para las ECUs de procedencia europea, que incluye la conexión adecuada, identificación de pines, medición de voltajes de señal, referencia y alimentación en sensores y actuadores. Con esta información, se pudo determinar con precisión los daños en los componentes internos de la ECU y proceder a su reparación.

Se establece que si se conecta la alimentación y la masa, la ECU se energiza por ende los pines que correspondan a señales de referencia de sensores o pines de alimentación de actuadores ya se puede medir los voltajes presentes en estos pines.

En conclusión, la ECU es un sistema complejo que se compone de varios bloques funcionales que trabajan juntos para controlar el funcionamiento del motor y otros sistemas críticos en un

automóvil. Los bloques incluyen el procesador central, los módulos de entrada y salida, la memoria de almacenamiento, el sistema de comunicación y los sistemas de diagnóstico. Estos bloques trabajan juntos para recopilar información, analizarla y utilizarla para controlar el motor y otros sistemas. La integración de estos bloques permite un funcionamiento eficiente y preciso de la ECU, lo que es esencial para garantizar el rendimiento y la seguridad del vehículo.

Recomendaciones

Para realizar un trabajo investigativo exitoso es fundamental recopilar información de fuentes confiables, de manera cuidadosa y precisa. La importancia de esto radica en que la incorporación de información errónea o desactualizada puede generar graves consecuencias en el resultado final del trabajo, desviándolo del objetivo original o generando resultados poco precisos.

Es importante tener una comprensión clara y precisa de los esquemas y diagramas de la ECU, ya que conectar en un terminal equivocado puede resultar en un cortocircuito que perjudique el correcto funcionamiento de la ECU y, en el peor de los casos, causar su daño irreparable.

Se recomienda identificar cuidadosamente los pines de la ECU y marcarlos antes de realizar la conexión en el banco de pruebas, con el fin de evitar daños o imprevistos. Esto garantizará una conexión segura y precisa, y asegurará el buen funcionamiento de la ECU y correcta obtención de señales.

Siguiendo un orden establecido en el proceso de banqueo de la ECU, se puede aumentar la eficiencia y la precisión en este trabajo. Es importante tener una secuencia clara de pasos a seguir para evitar confusiones y errores comunes al conectar los terminales de la ECU. Al establecer un método organizado y efectivo, se puede mejorar la productividad y reducir los riesgos de equivocaciones.

Es importante prestar atención a los rangos de voltaje esperados en los sensores y actuadores durante la medición, ya que cualquier desviación fuera de estos límites puede indicar un fallo en el componente que se está evaluando. Es crucial mantener un control preciso de los valores de voltaje para identificar de manera oportuna cualquier problema y prevenir daños adicionales en el sistema.

Bibliografía

- Activo, F. (26 de Agosto de 2016). *Foro Activo*. Obtenido de Foro Activo:

 https://todosobreecu.activo.mx/t2-tipos-de-memorias-posibles-en-una-ecu
- AEADE ASOCIACION DE EMPRESAS AUTOMOTRICES DEL ECUADOR. (2021). aeade.net. Recuperado el 27 de Diciembre de 2022, de aeade.net: https://www.aeade.net/wp-content/uploads/2022/03/Anuario-Aeade-2021.pdf
- Añazco, R. (12 de Julio de 2021). *Prezi*. Obtenido de Prezi: https://prezi.com/p/juamlytm9ldk/partes-de-una-ecu/
- Arciniega, F. R., & Fueltan, J. A. (14 de Octubre de 2020). *Repositorio Digital Universidad Técnica del Norte*. Recuperado el 15 de Diciembre de 2022, de Repositorio Digital Universidad Técnica del Norte: http://repositorio.utn.edu.ec/handle/123456789/10644
- AUTO AVANCE. (24 de Agosto de 2013). *Avance Auto*. Recuperado el 23 de Diciembre de 2022, de Avance Auto: https://www.autoavance.co/blog-tecnico-automotriz/167-procesamiento-dedatos-controladores-y-memorias-computadoras-automotrices/
- Automotriz, I. (1 de Mayo de 2020). *Ingenieria Automotriz*. Obtenido de Ingenieria Automotriz:

 https://www.ingenieriaymecanicaautomotriz.com/que-es-una-memoria-eeprom-y-comofunciona/
- Avance, A. (8 de Enero de 2018). *AUTO AVANCE*. Obtenido de AUTO AVANCE:

 https://www.autoavance.co/blog-tecnico-automotriz/ecu-automotriz-funcionamiento/

- Betobooster. (9 de Julio de 2015). *Encendido electronico.com*. Recuperado el 13 de Diciembre de 2022, de Encendido electronico.com: https://www.encendidoelectronico.com/senales-electronicas-motor/senales-electronicas-del-motor-parte-1/
- Cajisaca, M., & Pinos, F. (2016). *Diseño y construcción de un banco comprobador de ECUS de sistemas de inyección de gasolina usando una tarjeta adquisición Arduino Mega*. Recuperado el 16 de Diciembre de 2022, de https://dspace.uazuay.edu.ec/bitstream/datos/5741/1/12061.pdf
- Carrión, W., & Ramírez, W. (2019). *DSpace ESPOCH*. Recuperado el 14 de Octubre de 2022, de DSpace ESPOCH.: http://dspace.espoch.edu.ec/bitstream/123456789/11498/1/65T00303.pdf
- Colombia, M. (19 de Mayo de 2020). *MarketPlace Colombia*. Obtenido de MarketPlace Colombia:

 https://colombia.com.co/como-funciona-un-circuito-fuente-de-alimentacion-de-una-ecu/#:~:text=Un%20circuito%20fuente%20de%20alimentaci%C3%B3n%20est%C3%A1%20dise%C3%B1ado%20para%20realizar%20las,los%20componentes%20internos%20del%20m%C3%B3dulo.
- Crespo, F. E., & León, D. P. (12 de Julio de 2017). *DSpace ESPOCH*. Recuperado el 13 de Diciembre de 2022, de DSpace ESPOCH.: http://dspace.espoch.edu.ec/handle/123456789/7008
- Cuascota, L., & Estrada, A. (2022). *Repositorio Digital Universidad Técnica del Norte*. Recuperado el 16 de Diciembre de 2022, de Repositorio Digital Universidad Técnica del Norte:

 http://repositorio.utn.edu.ec/bitstream/123456789/13090/2/04%20MAUT%20193%20TRABAJ

 O%20DE%20GRADO.pdf
- Cunalata, W. M. (27 de 1 de 2012). *DSpace ESPOCH*. Recuperado el 11 de Diciembre de 2022, de DSpace ESPOCH: http://dspace.espoch.edu.ec/handle/123456789/3867

- Donado, A. (01 de Mayo de 2022). *Autosoporte*. Recuperado el 22 de Diciembre de 2022, de

 Autosoporte: https://autosoporte.com/conociendo-los-circuitos-de-procesamiento-de-datos-de-una-ecu/
- ELATE SA, CIRCUITOS IMPRESOS. (5 de Diciembre de 2019). *ELATE SA, CIRCUITOS IMPRESOS*.

 Recuperado el 14 de Diciembre de 2022, de ELATE SA, CIRCUITOS IMPRESOS:

 https://elatesa.com/electronica-basica-que-es-el-smd/
- Franco, P. T. (3 de Enero de 2020). *El Universo*. Recuperado el 22 de Diciembre de 2022, de El Universo: https://www.eluniverso.com/noticias/2020/01/03/nota/7673979/vehiculos-mas-vendidos-union-europea-ecuador-acuerdo-comercial/
- Gavidia, M., & López, L. (2019). CARACTERIZACIÓN DE SEÑALES PID'S POR MEDIO DE OBD II PARA. En G.

 Martín, & L. Luis, CARACTERIZACIÓN DE SEÑALES PID'S POR MEDIO DE OBD II PARA (pág. 195).

 Cuenca: UNIVERSIDAD POLITÉCNICA SALESIANA.
- Jiménez, A., & Valdivieso, J. (2012). CONSTRUCCIÓN E IMPLEMENTACIÓN DE UN TABLERO DIDÁCTICO DE UN SISTEMA DE INYECCIÓN ELECTRÓNICA MONOTRONIC Mp 9.0 DE VOLKSWAGEN GOL 1.8

 MODELO 2002 PARA LA ESCUELA DE INGENIERÍA AUTOMOTRIZ. Recuperado el 11 de Diciembre de 2022, de http://dspace.espoch.edu.ec/bitstream/123456789/1872/1/65T00030.pdf
- Lira, G. (30 de Mayo de 2022). *Autofact*. Obtenido de Autofact: https://www.autofact.cl/blog/mi-auto/mantencion/ecu
- Mainato, I., & Acero, F. (2013). DISEÑO DE UN SISTEMA INFORMÁTICO DE DIAGNÓSTICO Y CORRECCIÓN

 DE FALLAS REFERENTES A LA INYECCIÓN ELECTRÓNICA CON PROTOCOLO OBD II. En I. Mainato,

 & F. Acero, DISEÑO DE UN SISTEMA INFORMÁTICO DEDIAGNÓSTICO Y CORRECCIÓN DE FALLAS

 REFERENTES A LA INYECCIÓN ELECTRÓNICA CON PROTOCOLO OBD II (pág. 126). Riobamaba:

- ESPOCH. Obtenido de
- http://dspace.espoch.edu.ec/bitstream/123456789/2625/1/65T00076.pdf
- Mora, R. (04 de Noviembre de 2018). *Neclo Ciencia y Cultura al Maximo*. Obtenido de Neclo Ciencia y Cultura al Maximo: https://www.negocioscontralaobsolescencia.com/taller/resistencias-smd-smt-como-interpretar-los-valores
- Palena, M. C. (2015). UNIDAD DE CONTROL ELECTRÓNICO PARA MOTORES DE BAJA CILINDRADA.

 Recuperado el 12 de Diciembre de 2022, de

 http://rinfi.fi.mdp.edu.ar/bitstream/handle/123456789/341/MCPalena-TFG-IEe2015.pdf?sequence=1&isAllowed=y
- Paredes, F. X. (2011). *Repositorio Digital UIDE*. Recuperado el 14 de Diciembre de 2022, de Repositorio Digital UIDE: https://repositorio.uide.edu.ec/handle/37000/954
- Pozo, J. M. (Marzo de 2020). *Repositorio Universidad de Guayaquil*. Recuperado el 20 de Diciembre de 2022, de Repositorio Universidad de Guayaquil:

 http://repositorio.ug.edu.ec/handle/redug/50775
- Red, E. (6 de 11 de 2022). *Ecured*. Obtenido de Ecured:

 https://www.ecured.cu/Memorias_de_acceso_secuencial
- Ruta, P. d. (20 de Septiembre de 2016). *Prueba de Ruta*. Obtenido de Prueba de Ruta: https://www.pruebaderuta.com/unidades-de-control-en-el-automovil-2.php
- Sánchez, J., & Taipe, D. (2018). INVESTIGACIÓN DE LOS PARÁMETROS DE FUNCIONAMIENTO DEL

 SISTEMA DE INYECCIÓN DE COMBUSTIBLE DE LOS VEHÍCULOS HYUNDAI PARA DESARROLLAR LA

 CONSTRUCCIÓN DE UN BANCO DE PRUEBAS DE VERIFICACIÓN DE ECU'S . Obtenido de

- repositorio.espe: https://repositorio.espe.edu.ec/bitstream/21000/14152/2/ESPEL-MAI-0626-P.pdf
- Semanate, D. (7 de Noviembre de 2020). *Repositorio ESPE*. Obtenido de Repositorio ESPE: https://repositorio.espe.edu.ec/bitstream/21000/12408/2/ESPEL-MAI-0546-P.pdf
- Serravalle, J. (11 de Febrero de 2011). *cise.com*. Obtenido de cise.com:

 http://www.cise.com/portal/notas-tecnicas/item/327-bloques-de-trabajo-en-una-ecu-automotriz.html?tmpl=component&print=1
- Soporte, A. (2 de Mayo de 2022). *Auto Soporte*. Obtenido de Auto Soporte:

 https://autosoporte.com/conociendo-los-circuitos-de-procesamiento-de-datos-de-una-ecu/
- Toapanta , L., & Jácome, C. (Abril de 2015). DISEÑO E IMPLEMENTACIÓN DE UN MÓDULO GENERADOR

 DE SEÑALES Y CONVERSOR PARA PROBAR EL COMPORTAMIENTO DE UNA ECU (UNIDAD DE

 CONTROL ELECTRÓNICO) PARA EL AUTOMÓVIL CHEVROLET AVEO. Obtenido de

 https://dspace.ups.edu.ec/bitstream/123456789/10163/6/UPS%20-%20ST001793.pdf
- Villalta Romero, L. A., & Vargas Ayala, L. M. (mayo de 2015). *Aplicación de procedimientos del fabricante*en la reparación del sistema de inyección electrónica. Recuperado el 11 de Diciembre de 2022,

 de http://www.dspace.espol.edu.ec/xmlui/handle/123456789/29552
- Yerera, S., Lopez, J., Becerra, G., Di Lorenzo, F., Gil, R., Holzmann, C., & Graziano, S. (2017). *studocu*.

 Recuperado el 11 de Diciembre de 2022, de studocu: https://www.studocu.com/es-ar/document/universidad-de-moron/tecnologia-mecanica/sistemas-de-inyeccion-electronica/14478940

Anexos