

# Evaluación del efecto del aloe vera a diferentes concentraciones en arándano (*Vaccinium corymbosum*) conservados a dos temperaturas

Novillo Cruz, Eddie Camilo

Departamento de Ciencias de la Vida y de la Agricultura

Carrera de Ingeniería Agropecuaria

Trabajo de titulación, previo a la obtención del título de Ingeniero Agropecuario

Ing. Larrea Cedeño, Gabriel Alejandro Mgtr.

12 de marzo del 2022



### INTRODUCCIÓN

El arándano es una planta recientemente domesticada y en los últimos años la superficie cultivada de esta especie se ha extendido notablemente como resultado de la alta demanda del fruto por sus excelentes propiedades organolépticas y nutritivas, con altos contenidos de antioxidantes y vitaminas. Está caracterizada por tener una alta vida productiva de alrededor de 20 años o más con buen manejo y bajo condiciones óptimas de clima y suelo (Galarza, 2019).

Es un fruto que toma cada vez mayor importancia en el mercado debido a una mayor demanda de alimentos que ayudan a combatir el envejecimiento de las células (Romero, 2015).

Hoy por hoy, el cultivo de arándano a nivel mundial ha aumentado la superficie a 15.000 hectáreas aproximadamente en tan solo 4 años (FAO, 2017).

En la andes ecuatorianos no existe una representativa producción y exportación de frutas, tanto de ciclo corto como perennes, debido principalmente a la falta de tecnificación necesaria (ESPAC, 2016), así como el volumen para poder ser competitivos con otros países, lo cual demerita en tener frutas con precios no competitivos y parámetros de calidad no aceptables en el mercado internacional (Trademap, 2018).



# **JUSTIFICACIÓN**

El cultivo del arándano es relativamente nuevo en el mundo, con cerca de cien años de manejo agronómico y comercial. El desarrollo de nuevos cultivares y el interés por su consumo ha llevado al cultivo a crecimientos exponenciales en los últimos 15 años, incorporando nuevas áreas de plantación. Esto ha significado también implementar nuevas formas de producción, en un constante aprendizaje para ser más eficientes y rentables (Olivares, 2017).

La producción de arándanos podría ser una potencial actividad fructífera en la sierra ecuatoriana dadas las condiciones agronómicas requeridas para su cultivo, lo que daría crédito sustancial a los agricultores que realizan labores para poder acceder a la ventana de exportación ya que a que los países de cuatro estaciones no tienen variedades que produzcan todo el año. En Ecuador los arándanos son desconocidos en el mercado sin embargo existe un nicho de mercado con una necesidad insatisfecha.

Actualmente se observa con mayor frecuencia la aplicación de recubrimientos comestibles (RC) en diversos productos del sector agroalimentario, se observa de manera más frecuente como ocurre con la sustitución de polímeros en los empaques de fresas, aguacate, plátano, frambuesa, mora, PMP y medicamentos, las BP se han obtenido a partir de una variedad de materias primas cada una con diferentes propiedades mecánicas. (Ramos, 2014).



## **OBJETIVOS**

#### General.

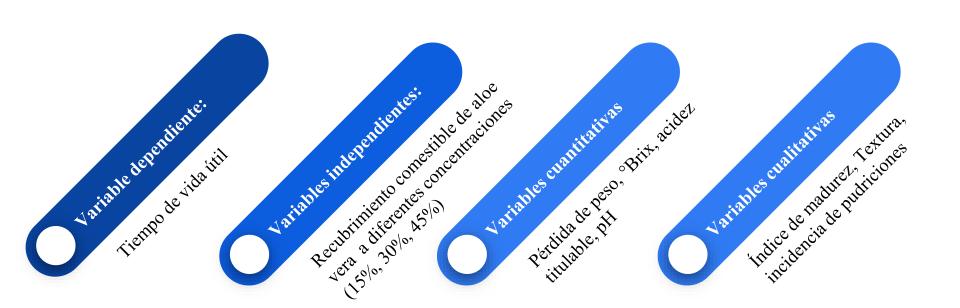
• Evaluar el efecto del aloe vera a diferentes concentraciones en arándano (Vaccinium corymbosum) conservados a dos temperaturas.

#### Específicos.

- Formular el recubrimiento comestible de aloe vera y comparar los niveles de aplicación a diferentes concentraciones en arándanos.
- Evaluar el efecto del recubrimiento expuesto a temperatura de refrigeración (7°C) y temperatura ambiente (17±2°C) en las variables de respuesta.
- Determinar la vida útil de los tratamientos conservados a dos temperaturas.

# HIPÓTESIS

#### Hipótesis nula


El recubrimiento comestible de aloe vera a diferentes concentraciones no genera una prolongación de la vida útil del arándano y reduce el ataque de patógenos.

#### Hipótesis de investigación

El recubrimiento comestible de aloe vera a diferentes concentraciones genera una prolongación de la vida útil del arándano y reduce el ataque de patógenos.



## **VARIABLES**





## ORÍGEN DEL ARÁNDANO

- El arándano o "blueberry" es un fruto del género Vaccinium de la familia Ericaceae originario de América del Norte (Vilches 2005).
- Es un arbusto pequeño de 0,2 0,4 m de altura, cuyo nombre científico es (*Vaccinium corymbosum*).
- Son un grupo de frutas conocidas internacionalmente con el nombre comercial berries.
- El arándano alto es un arbusto perenne, longevo, de hoja caduca con madera leñosa que alcanza una altura de 3 a 5 m en estado adulto, y sus tallos pueden tener una actividad productiva de 4 a 5 años.
- Las hojas son alternas, cortamente pediculados de borde entero o cerrado.
- Sus flores se presentan en racimos o terminales de color blanco que aparecen en forma basipetala en las ramas de año anterior.
- Su fruto es una baya esférica que debe cumplir con ciertos atributos de calidad como: color de azul claro a negro azulado, epidermis provista de secreción cerosa llamada "pruina", calibre mínimo de 0.7 a 1.5 cm y una adecuada firmeza, además de presentar una cicatriz pequeña y seca después de desprender el pedúnculo al cosechar. La piel del fruto del blueberry es tersa y su pulpa es jugosa y aromática de sabor agridulce (Stückrath y Petzold 2007).



## TAXONOMÍA DEL ARÁNDANO

Clasificación taxonómica de la Vaccinium corymbosum

Tabla 1

| TAXON         | NOMBRE                 |
|---------------|------------------------|
| Clase         | Dicotiledónea          |
| Reino         | Vegetal                |
| Orden         | Ericales               |
| Familia       | Ericaceae              |
| Género        | Vaccinium              |
| Especie       | Vaccinium corymbosum L |
| Nombre vulgar | Arándano, Mirtilo      |

*Nota*. Esta tabla muestra los taxones junto con el nombre a los que pertenece el arándano. Obtenido de (ADEX, 2009).





## MORFOLOGÍA DEL ARÁNDANO

Arbusto caduco, que puede ser de porte erecto o rastrero y de altura variable.

**Raíz:** sistema radicular compuesto por numerosas raíces, en su mayoría superficiales. Fibrosas, finas y carentes de pelos absorbentes.



**Hojas:** simples, alternas, con forma elíptico-lanceoladas, márgenes dentados y peciolo corto. Son de color verde.



## MORFOLOGÍA DEL ARÁNDANO

**Inflorescencia:** en racimos de 6-10 flores por yema.



**Fruto:** se trata de una falsa baya de forma esférica, color azul, rojo o negro en su madurez según la especie.



### **VARIEDADES**

#### Especies que tienen importancia económica:

- Vaccinium angustifolium Alton (arándano bajo o "lowbush ")
- Vaccinium ashei Reade (arándano ojo de conejo o "rabbiteye")
- *Vaccinium corymbosum L.* (arándano alto o "highbush")

**Figura.** Arándano (*Vaccinium corymbosum L.*)







# COMPOSICIÓN NUTRICIONAL

Composición nutricional en 100g de arándanos frescos.

Tabla 2

| Composición nutricional | Arándano |
|-------------------------|----------|
| Energía (Kcal)          | 42       |
| Agua (g)                | 87.4     |
| Proteína (g)            | 0.3      |
| Fibras (g)              | 1.7      |
| Vitamina A (UI)         | 30       |
| Vitamina C (mg)         | 12       |
| Potasio (mg)            | 72       |
| Calcio (mg)             | 14       |
| Fósforo (mg)            | 10       |





# USOS

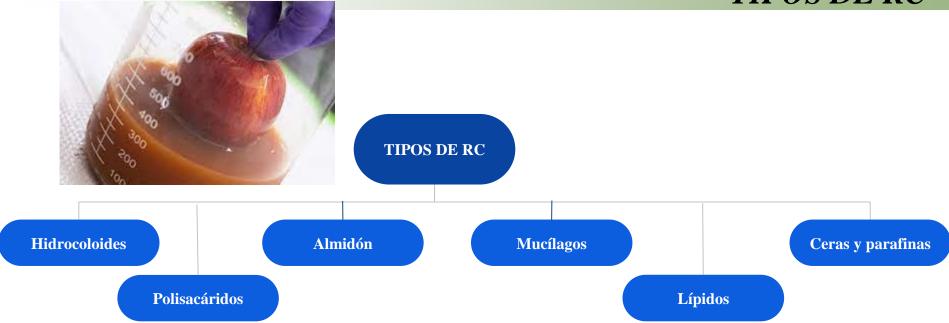
- <u>Alimento</u>: se lo consume en fresco, congelados, desecados, prensados en zumo o gelatina, mermeladas.
- <u>Medicinal</u>: previene enfermedades degenerativas.







### RECUBRIMIENTOS COMESTIBLES


- El RC se puede definir como una matriz delgada y continua estructurada alrededor del alimento generalmente sumergiendo el alimento en una solución formadora del recubrimiento.
- Pueden mejorar la seguridad alimentaria al inhibir o retardar el crecimiento de microorganismos lo que supone un nuevo paso adelante en el concepto de envasado inteligente.
- Proporcionan una barrera protectora entre el producto y el entorno que lo rodea regulando el intercambio de gases (O2, CO2, etileno, compuestos aromáticos).
- Brindan soporte estructural a los alimentos contribuyendo a preservar la textura de los alimentos limitando la pérdida de humedad y el escape de líquidos de los productos frescos

#### Composición:

- Han sido desarrollados con diferentes materiales como: proteínas, almidones hidrolizados, lípidos, gomas,
   pectinas, polisacáridos, carragenano, carboximetilcelulosa y alginatos entre otros
- Pueden incluir, conjuntamente plastificantes y emulsificantes



## TIPOS DE RC





## COMPOSICIÓN DE LOS RC

Los RC pueden ser elaborados a partir de una gran variedad de polisacáridos, proteínas y lípidos, solos o en combinaciones que logren aprovechar las ventajas de cada grupo, dichas formulaciones pueden incluir, conjuntamente plastificantes y emulsificantes que se utilizan de diversa naturaleza química con la finalidad de ayudar a mejorar las propiedades finales de la película o recubrimiento. Estas presentan buena comestibilidad, dureza, transparencia, buenas propiedades de barreras contra el oxígeno y vapor de agua.

Los polisacáridos y las proteínas son polímeros que forman redes moleculares cohesionadas por una alta interacción entre sus moléculas, estas les confiere buenas propiedades mecánicas y de barrera a gases (O2 y CO2), por lo cual retardan respiración y envejecimiento de muchas frutas y hortalizas.



## METODOLOGÍA - Área de estudio

Campus de la Carrera Agropecuaria IASA I, Hacienda El Prado, ubicado en la parroquia San Fernando, Cantón Rumiñahui, provincia de Pichincha.

Geográficamente se localiza a 78° 24′ 44″ LO, 0° 23′ 20″ LS y 2748 m de altitud.

La temperatura media anual es de 14 °C, y la precipitación anual de 1300 mm.

Laboratorios de poscosecha y agroindustria a cargo del Ing. Gabriel Larrea.





#### ALOE VERA

Planta curativa utilizada por un gran número de civilizaciones antiguas en partes de Europa, India y el continente africano durante más de 3000 años.

Planta herbácea o leñosa, arbustiva a veces arborescentes, generalmente rizomatosas con raíces tuberosas o con parte subterránea bulbosa, a veces con crecimiento secundario en grosor tipo anómalo. Algunas especies son solitarias, otras se agrupan en formación.





#### Propiedades nutricionales y medicinales del aloe vera

En las hojas de la sábila se encuentra un gel la cual es la fuente natural de alrededor de 75 sustancias, las cuales están formadas por vitaminas (A, B1, B2, B6, B12, C, E), minerales (calcio), aminoácidos para la construcción de proteínas, enzimas utilizadas en el sistema digestivo, azúcares (incluyendo algunos polisacáridos importantes para el mejoramiento del sistema inmunológico) y agentes antinflamatorios y antimicrobianos (Ramírez *et al.* 2013)



### RECUBRIMIENTO COMESTIBLE DE ALOE VERA

- La parte más usada de la planta de la sábila es un gel mucilaginoso que se encuentra dentro de las pencas de éstas mismas y que tienen las propiedades de generar biofilms una vez que se secan.
- El gel de Aloe vera contiene alrededor de 98.5 % de agua, es rico en mucílagos.
- Los mucílagos se caracterizan por estar formados por ácidos galacturónicos,
   glucorónicos y unidos a azúcares como glucosa, galactosa y arabinosa.
- También están presentes otros polisacáridos con alto contenido en ácidos urónicos, fructosa y otros azúcares hidrolizables, además de compuestos fenólicos de gran poder antioxidante como las cromonas y las antraquinonas.





## MATERIALES Y EQUIPOS

#### Materia prima

- Arándanos variedad Biloxi
- Aloe vera (500g)

#### **Insumos**

- Hipoclorito de sodio 50 ppm
- Ácido ascórbico
- Agua destilada
- Soluciones buffer para pH metro
- Hidróxido de sodio 0.1 N

#### **Equipos y materiales**

- Balanza analítica
- Equipo de titulación
- pH metro
- Brixómetro
- Gramera 200g
- Refrigerador
- Vasos de precipitación 200
   mL
- Frascos de vidrio 1 L
- Micropipeta 0-50 uL
- Bandejas de aluminio
- Probeta graduada 50 mL
- Termohigrómetro



#### **Otros**

- Medias nylon
- Licuadora
- Libro de campo
- Cuchillo
- Cajas PET



## METODOLOGÍA - Selección de los arándanos

Se contactó a la empresa Bloom berries, quienes producen arándano variedad biloxi, caracterizada por un calibre comercial óptimo y su acidez.

Se adquirieron 3 kg de arándanos y se volvieron a clasificar descartando los arándanos que presentaban daños debido al transporte y daños pronunciados debido a la cosecha. Descartando un total de 149g.

Para estimar el número de arándanos se tomó una muestra de 120 arándanos de distinto calibre y se pesaron, obteniendo un promedio de 1,75 g por unidad de arándano. Con lo cual se calculó ingresaron 1714 arándanos y

fueron descartados 85, para finalmente utilizar 1629 arándanos.















### METODOLOGÍA - Recubrimiento comestible de aloe vera

#### Identificación de las variables:

• Variable independiente

**Tratamientos con aloe vera:** ((*T*1 *al* 15%); (*T*2 *al* 30%) *y* (*T*3 *al* 45%))

• Variable dependiente:

**Evaluación fisicoquímica:** Tiempo de vida útil en función de: sólidos solubles (°Brix), pH, acidez titulable, pérdida de peso (g), formación de colonias.

Evaluación sensorial: Deterioro microbiano, textura (escala deterioro)



## **METODOLOGÍA**

### Preparación del recubrimiento comestible de aloe vera

Se formularon 3 diferentes dosis para aplicar a los arándanos. Se tuvo en cuenta para los tratamientos respectivos:

(T1 = 15% aloe vera y 85% de agua destilada)

(T2 = 30% aloe vera y 70% de agua destilada)

(T3 = 45% aloe vera y 55% de agua destilada)

Se pesaron en una balanza analítica las hojas de aloe vera de 500g, de las cuales se extraerá el mucílago. Se utilizaron frascos de vidrio de 1 litro para conservar el recubrimiento dosificado en cada tratamiento, el será ajustado a 3.6 con la ayuda de ácido ascórbico.



## METODOLOGÍA - Recubrimiento de los frutos

Se realizó el recubrimiento de los frutos por el método de inmersión, los frutos de arándano se sumergieron en cada una de las soluciones de aloe vera correspondiente a los tratamientos de: (15%); (30%); (45%), por un tiempo de 10 a 15 minutos.

Luego se procedió a colocar en la estufa a 20°C para fijar el recubrimiento. Posteriormente cuales fueron colocados en envases de plástico PET y almacenados a temperatura de refrigeración (7°C) y temperatura ambiente (17±2°C) para evaluar su evolución durante quince días, tomando registro de los cambios en sus características fisicoquímicas y sensoriales de manera inter diaria.

**Tabla 4**Formulaciones y cantidades para la elaboración del recubrimiento comestible de aloe vera

| Método          | Tratamiento | Aloe vera (%) | Agua destilada (d) | Tiempo (min) |
|-----------------|-------------|---------------|--------------------|--------------|
| Frutos          | TO          | 096           | 100%               | 10           |
| de arándano     | T1          | 15%           | 85%                | 10           |
| recubiertos con | T2          | 30%           | 70%                | 10           |
| películas       | Т3          | 45%           | 55%                | 10           |
| comestibles     |             |               |                    |              |





### Diagrama de flujo del proceso de elaboración del recubrimiento



# METODOLOGÍA - Análisis fisicoquímicos

#### Porcentaje de pérdida de peso (%PP)

Se midió por gravimetría mediante la diferencia de pérdida de peso. Se tomó el peso inicial (Pi) menos el peso final (Pf) del fruto y los resultados fueron expresados como porcentaje de pérdida de peso (%PP), mediante la fórmula empleada por Godoy (2004) y citada por Vásquez (2019).  $\% PP = \frac{(Pi - Pf)}{Pi} * 100$ 

#### Sólidos Solubles (° Brix)

Se utilizó un refractómetro de mano, tomando un arándano de cada tratamiento y repetición, el cual fue triturado dentro de una media nylon y una vez obtenida la gota necesaria en el equipo se procedió a dar lectura.



## Análisis fisicoquímicos

pН

Se pesaron 25 g de arándanos y se aforó con 250 ml de agua destilada, homogeneizando el jugo en la licuadora. Posteriormente se filtró con la ayuda de una media nylon en un vaso de precipitación y se procedió a tomar lectura del pH haciendo eso de un pH metro, se introdujo el electrodo en el jugo obtenido.

#### Acidez titulable (% ácido cítrico)

Con el jugo de arándanos obtenido para la medición del pH, se tomó 25 ml de para ser colocado en un nuevo vaso de precipitación y se tituló con hidróxido de sodio (NaOH) (0,1 N) hasta lograr el viraje del color de la solución a un verde persistente. Finalmente se registró el volumen de hidróxido utilizado. La acidez titulable fue expresada en porcentaje (%) de ácido cítrico con la fórmula empleada por Godoy (2004).

$$\% \ acidez = \frac{Volumen \ obtenido \ de \ NaOH \ (ml) \ * \ N \ del \ NaOH \ * \ peso \ molecular \ del \ ácido \ cítrico}{Volumen \ de \ jugo \ de \ arándano \ (ml)}$$



## Análisis fisicoquímicos

#### Calibre

Para la medición de esta variable se utilizó un pie de rey, el cual fue empleado para tomar las medidas (mm) de la evolución del tamaño de los arándanos a lo largo de los días transcurridos. Se utilizaron 10 arándanos por repetición para la obtención de los datos.



La variable de textura fue medida visualmente mediante una escala de deshidratación de 0 a 3 (0 sin lesiones ni daños, 1 ligeramente deshidratado en la zona del pedúnculo, 2 medianamente deshidratado en general, 3 rugosidad pronunciada debido a la deshidratación) propuesta por Reyes (2019) en su estudio para el control de calidad de arándanos frescos para exportación.







## Análisis fisicoquímicos

#### **Mohos**

La incidencia de mohos se calculó por la relación entre el número de arándanos infectados y el número total de arándanos. Se utilizaron 10 arándanos por cada repetición para el seguimiento de pudriciones durante el ensayo. La fórmul propuesta por Atencia (2015).

% incidencia Mohos =  $\frac{\#ar\'andanos\ infectados}{\#total\ de\ ar\'andanos}$ 

Se identificó mediante la descripción fitopatológica correspondiente a signos de daños en los arándanos, que el hongo evidenciado fue *Botrytis cinerea*.

#### Índice de madurez (IM)

El índice de madurez (IM) se obtuvo mediante la relación entre los sólidos solubles (°Brix) y la acidez titulable (% ácido cítrico).



## METODOLOGÍA - Evaluación de la vida útil

Para la determinación del tiempo de vida útil en función de la pérdida de peso como variable de mayor importancia, se empleó la fórmula propuesta por Labuza (1982) la cual representa una ecuación cinética de primer orden.

Ecuación: 
$$A = Ao e^{kt}$$

Donde:

A: calidad al tiempo t

Ao: calidad al tiempo inicial

k: constante de la reacción

Linealizando la ecuación se tiene:

$$ln A = ln Ao \pm kt$$

El tiempo de vida útil podría obtenerse despejando t:

$$t = \frac{(\ln A - \ln Ao)}{k}$$



### **METODOLOGÍA**

## Tipo de diseño

Para llevar a cabo el trabajo de investigación, se empleó un diseño completamente al azar (DCA) con tres repeticiones por cada tratamiento, para cada temperatura.

### Análisis estadístico

Los datos obtenidos de cada variable fueron tabulados en una hoja de cálculo de Excel, la vida útil fue calculada en base a la variable del porcentaje de pérdida de peso. A continuación, los datos fueron procesados en el software estadístico R Studio. En primer lugar, se realizó un análisis de varianza (ANOVA) que permitió identificar si existe diferencias significativas en las interacciones y en los efectos independientes de los tratamientos, en caso de encontrar significancia estadística se realizó una prueba de rango múltiple de Tukey al 5%. Como complemento para contrastar los resultados se obtuvieron datos de estadística descriptiva como media, desviación estándar y varianza.



### RESULTADOS

#### Temperatura Refrigeración - Análisis fisicoquímico (7°C) - Porcentaje de pérdida de peso (%PP)

Tabla 4

Análisis de varianza (ANOVA) para la pérdida de peso (%PP)

| F.V.            | gl | sc      | CM     | F      | p-valor |
|-----------------|----|---------|--------|--------|---------|
| Tratamiento     | 3  | 23,24   | 7,75   | 2,85   | 0,0490  |
| Dia             | 3  | 1605,76 | 535,25 | 196,91 | <0,0001 |
| Tratamiento:Dia | 9  | 30,4    | 3,4    | 1,330  | 0,2610  |
| Error           | 32 | 81,2    | 2,5    |        |         |
|                 |    |         |        |        |         |

#### Tabla 5

Media  $\pm$  D.E de la pérdida de peso (%pp) y prueba de comparación de medias de Tukey a un nivel de significancia del 5% en los tratamientos con aloe vera

| Tratamiento | n  | Medias | D.E. | Tukey 5% |
|-------------|----|--------|------|----------|
| T2          | 12 | 6,49 ± | 0,48 | Α        |
| Т3          | 12 | 7,01 ± | 0,48 | А В      |
| T1          | 12 | 7,02 ± | 0,48 | А В      |
| то          | 12 | 8,37 ± | 0,48 | В        |

Medias con una letra común no son significativamente diferentes (p > 0,05)

T1 (15% aloe vera y 85% de agua d), T2 (30% aloe vera y 70% de agua d), T3 ( 45% aloe vera y 55% de agua d)



### Temperatura Refrigeración - Análisis fisicoquímico (7°C) - Acidez titulable (% ácido cítrico)

Tabla 7

Tabla 6

Análisis de varianza (ANOVA) para la acidez (% de ácido cítrico) en los tratamientos con aloe vera

| sc    | gl                    | CM                          | F                                            | p-valor                                                                                                  |
|-------|-----------------------|-----------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 0,08  | 3                     | 0,03                        | 3,22                                         | 0,0322                                                                                                   |
| 8,07  | 3                     | 2,69                        | 327,26                                       | <0,0001                                                                                                  |
| 0,064 | 9                     | 0,0072                      | 0,840                                        | 0,5852                                                                                                   |
| 0,273 | 32                    | 0,0,0085                    |                                              |                                                                                                          |
|       | 0,08<br>8,07<br>0,064 | 0,08 3<br>8,07 3<br>0,064 9 | 0,08 3 0,03<br>8,07 3 2,69<br>0,064 9 0,0072 | 0,08     3     0,03     3,22       8,07     3     2,69     327,26       0,064     9     0,0072     0,840 |

Media  $\pm$  D.E de la acidez (% ácido cítrico) y prueba de comparación de medias de Tukey a un nivel de significancia del 5% en los tratamientos con aloe vera

|   | Tratamiento | n  | Medias | ± | D.E. | Tukey | al 5% |   |
|---|-------------|----|--------|---|------|-------|-------|---|
| - | Т3          | 12 | 1,27   | ± | 0,03 | Α     |       |   |
|   | T2          | 12 | 1,26   | ± | 0,03 | Α     | В     |   |
|   | T1          | 12 | 1,21   | ± | 0,03 | Α     |       | В |
|   | то          | 12 | 1,17   | ± | 0,03 |       |       | В |

Nota. Medias con una letra común no son significativamente diferentes (p > 0,05)

T1 (15% aloe vera y 85% de agua d), T2 (30% aloe vera y 70% de agua d), T3 (45% aloe vera y 55% de agua d)



#### Temperatura Refrigeración - Análisis fisicoquímico (7°C) - pH

Tabla 8

Análisis de varianza (ANOVA) para el pH en los tratamientos durante los días de observación

| sc     | gl                     | CM                           | F                                             | p-valor                                                        |
|--------|------------------------|------------------------------|-----------------------------------------------|----------------------------------------------------------------|
| 0,08   | 3                      | 0,03                         | 2,72                                          | 0,0568                                                         |
| 1,47   | 3                      | 0,49                         | 50,38                                         | <0,0001                                                        |
| 0,0988 | 9                      | 0,0110                       | 1,171                                         | 0,3457                                                         |
| 0,40   | 32                     | 0,01                         |                                               |                                                                |
|        | 0,08<br>1,47<br>0,0988 | 0,08 3<br>1,47 3<br>0,0988 9 | 0,08 3 0,03<br>1,47 3 0,49<br>0,0988 9 0,0110 | 0,08 3 0,03 2,72<br>1,47 3 0,49 50,38<br>0,0988 9 0,0110 1,171 |

Tabla 9.  ${\it Media \pm D.E \ del \ pH \ en \ los \ tratamientos \ recubiertos \ con \ cuatro \ concentraciones \ de \ aloe \ vera}$ 

| Tratamiento | n  | Medias | ± | D.E. |
|-------------|----|--------|---|------|
| Т3          | 12 | 3,52   | ± | 0,03 |
| T0          | 12 | 3,50   | ± | 0,03 |
| T1          | 12 | 3,43   | ± | 0,03 |
| T2          | 12 | 3,43   | ± | 0,03 |

T1 (15% aloe vera y 85% de agua d), T2 (30% aloe vera y 70%

de agua d),T3 ( 45% aloe vera y 55% de agua d)



#### Temperatura Refrigeración - Análisis fisicoquímico (7°C) - Textura

agua d)

Tabla 10

Análisis de varianza (ANOVA) para la textura en los tratamientos durante los días de observación.

| F.V.            | sc    | gl | CM     | F       | p-valor |
|-----------------|-------|----|--------|---------|---------|
| Tratamiento     | 0,01  | 3  | 0,004  | 0,179   | 0,90978 |
| Dia             | 36,57 | 3  | 12,190 | 530,383 | <0,0001 |
| Tratamiento:Día | 0,73  | 9  | 0,081  | 3,522   | 0,00394 |
| Error           | 0,74  | 32 | 0,023  |         |         |

Tabla 11

Media  $\pm$  D.E de la textura en los tratamientos recubiertos con cuatro concentraciones de aloe vera

| Tratamiento | n  | Medias | ± | D.E. |  |
|-------------|----|--------|---|------|--|
| Т3          | 12 | 1,67   | ± | 0,09 |  |
| T2          | 12 | 1,67   | ± | 0,09 |  |
| T1          | 12 | 1,67   | ± | 0,09 |  |
| то          | 12 | 1,50   | ± | 0,09 |  |

T1 (15% aloe vera y 85% de agua d), T2 ( 30% aloe vera y 70% de agua d), T3 ( 45% aloe vera y 55% de  $^{\circ}$ 



#### Temperatura Refrigeración - Análisis fisicoquímico (7°C) - Sólidos Solubles (°Brix)

Tabla 12

Análisis de varianza (ANOVA) para los sólidos solubles (° Brix) en los tratamientos durante los días de observación.

| F.V.            | sc     | gl | CM    | F       | p-valor  |
|-----------------|--------|----|-------|---------|----------|
| Tratamiento     | 9,92   | 3  | 3,31  | 12,580  | 0,0010   |
| Dia             | 113,21 | 3  | 37,74 | 143,536 | <0,0001  |
| Tratamiento:Día | 12,11  | 9  | 1,35  | 5,117   | 0,000258 |
| Error           | 8,41   | 32 | 0,26  |         |          |

Tabla 13

Media ± D.E de los sólidos solubles (° Brix) en los tratamientos recubiertos con cuatro concentraciones de aloe vera

| Tratamiento | n  | Medias | ± | D.E. | Tuke | ey al 5 | % |
|-------------|----|--------|---|------|------|---------|---|
| T1          | 12 | 10,49  | ± | 0,20 | Α    |         |   |
| T2          | 12 | 10,53  | ± | 0,20 | Α    | В       |   |
| Т3          | 12 | 11,28  | ± | 0,20 |      | В       | С |
| TO          | 12 | 11,53  | ± | 0,20 |      |         | С |

Nota. Medias con una letra común no son significativamente diferentes (p > 0,05). T1 (15% aloe

vera y 85% de agua d), T2 (30% aloe vera y 70% de agua d), T3 (45% aloe vera y 55% de agua d).



#### Temperatura Refrigeración - Análisis fisicoquímico (7°C) - Incidencia de Mohos (Botrytis cinérea)

Tabla 15

Tabla 14

Análisis de varianza (ANOVA) para la incidencia de mohos (%) en los tratamientos durante los días de observación.

| sc       | gl                           | CM                                 | F                                                    | p-valor                                                                                                          |
|----------|------------------------------|------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 426,49   | 3                            | 142,16                             | 4,88                                                 | 0,0054                                                                                                           |
| 12371,10 | 3                            | 4123,70                            | 141,64                                               | <0,0001                                                                                                          |
| 700,01   | 9                            | 78                                 | 5,029                                                | 0,000297                                                                                                         |
| 1193,69  | 9                            | 29,11                              |                                                      |                                                                                                                  |
|          | 426,49<br>12371,10<br>700,01 | 426,49 3<br>12371,10 3<br>700,01 9 | 426,49 3 142,16<br>12371,10 3 4123,70<br>700,01 9 78 | 426,49     3     142,16     4,88       12371,10     3     4123,70     141,64       700,01     9     78     5,029 |

Media ± D.E de la incidencia de mohos (%) en los tratamientos recubiertos con cuatro concentraciones de aloe vera

| Tratamiento | n  | Medias | ± | D.E. | Tukey | al 5% |
|-------------|----|--------|---|------|-------|-------|
| T2          | 12 | 10,16  | ± | 1,56 | Α     |       |
| Т3          | 12 | 13,28  | ± | 1,56 | Α     | В     |
| T1          | 12 | 14,33  | ± | 1,56 | Α     | В     |
| то          | 12 | 18,49  | ± | 1,56 |       | В     |

Nota. Medias con una letra común no son significativamente diferentes (p > 0,05). T1 (15% aloe vera y 85% de agua d), T2 (30% aloe vera y 70% de agua d), T3 (45% aloe vera y 55% de agua d).



# Temperatura Refrigeración - Análisis fisicoquímico (7°C) - Índice de madurez (IM)

Tabla 17

Tabla 16

Análisis de varianza (ANOVA) para el índice de madurez (IM) en los tratamientos durante los días de observación

| F.V.            | sc      | gl | СМ     | F      | p-valor |
|-----------------|---------|----|--------|--------|---------|
| Tratamiento     | 64,29   | 3  | 21,43  | 4,90   | 0,0053  |
| Dia             | 2059,53 | 3  | 686,51 | 157,09 | <0,0001 |
| Tratamiento:Dia | 87,8    | 9  | 9,8    | 3,412  | 0,0048  |
| Error           | 179,18  | 32 | 4,37   |        |         |

 $\textit{Media} \pm \textit{D.E}$  del Índice de madurez (IM) en los tratamientos recubiertos con cuatro concentraciones de aloe vera.

| Tratamiento | n  | Medias | ± | D.E. | Tukey al 5% |
|-------------|----|--------|---|------|-------------|
| T2          | 12 | 10,07  | ± | 0,60 | Α           |
| T1          | 12 | 10,61  | ± | 0,60 | Α           |
| Т3          | 12 | 10,77  | ± | 0,60 | Α           |
| то          | 12 |        | ± | 0,60 | В           |

Nota. Medias con una letra común no son significativamente diferentes (p > 0,05). T1 (15% aloe vera y

85% de agua d), T2 (30% aloe vera y 70% de agua d), T3 (45% aloe vera y 55% de agua d).



#### Temperatura Refrigeración - Análisis fisicoquímico (7°C) - Calibre

Tabla 18

Análisis de varianza (ANOVA) para el calibre (mm) en los tratamientos durante los días de observación

| F.V.            | SC    | gl | СМ     | F     | p-valor |
|-----------------|-------|----|--------|-------|---------|
| Tratamiento     | 4,55  | 3  | 1,52   | 5,65  | 0,0025  |
| Dia             | 6,22  | 3  | 2,07   | 7,72  | 0,0003  |
| Tratamiento:Dia | 1,031 | 9  | 0,1145 | 0,368 | 0,9422  |
| Error           | 9,970 | 32 | 0,3116 |       |         |

Tabla 19.

Media ± D.E del calibre (mm) en los tratamientos recubiertos con cuatro concentraciones de aloe vera.

| Tratamiento | n  | Medias | ± | D.E. | Tuke | y al 5% |
|-------------|----|--------|---|------|------|---------|
| Т3          | 12 | 16,51  | ± | 0,15 | Α    |         |
| T2          | 12 | 16,40  | ± | 0,15 | Α    |         |
| то          | 12 | 15,97  | ± | 0,15 | Α    | В       |
| T1          | 12 | 15,76  | ± | 0,15 |      | В       |

Nota. Medias con una letra común no son significativamente diferentes (p > 0,05). T1 (15% aloe vera y

85% de agua d), T2 (30% aloe vera y 70% de agua d), T3 (45% aloe vera y 55% de agua d).



### Temperatura Refrigeración - Análisis fisicoquímico (7°C) - Vida útil

Tabla 20


Tiempo máximo de vida útil (días) de los arándanos tratados con el recubrimiento de aloe vera

| Límite de aceptación              | Tiempo máximo de vida útil (días) |      |      |      |  |  |
|-----------------------------------|-----------------------------------|------|------|------|--|--|
| Tratamientos                      | T0                                | T1   | T2   | T3   |  |  |
| Tiempo máximo de vida útil (días) | 12,4                              | 13,4 | 13,9 | 13,4 |  |  |

T1 (15% aloe vera y 85% de agua d), T2 ( 30% aloe vera y 70% de agua d), T3 ( 45% aloe vera y 55% de agua d)



### Temperatura Refrigeración - Análisis fisicoquímico (7°C) - Vida útil



# RESULTADOS

# Temperatura ambiente - Análisis fisicoquímico (17 $\pm$ 2 $^{\circ}$ C) - Porcentaje de pérdida de peso (%PP)

Tabla 21

Análisis de varianza (ANOVA) para la pérdida de peso (%PP)

| F.V.            | sc      | gl | СМ      | F     | p-valor |
|-----------------|---------|----|---------|-------|---------|
| Tratamiento     | 57,05   | 3  | 19,02   | 1,05  | 0,3869  |
| Dia             | 2866,48 | 2  | 1433,24 | 78,77 | <0,0001 |
| Tratamiento:Dia | 29,5    | 6  | 4,9     | 0,229 | 0,936   |
| Error           | 516,3   | 24 | 21,5    |       |         |
|                 |         |    |         |       |         |

#### Tabla 22

Media  $\pm$  D.E de la pérdida de peso (%pp) y prueba de comparación de medias de Tukey a un nivel de significancia del 5% en los tratamientos con aloe vera

| Tratamiento | n        | Medias | ± | E.E.        | _ |
|-------------|----------|--------|---|-------------|---|
| T2          | 9        | 10,39  | ± | 1,42        | — |
| T1          | 9        | 10,98  | ± | 1,42        |   |
| Т3          | 9        | 11,83  | ± | 1,42        |   |
| <u>T0</u>   | <u>9</u> | 13,72  | ± | <u>1,42</u> |   |

Nota. T1 (15% aloe vera y 85% de agua d), T2 (30% aloe vera y 70% de agua d), T3 (45% aloe vera y 55% de agua d).

#### Temperatura ambiente - Análisis fisicoquímico (17 ± 2 °C) - Acidez titulable (% ácido cítrico)

Análisis de varianza (ANOVA) para la acidez (% de ácido cítrico) en los tratamientos con aloe vera

Tabla 23

| F.V.            | sc    | gl | СМ     | F     | p-valor |
|-----------------|-------|----|--------|-------|---------|
| Tratamiento     | 0,10  | 3  | 0,03   | 0,97  | 0,4192  |
| Dia             | 3,75  | 2  | 1,87   | 53,97 | <0,0001 |
| Tratamiento:Dia | 0,167 | 6  | 0,0279 | 0,766 | 0,603   |
| Error           | 1,04  | 24 | 0,0364 |       |         |

#### Tabla 24

Media ± D.E de la acidez (% ácido cítrico) en los tratamientos con aloe vera

| Tratamiento | n | Medias | ± | D.E. | _ |
|-------------|---|--------|---|------|---|
| Т3          | 9 | 1,46   | ± | 0,06 | _ |
| T1          | 9 | 1,42   | ± | 0,06 |   |
| T2          | 9 | 1,37   | ± | 0,06 |   |
| TO          | 9 | 1,32   | ± | 0,06 |   |

Nota: T1 (15% aloe vera y 85% de agua d), T2 (30% aloe vera y 70% de agua d), T3 ( 45% aloe vera y 55%

de agua d)

#### Temperatura ambiente - Análisis fisicoquímico (17 $\pm$ 2 $^{\circ}$ C) - pH

Tabla 25.

Análisis de varianza (ANOVA) para el pH en los tratamientos durante los días de observación

| F.V.            | sc    | gl | СМ     | F     | p-valor |
|-----------------|-------|----|--------|-------|---------|
| Tratamiento     | 0,83  | 3  | 0,28   | 5,13  | 0,0055  |
| Dia             | 3,53  | 2  | 1,77   | 32,80 | <0,0001 |
| Tratamiento:Dia | 0,046 | 6  | 0,0076 | 0,117 | 0,9934  |
| Error           | 1,61  | 24 | 0,05   |       |         |

Tabla 26.  $\textit{Media} \pm \textit{D.E del pH en los tratamientos recubiertos con cuatro concentraciones de aloe vera}$ 

| Tratamiento | n | Medias | ± | D.E. | Test de Tukey al 5% |  |
|-------------|---|--------|---|------|---------------------|--|
| T2          | 9 | 3,58   | ± | 0,08 | Α                   |  |
| Т3          | 9 | 3,86   | ± | 0,08 | АВ                  |  |
| T1          | 9 | 3,88   | ± | 0,08 | В                   |  |
| то          | 9 | 3,98   | ± | 0,08 | В                   |  |

Nota. Medias con una letra común no son significativamente diferentes (p > 0,05). T1 (15% aloe

vera y 85% de agua d), T2 (30% aloe vera y 70% de agua d), T3 (45% aloe vera y 55% de agua d).

## Temperatura ambiente - Análisis fisicoquímico (17 $\pm$ 2 $^{\circ}$ C) - Textura

Tabla 27

Análisis de varianza (ANOVA) para la textura en los tratamientos durante los días de observación

| sc    | gl                    | CM                          | F                                           | p-valor                                              |
|-------|-----------------------|-----------------------------|---------------------------------------------|------------------------------------------------------|
| 0,00  | 3                     | 0,00                        | sd                                          | sd                                                   |
| 24,00 | 2                     | 12,00                       | sd                                          | sd                                                   |
| 0,06  | 6                     | 0,01                        | sd                                          | Sd                                                   |
| 0,00  | 24                    | 0,00                        |                                             |                                                      |
|       | 0,00<br>24,00<br>0,06 | 0,00 3<br>24,00 2<br>0,06 6 | 0,00 3 0,00<br>24,00 2 12,00<br>0,06 6 0,01 | 0,00 3 0,00 sd<br>24,00 2 12,00 sd<br>0,06 6 0,01 sd |

Tabla 28

Media ± D.E de la textura en los tratamientos recubiertos con cuatro concentraciones de aloe vera

| n  | Medias         | ±                             | D.E.                          |                                                |
|----|----------------|-------------------------------|-------------------------------|------------------------------------------------|
| 12 | 1,67           | ±                             | 0,09                          |                                                |
| 12 | 1,67           | ±                             | 0,09                          |                                                |
| 12 | 1,67           | ±                             | 0,09                          |                                                |
| 12 | 1,50           | ±                             | 0,09                          |                                                |
|    | 12<br>12<br>12 | 12 1,67<br>12 1,67<br>12 1,67 | 12 1,67 ± 12 1,67 ± 12 1,67 ± | 12 1,67 ± 0,09  12 1,67 ± 0,09  12 1,67 ± 0,09 |

T1 (15% aloe vera y 85% de agua d), T2 (30% aloe vera y 70% de agua d), T3 ( 45% aloe vera y 55% de agua d)

#### Temperatura ambiente - Análisis fisicoquímico (17 ± 2 °C) - Sólidos Solubles (°Brix)

Tabla 29

Análisis de varianza (ANOVA) para los sólidos solubles (° Brix) en los tratamientos durante los días de observación

| F.V.            | sc     | gl | СМ    | F     | p-valor |
|-----------------|--------|----|-------|-------|---------|
| Tratamiento     | 12,91  | 3  | 4,30  | 4,11  | 0,0148  |
| Dia             | 7,87   | 2  | 3,94  | 3,76  | 0,0348  |
| Tratamiento:Día | 12,11  | 6  | 2,05  | 2,507 | 0,05008 |
| Error           | 19,288 | 24 | 0,804 |       |         |

#### Tabla 30.

Media ± D.E de los sólidos solubles (° Brix) en los tratamientos recubiertos con cuatro concentraciones de aloe vera

| Tratamiento | n | Medias | ± | D.E. | Tukey a | al 5% |
|-------------|---|--------|---|------|---------|-------|
| T2          | 9 | 10,73  | ± | 0,34 | Α       |       |
| T1          | 9 | 11,14  | ± | 0,34 | Α       | В     |
| Т3          | 9 | 11,83  | ± | 0,34 | Α       | В     |
| T0          | 9 | 12,27  | ± | 0,34 |         | В     |

Nota. Medias con una letra común no son significativamente diferentes (p > 0,05). T1 (15% aloe vera y 85% de agua d), T2 (30%

aloe vera y 70% de agua d), T3 (45% aloe vera y 55% de agua d).

#### Temperatura ambiente - Análisis fisicoquímico (17 ± 2 °C) - Incidencia de Mohos (*Botrytis cinérea*)

Tabla 31

Análisis de varianza (ANOVA) para la incidencia de mohos (%) en los tratamientos durante los días de observación

| F.V.            | SC       | gl | CM       | F      | p-valor |  |
|-----------------|----------|----|----------|--------|---------|--|
| Tratamiento     | 578,02   | 3  | 192,67   | 4,10   | 0,0150  |  |
| Dia             | 26593,26 | 2  | 13296,63 | 282,89 | <0,0001 |  |
| Tratamiento:Día | 388      | 6  | 65       | 1,518  | 0,2148  |  |
| Error           | 1022,01  | 24 | 43       |        |         |  |

Tabla 32

 $Media \pm D.E$  de la incidencia de mohos (%) en los tratamientos recubiertos con cuatro concentraciones de aloe vera.

| Tratamiento | n | Medias | ± | D.E. | Tukey a | l 5% |
|-------------|---|--------|---|------|---------|------|
| T2          | 9 | 17,01  | ± | 2,29 | Α       |      |
| Т3          | 9 | 20,14  | ± | 2,29 | Α       | В    |
| T1          | 9 | 23,61  | ± | 2,29 | Α       | В    |
| то          | 9 | 27,78  | ± | 2,29 |         | В    |

Nota. Medias con una letra común no son significativamente diferentes (p > 0,05). T1 (15% aloe vera y 85% de agua d), T2 (30%

aloe vera y 70% de agua d), T3 (45% aloe vera y 55% de agua d).

# Temperatura ambiente - Análisis fisicoquímico (17 $\pm$ 2 $^{\circ}$ C) - Índice de madurez (IM)

Tabla 33

Análisis de varianza (ANOVA) para el índice de madurez (IM) en los tratamientos durante los días de observación.

| F.V.            | sc     | gl | CM     | F     | p-valor |
|-----------------|--------|----|--------|-------|---------|
| Tratamiento     | 23,36  | 3  | 7,79   | 2,50  | 0,0786  |
| Dia             | 227,51 | 2  | 113,75 | 36,49 | <0,0001 |
| Tratamiento:Dia | 21,76  | 6  | 3,63   | 1,213 | 0,3339  |
| Error           | 71,77  | 24 | 2,99   |       |         |

Tabla 34

 $Media \pm D.E \ del \ indice \ de \ madurez \ (IM) \ en \ los \ tratamientos \ recubiertos \ con \ cuatro \ concentraciones \ de \ aloe \ vera$ 

| Tratamiento | n | Medias | ± | D.E. |
|-------------|---|--------|---|------|
| T1          | 9 | 8,26   | ± | 0,59 |
| T2          | 9 | 8,36   | ± | 0,59 |
| Т3          | 9 | 9,10   | ± | 0,59 |
| то          | 9 | 10,28  | ± | 0,59 |

#### Temperatura ambiente - Análisis fisicoquímico (17 ± 2 °C) - Calibre

Tabla 35

Análisis de varianza (ANOVA) para el calibre (mm) en los tratamientos durante los días de observación

| F.V.            | SC    | gl | CM     | F      | p-valor |
|-----------------|-------|----|--------|--------|---------|
| Tratamiento     | 4,74  | 3  | 1,58   | 6,75   | 0,0013  |
| Dia             | 83,94 | 2  | 41,97  | 179,36 | <0,0001 |
| Tratamiento:Dia | 7,02  | 6  | 1,17   | 4,904  | <0,0001 |
| Error           | 9,970 | 24 | 0,3116 |        |         |

Tabla 36

 $\textit{Media} \pm \textit{D.E} \textit{ del calibre (mm) en los tratamientos recubiertos con cuatro concentraciones \textit{de aloe vera}$ 

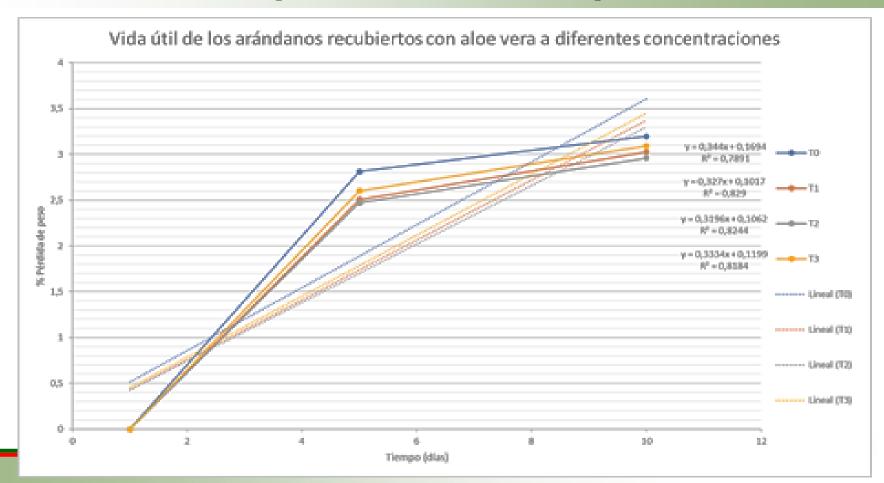
| Tratamiento | n | Medias | ± | D.E. | Tukey al 5% |   |
|-------------|---|--------|---|------|-------------|---|
| T2          | 9 | 12,53  | ± | 0,16 | Α           |   |
| T1          | 9 | 12,13  | ± | 0,16 | Α           | В |
| Т3          | 9 | 11,70  | ± | 0,16 |             | В |
| то          | 9 | 11,63  | ± | 0,16 |             | В |

Nota. Medias con una letra común no son significativamente diferentes (p > 0,05). T1 (15% aloe vera y 85% de agua d), T2 (30%

aloe vera y 70% de agua d), T3 (45% aloe vera y 55% de agua d).

#### Temperatura ambiente - Análisis fisicoquímico (17 ± 2 °C) - Vida útil

Tabla 37


Tiempo máximo de vida útil (días) de los arándanos tratados con el recubrimiento de aloe vera

| Límite de aceptación              | Tiempo máximo de vida útil (días) |      |      |      |  |  |
|-----------------------------------|-----------------------------------|------|------|------|--|--|
| Tratamientos                      | то                                | T1   | T2   | Т3   |  |  |
| Tiempo máximo de vida útil (días) | 7,18                              | 7,76 | 7,94 | 7,56 |  |  |

T1 (15% aloe vera y 85% de agua d), T2 (30% aloe vera y 70% de agua d), T3 (45% aloe vera y 55% de agua d)



## Temperatura ambiente - Análisis fisicoquímico (17 $\pm$ 2 $^{\circ}$ C) - Vida útil



# DISCUSIÓN

Dentro de las variables estudiadas en el proceso de investigación, se evidencio que los recubrimientos comestibles a base de aloe vera si contribuyen a conservar la mayoría de las propiedades fisicoquímicas del arándano. Sin embargo, cabe destacar que esta mención hace referencia a la temperatura de refrigeración de 7°C. Atencia (2015) reporta resultados similares a una temperatura de 4°C, de modo que el tratamiento con 30% de aloe vera fue significativamente mejor ayudando a retrasar la senescencia del fruto.

Es importante mencionar que los recubrimientos comestibles por si solos no pueden sustituir el mantener la temperatura y la humedad relativa interna, es decir una atmosfera modificada, por lo que sería necesario agregar encerrados como en el caso de Vásquez (2019), quien reformuló el recubrimiento destacando el mejor tratamiento (50% de mucílago de sábila con 1% de cera de abeja) logrando mejorar aspectos como textura y reducir significativamente la pérdida de peso en comparación al testigo.

De acuerdo con Olivares (2017) la madurez fisiológica de los arándanos al momento de la cosecha puede variar entre frutos, consecuentemente se reflejaron valores atípicos en los análisis de residuos, tal como lo manifiesta Atencia (2015) al no poder continuar con el ensayo de temperatura ambiente a partir del séptimo día debido a la incidencia de patógenos en los tratamientos.



# DISCUSIÓN

Pese a una nueva selección y descarte de los frutos previo al inicio del ensayo, pudo haber arándanos que no fueron identificados debido a la gran cantidad y reducido tamaño que estos presentan, entrando a los tratamientos frutos ligeramente ablandados o con lesiones mayores debido a los daños generados al momento de la cosecha, como consecuencia reflejándose en valores atípicos que afectaron los resultados finales. Vásquez (2019) recomienda que esta post selección debe ser rigurosa y descartar los arándanos necesarios con el fin de no generar un sesgo estadístico.

Finalmente, el efecto de los recubrimientos de aloe vera en las dos temperaturas (refrigeración y ambiente) presentó resultados distintos en cuanto a la vida útil. Mediante la ecuación de Labuza (1982) se determinó que a temperatura refrigeración (7°C) sin recubrimiento los arándanos duran 12 días, dato que se encuentra el en rango de 7 a 14 días reportado en SAIA (2021), y presenta un factor Q10 de 0,583, sin embargo, los arándanos recubiertos con 30% de aloe vera y 70% de agua destilada logran alcanzar una vida útil de 14 días, similar a Atencia (2015); el factor Q10 fue de 0,571 demostrando que se disminuyó la senescencia del fruto. No se reportan datos acerca del factor de aceleración Q10 de la vida útil en cuanto a la pérdida de peso para discutir, aunque otros estudios en arándanos como Alarcón y Zamora (2018) determinaron la vida útil en base a la concentración de Vitamina C en jugo de arándano conservados a 5°C fue de 20 días, considerándose que se trató con CO2.



# **CONCLUSIONES**

- El recubrimiento comestible se formuló de forma que se cumpla la ortogonalidad en los datos. A concentraciones de (0, 15,30 y 45 % de aloe vera y 100, 85, 70, 55 % agua destilada) la comparación entre las diferentes concentraciones reflejó que el tratamiento T2 (30% aloe vera y 70% agua destilada) ayuda a retrasar la senescencia del fruto un 3%, manteniéndolo en rangos considerables de una fruta madura.
- El tratamiento (T2) a temperatura de 17 ± 2 °C logró mejores resultados en cuanto a las variables fisicoquímicas como: Pérdida de peso (10,39 %), Acidez Titulable (1,46 % ácido cítrico), contenido de Sólidos Solubles (10,73 ° Brix) y pH (3,58). En comparación al testigo T0 (13,72%), (1,32%), (12,27° Brix) y (3,98) respectivamente. De igual manera a temperatura de 7°C el tratamiento T2 presentó mejores resultados en conjunto para Pérdida de peso (6,49 %), Acidez Titulable (1,26 % ácido cítrico), contenido de Sólidos Solubles (10,53 ° Brix) y pH (3,13). En comparación al testigo T0 (8,37 %), (1,17%), (11,53 ° Brix) y (3,50) respectivamente.
- Se determinó que el tratamiento T2 a 7°C logró aumentar la vida útil dos días más que el testigo, aun cuando los arándanos llegan aceptables al día 14, no se descarta la incidencia de moho. En cuanto a la temperatura ambiente de 17 ± 2 °C, el mejor tratamiento correspondió de igual manera al T2 (30% aloe vera y 70% agua destilada) y logró aumentar la vida útil un día, sin embargo, a partir el octavo día la susceptibilidad al ataque por *Botrytis cinérea* aumenta considerablemente siendo imposible consumir el fruto. El factor de aceleración Q10 para las dos temperaturas fue del 3%

# RECOMENDACIONES

- Para un futuro ensayo, se recomienda tomar en cuenta la adición de un encerado a la formulación de manera que sirva como suplemento y potencie las propiedades antimicrobianas.
- Se recomienda tomar datos más seguidos, por ejemplo, cada tres días, al menos para el efecto de la temperatura ambiente
   para que la incidencia de mohos no afecte a la obtención de resultados.
- Se recomienda realizar un mayor número de repeticiones con el fin de obtener más datos ya que la prueba de Tukey es más exigente en comparación a las otras pruebas de rango múltiple como LSD (mínima diferencia significativa).
- Se recomienda trabajar cautelosamente en el área del ensayo, debido a que el ingreso del exterior y la manipulación de instrumentos sin la debida precaución puede contribuir al ataque de patógenos en el área de estudio

