

Estudio de distintos métodos de conservación de bacterias ácido lácticas, determinar su vida útil y eficacia luego de la conservación para la aplicación en productos agrícolas MPF (Mínimamente procesados en fresco).

Autora: Alcivar Sacón Keeylen Littsay

Directora: Sánchez Llaguno, Sungey Naynee, PhD.

Santo Domingo 2022

INTRODUCCIÓN

Altos niveles de proteínas, vitaminas y minerales

Bacterias ácido lácticas

Inhibición de patógenos

Mejorar características organolépticas

Alarga la vida útil

Gelación Iónica y Rocio

Productos mínimamente procesados en fresco

Énfasis en la alimentación saludable y la conveniencia.

Frescos, saludables y listos para consumir,

OBJETIVOS

General

Estudiar distintos métodos de conservación de bacterias ácido lácticas, determinar su vida útil y eficacia luego de la conservación para la aplicación en productos agrícolas MPF (Mínimamente procesados en fresco).

Específico

Evaluar el efecto de la aplicación de las bacterias ácido lácticas conservadas para la bioprotección de dos productos agrícolas mínimamente procesados en fresco (MPF) ; zanahoria y apio.

Determinar mediante análisis fisicoquímicos y microbiológicos la eficacia de las bacterias ácido lácticas como conservante, considerando tres géneros distintos: Leuconostoc mesenteroides, Lactobacillus plantarum y Lactococcus lactis, en productos agrícolas MPF.

Determinar la eficacia de distintos métodos de conservación de bacterias ácido lácticas: Gelación iónica y Roció.

HIPÓTESIS

FACTOR A (HORTALIZAS)

Ho: EL tipo de hortaliza no influye en la bioconservación con bacterias ácido lácticas.

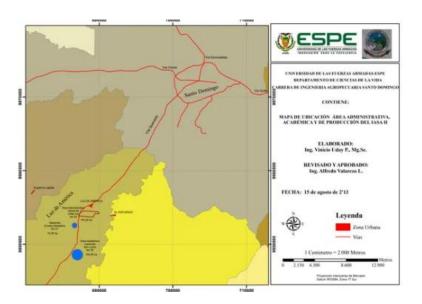
Ha: El tipo de hortaliza si influye en la bioconservación con bacterias ácido lácticas.

FACTOR B (BACTERIAS ÁCIDO LÁCTICAS)

Ho: El tipo de bacteria ácido láctica no influye en la bioconservación de la hortaliza.

Ha: El tipo de bacteria ácido láctica si influye en la bioconservación de la hortaliza.

FACTOR C (MÉTODOS)


Ho: El tipo de método de aplicación de las bacterias ácido lácticas, no influyen en la bioconservación de la hortaliza.

Ha: El tipo de método de aplicación de las bacterias ácido lácticas, si influyen en la bioconservación de la hortaliza.

METODOLOGÍA

Ubicación Geográfica

Ubicación Política

País: Ecuador

Provincia: Santo Domingo de los Tsáchilas

Cantón: Santo Domingo Parroquia: Luz de América

Sector: Vía Quevedo, Km 24

Ubicación Ecológica

Zona de vida: Bosque Húmedo Tropical

Altitud: 224 msnm

Temperatura media: 24,6 °C

Precipitación: 2860 mm/año

Humedad relativa: 85 %

Heliofanía: 680 horas luz/año

Suelo: Franco Arenoso

DISEÑO EXPERIMENTAL

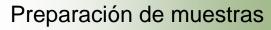
Factores	Simbología	Niveles	
	a0	Zanahoria	
	a1	Apio	
Hortalizas (A)	b0	Leuconostoc mesenteroides	
	b1	Lactobacillus plantarum	
Bacterias ácido lácticas (B)	b2	Lactococcus lactis	
	c0	Gelación iónica	
Métodos (C)	c1	Roció	

Tipo de Diseño

Modelo trifactorial en un diseño DBCA

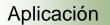
Repeticiones

Tres repeticiones por cada tratamiento con 36 U.E.


Análisis funcional

Prueba de significancia de Tukey (p<0,05)

METODOLOGÍA


Solución Bacteriana Tampón Ácido cítrico-Citrato de Sodio

Desinfección

Bioconservante

Encapsulación

Conservación

METODOLOGÍA

Variables a evaluar

pН

Acidez

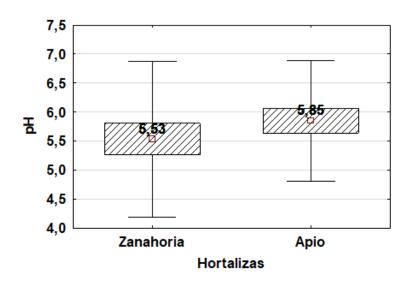
Humedad

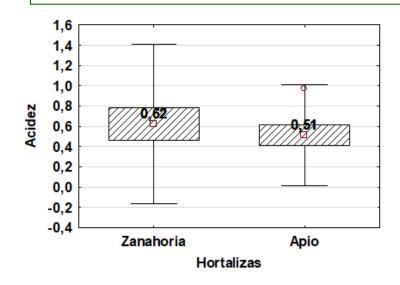
$$H(\%) = \frac{W2 - W1}{W} * 100$$

Conteo Bacteriano

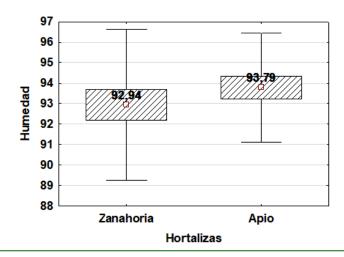
 $Recuento \; (\frac{\mathit{UFC}}{\mathit{mL}}) \\ \frac{\mathit{N\'umero} \; de \; colonias * Inverso \; del \; factor \; de \; dilusi\'on}{\mathit{Volumen inoculado}}$ Volumen inoculado

Cenizas

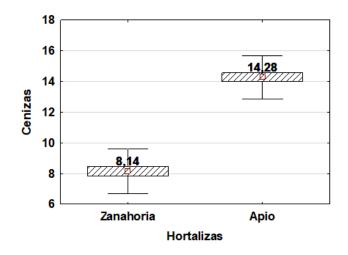

Análisis Sensorial



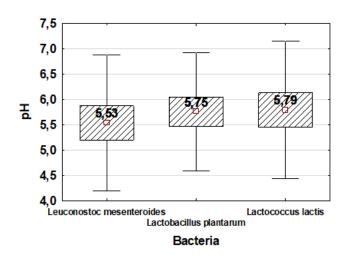
FACTOR A


(Pablo Casaubon-Garcín, 2018), indica que no existe deterioro significativo en la hortaliza y el porcentaje degradado puede deberse a la aplicación de las bacterias ácido lácticas.

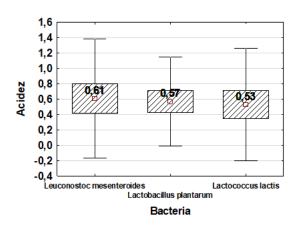
(Saúl Dussán-Sarria, 2014), menciona que el incremento de acidez se debe a la proliferación de las BAL y a la presencia del ácido predominante de las hortalizas..



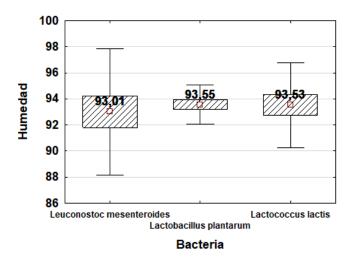
FACTOR A

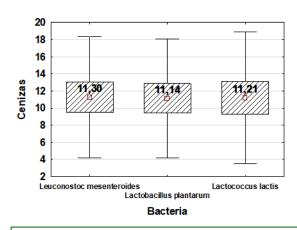

(Insuasti, 2021) menciona que sin algún método de conservación, estos valores pueden llegar a desfavorecer a la hortaliza ya que esto permite la fácil adaptación de microorganismos.

(Roxana María Hernández Rendón1, 2015), los porcentajes de cenizas en zanahoria oscilan entre valores de 7.62 % a 8,75 % siendo esto aceptable con nuestro estudio, ya que se tuvo un valor de 8,14 %.

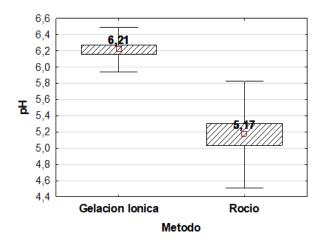


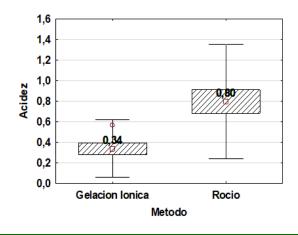
FACTOR B


(Martín del Campo M., Gómez H., & Alaníz de la O., 2008) indica que las BAL funcionan mucho mejor en pH bajos que van desde 6,1 a 4. Cabe mencionar que entre más producción de BAL, se observa mayor disminución de pH.

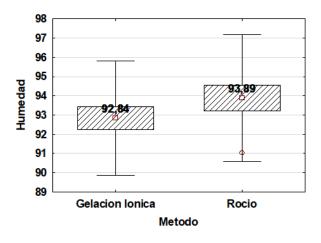

(Ángela M. León P.1, 2006) indica que los valores altos de acidez se deben a la capacidad de las Bal de disminuir pH y generar acidez como ácido láctico, málico, entre otros.

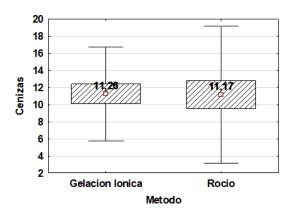
FACTOR B


(Saúl Ruiz Cruz, 2006), menciona que en base a su porcentaje de humedad el crecimiento de estas bacterias repercute en la síntesis de ácidos orgánicos, generando daños en los tejidos de las verduras.


(Alvarez, Determinación de cenizas totales o residuo mineral, 2010), menciona que los valores permitidos oscilan hasta 12%.

FACTOR C

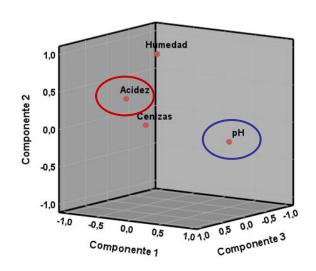

(Vallejo, Ledesma, Anselmino, & Marguet, 2014) indica que el alto valor de ph en el método de gelación iónica puede deberse a la solución encapsulante que fue el alginato de sodio, la misma que oscila un pH de entre 5,5 a 10.

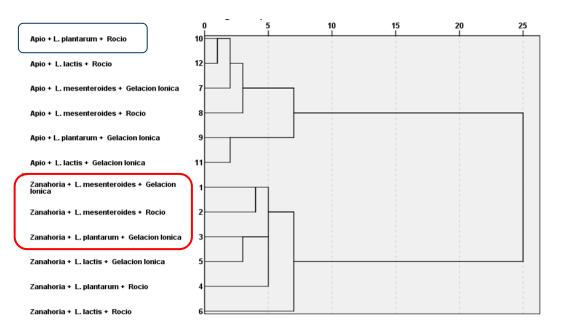

La acidez del método de Gelación iónica fue inferior al de rocío, esto puede deberse a que la producción de ácido por el medio gelificado es más lenta que por el otro método ya que este se encuentra de manera libre para producir acidez a partir de las ácido lácticas

FACTOR C

(Antonio De Michelis) menciona que los porcentajes de humedad elevados pueden llevar a ocasionar una pérdida en ciertos nutrientes del producto, ya que son más propensos a contaminación con patógenos.

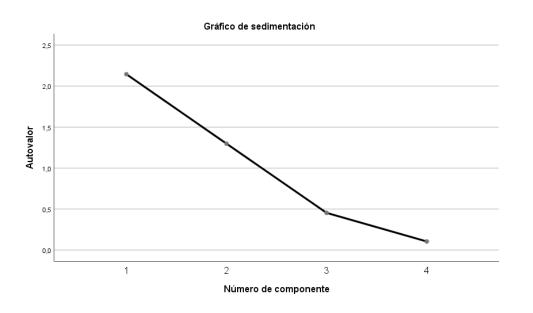
Los porcentajes de cenizas no variaron en el estudio debido a que la influencia del método no fue directamente proporcional a esta variable, ya que esta fue específicamente de la materia seca.


Interacciones	рН	Acidez	Humedad	Cenizas
a0b0c0: Zanahoria+Leuconostoc mesenteroides+Gelación Iónica	5,99 ^{CD}	0,16 ^A	90,81 ^A	8,65 AB
a0b0c1: Zanahoria + Leuconostoc mesenteroides + Rocio	4,86 ^A	0,89 ^{CD}	91,03 ^A	7,82 ^A
a0b1c0: Zanahoria + Lactobacillus plantarum + Gelación Iónica		0,32 ^{AB}	94,20 ^A	9,12 ABC
a0b1c1: Zanahoria + Lactobacillus plantarum + Rocio	4,98 ^A	0,97 ^D	93,26 ^A	7,38 ^A
a0b2c0: Zanahoria + Lactococcus lactis + Gelación Iónica	6,29 ^D	0,32 ^{AB}	92,75 ^A	8,56 AB
a0b2c1: Zanahoria + Lactococcus lactis + Rocio	4,95 ^A	1,05 ^D	95,59 ^A	7,34 ^A
a1b0c0: Apio + Leuconostoc mesenteroides + Gelación Iónica	6,22 ^D	0,41 ^{AB}	94,82 ^A	14,27 ^{CD}
a1b0c1: Apio + Leuconostoc mesenteroides + Rocio	5,07 ^A	0,97 ^D	95,37 ^A	14,45 ^D
a1b1c0: Apio + Lactobacillus plantarum + Gelación Iónica		0,57 ^{BC}	92,62 ^A	13,25 BCD
a1b1c1: Apio + Lactobacillus plantarum + Rocio		0,41 ^{AB}	94,12 ^A	14,81 ^D
a1b2c0: Apio + Lactococcus lactis + Gelación Iónica		0,24 ^{AB}	91,83 ^A	13,75 BCD
A1b2c1: Apio + Lactococcus lactis + Rocio	5,53 ^B	0,49 ^{AB}	93,96 ^A	15,19 ^D


Matriz de correlaciones Acidez Humedad pН Cenizas Correlación 1,000 pΗ -,880 -,241 ,318 -,880 1,000 Acidez ,389 -,283 Humedad -,241 ,389 1,000 ,291 Cenizas ,318 1,000 -,283 ,291

El pH presenta una correlación inversa a la acidez.

INTERACCIÓN AxBxC



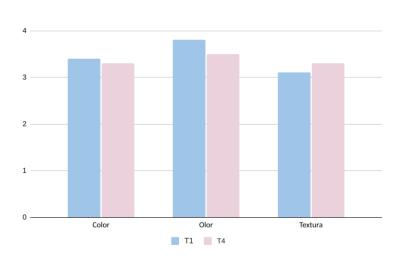
INTERACCIÓN AxBxC

Se observó valores cercanos entre los tratamientos
Zanahoria+L.mesenteroides+rocío con Zanahoria+L.mesenteroides+Gelación Iónica Zanahoria+L. plantarum+Gelación Iónica; mientras que el tratamiento Apio+L.plantarum+rocío indica menos similitud a los tratamientos.

INTERACCIÓN AXBXC

1	рН	53,624		
2	Acidez 32,440			
3	Humedad	11,323		

Se determinó 3 componentes con valores significativos que son: pH (componente 1) el cual registra un porcentaje de 53,624 %, acidez (componente 2) que indica un valor de 32,440 y Humedad (componente 3) con 11,323 %; mientras que el otro componente no muestra valores significativos.



Parámetros microbiológicos

Tratamiento	Aerobios	Moh y Lev
Zanahoria + Leuconostoc mesenteroides + Gelación Iónica	1.60E+01 UFC/mL	0
Zanahoria + Leuconostoc mesenteroides + Rocio	1.20E+01 UFC/mL	0
Zanahoria + Lactobacillus plantarum + Gelación Iónica	1.60E+01 UFC/mL	0
Zanahoria + Lactobacillus plantarum + Rocio	1.60E+01 UFC/mL	0
Zanahoria + Lactococcus lactis + Gelación Iónica	1.20E+01 UFC/mL	0
Zanahoria + Lactococcus lactis + Rocio	8.00E+00 UFC/mL	0
Apio + Leuconostoc mesenteroides + Gelación Iónica	8.00E+00 UFC/mL	0
Apio + Leuconostoc mesenteroides + Rocio	1.60E+01 UFC/mL	0
Apio + Lactobacillus plantarum + Gelación Iónica	1.20E+01 UFC/mL	0
Apio + Lactobacillus plantarum + Rocio	4.00E+00 UFC/mL	0
Apio + Lactococcus lactis + Gelación Iónica	1.20E+01 UFC/mL	0
Apio + Lactococcus lactis + Rocio	1.60E+01 UFC/mL	0

ANÁLISIS SENSORIAL

La figura indica, la comparación de los mejores tratamientos, en donde T1: Zanahoria + L. mesenteroides + Gelación Iónica, presento mejores resultados para los parámetros de color y olor.

Por lo contrario, en el parámetro textura, se evidenció que Zanahoria + L. Plantarum + Rocío que fue el que presentó mayor aceptación.

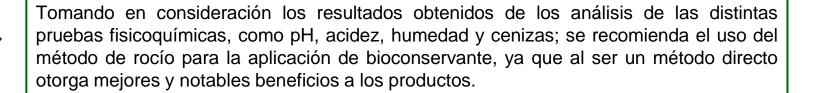
CONCLUSIONES

FACTOR A

La zanahoria presentó mejores características en las variables de pH con 5,53, acidez de 0,62 y cenizas con 8,14%, siendo estos valores óptimos para el crecimiento de bacterias ácido lácticas y para la conservación. Sin embargo, el Apio presentó mayor porcentaje de Humedad

FACTOR B

Se observó un efecto positivo en la bacteria Leuconostoc mesenteroides, la misma que presentó valores positivos para las variables de pH con 5,53, acidez con 0,61; siendo estos, indicativos de la existencia de crecimiento de bacterias ácido lácticas; mientras que con Lactococcus lactis se evidencio un pH superior y a su vez la acidez tendió a decrecer a 0,53.


FACTOR C

El método de Rocío presentó mejores características para las variables de pH con 5,17 y acidez con 0,80. Sin embargo el método de Gelación Iónica presentó mejores resultados para la humedad

RECOMENDACIONES

Utilizar la bacteria Leuconostoc mesenteroides para la bioconservación de hortalizas ya que indica mejores resultados de conservación en los parámetros fisicoquímicos evaluados, otorgando pH menores a 5, lo cual es óptimo para el crecimiento de las BAL.

En base a los resultados la zanahoria es una excelente hortaliza para estudios de bioconservación, ya que su poca humedad disminuye el crecimiento de microorganismos patógenos, permitiendo una mejor adaptación de las BAL.

