

Guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A.

Cisneros	Vargas.	Marco	And	rés
0.5110105	• a. pas,		,	

Departamento de Eléctrica y Electrónica

Carrera de Ingeniería en Electromecánica

Trabajo de titulación, previo a la obtención del título de Ingeniero en Electromecánica

Msc. Freire Llerena, Washington Rodrigo

5 de agosto del 2022

Latacunga

Reporte de análisis de contenidos

Cisneros 2.pdf

Scanned on: 18:52 August 3, 2022 UTC

Results Found

Total Words in Text

Identical Words	1968
Words with Minor Changes	0
Paraphrased Words	0
Omitted Words	1141

3

Departamento de Eléctrica y Electrónica

Carrera de Ingeniería en Electromecánica

Certificación

Certifico que el trabajo de titulación: "Guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A." fue realizado por el señor Cisneros Vargas, Marco Andres; el mismo que cumple con los requisitos legales, teóricos, científicos, técnicos y metodológicos establecidos por la Universidad de las Fuerzas Armadas ESPE, además ha sido revisado y analizado en su totalidad por la herramienta de verificación de similitud de contenidos; razón por la cual me permito acreditar y autorizar para que se lo sustente públicamente.

Latacunga, 5 de agosto del 2022

Msc. Freire Llerena, Washington Rodrigo

C.C.: 180191088-4

4

Departamento de Eléctrica y Electrónica

Carrera de Ingeniería en Electromecánica

Responsabilidad de Autoría

Yo, Cisneros Vargas, Marco Andres, con cédula de ciudadanía nº 1718547167, declaro que el contenido,

ideas y criterios del trabajo de titulación: Guía de instalación de acometidas y medidores para el área de

comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A. es de mi autoría y responsabilidad,

cumpliendo con los requisitos legales, teóricos, científicos, técnicos, y metodológicos establecidos por la

Universidad de las Fuerzas Armadas ESPE, respetando los derechos intelectuales de terceros y

referenciando las citas bibliográficas.

Latacunga, 5 de agosto del 2022

Cisneros Vargas, Marco Andres

C.C.: 1718547167

5

Departamento de Eléctrica y Electrónica

Carrera de Ingeniería en Electromecánica

Autorización de publicación

Yo, Cisneros Vargas, Marco Andres, con cédula de ciudadanía nº 1718547167, autorizo a la Universidad de las Fuerzas Armadas ESPE publicar el trabajo de titulación: Guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A. en el Repositorio Institucional, cuyo contenido, ideas y criterios son de mi/nuestra responsabilidad.

Latacunga, 5 de agosto del 2022

Cisneros Vargas, Marco Andres

C.C.: 1718547167

Dedicatoria

El presente trabajo de titulación va dedicado a Dios que siempre me acompaño y nunca me dejo en los momentos más difíciles, a mi familia que siempre me apoyó económica, moral y espiritualmente, a mis amigos que compartieron momentos buenos, pero sobre todo también los malos.

También se lo dedico a todas las buenas personas que conocí en este camino, gracias por su confianza y apoyo.

Agradecimientos

Agradezco Dios que me trajo a este momento mediante su obra misteriosa y divina, a mis maestros y profesores por brindarme un sólido conocimiento en las aulas, a mi padre y a mi madre por haberme formado como una buena persona, a mis amigos que son pocos, pero de calidad inigualable.

Agradezco también de manera especial a mi tutor de tesis Msc. Freire Llerena, Washington Rodrigo por su calidad humana y su calidez como profesor en la institución inspirando a muchos estudiantes a seguir adelante aun en los momentos más adversos, al actual director de la carrera de Ingeniería en Electromecánica el Ing. Freddy Salazar por su empeño y dedicación en las labores administrativas competentes a su cargo siempre en beneficio de nosotros los estudiantes, también a los ingenieros Santiago Medina y Bryan Gálvez tutores por parte de la Empresa Eléctrica Provincial de Cotopaxi que siempre brindaron las facilidades y recursos a su alcance para el correcto desarrollo del presente trabajo de titulación.

ÍNDICE DE CONTENIDOS

Carátula	1
Reporte de análisis de contenidos	2
Certificación	3
tesponsabilidad de autoría	4
Autorización de publicación	5
Dedicatoria	6
Agradecimientos	7
ndice de contenidos	8
ndice de figuras	.16
ndice de tablas	.18
Resumen	.22
Abstract	.23
Capítulo I: Planteamiento del problema	.24
Problemática	.24
Planteamiento del problema	.24
Antecedentes	.25
Justificación e importancia	.26
Objetivos	.27
Objetivo general	.27
Objetivos específicos	. <i>27</i>
Capítulo II: Marco Teórico	.28
Anteredentes investigativos	28

Fundamentación teórica30
Definiciones30
Fundamentación conceptual36
Identificador nemotécnico de las unidades de propiedad y de construcción36
Primer campo36
Segundo campo37
Tercer campo38
Cuarto campo39
Quinto campo39
Grupo de medidores en redes de distribución (ME)39
Grupo de acometidas en redes de distribución (AC)41
Grupo de puesta a tierra en redes de distribución (PT)43
Determinación de la demanda para usuarios residenciales45
Estratos de consumo45
Determinación de la demanda máxima unitaria y carga instalada45
Acometidas Disposiciones Generales46
Obras Civiles50
Caja porta medidores53
Pozos de revisión55
Ductos y materiales56
Ductos de acometidas domiciliarias58
Acometidas provenientes de redes aéreas60
Acometidas en medio voltaie60

Centros de transformación	61
Obra civil	62
Obra Eléctrica	62
Exigencias generales de las instalaciones eléctricas	67
Exigencias en materiales y equipos	68
Espacios de trabajo y distancias mínimas de seguridad	68
Marcas e identificadores	69
Tableros	70
Material Eléctrico dentro de un tablero	76
Conexión a tierra en tableros	77
Tableros de medidores	77
Alimentadores	80
Canalización de alimentadores	81
Canalizaciones y conductores	82
Colores de conductores de una canalización eléctrica	83
Protecciones de alimentadores	84
Dimensionamiento del neutro	84
Conductores para instalaciones	84
Medidas de protección contra voltajes peligrosos	85
Sistemas de puestas a tierra	88
Objetivos y funciones de un SPT:	88
Consideraciones de un SPT:	89
Electrodos de puesta a tierra	92

Instalación de electrodos de puesta a tierra93
Conductores de puesta a tierra94
Valores de resistencia de puesta a tierra95
Mediciones de resistencias de puesta a tierra95
Fundamentación legal95
Regulación ARCONEL 001/202095
Regulación ARCERNNR – 002/2097
Sistema de variables98
Variable independiente98
Variable dependiente98
Hipótesis99
Operacionalización de variables99
Cuadro de operacionalización de las variables99
Capítulo III: Metodología de la investigación100
Modalidad de la investigación100
Método bibliográfico documental100
Tipos de investigación100
Investigación aplicada tecnológica100
Diseño de la investigación101
Niveles de la investigación101
Exploratorio101
Descriptivo101
Población y muestra101

Técnicas de recolección de datos102
Validez y confiabilidad103
Técnicas de análisis de datos103
Técnicas de comprobación de hipótesis103
Capítulo IV: Resultados de la investigación104
Análisis de los resultados104
Norma Ecuatoriana de la Construcción (NEC) Instalaciones Eléctricas 2018104
Norma Ecuatoriana de la Construcción (NEC) Instalaciones Electromecánicas 2013 104
Discusión de los resultados105
Norma Ecuatoriana de la Construcción (NEC) Instalaciones Eléctricas 2018105
Norma Ecuatoriana de la Construcción (NEC) Instalaciones Electromecánicas 2013105
Capítulo V: Propuesta
Objetivos107
Alcance107
Definiciones
Instalaciones eléctricas112
Materiales y equipos112
Marcas e identificadores de materiales y equipos112
Acometidas113
Ductos de acometidas114
Calibre de conductores de acometidas115
Cálculo de caída de voltaje en acometida115
Tablas de longitudes de acometidas116

Caídas de voltaje para 240 V en red11	7
Caídas de voltaje para 232 V en red12	!9
Caídas de voltaje para 224 V en red14	!1
Caídas de voltaje para 220 V en red14	!9
Calibre del conductor neutro15	;4
Aislamiento de conductores15	;4
Distancias de seguridad15	5
Obras Civiles	5
Acometidas Aéreas en bajo voltaje desde redes aéreas15	6
Soporte y sujeción	57
Cajas porta medidores	60
Acometidas subterráneas en bajo voltaje desde redes aéreas16	i 1
Pozos de revisión	i3
Pozos de revisión en aceras	i 4
Ductos de acometidas	5 4
Sellado de canalizaciones	5
Tableros de medidores	5
Especificaciones de construcción de tableros de medidores16	; 7
Colocación en lugares húmedos y mojados16	8
Consideraciones para determinar el tamaño del tablero de medidores16	;9
Material eléctrico dentro de un tablero17	'1
Identificación de tableros de medidores17	'2
Ventilación de tableros de medidores17.	'2

	Distribución de espacios en tableros de medidores	172
	Identificación de servicios del tablero de medidores	174
	Iluminación del tablero de medidores	174
	Uso del espacio y reservas en tableros de medidores	174
	Ubicación de tableros de medidores	176
	Tableros de medidores en parqueaderos	176
	Alimentadores a tableros de medidores	176
Canaliza	aciones y conductores	177
	Colores de conductores de una canalización eléctrica	177
	Conductores para instalaciones	178
Medida	s de protección contra voltajes peligrosos	179
	Contactos directos	179
	Contactos indirectos	180
	Medidas complementarias para protección contra voltajes de contacto peligrosos	180
Medido	res rf	180
	Equipo recolector de información	183
Sistema	s de puesta a tierra	183
	Objetivos y funciones de un spt:	183
	Parámetros para el cálculo de un spt:	183
	Consideraciones de un spt:	184
	Electrodos de puesta a tierra	186
	Instalación de electrodos de puesta a tierra	187
	Conductores de puesta a tierra	189

Valores de resistencia de puesta a tierra	190
Mediciones de resistencia de puesta a tierra	190
Capítulo VI: Conclusiones y Recomendaciones	191
Conclusiones	191
Recomendaciones	191
Bibliografía	193
Δηργος	194

ÍNDICE DE FIGURAS

Figura 1	Esquema del identificador nemotécnico de las unidades de propiedad	36
Figura 2	Regulación de voltaje al 2,5% para Cu #6 AWG y Al #4 AWG	48
Figura 3	Obras civiles para acometida, medidor y puesta a tierra	51
Figura 4	Caja porta medidores con pozo de revisión (vista lateral)	59
Figura 5	Caja porta medidores sin pozo de revisión (vista frontal y lateral)	59
Figura 6	Base y pozo para transformador padmounted	67
Figura 7	Zona alcanzable establecida	86
Figura 8	Puestas a tierra interconectadas eléctricamente	90
Figura 9	Una sola puesta a tierra para todas las necesidades (prohibido)	91
Figura 10	Puestas a tierra separadas o independientes (prohibido)	91
Figura 11	Disposición típica de electrodos de puesta a tierra	93
Figura 12	2 Disposición típica de electrodos profundos de puesta a tierra	94
Figura 13	Ubicación de acometidas vista superior	114
Figura 14	Àrea máxima de conductores en ductos metálicos	115
Figura 15	Conexión de acometida aérea al medidor	157
Figura 16	6 Cruces de calle, vías públicas. Caminos y carreteras de alto tráfico	158
Figura 17	Aceras y vías peatonales	159
Figura 18	Caja porta medidor antihurto	160
Figura 19	Acometida subterránea proveniente de red aérea sin cruce de vía	162
Figura 20	Acometida subterránea proveniente de red aérea con cruce de vía	163
Figura 21	Tablero de medidores	167
Figura 22	P. Fsnacios en tableros de medidores	172

Figura 23	Tableros de medidores de construcción modular	. 175
Figura 24	Medidor RF bifásico tres hilos	. 182
Figura 25	Puestas a tierra interconectadas eléctricamente	. 185
Figura 26	Una sola puesta a tierra para todas las necesidades (prohibido)	. 185
Figura 27	Puestas a tierra separadas o independientes (prohibido)	. 186
Figura 28	Disposición típica de electrodos de puesta a tierra	. 188
Figura 29	Disposición típica de electrodos profundos de puesta a tierra.	. 189

ÍNDICE DE TABLAS

Tabla 1 P	Primer campo de las UP	37
Tabla 2 S	egundo campo de las UP	38
Tabla 3	Cuarto campo del grupo Medidores	40
Tabla 4	Quinto campo del grupo Medidores	41
Tabla 5	Cuarto campo del grupo Acometidas	42
Tabla 6	Quinto campo del grupo Acometidas	43
Tabla 7 E	stratos de consumo de la EEQ	45
Tabla 8 V	alores de referencia de Demanda Máxima y Carga instalada de la EEQ	46
Tabla 9 🔑	Nturas de fijación para acometidas	52
Tabla 10	Dimensiones para cajones de medidores hasta 5 usuarios	54
Tabla 11	Dimensiones para pozos de revisión	56
Tabla 12	Pozos eléctricos en aceras	56
Tabla 13	Resistencia al impacto de tubos tipo B	57
Tabla 14	Características del ducto liso de PVC rígido tipo II pesado diámetro 110 mm	57
Tabla 15	Dimensiones de cámaras de transformación tipo convencional	61
Tabla 16	Espacios de trabajo y distancias de seguridad	69
Tabla 17	Espesor de planchas para construcción de tableros	74
Tabla 18	Distancias entre partes energizadas desnudas dentro de un tablero	75
Tabla 19	Área útil de un tablero de medidores según el número de filas	78
Tabla 20	Valores máximos de tensión de contacto aplicada al ser humano	89
Tabla 21	Requisitos para electrodos de puesta a tierra	92
Tabla 22	Valores de resistencia de puesta a tierra	95

Tabla 23	Límites para el índice de nivel de voltaje	98
Tabla 24	Operacionalización de las variables	99
Tabla 25	Aluminio 3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 240 V	. 117
Tabla 26	Aluminio3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 240 V	. 118
Tabla 27	Aluminio3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 240 V	. 119
Tabla 28	Cobre 3x6 AWG Usuario tipo B (Hasta 13600 W) y voltaje de red 240 V	. 120
Tabla 29	Cobre 3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 240 V	. 121
Tabla 30	Cobre 3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 240 V	. 122
Tabla 31	Cobre 3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 240 V	. 123
Tabla 32	Cobre 3x8 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 240 V	. 124
Tabla 33	Cobre 3x8 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 240 V	. 125
Tabla 34	Cobre 3x8 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 240 V	. 126
Tabla 35	Aluminio2x6 + 1x10 AWG Usuario tipo D (Hasta 4420W) y voltaje de red 240 V	. 127
Tabla 36	Aluminio2x6 + 1x10 AWG Usuario tipo E (Hasta 3020W) y voltaje de red 240 V	. 128
Tabla 37	Aluminio3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 232 V	. 129
Tabla 38	Aluminio3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 232 V	. 130
Tabla 39	Aluminio3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 232 V	. 131
Tabla 40	Cobre 3x6 AWG Usuario tipo B (Hasta 13600 W) y voltaje de red 232 V	. 132
Tabla 41	Cobre 3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 232 V	. 133
Tabla 42	Cobre 3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 232 V	. 134
Tabla 43	Cobre 3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 232 V	. 135
Tabla 44	Cobre 3x8 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 232 V	. 136
Tabla 45	Cobre 3x8 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 232 V	. 137

Tabla 46	Cobre 3x8 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 232 V	138
Tabla 47	Aluminio2x6 + 1x10 AWG Usuario tipo D (Hasta 4420W) y voltaje de red 232 V	139
Tabla 48	Aluminio2x6 + 1x10 AWG Usuario tipo E (Hasta 3020W) y voltaje de red 232 V	140
Tabla 49	Aluminio3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 224 V	141
Tabla 50	Aluminio3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 224 V	141
Tabla 51	Aluminio3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 224 V	142
Tabla 52	Cobre 3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 224 V	143
Tabla 53	Cobre 3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 224 V	144
Tabla 54	Cobre 3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 224 V	145
Tabla 55	Cobre 3x8 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 224 V	146
Tabla 56	Cobre 3x8 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 224 V	146
Tabla 57	Cobre 3x8 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 224 V	147
Tabla 58	Aluminio2x6 + 1x10 AWG Usuario tipo D (Hasta 4420W) y voltaje de red 224 V	148
Tabla 59	Aluminio2x6 + 1x10 AWG Usuario tipo E (Hasta 3020W) y voltaje de red 224 V	148
Tabla 60	Aluminio3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 220 V	149
Tabla 61	Aluminio3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 220 V	149
Tabla 62	Aluminio3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 220 V	150
Tabla 63	Cobre 3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 220 V	150
Tabla 64	Cobre 3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 220 V	151
Tabla 65	Cobre 3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 220 V	152
Tabla 66	Cobre 3x8 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 220 V	152
Tabla 67	Cobre 3x8 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 220 V	153
Tabla 68	Cobre 3x8 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 220 V	153

Tabla 69	Aluminio2x6 + 1x10 AWG Usuario tipo D (Hasta 4420W) y voltaje de red 220 V	154
Tabla 70	Aluminio2x6 + 1x10 AWG Usuario tipo E (Hasta 3020W) y voltaje de red 220 V	154
Tabla 71	Dimensiones de cajones de medidores	161
Tabla 72	Dimensiones de pozos de revisión	164
Tabla 73	Distribución de espacios de pozos de revisión en aceras	164
Tabla 74	Espesor de planchas para construcción de tableros	170
Tabla 75	Distancias mínimas entre partes desnudas energizadas	171
Tabla 76	Área útil de acuerdo al número de filas	174
Tabla 77	Especificaciones generales para medidores RF	181
Tabla 78	Especificaciones de operación para medidores RF	182
Tabla 79	Valores máximos de tensión de contacto aplicada al ser humano	184
Tabla 80	Materiales y dimensiones para electrodos de puesta a tierra	187
Tabla 81	Valores sugeridos para puestas a tierra	190

Resumen

El presente proyecto consiste en la elaboración de una guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial de Cotopaxi ELEPCO S.A. utilizando materiales homologados con las unidades de propiedad existentes y establecidas en el sector eléctrico ecuatoriano, se utilizan además como referencias principales Normativas ecuatorianas como Norma Ecuatoriana de la Construcción (NEC) Normas INEN NTE relacionadas con la instalación de acometidas y medidores, Código Eléctrico Nacional, Normativas internacionales como IEC, regulaciones del sector eléctrico establecidas por el Ministerio de Energía y Recursos Naturales no Renovables (MERNNR), también se toma como referencia publicaciones y guías propuestas por diferentes empresas eléctricas del país tales como Empresa Eléctrica Quío S.A., Empresa Eléctrica Ambato S.A., Empresa Eléctrica Regional Centro Sur C. A., CNEL EP, entre otras. Una vez reunida y validada la información de las distintas fuentes bibliográficas se procede con la elaboración de la guía cuyos temas principales de interés son: Acometidas aéreas, Acometidas subterráneas, Cálculo de longitudes máximas con caídas de voltaje admisibles utilizando diferentes tipos de calibres de conductores homologados, tableros de medidores, medidores RF, puestas a tierra, entre otros.

Palabras claves: acometidas, medidores RF, caída de voltaje, norma ecuatoriana de la construcción.

Abstract

The present project consists of the elaboration of a guide for the installation of connections and meters for the commercialization area of the Provincial Electric Company of Cotopaxi ELEPCO S.A. using materials approved with the existing property units and established in the Ecuadorian electricity sector, Ecuadorian regulations such as Ecuadorian Construction Standard (NEC) INEN NTE standards related to the installation of connections and meters, National Electric Code, are also used as main references. International regulations such as IEC, electricity sector regulations established by the Ministry of Energy and Non-Renewable Natural Resources (MERNNR), publications and guides proposed by different electricity companies in the country such as Empresa Eléctrica Quío S.A., Empresa Eléctrica Ambato S.A., Empresa Eléctrica Regional Centro Sur C. A., CNEL EP, among others. Once the information from the different bibliographic sources has been collected and validated, the guide is prepared, the main topics of interest being: Aerial connections, Underground connections, Calculation of maximum lengths with admissible voltage drops using different types of approved conductor gauges, meter boards, RF meters, grounding, among others.

Keywords: rush, rf meters, voltage drop, ecuadorian construction standard.

Capítulo I

Planteamiento del problema

Problemática

Planteamiento del problema

La Empresa Eléctrica Provincial Cotopaxi S.A. (ELEPCO S.A.) se ha basado hasta la actualidad en las guías de diseño e instalación de otras empresas eléctricas y también en las normativas y regulaciones emitidas por los agentes reguladores del sector eléctrico ecuatoriano para ofrecer un servicio de calidad a sus clientes, pero al no contar con una guía de instalación de acometidas y medidores propia se hace difícil estandarizar sus procesos ya que la información con la que cuentan ha sido desarrollada por distintas empresas eléctricas con características y necesidades diferentes.

La instalación de acometidas y medidores se relaciona directamente con la satisfacción de los usuarios y es una de las áreas críticas dentro de una empresa Eléctrica de Distribución por lo que la homologación del proceso de instalación de acometidas y medidores en base a las unidades constructivas y de propiedad vigentes emitidas por el Ministerio de Energía y Recursos Naturales no Renovables (ex MEER) es de vital importancia.

Actualmente ELEPCO S.A. no cuenta con un documento que detalle la homologación de Especificaciones Técnicas, Unidades de Propiedad, Unidades Constructivas, Simbología, entre otros aspectos en el proceso de instalación de acometidas y medidores, razón por la cual esta actividad en ocasiones incumple ciertos parámetros establecidos en guías de diseño e instalación propuestas por otras Empresas Eléctricas tales como distancias de seguridad a conductores de medio voltaje, puestas a tierra, canalización de acometidas, ubicación de medidores, tableros generales de medición, etc.

La falta de una guía de instalación de acometidas y medidores para el área de comercialización de ELEPCO S.A. compromete la integridad de las personas y sus bienes materiales dejándolos expuestos

a malas prácticas que solo generan pérdidas económicas, reclamos, pérdidas de tiempo, además de una baja satisfacción de los clientes, por lo que, la elaboración de una guía de instalación de acometidas y medidores propia es una necesidad primordial tanto para la empresa distribuidora como para los usuarios.

Antecedentes

Según el artículo 4 de la Ley Orgánica del Servicio Público de Energía Eléctrica se establece que es derecho del consumidor "recibir el servicio público de energía eléctrica acorde con los principios constitucionales de eficiencia, responsabilidad, continuidad, calidad y precio equitativo".

Según el artículo 34, numerales primero y cuarto, del reglamento general de la ley orgánica del servicio público de energía eléctrica se señala que es obligación de la distribuidora proveer el suministro de energía eléctrica al consumidor, observando principios de accesibilidad, continuidad, calidad, confiabilidad, seguridad, calidez, igualdad, transparencia, eficiencia y eficacia; así como cumplir y reportar los índices y límites de calidad del servicio eléctrico de distribución.

Existen empresas distribuidoras de energía eléctrica que cuentan con guías de diseño e instalación propias para la regulación de sus actividades y homologación de sus procesos tales como:

CNEL EP que cuenta con un "Manual para la instalación de la acometida y sistemas de medición a los consumidores de CNEL EP" cuyo objetivo es establecer normas y disposiciones para el diseño y la instalación de acometidas de servicio eléctrico y sistemas de medición.

EEASA posee sus propias guías de diseño donde se encuentra la parte 2 correspondiente a "Instalaciones eléctricas interiores" cuya finalidad es que el suministro de energía se realice en las mejores condiciones técnicas, de continuidad y seguridad; lo cual, contribuirá a mantener la calidad técnica del servicio en las redes de medio y bajo voltaje de la empresa distribuidora.

Por su parte EEQ cuenta con sus normas para sistemas distribución donde en su parte A titulada "Guía para diseño de redes de distribución" plantea como objetivos Instituir técnicas práctico teóricas que regulen los Sistemas de Distribución, en lo competente a Diseño y Construcción en su área de concesión, orientar al personal, clientes, profesionales independientes y firmas especializadas, en el cumplimiento de requisitos previos y concurrentes de la gestión administrativa y técnica de las diferentes etapas de realización de los proyectos.

La elaboración de una guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A. permitirá que las futuras instalaciones, cambios y reubicaciones se realicen con una metodología propia, estandarizada y homologada que cumpla con las normativas y regulaciones existentes de acuerdo con las necesidades y características de los usuarios.

Justificación e importancia

La Empresa Eléctrica Provincial de Cotopaxi no cuenta con una guía propia de instalación de acometidas y medidores por lo que la elaboración de la Guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A. garantizará al consumidor de energía eléctrica la calidad del servicio prestado acorde a las normativas emitidas por el agente regulador y las instituciones relacionadas con el ámbito eléctrico a nivel nacional, de esta manera la empresa distribuidora contará con una guía técnica apropiada para que sus instalaciones futuras puedan realizarse adecuadamente aumentando los índices de satisfacción de sus clientes y evitando accidentes de tipo eléctrico.

Esta guía contribuirá de manera significativa a que el personal de ELEPCO S.A. encargado de realizar la instalación de acometidas y medidores cuenten con un procedimiento estandarizado con

unidades constructivas y de propiedad homologadas por el Ministerio de Energía y Recursos Naturales no Renovables.

Objetivos

Objetivo general

Elaborar una guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A.

Objetivos específicos

Realizar una investigación bibliográfica de las guías técnicas vigentes relacionadas con la instalación de acometidas y sistemas de medición de la EEQSA, EEASA y CNEL

Validar la selección de los materiales y equipos utilizados en la instalación de medidores y acometidas en redes de Bajo Voltaje en ELEPCO S.A. en base a las unidades de propiedad emitidas actualmente por el Ministerio de Energía y Recursos Naturales no Renovables

Adaptar las normativas técnicas existentes a las características y condiciones de los usuarios de la Empresa Eléctrica Provincial de Cotopaxi.

Colocar esquemas que reflejen gráficamente la correcta aplicación de la guía y que sirvan como instructivo para el personal técnico.

Capítulo II

Marco Teórico

Antecedentes investigativos

El presente proyecto está orientado a un estudio bibliográfico de normativas, guías y unidades de propiedad existentes correspondientes a la instalación de acometidas y medidores con el objeto de conformar una guía homologada que pueda ser utilizada por el personal técnico y del área de comercialización de la Empresa Eléctrica Provincial Cotopaxi.

La falta de una guía adecuada y homologada que se adapte a los requerimientos de los clientes de ELEPCO S.A. conlleva a la investigación bibliográfica por parte del autor para establecer un estándar en las actividades de instalación de acometidas y medidores.

El trabajo de titulación "Estudio técnico del proceso de instalación de medidores de energía eléctrica y su incidencia en la calidad de servicio a los clientes de la Empresa Eléctrica Provincial Cotopaxi, matriz Latacunga" (PAREDES, 2017). Trabajo de titulación previo a la obtención del título de Ingeniero Industrial del autor Víctor Rodrigo Paredes Villa menciona que "la Empresa Eléctrica Regional Norte, la Empresa Eléctrica Centro Sur, la Empresa Eléctrica Ambato y otras pocas más tienen los procesos de instalación de medidores normados, pero también existen empresas como ELEPCO S.A y otras que hasta la fecha no tiene procesos estandarizados, Si bien es cierto que progresivamente existe una mejora en la gestión de la empresa, también es necesario seguir impulsando todas aquellas ideas, planes y proyectos que permitan un mayor desarrollo, tener procesos más eficaces, eficientes, con valor agregado, que sean medidos, evaluados y retroalimentados hacia una mejora continua".

El trabajo de titulación "Actualización de normalización y procedimientos de instalaciones eléctricas para media y baja tensión en ELEPCO S.A." (TARCO, 2007). Proyecto de Grado para la obtención del Título de Ingeniero en Electromecánica del autor John Fernando Tarco Bravo propone la

utilización de normativas existentes de la Empresa Eléctrica Quito y de la Empresa Eléctrica Ambato para la creación de una normativa propia para ELEPCO S.A. En el capítulo 3 se establece una categorización de los clientes por tipos A, B, C, D, E, F, siendo A los clientes más cercanos al centro urbano y F los clientes más alejados como por ejemplo en el páramo de la provincia de Cotopaxi. La caída de tensión máxima admisible en las acometidas es de hasta el 1% y la caída de tensión en la red secundaria es de hasta 3% para zonas urbanas y de hasta 5% para zonas rurales. Se establece también criterios para la conexión del neutro a tierra que dependen de la zona ya sea urbana o rural. Finalmente, el trabajo concluye con el Procedimiento Para la Aprobación y Construcción de Proyectos de distribución.

El trabajo de titulación "Metodología para la construcción de acometidas e instalación de medidores digitales" (MEJIA, 2014), Informe técnico previo la obtención del Título de Tecnólogo en Electricidad Y Control Industrial del autor José Herminio Mejía Molina describe los lineamientos generales para la instalación de medidores del tipo digital con acometidas subterráneas o aéreas de La Empresa Eléctrica Regional del Sur (EERSSA) la cual dispone de sistemas de medición monofásicos, bifásicos o trifásicos. El calibre del conductor varía de acuerdo a la carga que será determinada mediante un censo de carga para seleccionar un conductor adecuado. Los medidores serán instalados en un tablero metálico y en el caso de que se requiera dos o más medidores se realizará la instalación de un tablero de medidores. Se colocará también una puesta a tierra con conductor de cobre cableado desnudo cuyo calibre mínimo a utilizarse será 6 AWG y será conectado a una varilla de copperweld de diámetro de 16mm y 1800 mm de longitud.

El trabajo de titulación "Implementación del sistema de facturación y medidores prepago en la empresa eléctrica provincial Cotopaxi – plan piloto" (LLUMILUISA, 2011). Tesis de grado previo a la obtención del título de Ingeniero Eléctrico en SEP de los autores Robinson Mera Llumiluisa y Carlos Tovar Garzón elabora un plan piloto para la implementación del sistema de facturación y medidores

prepago en la provincia de Cotopaxi, lo cual conlleva a un estudio previo de varios temas, tales como la situación actual del sistema de comercialización de la Empresa Eléctrica Provincial Cotopaxi (ELEPCO S.A.), la satisfacción del cliente, tomando en cuenta la ley de Régimen del Sector Eléctrico Ecuatoriano, Ley de Defensa del Consumidor y aquello relacionado al aspecto legal sin perjudicar al usuario ni al distribuidor. En el capítulo 1 en la sección 3 se describen el sistema de conductores empleados en la instalación de medidores prepago donde se describe la selección de cables y accesorios tomando en cuenta las corrientes máximas, las caídas de voltaje, las longitudes máximas de las acometidas y las normativas aplicadas a los conductores. Finalmente, en el anexo 3.3 podemos encontrar las normas y procedimientos para instalación de acometidas y medidores donde se muestra que, si el voltaje de la red secundaria y la resistencia del conductor son constantes, la caída de voltaje en las acometidas es proporcional a la corriente consumida por la carga del cliente y a la longitud de la acometida.

Fundamentación teórica

Definiciones

Empresa distribuidora

Persona jurídica cuyo Título Habilitante le permite realizar la acción de distribuir y comercializar energía eléctrica y prestar el servicio de alumbrado público, dentro de su área de servicio. (Agencia de Regulación y Control de Electricidad [ARCONEL], 2020)

Área de servicio

Es el área determinada por el Ministerio de Energía y Recursos Naturales No Renovables en la cual una empresa eléctrica brinda el servicio de distribución y comercialización de energía eléctrica y el servicio de alumbrado público. (ARCONEL, 2020)

Calidad

Grado con el que los servicios de energía eléctrica y alumbrado público cumplen con los requisitos técnicos y comerciales referentes al suministro de energía eléctrica y alumbrado público establecidos en la normativa vigente. (ARCONEL, 2020)

Sistema de distribución

"Conjunto de líneas de subtransmisión, subestaciones de distribución, alimentadores primarios, transformadores de distribución, redes secundarias, acometidas, equipamiento de compensación, protección, maniobra, medición, control y comunicaciones, utilizados para la prestación del servicio de distribución de energía eléctrica". (ARCONEL, 2020)

Sistema de medición

Componentes útiles para la medición de energía eléctrica activa, reactiva, demanda máxima y demás parámetros relacionados. Contiene equipo de registro y visualización (medidor), transformadores de tipo TP y TC (cuando se requiera), cables, accesorios y protección física del medidor y transformadores. (ARCONEL, 2020)

Usuario final

Persona natural o jurídica que recibe la prestación del servicio de energía eléctrica, ya sea como propietario del inmueble donde éste se presta, o como receptor directo del servicio. (ARCONEL, 2020)

Gran consumidor

Persona natural o jurídica, cuyas características de demanda de energía eléctrica le facultan para acordar libremente con un generador o autogenerador privado, la adquisición de energía eléctrica para su consumo. (ARCONEL, 2020)

Medición

Acción de obtener el registro del consumo de energía eléctrica además de parámetros eléctricos relacionados, referentes al equipo de medición del usuario. (ARCONEL, 2020)

Acometida

Conexión entre la red eléctrica y la instalación eléctrica del consumidor. (ARCONEL, 2020)

Medidor

Equipo que permite medir y registrar la energía activa, reactiva, demanda máxima y parámetros relacionados con la electricidad, incluye pantalla de visualización. (ARCONEL, 2020)

Punto de conexión

Límite de conexión entre las instalaciones de dos participantes mayoristas del sector eléctrico.

(ARCONEL, 2020)

Punto de entrega

Límite de conexión entre las instalaciones de la distribuidora y de propiedad del usuario final. (ARCONEL, 2020)

Niveles de voltaje

Se definen los siguientes niveles de voltaje:

- Bajo voltaje: voltaje menor o igual a 0,6 kV;
- Medio voltaje: voltaje mayor a 0,6 y menor o igual a 40 kV;
- Alto voltaje grupo 1: voltaje mayor a 40 y menor o igual a 138 kV; y,
- Alto voltaje grupo 2: voltaje mayor a 138 kV. (ARCONEL, 2020)

Centro de transformación

Conjunto de elementos de transformación, protección y seccionamiento utilizados para la distribución de energía eléctrica. (Agencia de Regulación y Control de Electricidad [ARCONEL], 2018)

Voltaje nominal

Voltaje especificado en el diseño de una red eléctrica. (ARCERNNR, 2020)

Voltaje de suministro

Voltaje del servicio que la empresa distribuidora de energía eléctrica entrega al consumidor en un instante dado. (ARCERNNR, 2020)

Cable

Conductor sólido o conjunto de hilos que pueden poseer o no aislamiento. (Agencia de Regulación y Control de Electricidad [ARCONEL], 2018)

Conductor

Material que permite el flujo de energía eléctrica, por lo general en forma de cable o barra sólida, idóneo para transportar una corriente eléctrica. La capacidad de transmisión está determinada por la poca resistencia que presenta el material, ante el flujo eléctrico. (ARCONEL, 2018)

Distancia de seguridad

Distancia mínima permitida entre superficies de un objeto energizado y las edificaciones o personas para reducir el riesgo de descargas eléctricas. (ARCONEL, 2018)

Edificación

Construcción destinada a ser ocupada y habitada por seres humanos. (ARCONEL, 2018)

Franja de servidumbre

Superficie horizontal simétrica con respecto al eje de la línea de alto voltaje, utilizada con el objeto de evitar contactos de carácter accidental con partes energizadas y así poder garantizar la seguridad de seres humanos, así como también la confiabilidad de la línea. (ARCONEL, 2018)

Flecha final

Distancia vertical entre el conductor y la línea imaginaria que junta los extremos del conductor con las estructuras de soporte. (ARCONEL, 2018)

Línea de distribución

Estructura que se utiliza con el objeto de transportar electricidad, cuyo propietario es la empresa eléctrica distribuidora. (ARCONEL, 2018)

Líneas de transmisión

Estructura que se utiliza con el objeto de transportar electricidad, cuyo propietario es el transmisor o generador. (ARCONEL, 2018)

Objeto energizado

Objeto que se encuentra conectado eléctricamente a una fuente de voltaje. (ARCONEL, 2018)

Partes energizadas

Pueden ser aquellos conductores, terminales, barras u otros componentes eléctricos que puedan producir descargas eléctricas. (ARCONEL, 2018)

Sistema de puesta a tierra

Unión de todos los elementos metálicos que, a través de cables con sección suficiente entre las partes de una instalación y un conjunto de electrodos, posibilita la desviación a tierra de las descargas de tipo atmosférico o de corrientes de falla, limitando la diferencia de potencial excesiva que significaría un peligro en las instalaciones. (Norma Ecuatoriana de la Construcción [NEC], 2018)

Tablero general de medidores (TGM)

En edificaciones o construcciones con acometidas aéreas o subterráneas cuyo requerimiento sea de seis medidores en adelante será necesaria la implementación de un tablero general de

medidores (TGM), el cual deberá ser ubicado en un lugar de fácil acceso que facilite la lectura del contador de energía por parte del personal encargado de esta actividad.

Se debe colocar el diagrama unifilar del sistema de medida con sus respectivas protecciones, detallando las fases de los alimentadores a los que se encuentra conectado cada sección de la edificación y su potencia respectiva.

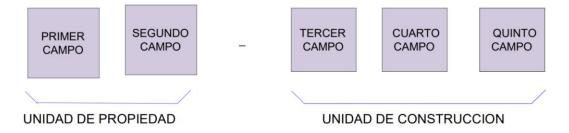
En caso de requerirse modificaciones de los TGM se pondrá a consideración del departamento encargado de la empresa distribuidora adjuntando los planos digitales e impresos. (Empresa Eléctrica Ambato S.A. [EEASA], 2011)

Unidades de propiedad (UP)

Se denomina unidad de propiedad al grupo de bienes diferentes pero asociados con el fin de cumplir una tarea específica dentro de un sistema de distribución de energía eléctrica, este conjunto abarca a las unidades de construcción. (Ministerio de Energía y Recursos Naturales No Renovables [MERNNR], 2011)

Unidad de construcción (UC)

Se conoce como unidad de construcción a los materiales ordenados de una forma específica que forman una unidad de montaje, esta unidad facilita la operación, mantenimiento, diseño y construcción de las instalaciones eléctricas en el ámbito de la distribución manteniendo la uniformidad, el orden y la sencillez.


Normalmente la unidad de construcción está detallada con un gráfico y un listado de los componentes que posee indicando las cantidades de cada material y equipo. (MERNNR, 2011)

Fundamentación conceptual

Identificador nemotécnico de las unidades de propiedad y de construcción

La estructura del identificador nemotécnico posee cinco campos donde el primer y segundo campo sirven para identificar la unidad de propiedad, a continuación de escribe un guion y por último los tres siguientes campos que estarán definidos por las unidades de construcción determinados por números, signos o letras. (MERNNR, 2011)

Figura 1Esquema del identificador nemotécnico de las unidades de propiedad

Nota. El gráfico representa los campos que componen el identificador nemotécnico de las unidades de propiedad. Tomada de (MERNNR, 2011)

Primer campo

Se forma por dos letras mayúsculas que indican el GRUPO al que pertenece la unidad de propiedad considerando la primera y/o segunda letra de las palabras claves que describen al grupo. (MERNNR, 2011)

Tabla 1Primer campo de las UP

Grupo	Descripción	
ES	Estructuras en redes aéreas de distribución.	
TR	Transformadores en redes de distribución.	
SP	Seccionamiento y Protección en redes aéreas de distribución.	
EC	Equipos de Compensación en redes aéreas de distribución.	
PO	Postes en redes de distribución.	
СО	Conductores en redes de distribución.	
ME	Medidores en redes de distribución.	
AC	Acometidas en redes de distribución.	
TA	Tensores y Anclajes en redes de distribución.	
PT	Puesta a Tierra en redes de distribución.	
AP	Alumbrado Público vial en redes de distribución.	
AO	Alumbrado Público Ornamental.	

Nota. La tabla representa los grupos y descripciones del primer campo del identificador nemotécnico de las UP. Tomada de (MERNNR, 2011)

Segundo campo

Se forma por una letra mayúscula que indica el NIVEL DE VOLTAJE asociado a los niveles de voltajes manejados en el Ecuador.

Para indicar el nivel de voltaje se utiliza la primera letra de la palabra clave y en el caso de repetirse se utilizará la siguiente letra.

En grupos del primer campo como postes, conductores, acometidas y puestas a tierra no se aplican las características establecidas en el segundo campo por lo cual se usa el carácter "0" para completar el código. (MERNNR, 2011)

Tabla 2Segundo campo de las UP

Grupo	Descripción
С	120 V – 121 V – 127 V (Cien).
Е	0 V (Cero).
D	240/120 V – 220/127 V (Doscientos).
U	440/256 V – 480/227 V (Cuatrocientos).
S	6,3 KV (Seis mi).
Т	13,8 KV GRDy / 7,96 KV – 13,2 KV GRDy / 7,62 KV (Trece mil).
V	22 KV GRDy / 12,7 KV – 22,8 KV GRDy / 13,2 KV (Veinte mil).
R	34,5 KV GRDy / 19,92 KV (Treinta mil).
0	No aplica
С	120 V – 121 V – 127 V (Cien).
Е	0 V (Cero).
D	240/120 V – 220/127 V (Doscientos).

Nota. La tabla representa los grupos y descripciones del segundo campo del identificador nemotécnico de las UP. Tomada de (MERNNR, 2011)

Tercer campo

Indica el número de fases o hilos y su definición dependerá de la correspondiente unidad de propiedad y está determinado por un número, en el caso de que el número de fases o hilos no aplique al campo correspondiente se designará el carácter "O" para completar el código. (MERNNR, 2011)

39

Cuarto campo

Indica la disposición o tipo y para indicarlo se utiliza una letra en mayúsculas. (MERNNR, 2011)

Quinto campo

Es un conjunto de hasta diez letras mayúsculas, números y/o signos que hacen referencia a una

función o especificación indicando las principales características técnicas de la unidad, en el caso de que

no aplique al campo correspondiente se designará el carácter "0" para completar el código. (MERNNR,

2011)

Grupo de medidores en redes de distribución (ME)

Primer campo: ME.

Segundo campo: Nivel de voltaje de operación del sistema de distribución.

Tercer campo: Número de fases e hilos.

1: Una fase; 2: Dos fases; 3: Tres fases

Cuarto campo: Tipo de medidor.

Estará determinado por una letra mayúscula la cual indicará el tipo de medidor. (MERNNR,

2011)

Tabla 3

Cuarto campo del grupo Medidores

	Para usuarios masivos			
Н	Híbridos (Energía activa)			
Ε	E Electrónicos (Energía activa) 1 fase 2 hilos, 1 fase 3 hilos, 2 fases 3			
L	Electromecánicos (Energía activa)	3 fases 4 hilos.		
P Prepagos electrónicos (Energía activa)				
	Para usuarios especiales			
D	Electrónicos (Energía activa y demanda)	1 fase 2 hilos, 1 fase 3 hilos, 2 fases 3 hilos.		
R	Electrónicos (Energía activa, energía reactiva, demanda y multitarifa)	1 fase 3 hilos, 2 fases 3 hilos, 3 fases 4 hilos.		

Nota. La tabla representa los tipos de medidores y su número de fases e hilos. Tomada de (MERNNR, 2011)

Quinto campo: Especificaciones técnicas.

Está compuesto de un número que indica la capacidad máxima de corriente, a continuación, un guion bajo seguido de un número y una letra que determina la forma y que tipo de conexión posee, pudiendo ser tipo bornera o tipo socket. (MERNNR, 2011)

Tabla 4 *Quinto campo del grupo Medidores*

Capacidad máxima (A)	Denominación normalizada (Forma)	Equivalencia
100	1 A	100_1 A
100	2 A	100_2 A
100	12 A	100_12 A
100	16 A	100_16 A
20	10 A	20_10 A
100	1S	100_1 S
100	2S	100_2 S
200	2S	200_2 S
200	12S	200_12 S
200	16S	200_ 16 S
20	3S	20_3 S
20	4S	20_4 S
20	5S	20_5 S
20	6S	20_6 S
20	9\$	20_9 S

Nota. La tabla representa la corriente máxima de los medidores, su forma y el tipo de conexión que posee. Tomada de (MERNNR, 2011)

Grupo de acometidas en redes de distribución (AC)

Primer campo: AC.

Segundo campo: No aplica.

Tercer campo: No aplica.

Cuarto campo: Tipo.

Indica el tipo de conductor con un carácter alfabético cuyas equivalencias se muestran a continuación. (MERNNR, 2011)

Tabla 5Cuarto campo del grupo Acometidas

Tipo	Equivalencias
TW Aluminio	I
MULTIPLEX Aluminio	J
MULTICONDUCTOR Cobre	N
(Tipo Sucre)	
TW Cobre	О
TTU Cobre	Р
THHN Cobre	Q
CONCENTRICO Cobre	W
CONCENTRICO Aluminio	X
CONDUCTORES AISLADO DE MEDIA TENSIÓN Cobre, Clase 15 kV	V
CONDUCTORES AISLADO DE MEDIA TENSIÓN Cobre, Clase 25 kV	Υ
CONDUCTORES AISLADO DE MEDIA TENSIÓN Aluminio, Clase 15 kV	Z
CONDUCTORES AISLADO DE MEDIA TENSIÓN Aluminio, Clase 25 kV	E

Nota. La tabla representa los tipos de conductores que se pueden utilizaren acometidas en redes de distribución junto a sus equivalencias alfabéticas. Tomada de (MERNNR, 2011)

Quinto campo: Especificaciones técnicas.

Está compuesto por números y signos y se relacionan con el número de fases y calibres de conductores que posee la acometida, donde el neutro en algunas ocasiones se lo escribe entre paréntesis.

Los calibres normalizados serán AWG o MCM y en mm2 para conductores concéntricos.

(MERNNR, 2011)

Tabla 6 Quinto campo del grupo Acometidas

Denominación normalizada	Equivalencia
2 X 8 AWG	2x8
3 X 8 AWG	3x8
4 X 4 AWG	4x4
2 X 6 + 1 X 8 AWG	2x6(8)
2 X 4 + 1 X 4 AWG	2x4(6)
2 X 6 mm ²	2x6
2 X 10 mm ²	2x10

Nota. La tabla representa el número de conductores y calibres utilizados en acometidas junto a sus respectivas equivalencias alfanuméricas. Tomada de (MERNNR, 2011)

En redes preensambladas donde se utiliza caja de distribución se añade la letra "C" al final refiriéndose a Caja de distribución para acometidas. (MERNNR, 2011)

Grupo de puesta a tierra en redes de distribución (PT)

Primer campo: PT.

Segundo campo: No aplica.

Tercer campo: No aplica.

Cuarto campo: Tipo.

Se forma mediante una letra mayúscula e indica en qué tipo de red se está instalando la puesta a tierra.

44

Tipo de red:

A = En Acometida

D = En red **D**esnuda

P = En red Pre ensamblada

(MERNNR, 2011)

Quinto campo: Especificaciones técnicas.

Está conformado por caracteres alfanuméricos y signos; el primer carácter será una letra en mayúscula y define el tipo de material del conductor de puesta a tierra y será designado por la primera letra de la palabra clave, después se especifica el calibre del conductor de puesta a tierra y la cantidad de varillas utilizadas, separados estos dos parámetros por un guion bajo (_).

Contiene letras, números y/o signos donde el primer carácter será una letra mayúscula que determinará el tipo de material utilizado para el conductor correspondiente a la puesta a tierra.

Material del conductor:

C = Conductor de **C**obre.

A = Cable Alumoweld de 7 hilos.

A continuación, se escribe el calibre del conductor para la puesta a tierra de la siguiente manera:

Calibre conductor de Cu (AWG): 8, 6, 4, 2, 1/0, 2/0

Cable alumoweld de 7 hilos, calibre del hilo: 9 AWG

Por último, se escribirá la cantidad de varillas utilizadas separadas con un guion bajo.

Cantidad de Varillas: 1, 2, 3, 4.

Determinación de la demanda para usuarios residenciales

Estratos de consumo

Los clientes residenciales del área de concesión de la Empresa Eléctrica Quito (EEQ) se clasifican en los siguientes estratos de consumo:

Tabla 7Estratos de consumo de la EEQ

Estrato de Consumo	KWh/mes/cliente
E	0 – 100
D	101 – 150
С	151 – 250
В	251 – 350
Α	351 – 500
A1	501 - 900

Nota. La tabla representa los estratos de consumo de los usuarios residenciales de la EEQ, En los estratos A, B, C, D y E, los rangos están definidos considerando el valor de consumo que registran los equipos eléctricos para uso general y calentamiento de agua; mientras que para el estrato A1 el rango está definido considerando el valor de consumo que registran los equipos eléctricos para uso general, cocción y calentamiento de agua. Tomada de (EEQ, 2021)

Determinación de la demanda máxima unitaria y carga instalada

Por el cambio de la matriz energética y las nuevas políticas se han incorporado de forma masiva equipos eléctricos destinados al uso general como cocción y calentamiento de agua por lo que, la demanda máxima unitaria (DMU) se ha visto incrementada por la consideración de estas nuevas cargas. (EEQ, 2021)

Tabla 8

Valores de referencia de Demanda Máxima y Carga instalada de la EEQ

Usuario	DMU (KW)	DMU (KVA)	CI (KW)	CI (KVA)
E	1,81	1,91	3,02	3,18
D	2,21	2,33	4,42	4,65
С	2,97	3,13	7,43	7,82
В	4,08	4,29	13,6	14,32
Α	5,49	5,78	21,96	23,12
A1	6,86	7,22	27,44	28,88

Nota. La tabla considera la utilización de equipos eléctricos para uso general, cocción de alimentos y calentamiento de agua. Tomada de (EEQ, 2021)

Acometidas Disposiciones Generales

Número de acometidas:

Las acometidas deben ser únicas (una sola acometida) para cualquier edificación o predio que requiera del suministro de energía eléctrica.

Existen excepciones como las siguientes:

- 1: En caso de que los equipos contra incendios cuyas bombas requieran acometida independiente.
 - 2: En caso de que la edificación posea una superficie demasiado extensa.
 - 3: En caso de que se tenga un uso distinto cuya tarifa sea diferente.
- 4: En caso de que un edificio posea entradas independientes por la calle y que internamente no se encuentren comunicadas sus partes pueden ser considerados como edificaciones separadas.

Los conductores de acometida de una edificación no deben atravesar el interior de otra edificación. (Norma Ecuatoriana de la Construcción [NEC], 2013)

Identificación:

Ninguna estructura o edificio se alimentará desde otra internamente.

En el caso de que la edificación posea más de una acometida o circuitos derivados, será necesaria la colocación de una placa o directorio que se encuentre permanentemente en cada lugar donde se haya conectado la acometida indicando la información de sus alimentadores y circuitos, además de la superficie ocupada por cada uno de estos. (NEC, 2013)

Conductores fuera del edificio:

Se considerará que los conductores se encuentran fuera de una edificación bajo las siguientes condiciones:

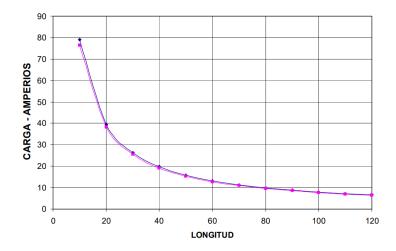
- Al estar colocados por debajo de la estructura o inmueble a una distancia de mas de 50 mm de concreto.
- Al encontrarse dentro de una canalización empotrada a una distancia de mas de 50 mm de concreto o tabique.
- Al estar colocados en una cámara de transformadores. (NEC, 2013)

Contenido exclusivo:

En los ductos que son destinados a las acometidas se colocarán solo los conductores que correspondan a estas tomando en cuenta las siguientes excepciones:

- 1: Los conductores destinados a la puesta a tierra.
- 2: Los conductores correspondientes a equipos para control de carga que posean protección a la sobre corriente. (NEC , 2013)

Tamaño y capacidad nominal del conductor:


Dependiendo de las cargas que la edificación posea se determinará la capacidad de corriente que podrán conducir los conductores, estos además deben poseer una resistencia mecánica óptima. (NEC , 2013)

El tamaño mínimo sugerido es 8 AWG (8,37 mm2) para conductores de cobre y 6 AWG (13,30 mm2) para conductores de aluminio siendo la empresa distribuidora la que determine el calibre mínimo. (NEC , 2013)

Regulación de voltaje:

Para un voltaje nominal de 120 V, una caída de voltaje permitida de 2,5% en un sistema monofásico a 2 hilos y un factor de potencia igual a uno se presentan los siguientes gráficos que permiten determinar la longitud máxima del circuito en metros en función de su calibre y su carga establecida en amperios. (EEASA, 2011)

Figura 2Regulación de voltaje al 2,5% para Cu #6 AWG y Al #4 AWG

Nota. El gráfico representa la regulación para una caída de voltaje aceptada de 2,5% en un circuito monofásico de Cu #6 AWG o Al #4 AWG de dos hilos con un voltaje nominal de 120 V. Tomada de (EEASA, 2011)

Conductor de neutro:

Se debe considerar si la carga es de tipo no lineal o lineal, la cantidad de fases para la acometida y demás consideraciones por parte de la empresa distribuidora de energía eléctrica respecto al máximo desequilibrio y armónicos aceptables en el sistema.

El conductor para el neutro tendrá un calibre tal que considere lo establecido anteriormente. (NEC , 2013)

Número de conductores en tuberías metálicas:

Cuando la acometida pasa por una tubería metálica el área total de los conductores no debe exceder el 40% del área útil de la tubería. (NEC , 2013)

Aislamiento o cubierta:

El aislamiento debe estar presente en los conductores de las acometidas, pero pueden presentarse las siguientes excepciones.

El conductor de neutro puede ser desnudo

En acometidas subterráneas los conductores tienen que estar aislados, pero pueden presentarse las siguientes excepciones:

El conductor neutro o tierra no posean aislamiento bajo las siguientes condiciones:

- 1. Los conductores se encuentran canalizados.
- Si los conductores se encuentran directamente enterrados, es decir el cobre es el adecuado para soportar las características del suelo.
- 3. Si el conductor es para uso subterráneo sin tomar en cuenta las características del suelo.
- 4. En el caso de conductores de aluminio sin aislamiento solo si el conductor es para uso subterráneo enterrado directamente o si se encuentra canalizado y enterrado. (NEC, 2013)

Separación con puertas, ventanas y similares:

Los cables multiconductores y conductores expuestos que no cuenten con una tubería de protección deben respetar una distancia de 914 mm con ventanas que puedan abrirse, balcones, escaleras, porches, salidas de emergencia, peldaños y demás estructuras similares.

Sin embargo, en el caso de que los conductores se encuentren pasando sobre parte superior de la ventana sin contacto se permitirá que la distancia sea menor a la establecida.

En espacios de libre acceso donde puedan pasar materiales como en edificaciones comerciales, granjas y demás lugares donde los accesos deban mantenerse permanentemente abiertos no se deberán colocar los conductores de la acometida que puedan obstaculizar la libre circulación. (NEC, 2013)

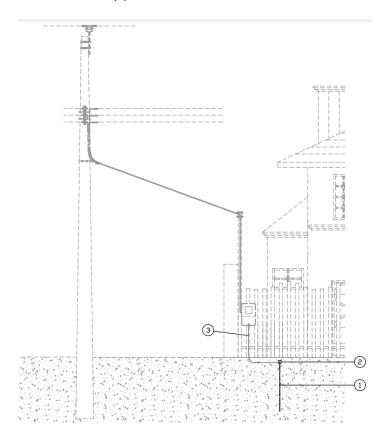
Sujeción de acometidas aéreas:

La sujeción de acometidas aéreas a edificaciones o estructuras se debe realizar a través de accesorios o herrajes específicamente diseñados para este fin debidamente aprobados e identificados para usarse con los conductores de las acometidas.

En caso de que la acometida sea de tipo línea abierta los accesorios de sujeción deben estar fijados de manera sólida a la estructura.

En caso de que la acometida llegue a un poste u otra estructura donde se instale el medidor o aparatos de desconexión se debe considerar acometida aérea y su instalación será de este tipo. (NEC, 2013)

Obras Civiles


Existen obras civiles que la empresa distribuidora de energía eléctrica determinará si están a cargo del usuario del servicio o de la propia empresa eléctrica, estas obras son las siguientes:

- Caja porta medidores anti hurto

- Soporte de acometida
- Pozo de revisión
- Tablero Armario de Medidores
- Caja porta medidores para contadores de energía.
- Trabajos de acometidas subterráneas (zanjas, ductos, rotura de vereda, reposición, etc.)
- Cuarto para cámara de transformación
- Cuarto de medidores
- Instalación general de puesta a tierra

Figura 3

Obras civiles para acometida, medidor y puesta a tierra

Nota. El gráfico representa una acometida con conductor de cobre calibre 8 AWG representación nemotécnica 0AC8_1 con una varilla de puesta a tierra denominación nemotécnica PTO-0AC8_1.

Tomada de (MERNNR, 2011)

Soporte de la acometida

Por lo general en acometidas aéreas se trata de un tubo galvanizado destinado a mantener la acometida en una altura fija desde el suelo. En la parte superior por donde ingresará la acometida tendremos un codo o cualquier otro accesorio que pueda especificar la empresa distribuidora, el diámetro mínimo del tubo será 51.8 mm y el espesor mínimo será de 2 mm. (NEC, 2013)

Sujeción de la acometida

Las acometidas deben poseer un punto de fijación con respecto a la edificación, esta altura está determinada de acuerdo al siguiente gráfico:

Tabla 9Alturas de fijación para acometidas

Lugar de colocación	Altura desde el suelo (m)	Ilustración
Cruces de calle, vías públicas. Caminos y carreteras de alto tráfico.	5,5	
En la acera o vías exclusivamente peatonales.	3,5	

Nota. La tabla representa la altura recomendada de fijación de acometidas en las edificaciones tomando en cuenta los lugares más comunes de colocación. Tomada de (NEC, 2013)

Medios de fijación

En el caso de utilizar un tubo como medio de soporte para una acometida de tipo aérea se debe verificar que este cuente con una resistencia que pueda garantizar que va a soportar los esfuerzos mecánicos producidos por los cables de la acometida, adicionalmente se recomienda una sujeción mediante abrazaderas o alambres de retención que también puedan soportar los esfuerzos mecánicos asociados a la acometida. (NEC, 2013)

Material de construcción del soporte de la acometida

El soporte de la acometida será de material metálico y tendrá un acabado galvanizado en forma de tubería con diámetro mínimo de 51,8 mm y un espesor de 2 mm, estas medidas serán las mínimas. (NEC , 2013)

Caja porta medidores

Se trata de una caja hecha de material plástico como el polipropileno o también puede estar hecha de un material metálico recubierto con una pintura electrostática, la seguridad que brinda esta caja se debe a su sistema blindado que limita el acceso al medidor, además, posee interruptores termomagnéticos como protecciones eléctricas para el equipo de medición.

La empresa distribuidora será la responsable de este equipo ya que forma parte del sistema de medición.

En caso de domicilios se recomienda la colocación de cajas metálicas cuando ya existan otros medidores y se cumplan con los criterios respectivos de ubicación y altura. (NEC , 2013)

Número de usuarios

En el caso de que la construcción cuente hasta con 5 medidores incluido el medidor de servicios generales se puede utilizar un cajón para medidores cuyo material de fabricación será acero galvanizado

en lámina de 1,5 mm de espesor siendo la empresa distribuidora de energía eléctrica la que provea las normas de fabricación de dicho cajón.

Las dimensiones del cajón tendrán como referencia las siguientes dimensiones con respecto al número de usuarios:

 Tabla 10

 Dimensiones para cajones de medidores hasta 5 usuarios

Usuarios	Tamaño
1	40x60x25 cm
2	75x60x25 cm
3	100x60x25 cm
4	125x60x25 cm
5	150x60x25 cm

Nota. La tabla representa las dimensiones de los cajones con respecto al número de usuarios tomando como máximo 5 medidores incluyendo el medidor de servicios generales. Tomada de (NEC, 2013)

En caso de que la construcción posea 6 o mas abonados se requerirá la contratación de un constructor de tableros tipo armario para los medidores, este constructor estará calificado por la empresa distribuidora para llevar la elaboración del tablero cumpliendo con las normativas de la empresa distribuidora.

En caso de que se requieran bases socket para grandes clientes o clientes especiales el tablero de medidores deberá ser de material metálico con fondo de madera de 2 cm de esperor, deberá ser construida con tol de un mínimo de espesor de 1.6 mm y dimensiones de 80x60x30 cm. (NEC , 2013)

Ubicación

En cuanto a la ubicación de la caja porta medidores es importante que brinde un acceso fácil de tal forma que los encargados de su lectura y control puedan hacerlo libremente, se deberá también tomar en cuenta que la ubicación tiene que encontrarse lo mas cerca posible del punto de conexión del sistema de distribución eléctrica.

La altura recomendada desde el suelo será de 1,5 m hasta la parte inferior de la caja.

La caja porta medidor se encontrará ubicada en la parte exterior de la edificación. (NEC, 2013)

Instalación de puesta a tierra para cajas porta medidores

La puesta a tierra estará compuesta por una varilla copperweld de 1,8 m de altura, 15,9 mm de diámetro clavada al piso y conectada mediante un conductor de cobre calibre #8 AWG, se dejará un chicote de 1 m dentro de la caja.

En caso de existir puesta a tierra para toda la edificación en general se conectará la caja a esta puesta a tierra siendo innecesaria la colocación de una nueva varilla copperweld. (NEC , 2013)

Pozos de revisión

Consiste en una construcción cuadrada con el interior similar a una caja situada en el suelo hecha de hormigón con una tapa también de hormigón con bordes metálicos y al fondo con suelo natural.

El pozo de revisión permite el fácil tendido de los conductores de la acometida reemplazando los codos y curvas que podrían presentarse entre el lugar que solicita el medidor y el sistema de distribución. (NEC , 2013)

Dimensiones

Los pozos tendrán las siguientes dimensiones:

Tabla 11Dimensiones para pozos de revisión

Clase de red	Cruce de vía	Otros sitios
Medio voltaje	80x80x125 cm	80x80x90 cm
Bajo voltaje	60x60x125 cm	60x60x80 cm

Nota. La tabla representa las dimensiones de los pozos de revisión con respecto al nivel de voltaje y el lugar donde se encuentra el pozo de revisión. Tomada de (NEC , 2013)

Pozos eléctricos en aceras

Los espacios de las aceras y su distribución son competencia de los municipios locales cuyas especificaciones se encuentran dentro de sus ordenanzas municipales.

Las distribuciones de espacios más usadas se muestran en la siguiente tabla:

Tabla 12Pozos eléctricos en aceras

Espacio de acera	Uso
Tercio externo de la acera, el más cercano al bordillo	instalaciones eléctricas de medio y bajo voltaje.
Tercio medio de la acera	Instalaciones de comunicaciones
El tercio interno de la acera, el más cercano a las edificaciones	instalaciones de la empresa de agua potable

Nota. La tabla representa la distribución de espacios en caso de que se requiera utilizar pozos en aceras.

Ductos y materiales

Tomada de (NEC, 2013)

En caso de que exista una red o una cámara ubicada en la misma acera de la construcción se utilizará ductos anillados tipo B con un diámetro de 110 mm según norma NTE

INEN 2227:99 para construir la canalización desde el pozo.

Tabla 13Resistencia al impacto de tubos tipo B

Diámetro nominal (mm)	Tamaño de muestra	Número de golpes	Energía de Impacto	
			Kg x m	J
110	6	1	8	81
160	6	1	11	108

Nota. La tabla representa la energía de impacto soportada por tubería tipo B. Tomada de (INEN, 1999)

En el caso de cruces de parqueadero se usará ductos de hormigón de 4 vías o canalización de 4 vías, en ambos casos se instalará a 95 cm o 70 cm del nivel de la acera ya sea para medio o bajo voltaje respectivamente.

Se deberá construir canalización para cruce de vía en el caso de que la cámara o red se encuentre en la acera opuesta a la construcción, se recomienda el uso de ductos lisos de PVC rígido tipo II pesado con un diámetro nominal de 110 milímetros según lo establecido en la norma NTE INEN 1869:99. (NEC , 2013)

Tabla 14

Características del ducto liso de PVC rígido tipo II pesado diámetro 110 mm

Diámetro nominal (mm)	Energía de Impacto (kg.m)	Rigidez mínima (KPa) -	Espesor (mm)	
			Mínimo	Máximo
110	13,8	828	3.4	3.9

Nota. La tabla representa las características de ducto liso de PVC rígido tipo II pesado de diámetro de 110 mm. Tomada de (INEN, 1999)

También se puede usar tubos de cemento colocados a una distancia de 120 centímetros bajo el nivel de la acera.

Previamente se verificará la existencia de canalización existente libre disponible.

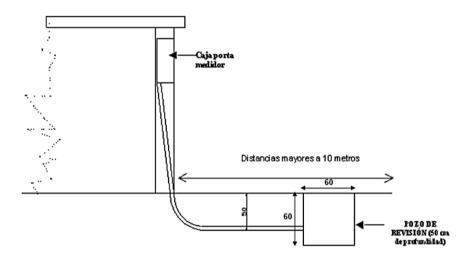
El relleno y apisonado de zanja cavada, será realizado con material limpio, en capas de 20 cm de espesor. (NEC , 2013)

Ductos de acometidas domiciliarias

Para acometidas provenientes de redes subterráneas se aceptan los siguientes materiales para ductos:

- Tubos conduit
- PVC del tipo reforzado o duro
- Hierro galvanizado
- Polietileno (manguera reforzada)

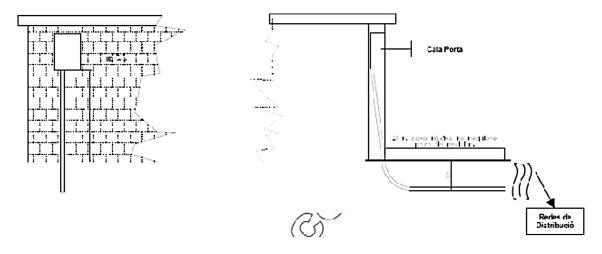
El diámetro mínimo del ducto en cualquiera de los materiales antes mencionados será de 51,8 mm.


Cuando se utilice tubería de hierro galvanizado se recomienda colocar codos eléctricos donde existan curvaturas para un adecuado paso de la acometida.

El ducto deberá ir en una sola pieza sin interrupciones ni cortes desde la red de baja tensión ubicada en la acera hasta la caja de medidores, todo esto en favor de facilitar la instalación para casos donde la distancia no supere los 10 metros.

Cuando la distancia es menor a los 10 metros se exceptúa la construcción del pozo de revisión debajo del tablero o caja del medidor, pero la acometida si bajará desde esta perpendicularmente al piso donde realizará una curva suave de alrededor de 45 grados dirigiéndose a la red de baja tensión, esto facilitará el paso de la acometida evitando uniones y ángulos pronunciados. (NEC, 2013)

Figura 4


Caja porta medidores con pozo de revisión (vista lateral)

Nota. El gráfico representa las distancias recomendadas para acometidas subterráneas, se requerirá pozo de revisión cuando la distancia sea mayor a 10 metros. Tomada de (NEC, 2013)

Figura 5

Caja porta medidores sin pozo de revisión (vista frontal y lateral)

Nota. El gráfico representa las vistas de una acometida subterránea sin pozo de revisión cuando la distancia sea menor a 10 metros. Tomada de (NEC , 2013)

En el caso de circuitos expresos sólo se colocarán pozos de revisión en curvas y en distancias largas cada 25 metros.

De la boca de la tubería

Las canalizaciones provenientes de sistemas subterráneos de distribución para acometidas estarán selladas con materiales compatibles con el aislamiento o blindaje.

Aquellas canalizaciones correspondientes a reserva que no sean utilizadas también deben estar selladas. (NEC , 2013)

Acometidas provenientes de redes aéreas

Las empresas eléctricas distribuidoras son las encargadas de establecer las normas según las cuales se podrán realizar acometidas que provengan de redes aéreas, generalmente se realizarán desde el poste más cercano a la edificación, estas acometidas pueden ser aéreas o subterráneas.

En el caso de que la acometida proveniente desde el poste más cercano sea subterránea será necesario el montaje de un tubo de acero galvanizado de 6 metros de longitud con un diámetro acorde al calibre del cable utilizado siendo este mayor o igual a los 51,9 milímetros, pero nunca menor.

La canalización de una acometida subterránea proveniente de una red aérea llevará concordancia con lo establecido en acometidas provenientes de redes subterráneas.

En caso de que la acometida sea aérea se recomienda la instalación de un tubo galvanizado, el mismo que se ubicará en la parte superior del Tablero, armario o cajón de medidores.

Para acometida aérea se instalará un tubo de acero galvanizado en la parte superior del cajón o Tablero Armario. (NEC , 2013)

Acometidas en medio voltaje

En caso de que la acometida sea de medio voltaje y provenga de una red aérea se recomienda el montaje de un tubo de acero galvanizado adosado al poste más cercano a la construcción, el tubo tendrá una longitud de 6 metros y un diámetro mayor o igual a 51,9 milímetros siempre acorde al calibre del cable utilizado.

En caso de que la acometida sea de medio voltaje y provenga de una red subterránea, esta partirá desde el centro de transformación que se encuentre más cerca mediante una derivación expresa. (NEC , 2013)

Centros de transformación

En algunas edificaciones cuyas necesidades así lo requieran se podrá colocar Centros de transformación en cámaras de transformación o torres de transformación, las cámaras de transformación pueden ser de tipo convencional o tipo pedestal (pad mounted). (NEC, 2013)

Cámara de transformación convencional

Las dimensiones del cuarto de transformación estarán en función del nivel de voltaje de la acometida como se muestra en la siguiente tabla:

 Tabla 15

 Dimensiones de cámaras de transformación tipo convencional

Voltaje	Dimensiones (Largo x Ancho x Alto)	Puerta	
6300 V	240 x 220 x 270 cm	140 x 230 cm	
23000 V	400 x 300 x 360 cm	160 x 230 cm	

Nota. La tabla representa las dimensiones de las cámaras de transformación tipo convencional en función del nivel de voltaje de la acometida. Tomada de (NEC, 2013)

Debe existir un proyecto eléctrico aprobado por la Empresa de distribución de energía eléctrica local para poder dar inicio a la obra civil y eléctrica relacionados con la cámara de transformación, adicionalmente la empresa eléctrica designará un fiscalizador quien realizará una inspección previa al comienzo de la obra. (NEC, 2013)

Obra civil

El transformador será montado sobre una base rodeada por un canal acorde a los planos dispuestos en cada caso, el canal deberá estar lleno de ripio lavado # 2.

Las paredes de la cámara deberán ser de hormigón o ladrillo de mambrón y mortero tipo cemento.

Los revestimientos estarán pintados de color blanco.

La puerta de acceso de la cámara de transformación estará hecha de hierro perfilado recubierto con lámina de tol, la seguridad de la puerta estará dispuesta con pasadores donde se colocarán candado y picaportes en una de las hojas.

Los elementos de cerrajería se pintarán en color negro y deberán tener un tratamiento anticorrosivo.

Las estructuras metálicas para fijación de elementos eléctricos serán perfiles de hierro con ángulo de por lo menos 60 mm de ancho por 5 mm de espesor.

Incluye la colocación de ventilaciones consistentes en bastidores de hierro perfilado y varillas de protección de 12 milímetros de diámetro, anclado en las paredes con elementos del mismo hierro, recubierto de malla metálica, formada por alambre galvanizado # 16. (NEC , 2013)

Obra Eléctrica

Malla de tierra

La empresa distribuidora será la encargada de implementar el diseño de malla y varillas de puesta a tierra tomando en cuenta las derivaciones para la conexión del neutro del transformador, las partes metálicas de los equipos, así como puertas y ventanas de la cámara de transformación, se utilizará como mínimo conductor calibre # 1/0 AWG (53,5 mm²) cableado con 19 hilos. (NEC, 2013)

Montaje de equipos

Se llevará acabo de acuerdo a los planos de diseño y las recomendaciones por parte del agente fiscalizador.

El transformador se colocará sobre la base de hormigón anteriormente construida y a continuación se realizarán las comprobaciones requeridas por la empresa y recomendadas por el fabricante.

Los perfiles de soporte instalados servirán para colocar los seccionadores fusibles de medio voltaje y seccionadores de barra, además deberán incluirse los elementos fusibles.

Se deberá realizar la preparación de las terminaciones de los cables aislados y el montaje de los terminales en los perfiles instalados para soporte previamente, se deberán incluir todos los accesorios y también lasconexiones a tierra.

Se deberán colocar los interruptores termomagnéticos o bases portafusibles y elementos fusibles de bajo voltaje, así como también las barras de cobre para fases y neutro además de las conexiones a la malla a tierra en los perfiles de soporte según los planos establecidos en el diseño respectivo. (NEC , 2013)

Conexiones de Medio voltaje

Acorde a lo indicado en los planos de diseño y número de salidas.

Las conexiones de Medio voltaje Se realizarán con cable aislado con apantallamiento entre los terminales, transformador de distribución y seccionadores-fusibles. (NEC , 2013)

Conexiones de Bajo Voltaje

Se refiere a las conexiones realizadas con cable aislado entre los terminales secundarios del transformador y las barras de bajo voltaje, incluyendo todos los accesorios para montaje de los cables. (NEC , 2013)

Conexiones a Tierra

Consiste en las conexiones del neutro del transformador, su la carcasa y los elementos metálicos requeridos a la malla de tierra instalada previamente. (NEC , 2013)

Comprobaciones y Pruebas.

Para la aceptación y puesta en servicio de la cámara se deberán realizar pruebas que verifiquen la correcta instalación de equipos, de acuerdo a instrucciones de fabricantes y medición de aislamiento resistencia de puesta a tierra. (NEC , 2013)

Ubicación

La ubicación de la cámara de transformación debe ter las siguientes cualidades:

- Fácil acceso desde el exterior.
- El lugar de be contar con facilidades de ventilación natural.
- No debe existir riesgo de inundación.
- El lugar debe ser impermeabilizado para evitar humedad y oxidación.
- No se debe almacenar combustibles ni químicos peligrosos en zonas adyacentes.
- No podrán cruzar canalizaciones de agua, gas natural, aire comprimido, gases industriales o combustibles al interior del cuarto de la cámara de transformación, solo podrá cruzar de ser el caso las tuberías de extinción de incendios y refrigeración de equipos de subestación.
- Las puertas de la cámara de transformación se deberán abrir hacia afuera y frente a esta debe existir un espacio concebido para seguridad, maniobra y mantenimiento con un mínimo de 1,2 metros.
- Debe estar montada sobre suelo firme o losa intermedia.
- En caso de que la edificación cuente con dos subsuelos se recomienda colocar la cámara de transformación en el primero.

Cuando los trabajos de obra civil y eléctrica hayan concluido serán recibidos por la Empresa
 Distribuidora de Energía Eléctrica para dar inicio al trámite de energización de la cámara de transformación. (NEC, 2013)

Señalización de la cámara de transformación

Las Subestaciones que se encuentren a nivel del piso portarán una placa en la entrada con símbolo de "Peligro Alta Tensión" y puerta con acceso a la calle de preferencia.

En caso de que la instalación requiera ser realizada en una bóveda, esta debe ser construida de tal manera que sus materiales sean resistentes al fuego durante un mínimo de tres horas.

Las características del transformador deberán ser detalladas en una placa resistente a la corrosión y colocada en un sitio visible de tal manera que la siguiente información sea legible y entendible:

- Marca.
- Número de serie del fabricante.
- Año.
- Clase.
- Número de fases.
- Diagrama fasorial.
- Frecuencia.
- Voltajes nominales, cantidad de derivaciones.
- Corrientes nominales.
- Impedancia de cortocircuito
- Grupo de conexión
- Diagrama de conexiones. (NEC, 2013)

Centros de transformación tipo pedestal padmounted

Se caracterizan por su fabricación en acero al carbono bajo utilizando láminas para construir cabinas mediante soldadura tipo MIG. En la cabina se encontrarán el transformador, los respectivos terminales de cable de medio y bajo voltaje, terminales para realizar la conexión de pararrayo además de las protecciones siguientes:

- Pararrayos
- Breaker sumergido en aceite
- Fusible de distribución
- Fusible de respaldo
- Fusible bay-o-net
- Fusible limitador de corriente.

Los cables de medio y bajo voltaje ingresarán a la cabina por la parte inferior, a través del pozo que se construirá en la base del transformador. (NEC , 2013)

Malla de tierra

Poseerá las mismas características de diseño descritas en las obras civiles mencionadas para cámaras de transformadores convencionales. (NEC , 2013)

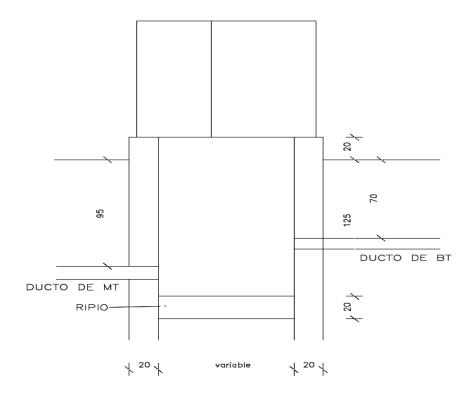
Obras civiles

Ubicación:

Para un transformador padmounted la ubicación será en un sitio cuyas características son las mismas que las de una Cámara de Transformación convencional. (NEC , 2013)

Base y pozo

El fabricante del transformador proporcionará las medidas de la base sobre la cual estará montado el transformador, estará conformada por hormigón de 20 cm de alto y 20 cm de ancho sobre


el nivel del piso terminado coincidiendo con las paredes del pozo construido previamente formando un solo bloque.

Se deberá sellar los espacios que puedan quedar de forma apropiada para impedir el ingreso de roedores e insectos.

En general el pozo tendrá las mismas características que los pozos de medio voltaje. (NEC , 2013)

Figura 6

Base y pozo para transformador padmounted

Nota. El gráfico representa las distancias requeridas para la base y pozo para transformadores tipo padmounted. Tomada de (NEC , 2013)

Exigencias generales de las instalaciones eléctricas

Para evitar riesgos y condiciones peligrosas tanto para operadores y usuarios se debe garantizar las siguientes condiciones:

- Toda instalación deberá ejecutarse de acuerdo a un proyecto técnicamente concebido.
- El proyecto debe permitir la flexibilidad necesaria como para permitir modificaciones o ampliaciones con facilidad.
- La instalación se llevará a cabo bajo la proyección y ejecución de un profesional de la Ingeniería Eléctrica, Electrónica o Electromecánica autorizado.
- En uso de sus atribuciones, el Órgano Competente podrá controlar las instalaciones
 Eléctricas y Electrónicas en sus etapas de proyecto, ejecución, operación y mantenimiento.
 (NEC , 2013)

Exigencias en materiales y equipos

Todos los materiales y equipos destinados a instalaciones eléctricas y electrónicas deberán ser certificados por una entidad autorizada para ello, como el INEN.

Una de las entidades que pueden otorgar certificaciones en cuanto a equipos, materiales e instalaciones eléctricas es el Instituto Ecuatoriano de Normalización (INEN).

Si los equipos se instalan a una altura mayor a los 1000 metros sobre el nivel del mar se aplica un factor de pérdida de 1% por cada 100 metros de altura a excepción de equipos que cuenten con sistemas de compensación de pérdidas.

Los accesorios y las protecciones deben ser adecuados previniendo que los equipos y materiales no pierdan sus características. (NEC , 2013)

Espacios de trabajo y distancias mínimas de seguridad

En caso de que se necesite llevar a cabo un mantenimiento o ajuste de un determinado equipo que se encuentre bajo tensión se tomarán en cuenta las siguientes distancias mínimas de seguridad de acuerdo a tres condiciones que se explican a continuación:

Para tableros o centros de control cuyo acceso se encuentre en la parte frontal no será necesaria la aplicación de estas condiciones con respecto a los espacios de trabajo.

El acceso al espacio de trabajo debe tener como mínimo un ancho de 0,6 metros y una altura de 1,5 metros y en caso de que los equipos sean de volumen mayor las dimensiones también podrán ser mayores.

Las puertas contarán con cerraduras que permitan la apertura hacia afuera desde su interior sin uso de herramientas o llaves.

Está prohibido utilizar los espacios de trabajo para almacenamiento de ningún tipo ni como lugar de estadía personal, para lo cual se colocará letreros indicando la prohibición del acceso a personal no calificado.

 Tabla 16

 Espacios de trabajo y distancias de seguridad

	Espacio libre mínimo (m)			
Voltaje respecto a tierra (V)	Condición			
	1	2	3	
0 – 200	0,75	0,75	0,90	
201 - 1000	0,75	1,10	1,20	

Nota. La tabla representa las distancias de seguridad recomendadas de acuerdo a cada condición establecida. Tomada de (NEC , 2013)

Marcas e identificadores

Existen datos que debe poseer todo material o equipo eléctrico tales como:

Nombre de fabricante

País de origen

Marca que permita identificar al responsable del producto

Características dimensionales o de funcionamiento

Indicaciones de tipo o clase

Certificaciones de aprobación de uso

En el caso de las canalizaciones ya sean ocultas o a la vista deberán tener el color adecuado en toda su extensión o estar pintados en tramos de mínimo 0,2 metros y de 5 metros en el caso de existan obstáculos que impidan la visualización. (NEC , 2013)

Tableros

Son Equipos que almacenan dispositivos de maniobra, comando y protección que deben garantizar un alto nivel de seguridad y confiabilidad en cuanto a la protección e integridad de las personas e instalaciones.

Al determinar el número de tableros y tamaño de estos se tomará en cuenta la distribución y finalidad de cada uno de los ambientes de la propiedad, lo cual permitirá una mejor funcionalidad y flexibilidad al operar dicha instalación.

La instalación de tableros requiere que el lugar sea seguro y de fácil acceso de tal manera que no existan vestuarios o depósitos en su parte posterior o en sus alrededores.

Se deben cumplir los siguientes aspectos:

En locales de reunión de personas el tablero se ubicará en lugares solo accesibles a personal administrativo y de operación.

Para ambientes peligrosos la instalación de tableros se realizará siguiendo las normas correspondientes a la materia.

La fabricación deberá ser por parte de una empresa especializada y calificada.

Deberá especificarse de manera visible en el tablero:

Fabricante

Voltaje de servicio

Corriente nominal

Número de fases

En la parte interior se encontrará el diagrama unifilar correspondiente.

El tablero debe cumplir con las normas INEN NTE correspondientes y los requisitos establecidos por la empresa distribuidora de energía eléctrica.

No deben instalarse cargadores de baterías en los tableros principales.

El equipo colocado en un tablero debe cumplir con las normas NTE INEN correspondientes y los requisitos establecidos por las empresas de suministro de energía eléctrica.

Los tableros deben permitir:

Respuesta adecuada a las especificaciones de cada proyecto.

Uso óptimo de dimensiones y distribución en el interior del panel.

Utilizar componentes certificados y estandarizados.

Facilidad de modificación.

Fácil conexionado de potencia y auxiliares.

Fácil evolución de la instalación a un costo controlado. (NEC, 2013)

Tableros de Medición:

Este tipo de tableros se componen principalmente de dispositivos de medición de parámetros como el voltaje, la corriente, la potencia entre otros, cuenta también con alarmas e información adicional dependiendo de la aplicación. (NEC , 2013)

Especificaciones de construcción:

Todos los elementos del tablero deberán instalarse dentro de cajas gabinetes o armarios.

Los materiales de construcción de tableros deben ser resistentes al fuego, auto extinguibles, no higroscópicos y resistentes a la corrosión o estar protegidos contra esta.

Los equipos de un tablero deberán contar con una cubierta interna fijada con bisagras en disposición vertical, mecanismos de cierre a presión o tornillos de fijación tipo no desprendible para evitar la pérdida de los mismos, la cubierta impedirá el choque de cuerpos extraños con partes energizadas o que personas queden expuestas al contacto al operar los dispositivos de protección o maniobra.

El tablero tendrá perforaciones que permitan el paso adecuado y libre del cableado y sus conexiones impidiendo el paso de los ya mencionados cuerpos extraños.

Todos los tableros deberán contar con una puerta exterior fijada mediante bisagras en disposición vertical u horizontal, totalmente cerrada pudiéndose colocar sobre ella indicadores, equipos de medida, selectores o pulsadores. El grado de hermeticidad será de acuerdo a la aplicación

Las partes energizadas se alcanzarán solo removiendo la cubierta cubre equipos.

Solo se accederá a las partes energizadas del tablero para efectuar trabajos de mantenimiento o modificaciones.

Para acceder a los elementos de maniobra y protección será necesario abrir la puerta exterior que deberá estar cerrada con una chapa con llave o algún dispositivo equivalente.

Solo podrá exceptuarse del uso de cubierta interior o tapa cubre equipos los tableros de uso doméstico o similar.

Dependiendo del tamaño y capacidad de los tableros se montarán de la siguiente manera:

Empotrados o sobrepuestos en pared si son de baja o media capacidad, tamaño y peso.

Auto soportados sobre estructura metálica anclada al piso o sobre estructura de hormigón si son de gran capacidad, tamaño y peso. (NEC , 2013)

Colocación en paredes:

Para paredes de concreto, azulejos o materiales no combustibles el borde delantero del tablero no quedará metido más de 6 milímetros por debajo de la superficie de la pared.

Para paredes de madera o materiales combustibles el borde del tablero deberá estar al nivel de la superficie o sobresalir. (NEC , 2013)

Colocación en lugares húmedos y mojados:

Los armarios colocados en lugares húmedos y mojados deberán ser de tipo a prueba de intemperie, el montaje debe garantizar un espacio de al menos 6,4 milímetros entre el encerramiento y otra pared o superficie de soporte.

Se permitirá la instalación de cajas y armarios de corte no metálicos sin espacio libre en el caso de que se encuentren sobre una pared de ladrillo, concreto, azulejo o similar.

En tableros de gran tamaño y capacidad se tendrá acceso por los costados y también por la parte trasera, para este fin se utilizarán tapas removibles cuya fijación será mediante pernos de tipo no desprendible.

Los elementos eléctricos serán montados sobre un bastidor o placa mecánicamente independiente de la caja, gabinete o armario, esta placa podrá ser fácilmente removida en caso de requerirlo ya que su fijación será mediante pernos.

Para determinar el tamaño del armario, gabinete o caja se considerará lo siguiente:

Se utilizará bandejas o canaletas de material no conductor para el cableado de interconexión entre los dispositivos para mayor comodidad y seguridad.

Debe existir espacio suficiente entre los dispositivos de comando y/o maniobra y las paredes de la caja de tal manera que se pueda facilitar el mantenimiento.

Se dispondrá de un espacio para futuras ampliaciones cuyo volumen será equivalente al 25% del espacio libre.

Las láminas usadas para construir los armarios, gabinetes o cajas serán de acero, hierro o materiales no conductores plegadas y soldadas obteniendo así una rigidez mecánica adecuada.

Se recomienda una construcción modular de tal forma que se pueda construir tableros de gran tamaño y capacidad mediante el montaje de dichos módulos. (NEC , 2013)

Los espesores mínimos de las láminas de hierro o acero utilizados se especifican en la siguiente tabla:

Tabla 17Espesor de planchas para construcción de tableros

Superficie libre (m^2)	Espesor de la plancha (mm)	
0,25	1,2	
0,75	1,5	
1	1,8	
Sobre 1	2,0	

Nota. La tabla representa el espesor de las láminas de acero, hierro u otros materiales no conductores en función de la superficie libre. Tomada de (NEC, 2013)

Los acabados de los componentes metálicos de armarios, cajas y gabinetes deberán tener una resistencia a la corrosión de tal manera que cumplan las normas correspondientes de calidad y puedan ser comprobadas.

Las pinturas utilizadas en tableros no deben tener TGIC (triglicidilisocianurato).

El grado de protección IP será adecuado y corresponderá al tipo de condiciones y ambiente al que estará expuesto el tablero, se recomienda como mínimo un grado IP 41 para tableros de interior y un grado IP 44 para tableros de exterior, no se aceptarán tableros de tipo abierto.

Los componentes no metálicos utilizados en la elaboración de cajas, gabinetes o armarios deben contar con los siguientes requisitos:

- Deben ser no higroscópicos.
- Deben ser auto extinguibles en caso de combustión (soportar 650°C durante 30 segundos), arder sin llama y emitir humos de baja opacidad, sus residuos gaseosos deben ser no tóxicos.
- Tener una resistencia mecánica al impacto de grado IK 05 como mínimo y tener un grado de protección contra sólidos, líquidos y contacto directo, mínimo IP2X para interiores e IP4X para exteriores. (NEC , 2013)

Las distancias mínimas entre partes desnudas energizadas en un tablero se muestran en la siguiente tabla:

 Tabla 18

 Distancias entre partes energizadas desnudas dentro de un tablero

Voltajes de servicio (V)	Partes energizadas respecto a tierra (mm)
0 a 200	15
201 a 400	15
401 a 1000	30

Nota. La tabla representa las distancias entre partes energizadas desnudas dentro de un tablero de acuerdo a los niveles de voltaje con respecto a tierra. Tomada de (NEC, 2013)

Los dispositivos de maniobra y protección cuentan con sus respectivas normas sobre distancias de contactos, por lo cual quedan exentos de lo dispuesto en la tabla anterior.

Los dispositivos de accionamiento y comando que se encuentren dentro de un tablero serán montadas a una altura mínima de 0,6 metros y máxima de 2 metros medidos desde el nivel del piso terminado. (NEC, 2013)

Los tableros deberán ser probados para satisfacer las normas referentes a:

Construcción y ensamble de tableros de Baja Tensión

Grado de protección de tableros

Resistencia a la salinidad

Resistencia a la humedad relativa

Material Eléctrico dentro de un tablero

Los conductores del alimentador que entren al tablero llegarán por medio de puentes de conexión o barras metálicas de distribución, puede existir una protección principal.

Los dispositivos de comando o protección se realizarán desde las barras de distribución y no se aceptarán conexiones directas de dispositivo a dispositivo.

Se debe contar con soportes de material aislante para montar rígidamente las barras de distribución.

Los cables y las barras internas deberán cumplir el código de colores vigente.

Si la capacidad del tablero supera los 200 Amperios, este deberá contar con instrumentos de medición de voltaje y corriente por cada fase.

Los tableros de distribución principales deberán contar con luces piloto que indique que el tablero se encuentra energizado.

Los tableros cuyas características lo requieran, ya sean principales o principales auxiliares llevarán luces piloto que indiquen el estado de funcionamiento. (NEC , 2013)

Conexión a tierra en tableros

Todo tablero debe tener una barra o puente para conexión a tierra.

En caso de que el tablero sea metálico, todas las partes desmontables del tablero deberán conectarse al puente o barra de tierra. (NEC , 2013)

Identificación del tablero

Los tableros deberán contener la siguiente identificación:

- Diagrama Unifilar
- Tipo de ambiente
- Rotulado para identificación de circuitos
- Instrucciones para instalación, operación y mantenimiento. (NEC, 2013)

Ventilación

No se debe exceder la temperatura adecuada por lo cual debe existir ventilación natural y de ser el caso forzada para garantizar la correcta operación de los equipos.

Tableros de medidores

Cuando se requiere instalar 5 o más medidores se utilizará un cajón metálico (tablero) con puertas de acceso también metálicas cuyo espacio está dividido en tres compartimientos que alojarán en orden los siguientes componentes:

Seccionador(es) y barras multi conectoras para distribución.

Equipos de medición.

Disyuntores.

La empresa distribuidora de energía eléctrica autorizará y acreditará a quienes construyan los tableros de medidores bajo ciertas normas y especificaciones de dimensiones y materiales.

La barra correspondiente al neutro estará correctamente puesta a tierra del mismo modo que la carcasa del tablero de medidores. (NEC , 2013)

La siguiente tabla muestra el área útil de acuerdo al número de filas:

Tabla 19Área útil de un tablero de medidores según el número de filas

Tipo de tablero	Área útil (m^2)		
Tablero de 2 filas	1		
Tablero de 3 filas	1,4		
Tablero de 4 filas	1,8		

Nota. La tabla representa el área útil en función del número de filas de medidores que posea el tablero.

Tomada de (NEC , 2013)

Identificación de Servicios

En el espacio destinado a los medidores, junto a cada disyuntor y también debajo de cada ventanilla de lectura se marcará la identificación con un máximo de 3 caracteres en cuanto a numeración. (NEC , 2013)

Ejemplo:

LOCAL: LOC 101

DEPARTAMENTO: DEP 201

Las denominaciones colocadas deben estar conformes a las mismas que constan en las escrituras de la edificación donde estará instalado el tablero de medidores y sus datos deberán estar registrados en la hoja técnica de datos levantada por parte del proyectista. (NEC , 2013)

Iluminación del tablero

Es recomendable una iluminación mínima de 100 luxes ubicada frente al armario o tablero de medidores con el propósito de facilitar el mantenimiento, inspección y lectura. (NEC , 2013)

Uso del espacio

En un tablero que posea de 6 a 10 medidores se tendrá como mínimo un espacio destinado a una reserva o futura expansión, podrán tenerse más espacios para servicios adicionales siempre y cuando estos se justifiquen con la proyección prevista por el propietario de la edificación.

Se recomienda siempre destinar para reserva un espacio no menor al 10% de la cantidad de servicios a instalarse en el tablero, estos espacios tendrán su respectivo disyuntor y quedarán alambrados.

Si el tablero llegase a requerir una expansión para la instalación de mas medidores se mantendrán las medidas originales tomando en cuenta el número de filas, la expansión se fabricará con el mismo material del tablero original.

Se considerarán también los siguientes factores:

- La ubicación del tablero original.
- La compatibilidad de los compartimientos existentes con el nuevo compartimiento de medidores.
- En caso de ser necesario, un nuevo compartimiento para disyuntores, se agrupará en un solo cuerpo modular a ambos compartimientos. (NEC , 2013)

Ubicación

En caso de presentarse dificultades para la instalación del tablero cuando se conecte la acometida desde las redes de distribución de bajo voltaje el encargado de la obra civil solicitará una

inspección a la empresa eléctrica para determinar la mejor ubicación tomando en cuenta la facilidad para la toma de lecturas, inspecciones y mantenimientos.

El tablero se montará de acuerdo con lo expuesto en la tabla 16 correspondiente al espacio de trabajo y distancias mínimas de seguridad.

Para un tablero de cuatro filas, la base tendrá una altura mínima de 30 cm. (NEC, 2013)

Seguridades

Cuando el tablero o armario requiera colocarse necesariamente en un espacio destinado al parqueo de vehículos se colocará parantes o tubos de protección de acero galvanizado, de 2 pulgadas de diámetro, 40 cm de altura y a 50 cm de distancia del tablero.

En el caso de que el tablero se ubique a un costado de un garaje será necesaria una acera de 50 centímetros de ancho, 20 centímetros de altura y de un largo que pueda cubrir la longitud del tablero.

Si el tablero se encuentra a la intemperie se precisará de un volado con un mínimo de 30 centímetros para protección.

Se recomienda la colocación de cauchos de neopreno en los filos de las puertas que sirva como protección contra polco, arena y agua. (NEC , 2013)

Alimentadores

Un alimentador principal va desde el suministro eléctrico principal hasta el tablero principal o tablero de medidores, estos alimentadores no deberán pasar a través de propiedades vecinas y para edificios se recomienda que el recorrido de los alimentadores se realice por medio de espacios de uso común.

El calibre de los conductores deberá ser el mínimo que pueda servir las cargas determinadas, pero se recomienda como sección mínima el calibre # 10 AWG.

Se permitirá una caída de voltaje máxima del 3% del voltaje nominal y además no se permitirán uniones en los alimentadores. (NEC , 2013)

Canalización de alimentadores

El calibre de los conductores de alimentadores y subalimentadores será el suficiente para servir a las cargas determinadas y el mínimo permitido será #10 AWG.

En caso de que la sección del conductor supere la del calibre # 10 AWG el conductor deberá ser de tipo cableado.

Solo se podrán transportar los conductores de un mismo servicio y de un mismo voltaje de servicio a través de un ducto siendo este principio también aplicable a cámaras de canalización subterráneas, cajas de paso, derivación, etc.

Se podrá usar conductores en paralelo unidos en ambos extremos en caso de líneas de potencia cuya sección sea 1/0 AWG o superior siempre y cuando se cumplan las siguientes condiciones:

Que los conductores que formen parte del conjunto tengan el mismo largo.

Que la sección de cada uno de los conductores que forma parte del conjunto sea la misma.

Que el aislamiento de cada uno de los conductores que forma parte del conjunto sea del mismo tipo.

Que en sus extremos tengan el mismo tipo de terminales de conexión y que éstos sean de la misma dimensión.

Se deberá aplicar un factor de corrección de capacidad de transporte por cantidad de conductores al conjunto de conductores.

Es necesario efectuar transposiciones de ubicación para lograr mantener el equilibrio de las impedancias de línea y de corrientes por fase en longitudes de línea superiores a 50 metros que se encuentren canalizadas en ductos separados, bandejas, escalerillas.

Las transposiciones se realizarán en cajas de paso, cámaras, escalerillas o dentro de las bandejas ya sea que se utilicen conductores en paralelo o simples.

Si las tres fases van dentro de un mismo ducto no se necesitará efectuar transposiciones.

Si la canalización está a la vista y el ambiente presenta muros húmedos o de materiales higroscópicos deberá existir una separación de 1 centímetro como mínimo y si la canalización es embutida o pre embutida deberá estar fabricada solo con materiales no metálicos para la tubería.

Cuando existen temperaturas que varían con mucha frecuencia como bodegas de refrigeración se colocará sellos adecuados para evitar la circulación de aire de la parte más caliente a la más fría, deberán colocarse además juntas de dilatación que puedan compensar las expansiones y contracciones de la tubería producidas por el cambio de temperatura.

Los factores ambientales deberán también tomarse en cuenta al momento de seleccionar conductores de tal manera que no se sobrepasen los límites de temperatura adecuados, se tomará en cuenta lo siguiente:

La temperatura ambiente

El calor generado por efecto joule.

Facilidad de disipación del calor generado.

Presencia de otros conductores contribuyen a elevar la temperatura. (NEC, 2013)

Canalizaciones y conductores

Los elementos metálicos como armarios, cajas, gabinetes, ductos y demás accesorios deberán estar siempre unidos de forma rígida y mecánicamente adecuada, además deberán asegurar una buena conductividad eléctrica.

En lo posible se debe evitar la unión de piezas metálicas con no metálicas en ductos y canalizaciones, en caso de que sea necesaria la unión de ductos metálicos con no metálicos, la unión se

realizará mediante cajas de paso de material metálico las cuales serán conectadas al conductor de protección del circuito, si el conductor de protección no existe se deberá tender a fin de proteger la pieza metálica.

Se deberán proteger los elementos metálicos de los sistemas de canalizaciones contra voltajes peligrosos mediante una adecuada conexión a tierra y medidas contra contactos directos e indirectos.

No deben existir discontinuidades en los ductos, es decir entre cajas y cajas o entre accesorios y accesorios, los sistemas de acoplamiento debidamente aprobados no son considerados como discontinuidades.

En cualquier momento se podrá medir el aislamiento de las canalizaciones, permitiendo localizar fallas o reemplazar conductores en caso de ser necesario. (NEC , 2013)

Colores de conductores de una canalización eléctrica

Los conductores de una canalización eléctrica se identificarán según el siguiente Código de Colores:

Alimentadores eléctricos:

- Conductor de la fase 1 azul
- Conductor de la fase 2 negro
- Conductor de la fase 3 rojo
- Conductor de neutro blanco
- Conductor de tierra verde

Si el calibre del conductor es superior al # 4 AWG en caso de que el mercado nacional solo disponga de conductores cuyo aislamiento sea de color negro, los conductores se deberán marcar cada 10 metros con alguna pintura que no pierda sus propiedades con el tiempo manteniendo la marca y el código de colores. (NEC , 2013)

Protecciones de alimentadores

Se deben considerar protecciones tanto a la sobrecarga como al cortocircuito, la protección máxima a la sobrecarga será determinada por la capacidad máxima de corriente que puedan transportar los conductores.

Si el alimentador lleva conductor de puesta a tierra no se deberá colocar protección a este conductor a excepción de que la protección opere simultáneamente sobre todos los conductores del alimentador.

Si existen derivaciones desde un alimentador se deberán colocar protecciones contra sobre corriente y cortocircuito a menos que la derivación sea menor a los 10 metros de largo, que la sección sea mayor a un tercio de la sección del alimentador y que se encuentren canalizadas dentro de ductos cerrados.

Cada alimentador deberá tener un dispositivo individual de operación. (NEC, 2013)

Dimensionamiento del neutro

Para alimentadores monofásicos y alimentadores trifásicos con cargas no lineales el neutro deberá tener por lo menos la misma sección que el conductor de la fase.

Para alimentadores trifásicos con cargas lineales la sección del neutro será por lo menos el 50% de la sección de las fases.

Si las cargas presentan corrientes armónicas el neutro podrá ser hasta el doble de la sección de los conductores de las fases en caso de requerirlo. (NEC , 2013)

Conductores para instalaciones

Los conductores asegurarán una adecuada capacidad de corriente, caída de tensión dentro de los límites que se permitan, resistencia mecánica optima y comportamiento adecuado respecto al ambiente en el que se encuentre.

Se deberá tomar en cuenta también el número de conductores en la canalización y la temperatura ambiente a la que trabajará el conductor.

Los conductores deberán ser homologados por el INEN y poseer impreso sobre el aislamiento o cubierta la siguiente información como mínimo:

Nombre del fabricante

Tipo de conductor

Sección del conductor AWG o en mm2.

Voltaje de servicio.

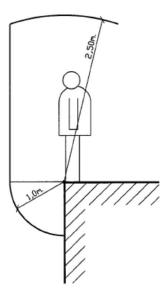
Número de certificación. (NEC, 2013)

Medidas de protección contra voltajes peligrosos

El contacto directo o indirecto con un circuito eléctrico es un riesgo presente que corre el operador, se define como contacto directo cuando el operador toca con su cuerpo una parte del circuito que normalmente se encuentra energizada y se entenderá como contacto indirecto cuando una parte del cuerpo del operador hace contacto con una parte del circuito que normalmente se encuentra des energizada, pero que en condiciones de falla se energiza.

Existen métodos para proteger al operador las cuales se definirán a continuación:

limitando al mínimo el tiempo de la falla.


Hacer que el valor del voltaje con respecto a tierra sea igual o inferior a un valor de seguridad.

Hacer que la corriente que circule por el cuerpo del operador, no exceda de un cierto valor de

seguridad.

Figura 7

Zona alcanzable establecida

Nota. El gráfico representa las distancias seguras del operador con respecto a partes energizadas del circuito. Tomada de (NEC , 2013)

El valor de resistencia del cuerpo de un ser humano es alrededor a 2.000 Ohm. Este valor se considera como un valor de referencial.

Los valores de voltaje a los que se puede exponer el cuerpo humano sin riesgo son, 50 V en lugares secos y 24 V en lugares húmedos o mojados. (NEC , 2013)

Contactos directos

Las medidas adoptadas para evitar contactos directos con partes energizadas a más de 50 V serán las siguientes:

Colocar las partes energizadas fuera de la zona de alcance para una persona.

Colocar las partes energizadas en bóvedas o salas similares, cuyo acceso solo esté disponible a personal calificado.

Delimitar las partes energizadas de manera que nadie pueda entrar y ponerse en contacto accidental con ellas y que sólo personal calificado pueda acceder a esta zona.

Limitar la corriente de fuga a menos de un miliamperio mediante aislantes adecuados que sean capaces de conservar sus propiedades a lo largo del tiempo al recubrir las partes energizadas con dichos aislantes.

Las pinturas, barnice y lacas no se considerarán como aislantes adecuados para estos fines. (NEC , 2013)

Contactos indirectos

Para prevenir contactos indirectos en los respectivos puntos de instalaciones es necesario mantener el aislamiento en valores adecuados.

En instalaciones de bajo voltaje se aplicará un voltaje no inferior a 500 V con instrumentos de corriente continua, para medir el aislamiento los conductores y partes que se requieran medir permanecerán desconectados de la fuente de alimentación.

Para voltajes de hasta 220 V se recomienda una resistencia de aislamiento mínima de 300.000 Ohm. (NEC , 2013)

Medidas complementarias para protección contra voltajes de contacto peligrosos

Sistemas de protección clase A:

- Empleo de transformadores de aislamiento.
- Empleo de VOLTAJES bajos (12, 24 voltios).
- Empleo de doble aislamiento.
- Conexiones equipotenciales.

Sistemas de protección clase B:

- Puesta a tierra de protección.

- Dispositivo de corte automático por corriente de falla
- Puesta a neutro.

Sistemas de puestas a tierra

Todo equipo eléctrico y demás componentes metálicos de estos sistemas deberán ser aterrizado, por lo que toda instalación eléctrica deberá contar con un Sistema de Puesta a Tierra (SPT)

No deben existir voltajes de paso, de contacto o transferidas que superen límites tolerados por el ser humano en caso de ocurrir una falla.

Se desea siempre que los valores de los sistemas de puesta a tierra sean lo más bajos posibles para brindar un camino a las corrientes de falla hacia el electrodo de puesta a tierra. (NEC , 2013)

Objetivos y funciones de un SPT:

Garantizar óptimas condiciones de seguridad.

Permitir despejes rápidos de fallas.

Referencia del sistema eléctrico.

Parámetros para el cálculo de un SPT:

Resistividad del suelo.

Corriente de falla a tierra máxima.

Tiempo de despeje de falla.

Tipo de carga.

Tabla 20

Valores máximos de tensión de contacto aplicada al ser humano

Tiempo de despeje de la falla	Máxima tensión de contacto admisible (valores en rms c.a.)		
Mayor a dos segundos	50 voltios		
750 milisegundos	67 voltios		
500 milisegundos	80 voltios		
400 milisegundos	100 voltios		
300 milisegundos	125 voltios		
200 milisegundos	200 voltios		
150 milisegundos	240 voltios		
100 milisegundos	320 voltios		
40 milisegundos	500 voltios		

Nota. La tabla representa la tensión de contacto aplicada a un ser humano en caso de falla a tierra.

Tomada de (NEC , 2013)

Consideraciones de un SPT:

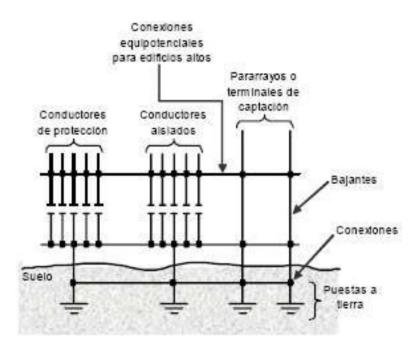
Las tierras naturales como tuberías de agua, estructuras metálicas no deberán ser usadas como electrodo de puesta a tierra, pero si deberán estar conectadas a este electrodo.

Los elementos metálicos de las edificaciones deben tener una conexión eléctrica con el sistema de puesta a tierra general.

Las conexiones de puesta a tierra bajo el nivel del suelo deben ser realizadas mediante soldadura exotérmica.

En el caso de instalaciones domiciliarias se debe dejar al menos un punto de conexión inspeccionable como una caja de inspección con tapa removible cuyas dimensiones deben ser mínimo de 30 cm x 30 cm, o de 30 cm de diámetro si es circular.

No se permite el uso de electrodos de aluminio.

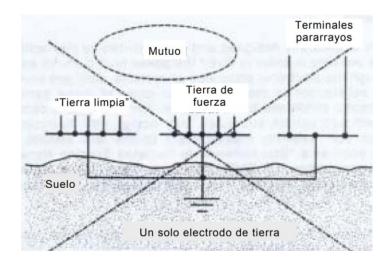

Queda prohibido utilizar el suelo o terreno como retorno de la corriente.

No se permitirá el uso de sistemas monofilares.

En caso de que un edificio requiera varias puestas a tierra, todas deberán estar interconectadas eléctricamente según el criterio de la norma IEC-61000-5-2.

Figura 8

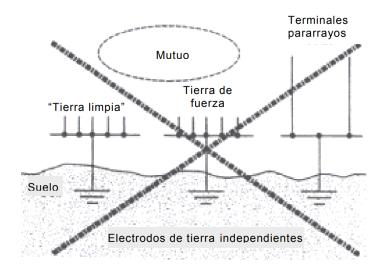
Puestas a tierra interconectadas eléctricamente



Nota. El gráfico representa la interconexión eléctrica de las puestas a tierra existentes en un edificio.

Tomada de (NEC, 2013)

Figura 9


Una sola puesta a tierra para todas las necesidades (prohibido)

Nota. El gráfico representa la interconexión eléctrica errónea de una única tierra existente en un edificio. Tomada de (IEC, 2003)

Figura 10

Puestas a tierra separadas o independientes (prohibido).

Nota. El gráfico representa la conexión eléctrica errónea de las puestas a tierra independientes sin interconexión eléctrica existentes en un edificio. Tomada de (IEC, 2003)

Electrodos de puesta a tierra

Se requiere que se garantice por parte de los fabricantes una resistencia a la corrosión de mínimo 15 años contados desde la instalación y la certificación correspondiente como ASTM B117 y ASTM G1 (Método de inmersión en cámara salina), ASTM G162-99, ASTM G8-90 o algún otro método que garantice los requerimientos previamente solicitados.

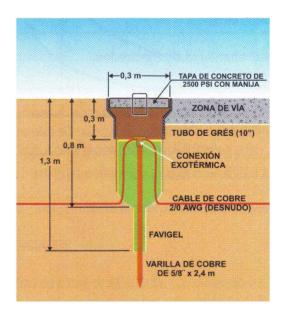
Tabla 21Requisitos para electrodos de puesta a tierra

Tipo de	Materiales	Dimensiones Mínimas			
Electrodo		Diámetro (mm)	Área (mm²)	Espesor (mm)	Recubrimiento (μm)
	Cobre	12,7			
	Acero inoxidable	10			
Varilla	Acero galvanizado en caliente	16			70
	Acero con recubrimiento electrodepositado de cobre	14			100
	Acero con recubrimiento total en cobre	15			2000
Tubo	Cobre	20		2	
	Acero inoxidable	25		2	
	Acero galvanizado en caliente	25		2	55
	Cobre		50	2	
Fleje	Acero inoxidable		90	3	
	Cobre cincado		50	2	40
Cable	Cobre	1,8 para cada hilo	25		
	Cobre estañado 1,8 para cada hilo		25		
Placa	Cobre		20000	1.5	
	Acero inoxidable		20000	6	

Nota. La tabla representa las dimensiones, materiales y tipos de electrodos. Tomada de (NEC , 2013)

Instalación de electrodos de puesta a tierra

Para garantizar la correcta instalación de los electrodos de puesta a tierra se deberán tener en cuenta las siguientes consideraciones:

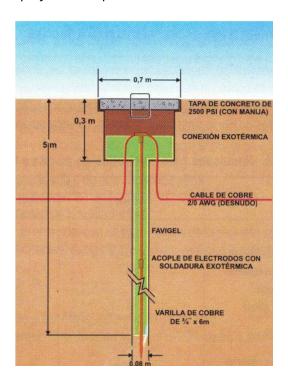

Se debe tener acceso al punto de unión entre el conductor del electrodo de puesta a tierra y el electrodo en un pozo de revisión que permita realizar mediciones, inspecciones y futuros mantenimientos de la puesta a tierra.

Los electrodos deben estar totalmente enterrados.

La parte superior del electrodo enterrado debe quedar a mínimo 15 cm de la superficie.

Figura 11

Disposición típica de electrodos de puesta a tierra.



Nota. El gráfico representa las distancias típicas en la instalación de un electrodo de puesta a tierra.

Tomada de (NEC , 2013)

Figura 12

Disposición típica de electrodos profundos de puesta a tierra.

Nota. El gráfico representa las distancias típicas en la instalación de un electrodo profundo de puesta a tierra. Tomada de (NEC , 2013)

Conductores de puesta a tierra

Los conductores de ben ser continuos y en caso de empalmes se deberá usar la soldadura exotérmica.

El conductor de puesta a tierra acompañará en la canalización a los conductores activos para el caso de equipos.

Si el conductor de puesta a tierra requiere aislarse, este aislamiento deberá ser de color verde, verde con rayas amarillas o poseer identificadores verdes en los puntos extremos y de inspección.

Se debe verificar que la corriente que circula por el conductor de tierra sea cero antes de efectuar cualquier trabajo de desconexión o de conexión a fin de precautelar la seguridad de operarios y equipos. (NEC , 2013)

Valores de resistencia de puesta a tierra

Tabla 22Valores de resistencia de puesta a tierra

Aplicación	Valores máximos de resistencia de puesta a tierra (Ohms)		
Estructuras de líneas de transmisión	20		
Subestaciones de alta y extra alta tensión	1		
Subestaciones de media tensión	10		
Protección contra rayos	10		
Neutro de acometida en baja tensión	10		

Nota. La tabla representa los valores máximos de resistencia de puesta a tierra. Tomada de (NEC , 2013)

Mediciones de resistencias de puesta a tierra

La resistencia de puesta a tierra se medirá antes de la puesta en funcionamiento de un sistema eléctrico, como medida rutinaria de mantenimiento y verificación del sistema de puesta a tierra.

Las técnicas para medir la resistividad aparente del terreno, son esencialmente las mismas que para aplicaciones eléctricas. Para su medición se recomienda aplicar el método de Wenner, ya que es uno de los más utilizados.

Fundamentación legal

Regulación ARCONEL 001/2020

La regulación ARCONEL 001/2020 cuyo objetivo es "Regular los aspectos técnicos, comerciales y operativos entre: la distribuidora y el consumidor; y, la distribuidora, el transmisor y el consumidor,

cuando corresponda; en la prestación del servicio público de energía eléctrica establece que es responsabilidad de la distribuidora Prestar el servicio público de distribución de energía eléctrica a los consumidores regulados y no regulados, ubicados dentro de su área de servicio, conectados legalmente a la red de distribución, observando lo estipulado en: el título habilitante, las leyes, los reglamentos y las regulaciones correspondientes y aplicables.

La expansión de la red de distribución hasta el punto de entrega y los equipos necesarios para la protección, seccionamiento, medición y puesta a tierra, en dicho punto, es de responsabilidad de la distribuidora. Las obras civiles en el punto de entrega, así como las adecuaciones técnicas de las instalaciones internas hasta dicho punto, son responsabilidad del solicitante, conforme los lineamientos y parámetros técnicos emitidos por la distribuidora.

Para aquellas redes de distribución existentes y en operación, en las cuales sea necesario realizar modificaciones a efectos de garantizar las condiciones técnicas de la prestación del servicio, la distribuidora deberá cubrir los costos de rediseño e implementación de las obras requeridas, y no deberá requerir de los consumidores inversiones o gastos, por ningún concepto".

"La distribuidora podrá requerir al solicitante que adecúe sus instalaciones para la prestación del suministro del servicio público de energía eléctrica. Para el efecto, el solicitante será responsable del diseño y de la construcción de las obras requeridas, bajo normas y lineamientos de la distribuidora; las mismas que, para suministros que estén servidos en medio y alto voltaje, deberán ser realizadas por un ingeniero eléctrico o un profesional facultado, conforme la legislación aplicable y vigente en el país, o empresas autorizadas para realizar diseño y construcción de sistemas de distribución eléctrica, en todo caso, el diseño y la construcción del proyecto serán aprobados por la distribuidora".

Regulación ARCERNNR – 002/20

La regulación ARCERNNR – 002/20 cuyo objetivo es "establecer los indicadores, índices y límites de calidad del servicio de distribución y comercialización de energía eléctrica; y, definir los procedimientos de medición, registro y evaluación a ser cumplidos por las empresas eléctricas de distribución y consumidores, según corresponda" establece que entre las obligaciones de la distribuidora se encuentran las siguientes:

"Prestar el servicio de distribución y comercialización de energía eléctrica a los consumidores finales, cumpliendo con los requerimientos de calidad exigidos en la presente regulación".

"Identificar, notificar y solicitar las acciones correctivas que correspondan a los consumidores que incumplan aspectos de calidad del consumidor".

Las obligaciones del consumidor son:

"Cumplir con las exigencias establecidas en la presente regulación respecto a la calidad responsabilidad del consumidor".

"Ejecutar las acciones correctivas que correspondan a fin de cumplir los límites establecidos para la calidad del consumidor".

"Permitir acceso al personal de la distribuidora y/o ARCERNNR para la verificación de los sistemas de medición e instalaciones eléctricas de la distribuidora".

"Cumplir con las especificaciones técnicas que establezca el Servicio Nacional de Normalización INEN en cuanto a instalaciones eléctricas internas".

En cuanto a la calidad del producto con respecto al nivel de voltaje se establece que se determinará con el siguiente índice:

$$\Delta V_K = \frac{V_K - V_N}{V_N} \times 100 \, [\%] \, \text{Ec} \, [1]$$

Donde:

 ΔV_K = Variación del voltaje de suministro respecto al voltaje nominal en el punto k.

 $V_K = \mbox{Voltaje}$ de suministro en el punto k, determinado como el promedio de las medidas registradas (al menos cada 3 segundos) en un intervalo de 10 minutos.

 V_N = Voltaje nominal en el punto k

Los rangos de voltaje admitidos son los siguientes:

Tabla 23 *Límites para el índice de nivel de voltaje*

Nivel de voltaje	Rango admisible
Alto voltaje (Grupo 1 grupo 2)	± 5,0 %
Medio voltaje	± 6,0 %
Bajo voltaje	± 8,0 %

Nota. La tabla representa los valores admisibles asignados para cada nivel de voltaje. Tomada de (ARCERNNR, 2020)

Sistema de variables

Variable independiente

Elaboración de la guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A.

Variable dependiente

Homologar las instalaciones de medidores y acometidas en bajo voltaje en el área de comercialización de ELEPCO S.A.

Hipótesis

Es posible homologar las instalaciones de medidores y acometidas en bajo voltaje en el área de concesión de ELEPCO S.A. mediante una guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A.

Operacionalización de variables

Cuadro de operacionalización de las variables

Tabla 24Operacionalización de las variables

Variable	Definición conceptual	Dimensión	Indicador	Instrumento
			Parámetros eléctricos.	
Variable independiente: Elaboración de la guía de	permite establecer un proceso	Guías de instalación de	Distancias de seguridad.	Tablas de datos.
instalación de acometidas y medidores para el área de comercialización de la	estandarizado de instalación de acometidas y	acometidas y medidores de	Materiales y equipos	Ilustraciones. Unidades de
Empresa Eléctrica Provincial Cotopaxi S.A.	medidores en su área de comercialización	diferentes empresas eléctricas	Especificaciones para obras civiles.	propiedad
			Indicadores y señalización.	
Variable dependiente: Homologar las instalaciones de medidores y acometidas en bajo voltaje en el área de comercialización de ELEPCO S.A.	permite cumplir con parámetros de calidad establecidos por los agentes de regulación del sector eléctrico ecuatoriano	Normativas y regulaciones ecuatorianas	Índices de calidad	Tablas de datos. Ilustraciones.

Capítulo III

Metodología de la investigación

Modalidad de la investigación

Este trabajo de titulación se sustenta en la recopilación de información bibliográfica proporcionada por agentes reguladores del sector eléctrico, unidades de propiedad, guías de instalación de acometidas y medidores de otras empresas distribuidoras en el territorio nacional y Norma Ecuatoriana de la Construcción con el fin de crear un documento que aborde la temática de instalación de acometidas y medidores en el área de comercialización de la Empresa Eléctrica Provincial de Cotopaxi S.A.

Método bibliográfico documental

Este método recopila información legal con respecto a regulaciones, normativas y textos guía proporcionados por entidades como Empresa Eléctrica Quito S.A.; Empresa Eléctrica Ambato S.A.; CNEL; Ministerio de Energía y Recursos Naturales no Renovables; Agencia de Regulación y Control de Energía y Recursos Naturales no Renovables; Unidades de propiedad y Norma Ecuatoriana de la Construcción.

Tipos de investigación

Investigación aplicada tecnológica

Esta investigación está enfocada en que los conocimientos recopilados de forma bibliográfica puedan ser aplicados con el propósito de beneficiar a la población permitiendo que las futuras instalaciones, cambios y reubicaciones se realicen con una metodología propia, estandarizada y homologada que cumpla con las normativas y regulaciones existentes de acuerdo con las necesidades y características de los usuarios.

Diseño de la investigación

Mediante la recopilación bibliográfica de normativas, leyes, guías de diseño y unidades de propiedad existentes por parte de otras empresas eléctricas y demás organismos de regulación y control del sector eléctrico se puede describir la instalación de acometidas y medidores estableciendo relaciones que puedan contribuir a la creación de una "Guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A." con el único fin de beneficiar a la población de la provincia de COTOPAXI.

Niveles de la investigación

Exploratorio

ELEPCO S.A. no cuenta con una guía de instalación de acometidas y medidores para el área de comercialización.

Descriptivo

La investigación se sustenta en el análisis de datos recolectados, características de las diferentes guías pertenecientes a distintas empresas eléctricas, normativas vigentes y unidades de propiedad.

Población y muestra

El presente trabajo de investigación toma como población a las siguientes empresas eléctricas:

Empresa Eléctrica Quito S.A.; Empresa Eléctrica Ambato S.A.; Corporación Nacional de Electricidad (CNEL EP) y las muestras son sus diferentes guías de diseño y construcción relacionadas con la instalación de acometidas y medidores.

Determinación de la muestra

$$n = \frac{N * Z_{\alpha}^{2} * p * q}{e^{2} * (N-1) + Z_{\alpha}^{2} * p * q}$$

Donde:

n: Tamaño de muestra buscado

N: Tamaño de población o Universo

Z: Parámetro estadístico que depende del nivel de confianza

e: Error de estimación máximo aceptado

p: Probabilidad de que ocurra el evento estudiado (éxito)

q: (1-p): Probabilidad de que no ocurra el evento estudiado

Número de clientes en el área de concesión de ELEPCO S.A. para el año 2021: 152432

N= 152432

Nivel de confianza establecido por el investigador: 95% por lo tanto Z=1,96

Z = 1,96

Nivel de error admisible 5%

e= 5

Probabilidad de Éxito: 95%

p = 95

Probabilidad de no tener Éxito: 5%

q= 5

$$n = \frac{152432 * 1,96^2 * 95 * 5}{5^2 * (152432 - 1) + 1,96^2 * 95 * 5}$$
$$n = 73$$

Técnicas de recolección de datos

La recopilación de información técnica como distancias de seguridad, identificadores nemotécnicos de unidades de propiedad, obras civiles, pozos, ductos, cajas porta medidores, niveles de voltaje, materiales, equipos, marcas, identificadores, tableros de medidores, protecciones y puesta a tierra, entre otros parámetros son proporcionados por la Corporación Nacional de Electricidad (CNEL EP), Empresa Eléctrica Quito S.A.; Empresa Eléctrica Ambato S.A.; Norma Ecuatoriana de la construcción

(NEC), Ministerio de Energía y Recursos Naturales no Renovables (MERNNR) y Agencia de Regulación y Control de Energía y Recursos Naturales no Renovables (ARCERNNR).

Validez y confiabilidad

Los datos utilizados son de alta confiabilidad ya que se basan en normativas ecuatorianas, regulaciones actuales y guías elaboradas por las diferentes Empresas Eléctricas debidamente revisadas y aprobadas para su publicación.

Técnicas de análisis de datos

Para esta investigación se realiza un análisis cualitativo, cuantitativo y descriptivo.

El análisis cuantitativo determinará los valores de las diferentes magnitudes y dimensiones establecidas en los textos recopilados.

El análisis cualitativo permitirá establecer una serie de condiciones y pasos a seguir en la instalación de acometidas y medidores de acuerdo a cada situación planteada en la guía.

El análisis descriptivo facilitará el ordenar, manipular e interpretar los datos brutos obtenidos de diversas fuentes durante la fase de recolección de datos.

Técnicas de comprobación de hipótesis

Comprobación de la homologación de instalaciones de medidores y acometidas en bajo voltaje en el área de concesión de ELEPCO S.A. mediante una guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A.

La comprobación de la hipótesis se puede realizar midiendo el índice de satisfacción de los clientes a los cuales se haya instalado nuevos medidores.

Capítulo IV

Resultados de la investigación

En esta sección se presentan las características encontradas en los diferentes textos utilizados para la investigación bibliográfica referentes a la instalación de acometidas y medidores.

Análisis de los resultados

Norma Ecuatoriana de la Construcción (NEC) Instalaciones Eléctricas 2018

La Norma Ecuatoriana de la Construcción (NEC) en su versión más actual del año 2018 consta de un capítulo destinado exclusivamente a instalaciones eléctricas, la cual aborda temas como el cálculo de la demanda, la selección de conductores para circuitos, tableros de distribución, canalización, puestas a tierra, entre otros pero a pesar de ser una normativa actualizada no se habla con detalle sobre temas tales como acometidas de tipo aéreas o subterráneas, tableros de medidores, selección de conductores para acometidas, acometidas en alto y bajo voltaje, distancias de seguridad, obras civiles, etc. Por lo que a pesar de ser una normativa actual solo aporta una pequeña parte del contenido necesario para crear una guía de instalación de acometidas y medidores adecuada para ELEPCO S.A.

Norma Ecuatoriana de la Construcción (NEC) Instalaciones Electromecánicas 2013

La Norma Ecuatoriana de la Construcción (NEC) en su versión del año 2013 consta de un capítulo destinado exclusivamente a instalaciones electromecánicas denominado NEC Capitulo 15 Instalaciones Electromecánicas el cual aborda temas de vital importancia como:

Acometidas aéreas y subterráneas

Acometidas en bajo y medio voltaje

Centros de transformación

Cámaras de transformación

Obras civiles

Materiales y Equipos

Distancias de Seguridad

Marcas e Identificadores

Tableros de medidores

Alimentadores

Canalización

Medidas de protección

Puesta a tierra

A pesar de que esta normativa es relativamente antigua se sustenta en bases bibliográficas nacionales e internacionales tales como:

Código Eléctrico Nacional, Ecuador, CPE INEN 19:2001.

NFPA70 Código Eléctrico Nacional. EEUU, 2008.

Por la cantidad de temas correspondientes a la instalación de acometidas y medidores y bases bibliográficas adecuadas se decidió tomar el contenido de NEC Capitulo 15 Instalaciones Electromecánicas para la elaboración del presente trabajo de titulación.

Discusión de los resultados

Norma Ecuatoriana de la Construcción (NEC) Instalaciones Eléctricas 2018

A pesar de ser una normativa actual solo aporta una pequeña parte del contenido necesario para crear una guía de instalación de acometidas y medidores adecuada para ELEPCO S.A.

Norma Ecuatoriana de la Construcción (NEC) Instalaciones Electromecánicas 2013

Por la cantidad de temas correspondientes a la instalación de acometidas y medidores y bases bibliográficas adecuadas se decidió tomar el contenido de NEC Capitulo 15 Instalaciones

Electromecánicas como fundamento bibliográfico para la elaboración de la guía de instalación de acometidas y medidores a pesar de su año de publicación.

Capítulo V

Propuesta

Objetivos

Brindar a la Empresa Eléctrica Provincial de Cotopaxi disposiciones adecuadas para la instalación de acometidas de servicio eléctrico, así como sistemas de medición, tableros de medidores, longitudes máximas de acometidas y calibres adecuados dentro de los límites de caída de voltaje establecidos por los agentes de regulación y normativas vigentes.

Alcance

Se aplicará por las áreas y/o departamentos correspondientes y por el personal encargado de la instalación de acometidas y medidores, sean estos nuevos, ampliaciones y/o mejoramiento y/o mantenimiento de las existentes.

Se utilizará como guía para Ingenieros Eléctricos, Electrónicos y/o Electromecánicos que presten sus servicios para la Empresa Eléctrica Provincial de Cotopaxi S.A.

Definiciones

Empresa distribuidora

Persona jurídica cuyo Título Habilitante le permite realizar la acción de distribuir y comercializar energía eléctrica y prestar el servicio de alumbrado público, dentro de su área de servicio.

Área de servicio

Es el área determinada por el Ministerio de Energía y Recursos Naturales No Renovables en la cual una empresa eléctrica brinda el servicio de distribución y comercialización de energía eléctrica y el servicio de alumbrado público.

Calidad

Grado con el que los servicios de energía eléctrica y alumbrado público cumplen con los requisitos técnicos y comerciales referentes al suministro de energía eléctrica y alumbrado público establecidos en la normativa vigente.

Sistema de distribución

"Conjunto de líneas de subtransmisión, subestaciones de distribución, alimentadores primarios, transformadores de distribución, redes secundarias, acometidas, equipamiento de compensación, protección, maniobra, medición, control y comunicaciones, utilizados para la prestación del servicio de distribución de energía eléctrica".

Sistema de medición

Componentes útiles para la medición de energía eléctrica activa, reactiva, demanda máxima y demás parámetros relacionados. Contiene equipo de registro y visualización (medidor), transformadores de tipo TP y TC (cuando se requiera), cables, accesorios y protección física del medidor y transformadores.

Usuario final

Persona natural o jurídica que recibe la prestación del servicio de energía eléctrica, ya sea como propietario del inmueble donde éste se presta, o como receptor directo del servicio.

Gran consumidor

Persona natural o jurídica, cuyas características de demanda de energía eléctrica le facultan para acordar libremente con un generador o auto generador privado, la adquisición de energía eléctrica para su consumo.

Medición

Acción de obtener el registro del consumo de energía eléctrica además de parámetros eléctricos relacionados, referentes al equipo de medición del usuario.

Acometida

Conexión entre la red eléctrica y la instalación eléctrica del consumidor.

Medidor

Equipo que permite medir y registrar la energía activa, reactiva, demanda máxima y parámetros relacionados con la electricidad, incluye pantalla de visualización.

Punto de conexión

Límite de conexión entre las instalaciones de dos participantes mayoristas del sector eléctrico.

Punto de entrega

Límite de conexión entre las instalaciones de la distribuidora y de propiedad del usuario final.

Niveles de voltaje

Se definen los siguientes niveles de voltaje:

- Bajo voltaje: voltaje menor o igual a 0,6 kV;
- Medio voltaje: voltaje mayor a 0,6 y menor o igual a 40 kV;
- Alto voltaje grupo 1: voltaje mayor a 40 y menor o igual a 138 kV; y,
- Alto voltaje grupo 2: voltaje mayor a 138 kV.

Centro de transformación

Conjunto de elementos de transformación, protección y seccionamiento utilizados para la distribución de energía eléctrica.

Voltaje nominal

Voltaje especificado en el diseño de una red eléctrica.

Voltaje de suministro

Voltaje del servicio que la empresa distribuidora de energía eléctrica entrega al consumidor en un instante dado.

Cable

Conductor sólido o conjunto de hilos que pueden poseer o no aislamiento.

Conductor

Material que permite el flujo de energía eléctrica, por lo general en forma de cable o barra sólida, idóneo para transportar una corriente eléctrica. La capacidad de transmisión está determinada por la poca resistencia que presenta el material, ante el flujo eléctrico.

Distancia de seguridad

Distancia mínima permitida entre superficies de un objeto energizado y las edificaciones o personas para reducir el riesgo de descargas eléctricas.

Edificación

Construcción destinada a ser ocupada y habitada por seres humanos.

Línea de distribución

Estructura que se utiliza con el objeto de transportar electricidad, cuyo propietario es la empresa eléctrica distribuidora.

Líneas de transmisión

Estructura que se utiliza con el objeto de transportar electricidad, cuyo propietario es el transmisor o generador.

Objeto energizado

Objeto que se encuentra conectado eléctricamente a una fuente de voltaje.

Partes energizadas

Pueden ser aquellos conductores, terminales, barras u otros componentes eléctricos que puedan producir descargas eléctricas.

Sistema de puesta a tierra

Unión de todos los elementos metálicos que, a través de cables con sección suficiente entre las partes de una instalación y un conjunto de electrodos, posibilita la desviación a tierra de las descargas de tipo atmosférico o de corrientes de falla, limitando la diferencia de potencial excesiva que significaría un peligro en las instalaciones.

Tablero general de medidores (TGM)

En edificaciones o construcciones con acometidas aéreas o subterráneas cuyo requerimiento sea de seis medidores en adelante será necesaria la implementación de un tablero general de medidores (TGM), el cual deberá ser ubicado en un lugar de fácil acceso que facilite la lectura del contador de energía por parte del personal encargado de esta actividad.

Se debe colocar el diagrama unifilar del sistema de medida con sus respectivas protecciones, detallando las fases de los alimentadores a los que se encuentra conectado cada sección de la edificación y su potencia respectiva.

En caso de requerirse modificaciones de los TGM se pondrá a consideración del departamento encargado de la empresa distribuidora adjuntando los planos digitales e impresos.

Instalaciones eléctricas

Para evitar riesgos y condiciones peligrosas tanto para operadores y usuarios se debe garantizar las siguientes condiciones:

-Toda instalación deberá ejecutarse de acuerdo a un proyecto técnicamente concebido.

-El proyecto debe permitir la flexibilidad necesaria como para permitir modificaciones o ampliaciones con facilidad.

-La instalación debe ser proyectada y ejecutada bajo la supervisión directa de un profesional de la Ingeniería Eléctrica, Electrónica o Electromecánica autorizado por el órgano competente.

En uso de sus atribuciones, el Órgano Competente podrá controlar las instalaciones Eléctricas y Electrónicas en sus etapas de proyecto, ejecución, operación y mantenimiento.

Materiales y equipos

Todos los materiales y equipos usados en instalaciones eléctricas y electrónicas deberán contar con las certificaciones establecidas y otorgadas por la entidad autorizada para ello, como el INEN.

Si los equipos se instalan a una altura mayor a los 1000 metros sobre el nivel del mar se aplica un factor de pérdida de 1% por cada 100 metros de altura a excepción de equipos que cuenten con sistemas de compensación de pérdidas.

Los accesorios y las protecciones deben ser adecuados previniendo que los equipos y materiales no pierdan sus características.

Marcas e identificadores de materiales y equipos

Existen datos que debe poseer todo material o equipo eléctrico tales como:

- -Nombre de fabricante
- -País de origen
- -Marca que permita identificar al responsable del producto
- -Características dimensionales o de funcionamiento
- -Indicaciones de tipo o clase
- -Certificaciones de aprobación de uso

En el caso de las canalizaciones ya sean ocultas o a la vista deberán tener el color adecuado en toda su extensión o estar pintados en tramos de mínimo 0,2 metros y de 5 metros en el caso de existan obstáculos que impidan la visualización.

Acometidas

Ninguna estructura o edificio se alimentará desde otra internamente.

Los conductores de acometida de una edificación no deben atravesar el interior de otra edificación.

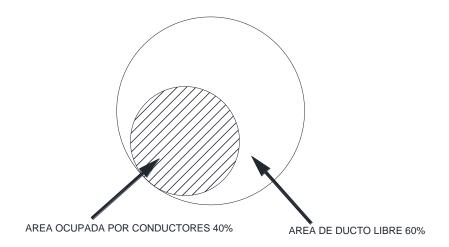
Las acometidas deben ser únicas (una sola acometida) para cualquier edificación o predio que requiera del suministro de energía eléctrica.

Excepciones:

- 1: En caso de que los equipos contra incendios requieran acometida independiente.
- 2: En caso de que la edificación posea una superficie demasiado extensa.
- 3: En caso de que se tenga un uso distinto cuya tarifa sea diferente.
- 4: En caso de que un edificio posea entradas independientes y no tenga comunicación interna entre sus partes pueden ser considerados como edificaciones separadas.

En el caso de que la edificación posea más de una acometida o circuitos derivados, será necesaria la colocación de una placa o directorio que se encuentre permanentemente en cada lugar donde se haya conectado la acometida indicando la información de sus alimentadores y circuitos, además de la superficie ocupada por cada uno de esto

Figura 13Ubicación de acometidas vista superior


Ductos de acometidas

En los ductos que son destinados a las acometidas se colocarán solo los conductores que correspondan a estas tomando en cuenta las siguientes excepciones:

- 1: Los conductores destinados a la puesta a tierra.
- 2: Los conductores correspondientes a equipos para control de carga que posean protección a la sobre corriente.

Cuando la acometida pasa por una tubería metálica el área total de los conductores no debe exceder el 40% del área útil de la tubería.

Figura 14Área máxima de conductores en ductos metálicos

Calibre de conductores de acometidas

Dependiendo de las cargas que la edificación posea se determinará la capacidad de corriente que podrán conducir los conductores, estos además deben poseer una resistencia mecánica óptima.

El tamaño mínimo sugerido es 8 AWG (8,37 mm2) para conductores de cobre y 6 AWG (13,30 mm2) para conductores de aluminio siendo Elepco S.A. quien determine el calibre mínimo.

Cálculo de caída de voltaje en acometida

Cálculo de la caída de voltaje en el punto de conexión del medidor según norma IEC 60364-5-52:2001, Anexo G

$$u = b * \left[p * \frac{L}{S} * \cos(\varphi) + \lambda * L * sen(\varphi) \right] * I$$

Donde:

u = Caída de voltaje.

b = Coeficiente (1 para circuitos trifásicos y 2 para circuitos monofásicos).

p = Resistividad del conductor en servicio normal 1,25 veces la resistividad a 20°C (0,0225 Ω mm2/m para el cobre y 0,036 Ω mm2/m para el aluminio).

L = Longitud de la acometida en metros.

S = Sección de los conductores en mm2

 $cos(\phi)$ = Factor de potencia, en ausencia de detalles precisos, el factor de potencia se toma como igual a 0,8 y $sen(\phi)$ =0,6

 λ = Reactancia por unidad de longitud de los conductores, que se toma como 0,08 m Ω /m a falta de otros detalles.

I = Corriente de diseño en Amperios.

Tablas de longitudes de acometidas

El tamaño mínimo sugerido es 8 AWG (8,37 mm2) para conductores de cobre y 6 AWG (13,30 mm2) para conductores de aluminio siendo Elepco S.A. quien determine el calibre mínimo.

Las siguientes tablas tienen como referencia para sus cálculos los parámetros establecidos en la norma NTE INEN 3098 (Voltajes normalizados) donde se establece que el voltaje nominal para sistemas bifásicos a tres hilos es de 120/240 V a 60 Hz.

Se permitirá una caída de voltaje de hasta el 10% y el voltaje de Alimentación mínimo será de 108/216 V a 60 Hz.

Pueden existir perdidas adicionales en las instalaciones del consumidor de energía eléctrica por lo que se estima un voltaje de utilización mínimo en los equipos de hasta 103/206 V a 60 Hz.

Las siguientes tablas serán para acometidas bifásicas a tres hilos.

Caídas de voltaje para 240 V en red

Tabla 25

Aluminio 3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 240 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,370293437	0,570955599	238,6297066
15	2,055440155	0,856433398	237,9445598
20	2,740586873	1,141911197	237,2594131
25	3,425733592	1,427388997	236,5742664
30	4,11088031	1,712866796	235,8891197
35	4,796027029	1,998344595	235,203973
40	5,481173747	2,283822395	234,5188263
45	6,166320465	2,569300194	233,8336795
50	6,851467184	2,854777993	233,1485328
55	7,536613902	3,140255792	232,4633861
60	8,22176062	3,425733592	231,7782394
65	8,906907339	3,711211391	231,0930927
70	9,592054057	3,99668919	230,4079459
75	10,27720078	4,28216699	229,7227992
80	10,96234749	4,567644789	229,0376525
85	11,64749421	4,853122588	228,3525058
90	12,33264093	5,138600388	227,6673591
95	13,01778765	5,424078187	226,9822124
100	13,70293437	5,709555986	226,2970656
105	14,38808109	5,995033786	225,6119189
110	15,0732278	6,280511585	224,9267722
115	15,75837452	6,565989384	224,2416255
120	16,44352124	6,851467184	223,5564788
125	17,12866796	7,136944983	222,871332
130	17,81381468	7,422422782	222,1861853
135	18,4989614	7,707900582	221,5010386
140	19,18410811	7,993378381	220,8158919
145	19,86925483	8,27885618	220,1307452
150	20,55440155	8,564333979	219,4455984

Tabla 26Aluminio3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 240 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,815167832	0,339653263	239,1848322
15	1,222751748	0,509479895	238,7772483
20	1,630335664	0,679306527	238,3696643
25	2,03791958	0,849133158	237,9620804
30	2,445503495	1,01895979	237,5544965
35	2,853087411	1,188786421	237,1469126
40	3,260671327	1,358613053	236,7393287
45	3,668255243	1,528439685	236,3317448
50	4,075839159	1,698266316	235,9241608
55	4,483423075	1,868092948	235,5165769
60	4,891006991	2,03791958	235,108993
65	5,298590907	2,207746211	234,7014091
70	5,706174823	2,377572843	234,2938252
75	6,113758739	2,547399474	233,8862413
80	6,521342654	2,717226106	233,4786573
85	6,92892657	2,887052738	233,0710734
90	7,336510486	3,056879369	232,6634895
95	7,744094402	3,226706001	232,2559056
100	8,151678318	3,396532633	231,8483217
105	8,559262234	3,566359264	231,4407378
110	8,96684615	3,736185896	231,0331539
115	9,374430066	3,906012527	230,6255699
120	9,782013982	4,075839159	230,217986
125	10,1895979	4,245665791	229,8104021
130	10,59718181	4,415492422	229,4028182
135	11,00476573	4,585319054	228,9952343
140	11,41234965	4,755145686	228,5876504
145	11,81993356	4,924972317	228,1800664
150	12,22751748	5,094798949	227,7724825

Tabla 27Aluminio3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 240 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
Longitua (m)	(V)	voltaje (%)	medidor (V)
10	0,556969876	0,232070782	239,4430301
15	0,835454814	0,348106173	239,1645452
20	1,113939752	0,464141563	238,8860602
25	1,39242469	0,580176954	238,6075753
30	1,670909628	0,696212345	238,3290904
35	1,949394566	0,812247736	238,0506054
40	2,227879504	0,928283127	237,7721205
45	2,506364442	1,044318518	237,4936356
50	2,78484938	1,160353908	237,2151506
55	3,063334318	1,276389299	236,9366657
60	3,341819256	1,39242469	236,6581807
65	3,620304194	1,508460081	236,3796958
70	3,898789132	1,624495472	236,1012109
75	4,17727407	1,740530863	235,8227259
80	4,455759008	1,856566253	235,544241
85	4,734243946	1,972601644	235,2657561
90	5,012728884	2,088637035	234,9872711
95	5,291213822	2,204672426	234,7087862
100	5,56969876	2,320707817	234,4303012
105	5,848183698	2,436743208	234,1518163
110	6,126668636	2,552778598	233,8733314
115	6,405153574	2,668813989	233,5948464
120	6,683638512	2,78484938	233,3163615
125	6,96212345	2,900884771	233,0378765
130	7,240608388	3,016920162	232,7593916
135	7,519093326	3,132955553	232,4809067
140	7,797578264	3,248990943	232,2024217
145	8,076063202	3,365026334	231,9239368
150	8,35454814	3,481061725	231,6454519

Tabla 28

Cobre 3x6 AWG Usuario tipo B (Hasta 13600 W) y voltaje de red 240 V.

	Caída de voltaje	Caída de	Voltaje en el
Longitud (m)	(V)	voltaje (%)	medidor (V)
10	1,588030446	0,661679352	238,4119696
15	2,382045669	0,992519029	237,6179543
20	3,176060892	1,323358705	236,8239391
25	3,970076114	1,654198381	236,0299239
30	4,764091337	1,985038057	235,2359087
35	5,55810656	2,315877733	234,4418934
40	6,352121783	2,64671741	233,6478782
45	7,146137006	2,977557086	232,853863
50	7,940152229	3,308396762	232,0598478
55	8,734167452	3,639236438	231,2658325
60	9,528182675	3,970076114	230,4718173
65	10,3221979	4,300915791	229,6778021
70	11,11621312	4,631755467	228,8837869
75	11,91022834	4,962595143	228,0897717
80	12,70424357	5,293434819	227,2957564
85	13,49825879	5,624274495	226,5017412
90	14,29227401	5,955114172	225,707726
95	15,08628923	6,285953848	224,9137108
100	15,88030446	6,616793524	224,1196955
105	16,67431968	6,9476332	223,3256803
110	17,4683349	7,278472876	222,5316651
115	18,26235013	7,609312553	221,7376499
120	19,05636535	7,940152229	220,9436347
125	19,85038057	8,270991905	220,1496194
130	20,6443958	8,601831581	219,3556042
135	21,43841102	8,932671257	218,561589
140	22,23242624	9,263510934	217,7675738
145	23,02644146	9,59435061	216,9735585
150	23,82045669	9,925190286	216,1795433

Tabla 29

Cobre 3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 240 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
Longitud (m)	(V)	voltaje (%)	medidor (V)
10	0,867578398	0,361490999	239,1324216
15	1,301367597	0,542236499	238,6986324
20	1,735156796	0,722981998	238,2648432
25	2,168945995	0,903727498	237,831054
30	2,602735194	1,084472997	237,3972648
35	3,036524393	1,265218497	236,9634756
40	3,470313592	1,445963997	236,5296864
45	3,904102791	1,626709496	236,0958972
50	4,33789199	1,807454996	235,662108
55	4,771681189	1,988200495	235,2283188
60	5,205470388	2,168945995	234,7945296
65	5,639259587	2,349691494	234,3607404
70	6,073048786	2,530436994	233,9269512
75	6,506837985	2,711182494	233,493162
80	6,940627184	2,891927993	233,0593728
85	7,374416383	3,072673493	232,6255836
90	7,808205582	3,253418992	232,1917944
95	8,24199478	3,434164492	231,7580052
100	8,675783979	3,614909991	231,324216
105	9,109573178	3,795655491	230,8904268
110	9,543362377	3,976400991	230,4566376
115	9,977151576	4,15714649	230,0228484
120	10,41094078	4,33789199	229,5890592
125	10,84472997	4,518637489	229,15527
130	11,27851917	4,699382989	228,7214808
135	11,71230837	4,880128488	228,2876916
140	12,14609757	5,060873988	227,8539024
145	12,57988677	5,241619488	227,4201132
150	13,01367597	5,422364987	226,986324

Tabla 30

Cobre 3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 240 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,516109895	0,21504579	239,4838901
15	0,774164842	0,322568684	239,2258352
20	1,03221979	0,430091579	238,9677802
25	1,290274737	0,537614474	238,7097253
30	1,548329685	0,645137369	238,4516703
35	1,806384632	0,752660263	238,1936154
40	2,06443958	0,860183158	237,9355604
45	2,322494527	0,967706053	237,6775055
50	2,580549474	1,075228948	237,4194505
55	2,838604422	1,182751842	237,1613956
60	3,096659369	1,290274737	236,9033406
65	3,354714317	1,397797632	236,6452857
70	3,612769264	1,505320527	236,3872307
75	3,870824212	1,612843421	236,1291758
80	4,128879159	1,720366316	235,8711208
85	4,386934106	1,827889211	235,6130659
90	4,644989054	1,935412106	235,3550109
95	4,903044001	2,042935001	235,096956
100	5,161098949	2,150457895	234,8389011
105	5,419153896	2,25798079	234,5808461
110	5,677208844	2,365503685	234,3227912
115	5,935263791	2,47302658	234,0647362
120	6,193318739	2,580549474	233,8066813
125	6,451373686	2,688072369	233,5486263
130	6,709428633	2,795595264	233,2905714
135	6,967483581	2,903118159	233,0325164
140	7,225538528	3,010641053	232,7744615
145	7,483593476	3,118163948	232,5164065
150	7,741648423	3,225686843	232,2583516

Tabla 31

Cobre 3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 240 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,352636173	0,146931739	239,6473638
15	0,528954259	0,220397608	239,4710457
20	0,705272345	0,293863477	239,2947277
25	0,881590431	0,367329346	239,1184096
30	1,057908518	0,440795216	238,9420915
35	1,234226604	0,514261085	238,7657734
40	1,41054469	0,587726954	238,5894553
45	1,586862776	0,661192823	238,4131372
50	1,763180863	0,734658693	238,2368191
55	1,939498949	0,808124562	238,0605011
60	2,115817035	0,881590431	237,884183
65	2,292135121	0,955056301	237,7078649
70	2,468453208	1,02852217	237,5315468
75	2,644771294	1,101988039	237,3552287
80	2,82108938	1,175453908	237,1789106
85	2,997407466	1,248919778	237,0025925
90	3,173725553	1,322385647	236,8262744
95	3,350043639	1,395851516	236,6499564
100	3,526361725	1,469317385	236,4736383
105	3,702679811	1,542783255	236,2973202
110	3,878997898	1,616249124	236,1210021
115	4,055315984	1,689714993	235,944684
120	4,23163407	1,763180863	235,7683659
125	4,407952156	1,836646732	235,5920478
130	4,584270243	1,910112601	235,4157298
135	4,760588329	1,98357847	235,2394117
140	4,936906415	2,05704434	235,0630936
145	5,113224501	2,130510209	234,8867755
150	5,289542588	2,203976078	234,7104574

Tabla 32

Cobre 3x8 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 240 V.

	Caída de voltaje	Caída de	Voltaje en el
Longitud (m)	(V)	voltaje (%)	medidor (V)
10	1,361967054	0,567486272	238,6380329
15	2,042950581	0,851229409	237,9570494
20	2,723934108	1,134972545	237,2760659
25	3,404917635	1,418715681	236,5950824
30	4,085901161	1,702458817	235,9140988
35	4,766884688	1,986201953	235,2331153
40	5,447868215	2,26994509	234,5521318
45	6,128851742	2,553688226	233,8711483
50	6,809835269	2,837431362	233,1901647
55	7,490818796	3,121174498	232,5091812
60	8,171802323	3,404917635	231,8281977
65	8,85278585	3,688660771	231,1472142
70	9,533769377	3,972403907	230,4662306
75	10,2147529	4,256147043	229,7852471
80	10,89573643	4,539890179	229,1042636
85	11,57671996	4,823633316	228,42328
90	12,25770348	5,107376452	227,7422965
95	12,93868701	5,391119588	227,061313
100	13,61967054	5,674862724	226,3803295
105	14,30065407	5,95860586	225,6993459
110	14,98163759	6,242348997	225,0183624
115	15,66262112	6,526092133	224,3373789
120	16,34360465	6,809835269	223,6563954
125	17,02458817	7,093578405	222,9754118
130	17,7055717	7,377321542	222,2944283
135	18,38655523	7,661064678	221,6134448
140	19,06753875	7,944807814	220,9324612
145	19,74852228	8,22855095	220,2514777
150	20,42950581	8,512294086	219,5704942

Tabla 33

Cobre 3x8 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 240 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,810214587	0,337589411	239,1897854
15	1,21532188	0,506384117	238,7846781
20	1,620429173	0,675178822	238,3795708
25	2,025536466	0,843973528	237,9744635
30	2,43064376	1,012768233	237,5693562
35	2,835751053	1,181562939	237,1642489
40	3,240858346	1,350357644	236,7591417
45	3,645965639	1,51915235	236,3540344
50	4,051072933	1,687947055	235,9489271
55	4,456180226	1,856741761	235,5438198
60	4,861287519	2,025536466	235,1387125
65	5,266394812	2,194331172	234,7336052
70	5,671502106	2,363125877	234,3284979
75	6,076609399	2,531920583	233,9233906
80	6,481716692	2,700715288	233,5182833
85	6,886823985	2,869509994	233,113176
90	7,291931279	3,038304699	232,7080687
95	7,697038572	3,207099405	232,3029614
100	8,102145865	3,375894111	231,8978541
105	8,507253159	3,544688816	231,4927468
110	8,912360452	3,713483522	231,0876395
115	9,317467745	3,882278227	230,6825323
120	9,722575038	4,051072933	230,277425
125	10,12768233	4,219867638	229,8723177
130	10,53278962	4,388662344	229,4672104
135	10,93789692	4,557457049	229,0621031
140	11,34300421	4,726251755	228,6569958
145	11,7481115	4,89504646	228,2518885
150	12,1532188	5,063841166	227,8467812

Tabla 34

Cobre 3x8 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 240 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
Longitua (m)	(V)	voltaje (%)	medidor (V)
10	0,553585532	0,230660638	239,4464145
15	0,830378298	0,345990957	239,1696217
20	1,107171064	0,461321277	238,8928289
25	1,38396383	0,576651596	238,6160362
30	1,660756596	0,691981915	238,3392434
35	1,937549362	0,807312234	238,0624506
40	2,214342128	0,922642553	237,7856579
45	2,491134894	1,037972872	237,5088651
50	2,76792766	1,153303192	237,2320723
55	3,044720426	1,268633511	236,9552796
60	3,321513192	1,38396383	236,6784868
65	3,598305958	1,499294149	236,401694
70	3,875098724	1,614624468	236,1249013
75	4,15189149	1,729954787	235,8481085
80	4,428684256	1,845285107	235,5713157
85	4,705477022	1,960615426	235,294523
90	4,982269788	2,075945745	235,0177302
95	5,259062554	2,191276064	234,7409374
100	5,53585532	2,306606383	234,4641447
105	5,812648086	2,421936702	234,1873519
110	6,089440852	2,537267022	233,9105591
115	6,366233618	2,652597341	233,6337664
120	6,643026384	2,76792766	233,3569736
125	6,91981915	2,883257979	233,0801809
130	7,196611916	2,998588298	232,8033881
135	7,473404682	3,113918617	232,5265953
140	7,750197448	3,229248936	232,2498026
145	8,026990214	3,344579256	231,9730098
150	8,30378298	3,459909575	231,696217

Tabla 35

Aluminio2x6 + 1x10 AWG Usuario tipo D (Hasta 4420W) y voltaje de red 240 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	1,424788935	0,593662056	238,5752111
15	2,137183402	0,890493084	237,8628166
20	2,84957787	1,187324112	237,1504221
25	3,561972337	1,484155141	236,4380277
30	4,274366805	1,780986169	235,7256332
35	4,986761272	2,077817197	235,0132387
40	5,69915574	2,374648225	234,3008443
45	6,411550207	2,671479253	233,5884498
50	7,123944675	2,968310281	232,8760553
55	7,836339142	3,265141309	232,1636609
60	8,548733609	3,561972337	231,4512664
65	9,261128077	3,858803365	230,7388719
70	9,973522544	4,155634393	230,0264775
75	10,68591701	4,452465422	229,314083
80	11,39831148	4,74929645	228,6016885
85	12,11070595	5,046127478	227,8892941
90	12,82310041	5,342958506	227,1768996
95	13,53549488	5,639789534	226,4645051
100	14,24788935	5,936620562	225,7521107
105	14,96028382	6,23345159	225,0397162
110	15,67267828	6,530282618	224,3273217
115	16,38507275	6,827113646	223,6149272
120	17,09746722	7,123944675	222,9025328
125	17,80986169	7,420775703	222,1901383
130	18,52225615	7,717606731	221,4777438
135	19,23465062	8,014437759	220,7653494
140	19,94704509	8,311268787	220,0529549
145	20,65943956	8,608099815	219,3405604
150	21,37183402	8,904930843	218,628166

Tabla 36

Aluminio2x6 + 1x10 AWG Usuario tipo E (Hasta 3020W) y voltaje de red 240 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,973498322	0,405624301	239,0265017
15	1,460247483	0,608436451	238,5397525
20	1,946996644	0,811248602	238,0530034
25	2,433745805	1,014060752	237,5662542
30	2,920494966	1,216872903	237,079505
35	3,407244127	1,419685053	236,5927559
40	3,893993288	1,622497203	236,1060067
45	4,380742449	1,825309354	235,6192576
50	4,86749161	2,028121504	235,1325084
55	5,354240771	2,230933655	234,6457592
60	5,840989932	2,433745805	234,1590101
65	6,327739093	2,636557956	233,6722609
70	6,814488254	2,839370106	233,1855117
75	7,301237415	3,042182256	232,6987626
80	7,787986576	3,244994407	232,2120134
85	8,274735737	3,447806557	231,7252643
90	8,761484898	3,650618708	231,2385151
95	9,248234059	3,853430858	230,7517659
100	9,73498322	4,056243009	230,2650168
105	10,22173238	4,259055159	229,7782676
110	10,70848154	4,461867309	229,2915185
115	11,1952307	4,66467946	228,8047693
120	11,68197986	4,86749161	228,3180201
125	12,16872903	5,070303761	227,831271
130	12,65547819	5,273115911	227,3445218
135	13,14222735	5,475928061	226,8577727
140	13,62897651	5,678740212	226,3710235
145	14,11572567	5,881552362	225,8842743
150	14,60247483	6,084364513	225,3975252

Caídas de voltaje para 232 V en red

Tabla 37

Aluminio3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 232 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,417544935	3,923977056	230,5824551
15	2,126317402	4,219298917	229,8736826
20	2,835089869	4,514620779	229,1649101
25	3,543862336	4,80994264	228,4561377
30	4,252634804	5,105264501	227,7473652
35	4,961407271	5,400586363	227,0385927
40	5,670179738	5,695908224	226,3298203
45	6,378952205	5,991230086	225,6210478
50	7,087724673	6,286551947	224,9122753
55	7,79649714	6,581873808	224,2035029
60	8,505269607	6,87719567	223,4947304
65	9,214042074	7,172517531	222,7859579
70	9,922814542	7,467839392	222,0771855
75	10,63158701	7,763161254	221,368413
80	11,34035948	8,058483115	220,6596405
85	12,04913194	8,353804976	219,9508681
90	12,75790441	8,649126838	219,2420956
95	13,46667688	8,944448699	218,5333231
100	14,17544935	9,239770561	217,8245507
105	14,88422181	9,535092422	217,1157782
110	15,59299428	9,830414283	216,4070057

Tabla 38

Aluminio3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 232 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
Longituu (iii)	(V)	voltaje (%)	medidor (V)
10	0,843277067	3,684698778	231,1567229
15	1,264915601	3,8603815	230,7350844
20	1,686554135	4,036064223	230,3134459
25	2,108192668	4,211746945	229,8918073
30	2,529831202	4,387429668	229,4701688
35	2,951469736	4,56311239	229,0485303
40	3,37310827	4,738795112	228,6268917
45	3,794746803	4,914477835	228,2052532
50	4,216385337	5,090160557	227,7836147
55	4,638023871	5,265843279	227,3619761
60	5,059662404	5,441526002	226,9403376
65	5,481300938	5,617208724	226,5186991
70	5,902939472	5,792891447	226,0970605
75	6,324578005	5,968574169	225,675422
80	6,746216539	6,144256891	225,2537835
85	7,167855073	6,319939614	224,8321449
90	7,589493606	6,495622336	224,4105064
95	8,01113214	6,671305058	223,9888679
100	8,432770674	6,846987781	223,5672293
105	8,854409207	7,022670503	223,1455908
110	9,276047741	7,198353225	222,7239523
115	9,697686275	7,374035948	222,3023137
120	10,11932481	7,54971867	221,8806752
125	10,54096334	7,725401393	221,4590367
130	10,96260188	7,901084115	221,0373981
135	11,38424041	8,076766837	220,6157596
140	11,80587894	8,25244956	220,1941211
145	12,22751748	8,428132282	219,7724825
150	12,64915601	8,603815004	219,350844

Tabla 39Aluminio3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 232 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,576175734	3,573406556	231,4238243
15	0,864263601	3,693443167	231,1357364
20	1,152351468	3,813479778	230,8476485
25	1,440439335	3,933516389	230,5595607
30	1,728527201	4,053553001	230,2714728
35	2,016615068	4,173589612	229,9833849
40	2,304702935	4,293626223	229,6952971
45	2,592790802	4,413662834	229,4072092
50	2,880878669	4,533699445	229,1191213
55	3,168966536	4,653736057	228,8310335
60	3,457054403	4,773772668	228,5429456
65	3,74514227	4,893809279	228,2548577
70	4,033230137	5,01384589	227,9667699
75	4,321318004	5,133882502	227,678682
80	4,609405871	5,253919113	227,3905941
85	4,897493737	5,373955724	227,1025063
90	5,185581604	5,493992335	226,8144184
95	5,473669471	5,614028946	226,5263305
100	5,761757338	5,734065558	226,2382427
105	6,049845205	5,854102169	225,9501548
110	6,337933072	5,97413878	225,6620669
115	6,626020939	6,094175391	225,3739791
120	6,914108806	6,214212002	225,0858912
125	7,202196673	6,334248614	224,7978033
130	7,49028454	6,454285225	224,5097155
135	7,778372407	6,574321836	224,2216276
140	8,066460273	6,694358447	223,9335397
145	8,35454814	6,814395059	223,6454519
150	8,642636007	6,93443167	223,357364

Tabla 40

Cobre 3x6 AWG Usuario tipo B (Hasta 13600 W) y voltaje de red 232 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,642790116	4,017829215	230,3572099
15	2,464185174	4,360077156	229,5358148
20	3,285580233	4,702325097	228,7144198
25	4,106975291	5,044573038	227,8930247
30	4,928370349	5,386820979	227,0716297
35	5,749765407	5,72906892	226,2502346
40	6,571160465	6,071316861	225,4288395
45	7,392555523	6,413564801	224,6074445
50	8,213950582	6,755812742	223,7860494
55	9,03534564	7,098060683	222,9646544
60	9,856740698	7,440308624	222,1432593
65	10,67813576	7,782556565	221,3218642
70	11,49953081	8,124804506	220,5004692
75	12,32092587	8,467052447	219,6790741
80	13,14232093	8,809300388	218,8576791
85	13,96371599	9,151548329	218,036284
90	14,78511105	9,49379627	217,214889
95	15,6065061	9,83604421	216,3934939

Tabla 41

Cobre 3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 232 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,897494894	3,707289539	231,1025051
15	1,346242342	3,894267642	230,6537577
20	1,794989789	4,081245745	230,2050102
25	2,243737236	4,268223848	229,7562628
30	2,692484683	4,455201951	229,3075153
35	3,14123213	4,642180054	228,8587679
40	3,589979578	4,829158157	228,4100204
45	4,038727025	5,01613626	227,961273
50	4,487474472	5,203114363	227,5125255
55	4,936221919	5,390092466	227,0637781
60	5,384969367	5,577070569	226,6150306
65	5,833716814	5,764048672	226,1662832
70	6,282464261	5,951026775	225,7175357
75	6,731211708	6,138004878	225,2687883
80	7,179959155	6,324982981	224,8200408
85	7,628706603	6,511961084	224,3712934
90	8,07745405	6,698939187	223,922546
95	8,526201497	6,88591729	223,4737985
100	8,974948944	7,072895393	223,0250511
105	9,423696391	7,259873496	222,5763036
110	9,872443839	7,446851599	222,1275562
115	10,32119129	7,633829702	221,6788087
120	10,76993873	7,820807805	221,2300613
125	11,21868618	8,007785908	220,7813138
130	11,66743363	8,194764011	220,3325664
135	12,11618107	8,381742114	219,8838189
140	12,56492852	8,568720217	219,4350715
145	13,01367597	8,755698321	218,986324
150	13,46242342	8,942676424	218,5375766

Tabla 42

Cobre 3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 232 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,533906788	3,555794495	231,4660932
15	0,800860182	3,667025076	231,1991398
20	1,067813576	3,778255657	230,9321864
25	1,33476697	3,889486237	230,665233
30	1,601720363	4,000716818	230,3982796
35	1,868673757	4,111947399	230,1313262
40	2,135627151	4,22317798	229,8643728
45	2,402580545	4,33440856	229,5974195
50	2,669533939	4,445639141	229,3304661
55	2,936487333	4,556869722	229,0635127
60	3,203440727	4,668100303	228,7965593
65	3,470394121	4,779330884	228,5296059
70	3,737347515	4,890561464	228,2626525
75	4,004300909	5,001792045	227,9956991
80	4,271254302	5,113022626	227,7287457
85	4,538207696	5,224253207	227,4617923
90	4,80516109	5,335483788	227,1948389
95	5,072114484	5,446714368	226,9278855
100	5,339067878	5,557944949	226,6609321
105	5,606021272	5,66917553	226,3939787
110	5,872974666	5,780406111	226,1270253
115	6,13992806	5,891636692	225,8600719
120	6,406881454	6,002867272	225,5931185
125	6,673834848	6,114097853	225,3261652
130	6,940788241	6,225328434	225,0592118
135	7,207741635	6,336559015	224,7922584
140	7,474695029	6,447789596	224,525305
145	7,741648423	6,559020176	224,2583516
150	8,008601817	6,670250757	223,9913982

Tabla 43

Cobre 3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 232 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,364796041	3,485331684	231,635204
15	0,547194061	3,561330859	231,4528059
20	0,729592081	3,637330034	231,2704079
25	0,911990101	3,713329209	231,0880099
30	1,094388122	3,789328384	230,9056119
35	1,276786142	3,865327559	230,7232139
40	1,459184162	3,941326734	230,5408158
45	1,641582182	4,017325909	230,3584178
50	1,823980203	4,093325084	230,1760198
55	2,006378223	4,16932426	229,9936218
60	2,188776243	4,245323435	229,8112238
65	2,371174263	4,32132261	229,6288257
70	2,553572284	4,397321785	229,4464277
75	2,735970304	4,47332096	229,2640297
80	2,918368324	4,549320135	229,0816317
85	3,100766345	4,62531931	228,8992337
90	3,283164365	4,701318485	228,7168356
95	3,465562385	4,77731766	228,5344376
100	3,647960405	4,853316836	228,3520396
105	3,830358426	4,929316011	228,1696416
110	4,012756446	5,005315186	227,9872436
115	4,195154466	5,081314361	227,8048455
120	4,377552486	5,157313536	227,6224475
125	4,559950507	5,233312711	227,4400495
130	4,742348527	5,309311886	227,2576515
135	4,924746547	5,385311061	227,0752535
140	5,107144567	5,461310236	226,8928554
145	5,289542588	5,537309412	226,7104574
150	5,471940608	5,613308587	226,5280594

Tabla 44

Cobre 3x8 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 232 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,408931435	3,920388098	230,5910686
15	2,113397152	4,21391548	229,8866028
20	2,81786287	4,507442862	229,1821371
25	3,522328587	4,800970245	228,4776714
30	4,226794305	5,094497627	227,7732057
35	4,931260022	5,388025009	227,06874
40	5,63572574	5,681552392	226,3642743
45	6,340191457	5,975079774	225,6598085
50	7,044657175	6,268607156	224,9553428
55	7,749122892	6,562134539	224,2508771
60	8,45358861	6,855661921	223,5464114
65	9,158054327	7,149189303	222,8419457
70	9,862520045	7,442716685	222,13748
75	10,56698576	7,736244068	221,4330142
80	11,27145148	8,02977145	220,7285485
85	11,9759172	8,323298832	220,0240828
90	12,68038291	8,616826215	219,3196171
95	13,38484863	8,910353597	218,6151514
100	14,08931435	9,203880979	217,9106857
105	14,79378007	9,497408361	217,2062199
110	15,49824578	9,790935744	216,5017542

Tabla 45

Cobre 3x8 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 232 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,838153021	3,682563759	231,161847
15	1,257229531	3,857178971	230,7427705
20	1,676306041	4,031794184	230,323694
25	2,095382551	4,206409396	229,9046174
30	2,514459062	4,381024609	229,4855409
35	2,933535572	4,555639822	229,0664644
40	3,352612082	4,730255034	228,6473879
45	3,771688592	4,904870247	228,2283114
50	4,190765103	5,079485459	227,8092349
55	4,609841613	5,254100672	227,3901584
60	5,028918123	5,428715885	226,9710819
65	5,447994634	5,603331097	226,5520054
70	5,867071144	5,77794631	226,1329289
75	6,286147654	5,952561523	225,7138523
80	6,705224164	6,127176735	225,2947758
85	7,124300675	6,301791948	224,8756993
90	7,543377185	6,47640716	224,4566228
95	7,962453695	6,651022373	224,0375463
100	8,381530205	6,825637586	223,6184698
105	8,800606716	7,000252798	223,1993933
110	9,219683226	7,174868011	222,7803168
115	9,638759736	7,349483223	222,3612403
120	10,05783625	7,524098436	221,9421638
125	10,47691276	7,698713649	221,5230872
130	10,89598927	7,873328861	221,1040107
135	11,31506578	8,047944074	220,6849342
140	11,73414229	8,222559287	220,2658577
145	12,1532188	8,397174499	219,8467812
150	12,57229531	8,571789712	219,4277047

Tabla 46

Cobre 3x8 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 232 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,572674688	3,571947787	231,4273253
15	0,859012032	3,691255013	231,140988
20	1,145349376	3,81056224	230,8546506
25	1,431686721	3,929869467	230,5683133
30	1,718024065	4,049176694	230,2819759
35	2,004361409	4,16848392	229,9956386
40	2,290698753	4,287791147	229,7093012
45	2,577036097	4,407098374	229,4229639
50	2,863373441	4,526405601	229,1366266
55	3,149710785	4,645712827	228,8502892
60	3,436048129	4,765020054	228,5639519
65	3,722385474	4,884327281	228,2776145
70	4,008722818	5,003634507	227,9912772
75	4,295060162	5,122941734	227,7049398
80	4,581397506	5,242248961	227,4186025
85	4,86773485	5,361556188	227,1322651
90	5,154072194	5,480863414	226,8459278
95	5,440409538	5,600170641	226,5595905
100	5,726746882	5,719477868	226,2732531
105	6,013084227	5,838785094	225,9869158
110	6,299421571	5,958092321	225,7005784
115	6,585758915	6,077399548	225,4142411
120	6,872096259	6,196706775	225,1279037
125	7,158433603	6,316014001	224,8415664
130	7,444770947	6,435321228	224,5552291
135	7,731108291	6,554628455	224,2688917
140	8,017445635	6,673935681	223,9825544
145	8,30378298	6,793242908	223,696217
150	8,590120324	6,912550135	223,4098797

Tabla 47

Aluminio2x6 + 1x10 AWG Usuario tipo D (Hasta 4420W) y voltaje de red 232 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,473919588	3,947466495	230,5260804
15	2,210879382	4,254533076	229,7891206
20	2,947839176	4,561599657	229,0521608
25	3,68479897	4,868666237	228,315201
30	4,421758764	5,175732818	227,5782412
35	5,158718557	5,482799399	226,8412814
40	5,895678351	5,78986598	226,1043216
45	6,632638145	6,096932561	225,3673619
50	7,369597939	6,403999141	224,6304021
55	8,106557733	6,711065722	223,8934423
60	8,843517527	7,018132303	223,1564825
65	9,580477321	7,325198884	222,4195227
70	10,31743711	7,632265465	221,6825629
75	11,05439691	7,939332045	220,9456031
80	11,7913567	8,246398626	220,2086433
85	12,5283165	8,553465207	219,4716835
90	13,26527629	8,860531788	218,7347237
95	14,00223608	9,167598369	217,9977639
100	14,73919588	9,474664949	217,2608041
105	15,47615567	9,78173153	216,5238443

Tabla 48

Aluminio2x6 + 1x10 AWG Usuario tipo E (Hasta 3020W) y voltaje de red 232 V.

	0.71. 1. 1. 1.	0.41	Mala di di
Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,00706723	3,752944679	230,9929328
15	1,510600845	3,962750352	230,4893992
20	2,014134459	4,172556025	229,9858655
25	2,517668074	4,382361698	229,4823319
30	3,021201689	4,59216737	228,9787983
35	3,524735304	4,801973043	228,4752647
40	4,028268919	5,011778716	227,9717311
45	4,531802534	5,221584389	227,4681975
50	5,035336149	5,431390062	226,9646639
55	5,538869763	5,641195735	226,4611302
60	6,042403378	5,851001408	225,9575966
65	6,545936993	6,06080708	225,454063
70	7,049470608	6,270612753	224,9505294
75	7,553004223	6,480418426	224,4469958
80	8,056537838	6,690224099	223,9434622
85	8,560071452	6,900029772	223,4399285
90	9,063605067	7,109835445	222,9363949
95	9,567138682	7,319641118	222,4328613
100	10,0706723	7,52944679	221,9293277
105	10,57420591	7,739252463	221,4257941
110	11,07773953	7,949058136	220,9222605
115	11,58127314	8,158863809	220,4187269
120	12,08480676	8,368669482	219,9151932
125	12,58834037	8,578475155	219,4116596
130	13,09187399	8,788280828	218,908126
135	13,5954076	8,9980865	218,4045924
140	14,09894122	9,207892173	217,9010588
145	14,60247483	9,417697846	217,3975252
150	15,10600845	9,627503519	216,8939916

Caídas de voltaje para 224 V en red

Tabla 49

Aluminio3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 224 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,468171539	7,278404808	222,5318285
15	2,202257309	7,584273879	221,7977427
20	2,936343079	7,890142949	221,0636569
25	3,670428848	8,19601202	220,3295712
30	4,404514618	8,501881091	219,5954854
35	5,138600388	8,807750162	218,8613996
40	5,872686157	9,113619232	218,1273138
45	6,606771927	9,419488303	217,3932281
50	7,340857697	9,725357374	216,6591423

Tabla 50

Aluminio3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 224 V.

-			
Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,873394106	7,030580877	223,1266059
15	1,310091158	7,212537983	222,6899088
20	1,746788211	7,394495088	222,2532118
25	2,183485264	7,576452193	221,8165147
30	2,620182317	7,758409299	221,3798177
35	3,056879369	7,940366404	220,9431206
40	3,493576422	8,122323509	220,5064236
45	3,930273475	8,304280614	220,0697265
50	4,366970528	8,48623772	219,6330295
55	4,80366758	8,668194825	219,1963324
60	5,240364633	8,85015193	218,7596354
65	5,677061686	9,032109036	218,3229383
70	6,113758739	9,214066141	217,8862413
75	6,550455791	9,396023246	217,4495442
80	6,987152844	9,577980352	217,0128472
85	7,423849897	9,759937457	216,5761501
90	7,86054695	9,941894562	216,1394531

Tabla 51Aluminio3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 224 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,596753439	6,915313933	223,4032466
15	0,895130158	7,039637566	223,1048698
20	1,193506877	7,163961199	222,8064931
25	1,491883597	7,288284832	222,5081164
30	1,790260316	7,412608465	222,2097397
35	2,088637035	7,536932098	221,911363
40	2,387013754	7,661255731	221,6129862
45	2,685390474	7,785579364	221,3146095
50	2,983767193	7,909902997	221,0162328
55	3,282143912	8,03422663	220,7178561
60	3,580520632	8,158550263	220,4194794
65	3,878897351	8,282873896	220,1211026
70	4,17727407	8,407197529	219,8227259
75	4,47565079	8,531521162	219,5243492
80	4,774027509	8,655844795	219,2259725
85	5,072404228	8,780168428	218,9275958
90	5,370780947	8,904492061	218,6292191
95	5,669157667	9,028815694	218,3308423
100	5,967534386	9,153139328	218,0324656
105	6,265911105	9,277462961	217,7340889
110	6,564287825	9,401786594	217,4357122
115	6,862664544	9,526110227	217,1373355
120	7,161041263	9,65043386	216,8389587
125	7,459417983	9,774757493	216,540582
130	7,757794702	9,899081126	216,2422053

Tabla 52

Cobre 3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 224 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,929548284	7,053978451	223,0704517
15	1,394322425	7,247634344	222,6056776
20	1,859096567	7,441290236	222,1409034
25	2,323870709	7,634946129	221,6761293
30	2,788644851	7,828602021	221,2113551
35	3,253418992	8,022257913	220,746581
40	3,718193134	8,215913806	220,2818069
45	4,182967276	8,409569698	219,8170327
50	4,647741418	8,603225591	219,3522586
55	5,112515559	8,796881483	218,8874844
60	5,577289701	8,990537375	218,4227103
65	6,042063843	9,184193268	217,9579362
70	6,506837985	9,37784916	217,493162
75	6,971612126	9,571505053	217,0283879
80	7,436386268	9,765160945	216,5636137
85	7,90116041	9,958816837	216,0988396

Tabla 53

Cobre 3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 224 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,552974887	6,89707287	223,4470251
15	0,829462331	7,012275971	223,1705377
20	1,105949775	7,127479073	222,8940502
25	1,382437218	7,242682174	222,6175628
30	1,658924662	7,357885276	222,3410753
35	1,935412106	7,473088377	222,0645879
40	2,211899549	7,588291479	221,7881005
45	2,488386993	7,70349458	221,511613
50	2,764874437	7,818697682	221,2351256
55	3,041361881	7,933900784	220,9586381
60	3,317849324	8,049103885	220,6821507
65	3,594336768	8,164306987	220,4056632
70	3,870824212	8,279510088	220,1291758
75	4,147311655	8,39471319	219,8526883
80	4,423799099	8,509916291	219,5762009
85	4,700286543	8,625119393	219,2997135
90	4,976773986	8,740322494	219,023226
95	5,25326143	8,855525596	218,7467386
100	5,529748874	8,970728697	218,4702511
105	5,806236317	9,085931799	218,1937637
110	6,082723761	9,2011349	217,9172762
115	6,359211205	9,316338002	217,6407888
120	6,635698648	9,431541103	217,3643014
125	6,912186092	9,546744205	217,0878139
130	7,188673536	9,661947307	216,8113265
135	7,465160979	9,777150408	216,534839
140	7,741648423	9,89235351	216,2583516

Tabla 54

Cobre 3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 224 V.

Longitud (m)	Caída de voltaje	Caída de	Voltaje en el
	(V)	voltaje (%)	medidor (V)
10	0,377824471	6,824093529	223,6221755
15	0,566736706	6,902806961	223,4332633
20	0,755648941	6,981520392	223,2443511
25	0,944561176	7,060233823	223,0554388
30	1,133473412	7,138947255	222,8665266
35	1,322385647	7,217660686	222,6776144
40	1,511297882	7,296374118	222,4887021
45	1,700210117	7,375087549	222,2997899
50	1,889122353	7,45380098	222,1108776
55	2,078034588	7,532514412	221,9219654
60	2,266946823	7,611227843	221,7330532
65	2,455859059	7,689941274	221,5441409
70	2,644771294	7,768654706	221,3552287
75	2,833683529	7,847368137	221,1663165
80	3,022595764	7,926081569	220,9774042
85	3,211508	8,004795	220,788492
90	3,400420235	8,083508431	220,5995798
95	3,58933247	8,162221863	220,4106675
100	3,778244706	8,240935294	220,2217553
105	3,967156941	8,319648725	220,0328431
110	4,156069176	8,398362157	219,8439308
115	4,344981411	8,477075588	219,6550186
120	4,533893647	8,555789019	219,4661064
125	4,722805882	8,634502451	219,2771941
130	4,911718117	8,713215882	219,0882819
135	5,100630352	8,791929314	218,8993696
140	5,289542588	8,870642745	218,7104574
145	5,478454823	8,949356176	218,5215452
150	5,667367058	9,028069608	218,3326329

Tabla 55

Cobre 3x8 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 224 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,459250415	7,274687673	222,5407496
15	2,188875622	7,578698176	221,8111244
20	2,91850083	7,882708679	221,0814992
25	3,648126037	8,186719182	220,351874
30	4,377751244	8,490729685	219,6222488
35	5,107376452	8,794740188	218,8926235
40	5,837001659	9,098750691	218,1629983
45	6,566626867	9,402761194	217,4333731
50	7,296252074	9,706771698	216,7037479

Tabla 56

Cobre 3x8 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 224 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,868087057	7,028369607	223,1319129
15	1,302130585	7,209221077	222,6978694
20	1,736174114	7,390072547	222,2638259
25	2,170217642	7,570924018	221,8297824
30	2,604261171	7,751775488	221,3957388
35	3,038304699	7,932626958	220,9616953
40	3,472348228	8,113478428	220,5276518
45	3,906391756	8,294329899	220,0936082
50	4,340435285	8,475181369	219,6595647
55	4,774478813	8,656032839	219,2255212
60	5,208522342	8,836884309	218,7914777
65	5,64256587	9,017735779	218,3574341
70	6,076609399	9,19858725	217,9233906
75	6,510652927	9,37943872	217,4893471
80	6,944696456	9,56029019	217,0553035
85	7,378739984	9,74114166	216,62126
90	7,812783513	9,92199313	216,1872165

Tabla 57

Cobre 3x8 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 224 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,593127356	6,913803065	223,4068726
15	0,889691034	7,037371264	223,110309
20	1,186254711	7,160939463	222,8137453
25	1,482818389	7,284507662	222,5171816
30	1,779382067	7,408075861	222,2206179
35	2,075945745	7,53164406	221,9240543
40	2,372509423	7,655212259	221,6274906
45	2,669073101	7,778780459	221,3309269
50	2,965636778	7,902348658	221,0343632
55	3,262200456	8,025916857	220,7377995
60	3,558764134	8,149485056	220,4412359
65	3,855327812	8,273053255	220,1446722
70	4,15189149	8,396621454	219,8481085
75	4,448455168	8,520189653	219,5515448
80	4,745018845	8,643757852	219,2549812
85	5,041582523	8,767326051	218,9584175
90	5,338146201	8,89089425	218,6618538
95	5,634709879	9,01446245	218,3652901
100	5,931273557	9,138030649	218,0687264
105	6,227837235	9,261598848	217,7721628
110	6,524400913	9,385167047	217,4755991
115	6,82096459	9,508735246	217,1790354
120	7,117528268	9,632303445	216,8824717
125	7,414091946	9,755871644	216,5859081
130	7,710655624	9,879439843	216,2893444

Tabla 58

Aluminio2x6 + 1x10 AWG Usuario tipo D (Hasta 4420W) y voltaje de red 224 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,526559573	7,302733155	222,4734404
15	2,28983936	7,6207664	221,7101606
20	3,053119146	7,938799644	220,9468809
25	3,816398933	8,256832889	220,1836011
30	4,579678719	8,574866133	219,4203213
35	5,342958506	8,892899377	218,6570415
40	6,106238292	9,210932622	217,8937617
45	6,869518079	9,528965866	217,1304819
50	7,632797866	9,846999111	216,3672021

Tabla 59

Aluminio2x6 + 1x10 AWG Usuario tipo E (Hasta 3020W) y voltaje de red 224 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,043033916	7,101264132	222,9569661
15	1,564550875	7,318562864	222,4354491
20	2,086067833	7,535861597	221,9139322
25	2,607584791	7,75316033	221,3924152
30	3,129101749	7,970459062	220,8708983
35	3,650618708	8,187757795	220,3493813
40	4,172135666	8,405056527	219,8278643
45	4,693652624	8,62235526	219,3063474
50	5,215169582	8,839653993	218,7848304
55	5,736686541	9,056952725	218,2633135
60	6,258203499	9,274251458	217,7417965
65	6,779720457	9,49155019	217,2202795
70	7,301237415	9,708848923	216,6987626
75	7,822754374	9,926147656	216,1772456

Caídas de voltaje para 220 V en red

Tabla 60

Aluminio3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 220 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,494865567	8,956193986	218,5051344
15	2,242298351	9,267624313	217,7577016
20	2,989731135	9,579054639	217,0102689
25	3,737163918	9,890484966	216,2628361

Tabla 61

Aluminio3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 220 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,889273998	8,703864166	219,110726
15	1,333910997	8,889129582	218,666089
20	1,778547997	9,074394999	218,221452
25	2,223184996	9,259660415	217,776815
30	2,667821995	9,444925831	217,332178
35	3,112458994	9,630191248	216,887541
40	3,557095993	9,815456664	216,442904

Tabla 62

Aluminio3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 220 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,607603501	8,586501459	219,3923965
15	0,911405252	8,713085522	219,0885947
20	1,215207002	8,839669584	218,784793
25	1,519008753	8,966253647	218,4809912
30	1,822810503	9,09283771	218,1771895
35	2,126612254	9,219421772	217,8733877
40	2,430414004	9,346005835	217,569586
45	2,734215755	9,472589898	217,2657842
50	3,038017506	9,599173961	216,9619825
55	3,341819256	9,725758023	216,6581807
60	3,645621007	9,852342086	216,354379
65	3,949422757	9,978926149	216,0505772

Tabla 63

Cobre 3x6 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 220 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,946449161	8,727687151	219,0535508
15	1,419673742	8,924864059	218,5803263
20	1,892898323	9,122040968	218,1071017
25	2,366122903	9,319217876	217,6338771
30	2,839347484	9,516394785	217,1606525
35	3,312572065	9,713571694	216,6874279
40	3,785796646	9,910748602	216,2142034

Tabla 64

Cobre 3x6 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 220 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,563028976	8,56792874	219,436971
15	0,844543464	8,685226443	219,1554565
20	1,126057952	8,802524147	218,873942
25	1,407572441	8,91982185	218,5924276
30	1,689086929	9,037119554	218,3109131
35	1,970601417	9,154417257	218,0293986
40	2,252115905	9,27171496	217,7478841
45	2,533630393	9,389012664	217,4663696
50	2,815144881	9,506310367	217,1848551
55	3,096659369	9,623608071	216,9033406
60	3,378173857	9,740905774	216,6218261
65	3,659688345	9,858203477	216,3403117
70	3,941202834	9,975501181	216,0587972

Tabla 65

Cobre 3x6 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 220 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,384694006	8,493622503	219,615306
15	0,57704101	8,573767087	219,422959
20	0,769388013	8,653911672	219,230612
25	0,961735016	8,734056257	219,038265
30	1,154082019	8,814200841	218,845918
35	1,346429022	8,894345426	218,653571
40	1,538776026	8,974490011	218,461224
45	1,731123029	9,054634595	218,268877
50	1,923470032	9,13477918	218,07653
55	2,115817035	9,214923765	217,884183
60	2,308164038	9,295068349	217,691836
65	2,500511041	9,375212934	217,499489
70	2,692858045	9,455357519	217,307142
75	2,885205048	9,535502103	217,114795
80	3,077552051	9,615646688	216,9224479
85	3,269899054	9,695791273	216,7301009
90	3,462246057	9,775935857	216,5377539
95	3,654593061	9,856080442	216,3454069
100	3,846940064	9,936225027	216,1530599

Tabla 66

Cobre 3x8 AWG Usuario tipo C (Hasta 7430 W) y voltaje de red 220 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,485782241	8,952409267	218,5142178
15	2,228673361	9,261947234	217,7713266
20	2,971564481	9,5714852	217,0284355
25	3,714455601	9,881023167	216,2855444

Tabla 67

Cobre 3x8 AWG Usuario tipo D (Hasta 4420 W) y voltaje de red 220 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,883870458	8,701612691	219,1161295
15	1,325805687	8,88575237	218,6741943
20	1,767740916	9,069892048	218,2322591
25	2,209676145	9,254031727	217,7903239
30	2,651611374	9,438171406	217,3483886
35	3,093546603	9,622311085	216,9064534
40	3,535481832	9,806450763	216,4645182
45	3,977417061	9,990590442	216,0225829

Tabla 68

Cobre 3x8 AWG Usuario tipo E (Hasta 3020 W) y voltaje de red 220 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	0,603911489	8,584963121	219,3960885
15	0,905867234	8,710778014	219,0941328
20	1,207822979	8,836592908	218,792177
25	1,509778724	8,962407801	218,4902213
30	1,811734468	9,088222695	218,1882655
35	2,113690213	9,214037589	217,8863098
40	2,415645958	9,339852482	217,584354
45	2,717601702	9,465667376	217,2823983
50	3,019557447	9,59148227	216,9804426
55	3,321513192	9,717297163	216,6784868
60	3,623468937	9,843112057	216,3765311
65	3,925424681	9,968926951	216,0745753

Tabla 69

Aluminio2x6 + 1x10 AWG Usuario tipo D (Hasta 4420W) y voltaje de red 220 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,554315202	8,980964667	218,4456848
15	2,331472803	9,304780334	217,6685272
20	3,108630403	9,628596001	216,8913696
25	3,885788004	9,952411668	216,114212

Tabla 70

Aluminio2x6 + 1x10 AWG Usuario tipo E (Hasta 3020W) y voltaje de red 220 V.

Longitud (m)	Caída de voltaje (V)	Caída de voltaje (%)	Voltaje en el medidor (V)
10	1,06199817	8,775832571	218,9380018
15	1,592997254	8,997082189	218,4070027
20	2,123996339	9,218331808	217,8760037
25	2,654995424	9,439581427	217,3450046
30	3,185994509	9,660831045	216,8140055
35	3,716993593	9,882080664	216,2830064

Calibre del conductor neutro

El conductor para el neutro tendrá un calibre tal que considere si la carga es de tipo no lineal o lineal, la cantidad de fases para la acometida y demás consideraciones se dará por parte de ELEPCO S.A. respecto al máximo desequilibrio y armónicos aceptables en el sistema.

Aislamiento de conductores

El aislamiento debe estar presente en los conductores de las acometidas, pero pueden presentarse las siguientes excepciones.

-El conductor de neutro puede ser desnudo

En acometidas subterráneas los conductores tienen que estar aislados, pero pueden presentarse las siguientes excepciones:

- -El conductor neutro o tierra no posean aislamiento bajo las siguientes condiciones:
- 1.Los conductores se encuentran canalizados.
- 2.Si los conductores se encuentran directamente enterrados, es decir el cobre es el adecuado para soportar las características del suelo.
 - 3.Si el conductor es para uso subterráneo sin tomar en cuenta las características del suelo.
- 4.En el caso de conductores de aluminio sin aislamiento solo si el conductor es para uso subterráneo enterrado directamente o si se encuentra canalizado y enterrado.

Distancias de seguridad

Los cables multi conductores y conductores expuestos que no cuenten con una tubería de protección deben respetar una distancia de 914 mm con ventanas que puedan abrirse, balcones, escaleras, porches, salidas de emergencia, peldaños y demás estructuras similares.

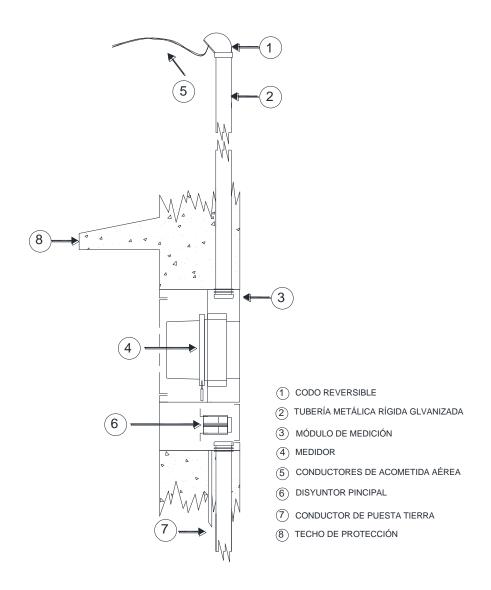
Sin embargo, en el caso de que los conductores se encuentren pasando sobre parte superior de la ventana sin contacto se permitirá que la distancia sea menor a la establecida.

En espacios de libre acceso donde puedan pasar materiales como en edificaciones comerciales, granjas y demás lugares donde los accesos deban mantenerse permanentemente abiertos no se deberán colocar los conductores de la acometida que puedan obstaculizar la libre circulación.

Obras Civiles

Existen obras civiles que Elepco S.A. determinará si están a cargo del usuario del servicio o de la propia empresa eléctrica, estas obras son las siguientes:

- -Caja porta medidores anti hurto
- -Soporte de acometida
- -Pozo de revisión
- -Tablero Armario de Medidores

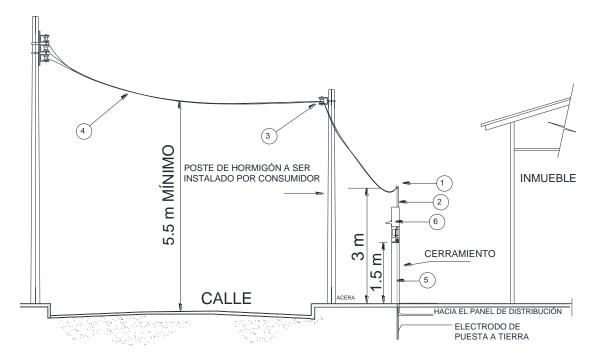

- -Caja porta medidores para contadores de energía.
- -Trabajos de acometidas subterráneas (zanjas, ductos, rotura de vereda, reposición, etc.)
- -Cuarto para cámara de transformación
- -Cuarto de medidores
- -Instalación general de puesta a tierra

Acometidas Aéreas en bajo voltaje desde redes aéreas

Se utilizará un tubo galvanizado destinado a mantener la acometida en una altura fija desde el suelo. En la parte superior por donde ingresará la acometida tendremos un codo o cualquier otro accesorio que pueda especificar ELEPCO S.A., el diámetro mínimo del tubo será 51.8 mm y el espesor mínimo será de 2 milímetros, se recomienda una sujeción mediante abrazaderas o alambres de retención que puedan soportar los esfuerzos mecánicos de la acometida.

Figura 15

Conexión de acometida aérea al medidor


Soporte y sujeción

Las acometidas deben poseer un punto de fijación con respecto a la edificación, esta altura está determinada de acuerdo al lugar de colocación que puede ser de dos tipos:

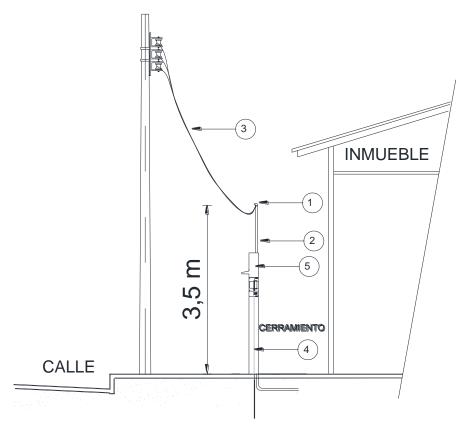
Cruces de calle, vías públicas. Caminos y carreteras de alto tráfico se fijarán a una altura de 5,5 metros.

Figura 16

Cruces de calle, vías públicas. Caminos y carreteras de alto tráfico

- (1) CODO REVERSIBLE
- (2) TUBERÍA METÁLICA GALVANIZADA
- (3) RETENIDA DE FIJACIÓN DE ACOMETIDA
- (4) CONDUCTORES DE ACOMETIDA
- (5) CONDUCTOR DE PUESTA A TIERRA
- (6) TECHO DE PROTECCIÓN

Acera o vías exclusivamente peatonales se fijarán a una altura de 3,5 metros.


La sujeción de acometidas aéreas a edificaciones o estructuras se debe realizar a través de accesorios o herrajes específicamente diseñados para este fin debidamente aprobados e identificados para usarse con los conductores de las acometidas.

En caso de que la acometida sea de tipo línea abierta los accesorios de sujeción deben estar fijados de manera sólida a la estructura.

En caso de que la acometida llegue a un poste u otra estructura donde se instale el medidor o aparatos de desconexión se debe considerar acometida aérea y su instalación será de este tipo.

Figura 17

Aceras y vías peatonales

- (1) CODO REVERSIBLE
- (2) TUBERÍA METÁLICA GALVANIZADA
- (3) CONDUCTORES DE ACOMETIDA
- (4) CONDUCTOR DE PUESTA A TIERRA
- (5) TECHO DE PROTECCIÓN

Cajas porta medidores

Se utilizará una caja hecha de material plástico como el polipropileno o también puede estar hecha de un material metálico recubierto con una pintura electrostática, además, posee interruptores termomagnéticos como protecciones eléctricas para el equipo de medición.

ELEPCO S.A. será la responsable de este equipo ya que forma parte del sistema de medición.

En caso de domicilios se recomienda la colocación de cajas metálicas cuando ya existan otros medidores y se cumplan con los criterios respectivos de ubicación y altura.

Figura 18

Caja porta medidor anti hurto

En el caso de que la construcción cuente hasta con 5 medidores incluido el medidor de servicios generales se puede utilizar un cajón para medidores cuyo material de fabricación será acero galvanizado en lámina de 1,5 mm de espesor siendo ELEPCO S.A. la que provea las normas de fabricación de dicho cajón.

Las dimensiones del cajón tendrán como referencia las siguientes dimensiones con respecto al número de usuarios:

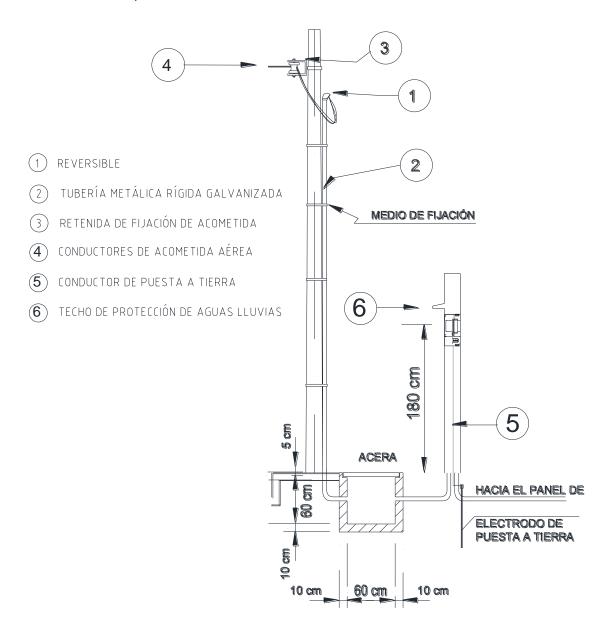
Tabla 71Dimensiones de cajones de medidores

Usuarios	Tamaño
1	40x60x25 cm
2	75x60x25 cm
3	100x60x25 cm
4	125x60x25 cm
5	150x60x25 cm

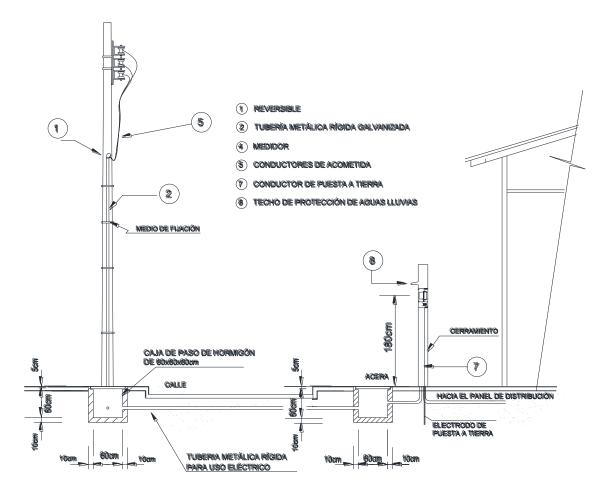
En caso de que se requieran bases socket para grandes clientes o clientes especiales el tablero de medidores deberá ser de material metálico con fondo de madera de 2 cm de espesor, deberá ser construida con tol de un mínimo de espesor de 1.6 mm y dimensiones de 80x60x30 cm.

En cuanto a la ubicación de la caja porta medidores es importante que brinde un acceso fácil de tal forma que los encargados de su lectura y control puedan hacerlo libremente, se deberá también tomar en cuenta que la ubicación tiene que encontrarse lo más cerca posible del punto de conexión del sistema de distribución eléctrica.

La altura recomendada desde el suelo será de 1,5 m hasta la parte inferior de la caja.


La caja porta medidor se encontrará ubicada en la parte exterior de la edificación.

Acometidas subterráneas en bajo voltaje desde redes aéreas


En el caso de que la acometida proveniente desde el poste más cercano sea subterránea será necesario el montaje de un tubo de acero galvanizado de 6 metros de longitud con un diámetro acorde al calibre del cable utilizado siendo este mayor o igual a los 51,9 milímetros, pero nunca menor.

La canalización de una acometida subterránea proveniente de una red aérea llevará concordancia con lo establecido en acometidas provenientes de redes subterráneas.

Figura 19Acometida subterránea proveniente de red aérea sin cruce de vía

Figura 20Acometida subterránea proveniente de red aérea con cruce de vía

Pozos de revisión

Consiste en una construcción cuadrada con el interior similar a una caja situada en el suelo hecha de hormigón con una tapa también de hormigón con bordes metálicos y al fondo con suelo natural.

El pozo de revisión permite el fácil tendido de los conductores de la acometida reemplazando los codos y curvas que podrían presentarse entre el lugar que solicita el medidor y el sistema de distribución.

Tabla 72Dimensiones de pozos de revisión

Clase de red	Cruce de vía	Otros sitios
Medio voltaje	80x80x125 cm	80x80x90 cm
Bajo voltaje	60x60x125 cm	60x60x80 cm

Pozos de revisión en aceras

Los espacios de las aceras y su distribución son competencia de los municipios locales cuyas especificaciones se encuentran dentro de sus ordenanzas municipales.

Las distribuciones de espacios más usadas se muestran en la siguiente tabla:

Tabla 73Distribución de espacios de pozos de revisión en aceras

Espacio de acera	Uso
Tercio externo de la acera, el	instalaciones eléctricas de
más cercano al bordillo	medio y bajo voltaje.
Tercio medio de la acera	Instalaciones de
rercio inedio de la acera	comunicaciones
El tercio interno de la acera, el	instalaciones de la
más cercano a las edificaciones	empresa de agua potable

Ductos de acometidas

Para acometidas provenientes de redes subterráneas se aceptan los siguientes materiales para ductos:

- Hierro galvanizado
- PVC del tipo reforzado o duro
- Polietileno (manguera reforzada)
- Tubos Conduit

El diámetro mínimo del ducto en cualquiera de los materiales antes mencionados será de 51,8 mm.

Cuando se utilice tubería de hierro galvanizado se recomienda colocar codos eléctricos donde existan curvaturas para un adecuado paso de la acometida.

El ducto deberá ir en una sola pieza sin interrupciones ni cortes desde la red de baja tensión ubicada en la acera hasta la caja de medidores, todo esto en favor de facilitar la instalación para casos donde la distancia no supere los 10 metros.

Cuando la distancia es menor a los 10 metros se exceptúa la construcción del pozo de revisión debajo del tablero o caja del medidor, pero la acometida si bajará desde esta perpendicularmente al piso donde realizará una curva suave de alrededor de 45 grados dirigiéndose a la red de baja tensión, esto facilitará el paso de la acometida evitando uniones y ángulos pronunciados.

En el caso de circuitos expresos sólo se colocarán pozos de revisión en curvas y en distancias largas cada 25 metros.

Sellado de canalizaciones

Las canalizaciones provenientes de sistemas subterráneos de distribución para acometidas estarán selladas con materiales compatibles con el aislamiento o blindaje.

Aquellas canalizaciones correspondientes a reserva que no sean utilizadas también deben estar selladas.

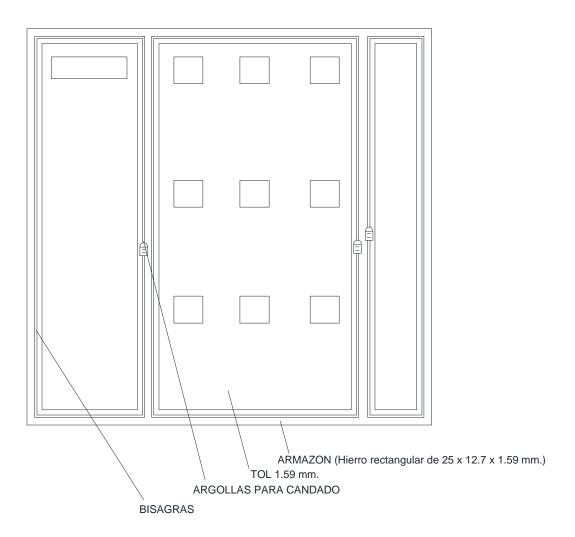
Tableros de medidores

En caso de que la construcción posea 6 o más abonados se requerirá la contratación de un constructor de tableros tipo armario para los medidores, este constructor estará calificado por la empresa distribuidora para llevar la elaboración del tablero cumpliendo con las normativas de la empresa distribuidora.

La instalación de tableros requiere que el lugar sea seguro y de fácil acceso de tal manera que no existan vestuarios o depósitos en su parte posterior o en sus alrededores.

Se deben cumplir los siguientes aspectos:

- La fabricación deberá ser por parte de una empresa especializada y calificada.
- Deberá especificarse de manera visible en el tablero:
- Fabricante
- Voltaje de servicio
- Corriente nominal
- Número de fases
- En la parte interior se encontrará el diagrama unifilar correspondiente.


El tablero debe cumplir con las normas INEN NTE correspondientes y los requisitos establecidos por la empresa distribuidora de energía eléctrica.

No deben instalarse cargadores de baterías en los tableros.

Los tableros deben permitir:

- Dar respuesta adecuada a las especificaciones técnicas de cada proyecto.
- El uso óptimo de las dimensiones y de la distribución en el interior del panel.
- Utilizar componentes estandarizados.
- Facilidad de modificación.
- Fácil conexionado de potencia y auxiliares.
- Fácil evolución de la instalación a un costo controlado.

Figura 21 *Tablero de medidores*

Especificaciones de construcción de tableros de medidores

Todos los elementos del tablero deberán instalarse dentro de cajas gabinetes o armarios.

Los materiales de construcción de tableros deben ser resistentes al fuego, auto extinguibles, no higroscópicos y resistentes a la corrosión o estar protegidos contra esta.

Los equipos de un tablero deberán contar con una cubierta interna fijada con bisagras en disposición vertical, mecanismos de cierre a presión o tornillos de fijación tipo no desprendible para

evitar la pérdida de estos, la cubierta impedirá el choque de cuerpos extraños con partes energizadas o que personas queden expuestas al contacto al operar los dispositivos de protección o maniobra.

El tablero tendrá perforaciones que permitan el paso adecuado y libre del cableado y sus conexiones impidiendo el paso de los ya mencionados cuerpos extraños.

Todos los tableros deberán contar con una puerta exterior fijada mediante bisagras en disposición vertical u horizontal, totalmente cerrada permitiéndose sobre ella indicadores, equipos de medida, selectores o pulsadores. El grado de hermeticidad será de acuerdo con la aplicación.

Las partes energizadas de un tablero sólo podrán alcanzarse removiendo la cubierta cubre equipos.

Solo se accederá a las partes energizadas del tablero para efectuar trabajos de mantenimiento o modificaciones.

Para acceder a los elementos de maniobra y protección será necesario abrir la puerta exterior que deberá estar cerrada con una chapa con llave o algún dispositivo equivalente.

Solo podrá exceptuarse del uso de cubierta interior o tapa cubre equipos los tableros de uso doméstico o similar.

Dependiendo del tamaño y capacidad de los tableros se montarán de la siguiente manera:

- -Empotrados o sobrepuestos en pared si son de baja o media capacidad, tamaño y peso.
- -Auto soportados sobre estructura metálica anclada al piso o sobre estructura de hormigón si son de gran capacidad, tamaño y peso.

Colocación en lugares húmedos y mojados

Los armarios colocados en lugares húmedos y mojados deberán ser de tipo a prueba de intemperie, el montaje debe garantizar un espacio de al menos 6,4 milímetros entre el encerramiento y otra pared o superficie de soporte.

Se permitirá la instalación de cajas y armarios de corte no metálicos sin espacio libre en el caso de que se encuentren sobre una pared de ladrillo, concreto, azulejo o similar.

En tableros de gran tamaño y capacidad se tendrá acceso por los costados y también por la parte trasera, para este fin se utilizarán tapas removibles cuya fijación será mediante pernos de tipo no desprendible.

Los elementos eléctricos serán montados sobre un bastidor o placa mecánicamente independiente de la caja, gabinete o armario, esta placa podrá ser fácilmente removida en caso de requerirlo ya que su fijación será mediante pernos.

Consideraciones para determinar el tamaño del tablero de medidores

Se utilizará bandejas o canaletas de material no conductor para el cableado de interconexión entre los dispositivos para mayor comodidad y seguridad.

Debe existir espacio suficiente entre los dispositivos de comando y/o maniobra y las paredes de la caja de tal manera que se pueda facilitar el mantenimiento.

Se dispondrá de un espacio para futuras ampliaciones cuyo volumen será equivalente al 25% del espacio libre.

Las láminas usadas para construir los armarios, gabinetes o cajas serán de acero, hierro o materiales no conductores plegadas y soldadas obteniendo así una rigidez mecánica adecuada.

Se recomienda una construcción modular de tal forma que se pueda construir tableros de gran tamaño y capacidad mediante el montaje de dichos módulos.

Los espesores mínimos de las láminas de hierro o acero utilizados se especifican en la siguiente tabla:

Tabla 74Espesor de planchas para construcción de tableros

Superficie libre (m^2)	Espesor de la plancha (mm)
0,25	1,2
0,75	1,5
1	1,8
Sobre 1	2,0

Los acabados de los componentes metálicos de armarios, cajas y gabinetes deberán tener una resistencia a la corrosión de tal manera que cumplan las normas correspondientes de calidad y puedan ser comprobadas.

Las pinturas utilizadas en tableros no deben tener TGIC (triglicidilisocianurato).

El grado de protección IP será adecuado y corresponderá al tipo de condiciones y ambiente al que estará expuesto el tablero, se recomienda como mínimo un grado IP 41 para tableros de interior y un grado IP 44 para tableros de exterior, no se aceptarán tableros de tipo abierto.

Los componentes no metálicos utilizados en la elaboración de cajas, gabinetes o armarios deben contar con los siguientes requisitos:

- Deben ser no higroscópicos.
- Deben ser auto extinguibles en caso de combustión (soportar 650°C durante 30 segundos), arder sin llama y emitir humos de baja opacidad, sus residuos gaseosos deben ser no tóxicos.
- Tener una resistencia mecánica al impacto de grado IK 05 como mínimo y tener un grado de protección contra sólidos, líquidos y contacto directo, mínimo IP2X para interiores e IP4X para exteriores.

Las distancias mínimas entre partes desnudas energizadas en un tablero se muestran en la siguiente tabla:

Tabla 75Distancias mínimas entre partes desnudas energizadas

Voltajes de servicio (V)	Partes energizadas respecto a tierra (mm)
0 a 200	15
201 a 400	15
401 a 1000	30

Los dispositivos de maniobra y protección cuentan con sus respectivas normas sobre distancias de contactos, por lo cual quedan exentos de lo dispuesto en la tabla anterior.

Los dispositivos de accionamiento y comando que se encuentren dentro de un tablero serán montadas a una altura mínima de 0,6 metros y máxima de 2 metros medidos desde el nivel del piso terminado.

Los tableros deberán ser probados para satisfacer las normas referentes a:

- Construcción y ensamble de tableros de Baja Tensión
- Grado de protección de tableros
- Resistencia a la salinidad
- Resistencia a la humedad relativa

Material eléctrico dentro de un tablero

Los conductores del alimentador que entren al tablero llegarán por medio de puentes de conexión o barras metálicas de distribución, puede existir una protección principal.

Los dispositivos de comando o protección se realizarán desde las barras de distribución y no se aceptarán conexiones directas de dispositivo a dispositivo.

Se debe contar con soportes de material aislante para montar rígidamente las barras de distribución.

Los cables y las barras internas deberán cumplir el código de colores vigente.

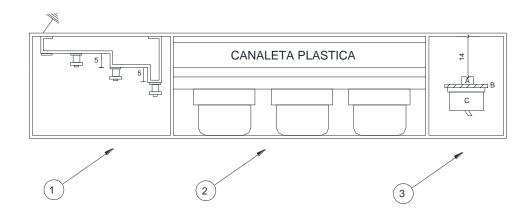
Si la capacidad del tablero supera los 200 Amperios, este deberá contar con instrumentos de medición de voltaje y corriente por cada fase.

Identificación de tableros de medidores

Los tableros deberán contener la siguiente identificación:

- Diagrama Unifilar
- Tipo de ambiente
- Rotulado para identificación de circuitos
- Instrucciones para instalación, operación y mantenimiento.

Ventilación de tableros de medidores


No se debe exceder la temperatura adecuada por lo cual debe existir ventilación natural y de ser el caso forzada para garantizar la correcta operación de los equipos.

Distribución de espacios en tableros de medidores

Cuando se requiere instalar 5 o más medidores se utilizará un cajón metálico (tablero) con puertas de acceso también metálicas cuyo espacio está dividido en tres compartimientos que alojarán en orden los siguientes componentes:

- Seccionador(es) y barras multi conectoras para distribución.
- Equipos de medición.
- Disyuntores.

Figura 22 *Espacios en tableros de medidores*

SIMBOLOGÍA:

- A.- HIERRO ÁNGULO RECTANGULAR EN EL CENTRO (soporte de la plancha metálica)
- B.- PLANCHA METÁLICA
- C.- DISYUNTORES
- (1) ZONA DE SECCIONADORES Y BARRAS MULTI CONECTORAS
- (2) ZONA DE MEDIDORES
- (3) ZONA DE DISYUNTORES

La empresa distribuidora de energía eléctrica autorizará y acreditará a quienes construyan los tableros de medidores bajo ciertas normas y especificaciones de dimensiones y materiales.

La barra correspondiente al neutro estará correctamente puesta a tierra del mismo modo que la carcasa del tablero de medidores.

La siguiente tabla muestra el área útil de acuerdo al número de filas:

Tabla 76Área útil de acuerdo al número de filas

Tipo de tablero	Área útil (m^2)
Tablero de 2 filas	1
Tablero de 3 filas	1,4
Tablero de 4 filas	1,8

Identificación de servicios del tablero de medidores

En el espacio destinado a los medidores, junto a cada disyuntor y también debajo de cada ventanilla de lectura se marcará la identificación con un máximo de 3 caracteres en cuanto a numeración.

Ejemplo:

- LOCAL: LOC 101

- DEPARTAMENTO: DEP 201

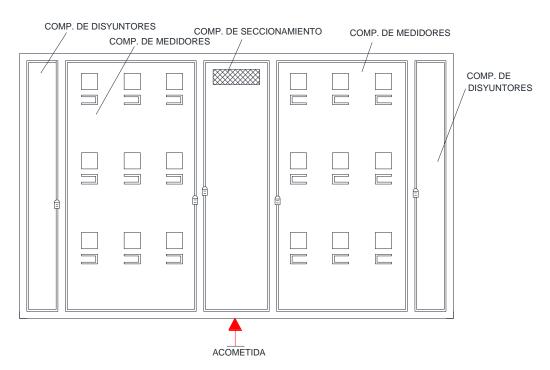
Las denominaciones colocadas deben estar conformes a las mismas que constan en las escrituras de la edificación donde estará instalado el tablero de medidores y sus datos deberán estar registrados en la hoja técnica de datos levantada por parte del proyectista.

Iluminación del tablero de medidores

Es recomendable una iluminación mínima de 100 luxes ubicada frente al armario o tablero de medidores con el propósito de facilitar el mantenimiento, inspección y lectura.

Uso del espacio y reservas en tableros de medidores

En un tablero que posea de 6 a 10 medidores se tendrá como mínimo un espacio destinado a una reserva o futura expansión, podrán tenerse más espacios para servicios adicionales siempre y cuando estos se justifiquen con la proyección prevista por el propietario de la edificación.


Se recomienda siempre destinar para reserva un espacio no menor al 10% de la cantidad de servicios a instalarse en el tablero, estos espacios tendrán su respectivo disyuntor y quedarán alambrados.

Si el tablero llegase a requerir una expansión para la instalación de mas medidores se mantendrán las medidas originales tomando en cuenta el número de filas, la expansión se fabricará con el mismo material del tablero original.

Se considerarán también los siguientes factores:

- La ubicación del tablero original.
- La compatibilidad de los compartimientos existentes con el nuevo compartimiento de medidores.
- En caso de ser necesario, un nuevo compartimiento para disyuntores, se agrupará en un solo cuerpo modular a ambos compartimientos.

Figura 23Tableros de medidores de construcción modular

Ubicación de tableros de medidores

En caso de presentarse dificultades para la instalación del tablero cuando se conecte la acometida desde las redes de distribución de bajo voltaje el encargado de la obra civil solicitará una inspección a la empresa eléctrica para determinar la mejor ubicación tomando en cuenta la facilidad para la toma de lecturas, inspecciones y mantenimientos.

El tablero se montará de acuerdo con lo expuesto en la tabla correspondiente al espacio de trabajo y distancias mínimas de seguridad.

Para un tablero de cuatro filas, la base tendrá una altura mínima de 30 cm.

Tableros de medidores en parqueaderos

Cuando el tablero o armario requiera colocarse necesariamente en un espacio destinado al parqueo de vehículos se colocará parantes o tubos de protección de acero galvanizado, de 2 pulgadas de diámetro, 40 cm de altura y a 50 cm de distancia del tablero.

En el caso de que el tablero se ubique a un costado de un garaje será necesaria una acera de 50 centímetros de ancho, 20 centímetros de altura y de un largo que pueda cubrir la longitud del tablero.

Si el tablero se encuentra a la intemperie se precisará de un volado con un mínimo de 30 centímetros para protección.

Se recomienda la colocación de cauchos de neopreno en los filos de las puertas que sirva como protección contra polco, arena y agua.

Alimentadores a tableros de medidores

Un alimentador principal va desde el suministro eléctrico principal hasta el tablero principal o tablero de medidores, estos alimentadores no deberán pasar a través de propiedades vecinas y para edificios se recomienda que el recorrido de los alimentadores se realice por medio de espacios de uso común.

El calibre de los conductores deberá ser el mínimo que pueda servir las cargas determinadas, pero se recomienda como sección mínima el calibre # 10 AWG.

Se permitirá una caída de voltaje máxima del 3% del voltaje nominal y además no se permitirán uniones en los alimentadores.

Canalizaciones y conductores

Los elementos metálicos como armarios, cajas, gabinetes, ductos y demás accesorios deberán estar siempre unidos de forma rígida y mecánicamente adecuada, además deberán asegurar una buena conductividad eléctrica.

En lo posible se debe evitar la unión de piezas metálicas con no metálicas en ductos y canalizaciones, en caso de que sea necesaria la unión de ductos metálicos con no metálicos, la unión se realizará mediante cajas de paso de material metálico las cuales serán conectadas al conductor de protección del circuito, si el conductor de protección no existe se deberá tender a fin de proteger la pieza metálica.

Se deberán proteger los elementos metálicos de los sistemas de canalizaciones contra voltajes peligrosos mediante una adecuada conexión a tierra y medidas contra contactos directos e indirectos.

No deben existir discontinuidades en los ductos, es decir entre cajas y cajas o entre accesorios y accesorios, los sistemas de acoplamiento debidamente aprobados no son considerados como discontinuidades.

En cualquier momento se podrá medir el aislamiento de las canalizaciones, permitiendo localizar fallas o reemplazar conductores en caso de ser necesario.

Colores de conductores de una canalización eléctrica

Los conductores de una canalización eléctrica se identificarán según el siguiente Código de Colores:

Alimentadores eléctricos:

- Conductor de la fase 1 azul
- Conductor de la fase 2 negro
- Conductor de la fase 3 rojo
- Conductor de neutro blanco
- Conductor de tierra verde

Si el calibre del conductor es superior al # 4 AWG en caso de que el mercado nacional solo disponga de conductores cuyo aislamiento sea de color negro, los conductores se deberán marcar cada 10 metros con alguna pintura que no pierda sus propiedades con el tiempo manteniendo la marca y el código de colores.

Conductores para instalaciones

Los conductores asegurarán una adecuada capacidad de corriente, caída de tensión dentro de los límites que se permitan, resistencia mecánica optima y comportamiento adecuado respecto al ambiente en el que se encuentre.

Se deberá tomar en cuenta también el número de conductores en la canalización y la temperatura ambiente a la que trabajará el conductor.

Los conductores deberán ser homologados por el INEN y poseer impreso sobre el aislamiento o cubierta la siguiente información como mínimo:

- Nombre del fabricante o su marca registrada
- Tipo de conductor, indicado por las letras del código, por ejemplo, THW, THHN, etc.
- Sección del conductor en AWG y opcionalmente en mm2.
- Voltaje de servicio.
- Número de certificación.

Medidas de protección contra voltajes peligrosos

El contacto directo o indirecto con un circuito eléctrico es un riesgo presente que corre el operador, se define como contacto directo cuando el operador toca con su cuerpo una parte del circuito que normalmente se encuentra energizada y se entenderá como contacto indirecto cuando una parte del cuerpo del operador hace contacto con una parte del circuito que normalmente se encuentra des energizada, pero que en condiciones de falla se energiza.

Existen métodos para proteger al operador las cuales se definirán a continuación:

- limitando al mínimo el tiempo de la falla.

Hacer que el valor del voltaje con respecto a tierra sea igual o inferior a un valor de seguridad.

Hacer que la corriente que circule por el cuerpo del operador, no exceda de un cierto valor de

seguridad.

Contactos directos

Las medidas adoptadas para evitar contactos directos con partes energizadas a más de 50 V serán las siguientes:

- Colocar las partes energizadas fuera de la zona de alcance para una persona.
- Colocar las partes energizadas en bóvedas o salas similares, cuyo acceso solo esté disponible a personal calificado.
- Delimitar las partes energizadas mediante rejas, tabiques o disposiciones similares, de tal manera que nadie pueda entrar en contacto accidental con ellas y que sólo personal calificado pueda acceder a esta zona.
- Limitar la corriente de fuga a menos de un miliamperio mediante aislantes adecuados que sean capaces de conservar sus propiedades a lo largo del tiempo al recubrir las partes energizadas con dichos aislantes.

Las pinturas, barnice y lacas no se considerarán como aislantes adecuados para estos fines.

Contactos indirectos

Para prevenir contactos indirectos en los respectivos puntos de instalaciones es necesario mantener el aislamiento en valores adecuados.

En instalaciones de bajo voltaje se aplicará un voltaje no inferior a 500 V con instrumentos de corriente continua, para medir el aislamiento los conductores y partes que se requieran medir permanecerán desconectados de la fuente de alimentación.

Para voltajes de hasta 220 V se recomienda una resistencia de aislamiento mínima de 300.000 Ohm.

Medidas complementarias para protección contra voltajes de contacto peligrosos

Sistemas de protección clase A:

- Empleo de doble aislamiento.
- Conexiones equipotenciales.

Sistemas de protección clase B:

- Puesta a tierra de protección
- Dispositivo de corte automático operado por corriente de falla.

Medidores rf

Los medidores RF que se instalarán tendrán las siguientes características

Tabla 77Especificaciones generales para medidores RF

Característica	Descripción
Número de fases	2
Número de hilos	3
Voltaje nominal	2x127/220 V o 2x120/240V
Frecuencia Nominal	60 Hz
Corriente nominal	<=10 Amp
Corriente máxima	100 A
Método de medición	Por transformador de corriente (TC) encapsulado
Grado de protección	Mínimo IP 54
	Energía Activa Acumulada (kWh), Energía Reactiva Acumulada (kVAR)
Magnitudes a medir	Voltajes, Corrientes (Instantáneos). Demanda Máxima (kW), en períodos de 15 minutos (en bloque)

Tabla 78Especificaciones de operación para medidores RF

Característica	Descripción
Banda de frecuencia	915 a 928 MHz
Frecuencia de operación	915 MHz
Adquisición de datos	Dispositivos con sistema operativo Android y Windows con MODEM de RF universal externo.
Configuración	Dispositivos con sistema operativo Windows con MODEM de RF universal externo.
Potencia de transmisión	15 a 25 [dBm].
Cobertura	Mínimo 1000 [metros] con línea de vista, en cualquier dirección circular alrededor del medidor. Mínimo 200 [metros] sin línea de vista u obstáculos como: paredes, losas de edificaciones, edificios de conjuntos habitacionales, tableros metálicos para medidores de energía eléctrica, en cualquier dirección circular alrededor del medidor.

Figura 24 *Medidor RF bifásico tres hilos*

Equipo recolector de información

El módulo de comunicación del medidor y del equipo recolector de la información, deben soportar protocolos de comunicación para crear conexiones punto multipunto. De tal forma que se pueda recolectar la información de forma simultánea de múltiples medidores.

Sistemas de puesta a tierra

Todo equipo eléctrico, electrónico, carcazas, gabinetes, racks y cualquier otro componente metálico de estos sistemas deberá ser aterrizado, por lo que toda instalación eléctrica deberá contar con un Sistema de Puesta a Tierra (SPT).

No deben existir voltajes de paso, de contacto o transferidas que superen límites tolerados por el ser humano en caso de ocurrir una falla.

Se desea siempre que los valores de los sistemas de puesta a tierra sean lo más bajos posibles para brindar un camino a las corrientes de falla hacia el electrodo de puesta a tierra.

Objetivos y funciones de un spt:

- Garantizar óptimas condiciones de seguridad.
- Permitir despejes rápidos de fallas.
- Referencia del sistema eléctrico.

Parámetros para el cálculo de un spt:

- Resistividad del suelo.
- Corriente de falla a tierra máxima.
- Tiempo de despeje de falla.
- Tipo de carga.

Tabla 79

Valores máximos de tensión de contacto aplicada al ser humano

Tiempo de despeje de la falla	Máxima tensión de contacto admisible (valores en rms c.a.)		
Mayor a dos segundos	50 voltios		
750 milisegundos	67 voltios		
500 milisegundos	80 voltios		
400 milisegundos	100 voltios		
300 milisegundos	125 voltios		
200 milisegundos	200 voltios		
150 milisegundos	240 voltios		
100 milisegundos	320 voltios		
40 milisegundos	500 voltios		

Consideraciones de un spt:

Las tierras naturales como tuberías de agua, estructuras metálicas no deberán ser usadas como electrodo de puesta a tierra, pero si deberán estar conectadas a este electrodo.

Los elementos metálicos de las edificaciones deben tener una conexión eléctrica con el sistema de puesta a tierra general.

Las conexiones de puesta a tierra bajo el nivel del suelo deben ser realizadas mediante soldadura exotérmica.

En el caso de instalaciones domiciliarias se debe dejar al menos un punto de conexión inspeccionable como una caja de inspección con tapa removible cuyas dimensiones deben ser mínimo de 30 cm x 30 cm, o de 30 cm de diámetro si es circular.

No se permite el uso de electrodos de aluminio.

Queda prohibido utilizar el suelo o terreno como retorno de la corriente.

No se permitirá el uso de sistemas monofilares.

En caso de que un edificio requiera varias puestas a tierra, todas deberán estar interconectadas eléctricamente según el criterio de la norma IEC-61000-5-2.

Figura 25Puestas a tierra interconectadas eléctricamente

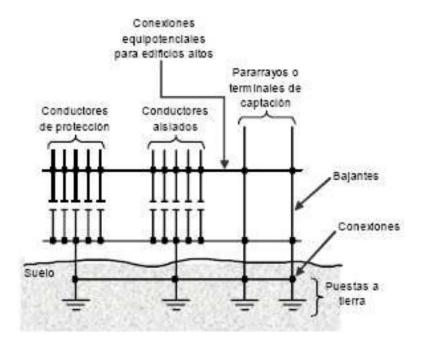


Figura 26

Una sola puesta a tierra para todas las necesidades (prohibido)

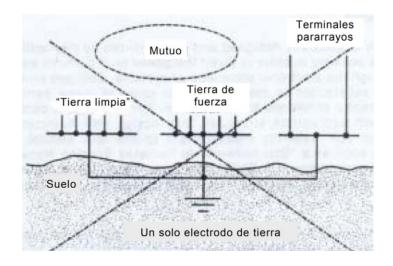
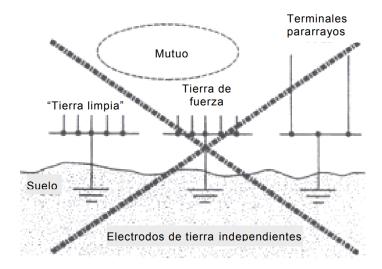



Figura 27

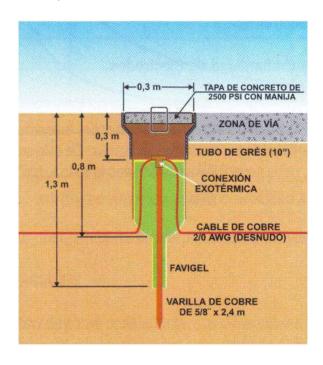
Puestas a tierra separadas o independientes (prohibido).

Electrodos de puesta a tierra

Se requiere que se garantice por parte de los fabricantes una resistencia a la corrosión de mínimo 15 años contados desde la instalación y la certificación correspondiente como ASTM B117 y ASTM G1 (Método de inmersión en cámara salina), ASTM G162-99, ASTM G8-90 o algún otro método que garantice los requerimientos previamente solicitados.

Tabla 80Materiales y dimensiones para electrodos de puesta a tierra

Tipo de		Dimensiones Mínimas			
Electrodo	Materiales	Diámetro (mm)	Área (mm²)	Espesor (mm)	Recubrimiento (μm)
	Cobre	12,7			
	Acero inoxidable	10			
Varilla	Acero galvanizado en caliente	16			70
	Acero con recubrimiento electro depositado de cobre	14			100
	Acero con recubrimiento total en cobre	15			2000
	Cobre	20		2	
Tubo	Acero inoxidable	25		2	
	Acero galvanizado en caliente	25		2	55
	Cobre		50	2	
Fleje	Acero inoxidable		90	3	
	Cobre cincado		50	2	40
Cable	Cobre	1,8 para cada hilo	25		
	Cobre estañado	1,8 para cada hilo	25		
Placa	Cobre		20000	1.5	
	Acero inoxidable		20000	6	


Instalación de electrodos de puesta a tierra

Para garantizar la correcta instalación de los electrodos de puesta a tierra se deberán tener en cuenta las siguientes consideraciones:

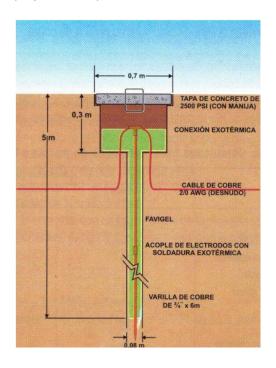

- Se debe tener acceso al punto de unión entre el conductor del electrodo de puesta a tierra y el electrodo en un pozo de revisión que permita realizar mediciones, inspecciones y futuros mantenimientos de la puesta a tierra.
 - Los electrodos deben estar totalmente enterrados.
 - La parte superior del electrodo enterrado debe quedar a mínimo 15 cm de la superficie.

Figura 28

Disposición típica de electrodos de puesta a tierra.

Figura 29Disposición típica de electrodos profundos de puesta a tierra.

Conductores de puesta a tierra

Los conductores de ben ser continuos y en caso de empalmes se deberá usar la soldadura exotérmica.

El conductor de puesta a tierra acompañará en la canalización a los conductores activos para el caso de equipos.

Si el conductor de puesta a tierra requiere aislarse, este aislamiento deberá ser de color verde, verde con rayas amarillas o poseer identificadores verdes en los puntos extremos y de inspección.

Se debe verificar que la corriente que circula por el conductor de tierra sea cero antes de efectuar cualquier trabajo de desconexión o de conexión a fin de precautelar la seguridad de operarios y equipos.

Valores de resistencia de puesta a tierra

Tabla 81

Valores sugeridos para puestas a tierra

Aplicación	Valores máximos de resistencia de puesta a tierra (Ohms)		
Estructuras de líneas de transmisión	20		
Subestaciones de alta y extra alta tensión	1		
Subestaciones de media tensión	10		
Protección contra rayos	10		
Neutro de acometida en baja tensión	10		

Mediciones de resistencia de puesta a tierra

La resistencia de puesta a tierra se medirá antes de la puesta en funcionamiento de un sistema eléctrico, como medida rutinaria de mantenimiento y verificación del sistema de puesta a tierra.

Las técnicas para medir la resistividad aparente del terreno, son esencialmente las mismas que para aplicaciones eléctricas. Para su medición se recomienda aplicar el método de Wenner, ya que es uno de los más utilizados.

Capítulo VI

Conclusiones y Recomendaciones

Conclusiones

- Mediante la elaboración de la Guía de instalación de acometidas y medidores para el área de comercialización de la Empresa Eléctrica Provincial Cotopaxi S.A. se logró establecer técnicas vigentes relacionadas con la instalación de acometidas y sistemas de medición.
- Se pudo validar la selección de los materiales y equipos utilizados en la instalación de medidores y acometidas en redes de Bajo Voltaje en ELEPCO S.A. en base a las unidades de propiedad emitidas actualmente por el Ministerio de Energía y Recursos Naturales no Renovables.
- Se estableció una serie de tablas para distintos calibres de conductores, diferentes niveles de voltajes en las redes de distribución de bajo voltaje donde se puede encontrar las distancias máximas de acometidas de acuerdo a la carga instalada que posea cada tipo de usuario.
- Se elaboraron esquemas que reflejan gráficamente la correcta aplicación de la guía y que sirvan como instructivo para el personal técnico.

Recomendaciones

- En el caso de requerirse cálculos más exactos con respecto a las distancias máximas de las acometidas se recomienda tomar en cuenta factores adicionales como el factor de potencia de los usuarios, la resistividad de los conductores, el voltaje actual del alimentador de bajo voltaje y la reactancia inductiva proporcionados por los distintos fabricantes.
- Se recomienda realizar mediciones de puesta a tierra y adoptar los valores sugeridos en la presente guía antes de energizar los diferentes circuitos.

- Se recomienda siempre la dirección y supervisión de un profesional de la Ingeniería en el proceso de la instalación de acometidas y medidores.
- Se recomienda que, en el caso de requerir cajones de medidores o tableros generales de medidores, estos sean construidos e instalados por empresas certificadas para este propósito.

Bibliografía

- ARCERNNR, A. d. (2020). ARCERNNR 002/20 "Calidad del servicio de distribución y comercialización de energía eléctrica".
- ARCONEL, A. d. (2018). ARCONEL 001/18 "Franjas de servidumbre en líneas del servicio de energía eléctrica y distancias de seguridad entre las redes eléctricas y edificaciones".
- ARCONEL, A. d. (19 de Junio de 2020). *ARCONEL 001/20 "Distribución y comercialización de energía eléctrica"*. Ecuador.
- EEASA, E. E. (2011). Guia de diseño, Parte 2, Instalaciones eléctricas interiores. Ambato.
- EEQ, E. E. (2021). Normas para sistemas de distribución Parte A Guía para diseño de redes para distribución. Quito.
- IEC, 6.-5.-2. (2003). Compatibilidad Electromagnética (EMC) Parte 5: Directrices de instalación y atenuación Sección 2: Puesta a tierra y cableado. La Habana: Oficina Nacional de Normalización (NC).
- INEN, I. E. (1999). NTE INEN 1869:99 Tubos de cloruro de polivinilo rígido (PVC) para canalizaciones telefónicas y eléctricas. requisitos. Quito.
- INEN, I. E. (1999). NTE INEN 2 227:99 Tubos de cloruro de polivinilo rígido (PVC) de pared estructurada e interior lisa y accesorios para canalizaciones telefónicas y eléctricas. requisitos. Quito Ecuador.
- MERNNR, M. d. (2011). Homologación de las Unidades de Propiedad (UP).
- MERNNR, M. d. (2011). Homologación de las Unidades de Propiedad (UP) y Unidades de Construcción (UC) del sistema de distribución eléctrica. Quito.
- NEC, N. E. (2013). Capítulo 15 Instalaciones Electromecánicas.
- NEC, N. E. (2018). Instalaciones Eléctricas.