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Abstract—High impact low probability events (HILP) such as
natural hazards significantly affect the infrastructure of power
distribution systems (PDS) leading to considerable social and
economic loss. This paper presents a novel methodology for
optimizing resource and restoration scheduling in PDS after a
natural hazards focusing on reducing operational costs during
PDS recovery. The proposed methodology includes a mixed
integer linear programming optimization problem in which a DC
optimal power flow model is solved. The proposed methodology
was evaluated in the IEEE 34-node test feeder and in a real-world
case in two PDS: the San Rafael and Salcedo feeders in Cotopaxi-
Ecuador. The results show the effectiveness of the proposed
methodology compared with traditional recovery criteria.

Index Terms—power distribution systems, volcanic eruption,
DC optimal power flow, system recovery, resources optimization.

I. INTRODUCTION

High impact low probability events (HILP), such as hur-
ricanes, earthquakes, volcanic eruptions, among others, can
seriously affect power distribution systems (PDS). There are
statistical records of important destructive events, such as in
the United States, which records 78% of all its interruptions in
the power distribution systems caused by natural disasters [1].
In the particular case of a volcanic eruption, the Irazú volcano
erupted in 1963, affecting a large part of the population of
Costa Rica, in which infrastructure and essential services were
damaged, reaching an estimated loss 601.5 million USD [2]. In
recent days, the eruption of the La Palma volcano has demon-
strated the devastation that might occur when a volcano erupts.
La Palma, located on one of the smallest and western-most
Canary Islands in Spain, caused more than 6,000 people to
be evacuated and an estimated damage exceeding 466 million
USD. In this context, and others where climate change hazards
are multiplying, planning for the effects of these hazards is
becoming ever more critical. Power system resilience is de-
fined as the resistance and restoration capacity of the electrical
networks to HILP events affecting its integrity [3]. The hazard
conditions caused by HILP events require power distribution
companies to plan restoration and operation in scenarios in
which HILP events can occur. However, there are a limited
number of studies that address the optimized restoration of
resilient PDS against natural hazards. For instance, in [4]

the system is restored using distributed generators and the
reconfiguration of the system; this methodology is intended
for power network damage due to extreme weather events. The
authors in [5], present an optimized strategy for the location
of reclosers for fault isolation and service restoration. In [6] a
fuzzy approach is implemented to improve system restoration,
which takes into account the priority of loads and the distance
between depots and faults in an effort to avoid using only
expert criteria in the restoration of the PDS.

To avoid decision-making based on traditional methods
that do not consider critical loads, the available resources,
and the energy not supplied (ENS), our paper presents a
novel methodological framework for optimal resource and
restoration scheduling in PDS operation subsequent to HILP
events. The main contributions of this work are as follows: i)
A DC-Optimal Power Flow (DC-OPF) model implemented
under contingencies that can optimize system restoration,
quantifying the ENS of the PDS caused by the damages in
the electrical infrastructure from an HILP event. ii) A strategy
to optimize mobilization of crews and mobile generators to
recover and supply energy to the PDS considering ENS, arrival
time at depot and nodes, and critical loads. iii) A Real-World
application of the method in two PDS: San Rafael and Salcedo
feeders in Cotopaxi (Ecuador), considering the impact of lahar
occurrence after an eruption of the Cotopaxi volcano..

II. METHODOLOGY

The proposed methodological framework is presented in
Fig. 1, which comprises three general stages described below.

A. Input data

The contingency scenario uses real-time post-event data, and
the proposed methodology is applied. Moreover, our proposal
can be applied to historical contingency scenarios, in which
vulnerability curves can be used to assess the impact of HILP
events.

The PDS is represented as a set of nodes (ΩB) and power
distribution lines (ΩL) with their electric technical charac-
teristics and electrical infrastructure georeferenced data. In
addition, the depot is georeferenced to identify the distances
between nodes and depots located within the concession area



2

of the distribution company. Finally, the available resources
of the distribution company for any contingency scenario are
considered.

Output data:

MILP Optimization:

Power distribution 

system data

Contingency 

scenario

Resources of the 

distribution company

Optimizing resource and restoration scheduling in 

power distribution system operation

Resource and restoration scheduling assessment

Fig. 1. Proposed methodology to optimizing resource and restoration schedul-
ing in power distribution system operation

B. MILP Optimization Problem

Once the contingency scenarios have been defined, a mixed-
integer linear programming (MILP) optimization is formulated
resolving a DC-OPF model. The unavailability matrices of a
contingency scenario of nodes (ψi,t), and distribution lines
(γij,t) are included. The objective function minimizes the
operating cost of the PDS during system restoration time.
The MILP optimization is solved using FICO XPRESS 8.8.0
software [7]. The problem formulation is detailed in Section
III.

C. Output data

The results obtained are evaluated using resilience metrics.
ENS is used as a reliability metric for system resilience
analysis. It is also possible to quantify additional metrics such
as the energy index of unreliability (EIU), which indicates
the relationship between ENS and energy demand during
the restoration time estimation [8]. Moreover, the ΦΛEΠ
resilience metrics can be applied to measure the performance
of the different phases that a power system might experience
during an extreme event [9]. In this case, the Π-metric has been
chosen to quantify how fast the operational and infrastructure
resilience recover after the HILP event occurs.

III. FORMULATION PROBLEM

A. Objective Function

The objective function (OF) of MILP optimization is pre-
sented in (1), which minimizes the operational costs (OC). The
OF considers the cost of the ENS (OCENS), the cost of mobile
generating units (OCMG) and the cost of the resource mo-
bilization (OCResource) of the electrical company (including
crews and mobile generating units). Equation (2) represents the
cost of ENS during the time horizon of evaluation (T ). The
cost of ENS varies according to the load priority on the nodes
of the PDS (NB). Equation (3) indicates the operating costs
of the mobile generating units (NMG), in which fuel costs
(Cfuel) and the cost of CO2 emissions (CCO2 ) are considered.
To simplify the model, the linearization of fuel consumption
by mobile generating units (ffueli,t ) is not considered. ECO2

i,t

represents the total emission of CO2 due to the use of
mobile generating units. Equation (4) considers the resource
mobilization cost CRM of the distribution company (NR)
such as crews and mobile generating units, where λi,w,t and

τi,w,t correspond to the binary variables that indicate the
arrival and departure of resources to the node, respectively.
The continuous optimization variable di indicates the distances
between depot and nodes. Finally, equation (5) represents
whether the routes from the depots to nodes are available
through the binary parameter σi. The Big M method is used
to decouple the arrival times for mobile generating units.

Min OF = OCENS +OCMG +OCResource (1)

OCENS =

NB∑
i=1

T∑
t=1

CENS
i ENSi,t (2)

OCMG =

NMG∑
i=1

[Cfuelffuel
i,t + CCO2ECO2

i,t ] (3)

OCResource =

NB∑
i=1

NR∑
w=1

T∑
t=1

CRM (λi,w,t + τi,w,t)di (4)

di = Di + (1− σi)M i ∈ ΩB (5)

B. Resource Mobilization
The mobile generating units and crews are considered as

resources of the distribution company (ΩR) that will be used
to supply the demand and recover the PDS, respectively, after
the HILP event occurs. This set of optimization problem
constraints focuses on determining each departure and arrival
of the resources from the depots to the nodes considering dis-
placement times to establish optimal resource and restoration
scheduling during the evaluation horizon. Constraints (6) and
(7) impose that λi,w,t and τi,w,t take the appropriate values
when a resource arrives to or departs from a node. χi,w,t is
a binary variable that represents the state of the resource in
the node i. Likewise, the constraints (8) and (9) ensure that
the resource arrival to (ϑi,w,t) and departure from (ρi,w,t) the
depot take the appropriate values. νw,t is a binary variable that
represents the state of resources in the depot. Constraint (10)
represents that the resource w cannot be at the node or in the
depot simultaneously t.

λi,w,t − τi,w,t = χi,w,t − χi,w,t−1 i ∈ ΩB ;w ∈ ΩR (6)
λi,w,t + τi,w,t ≤ 1 i ∈ ΩB ;w ∈ ΩR (7)
NB∑
i=1

[ϑi,w,t − ρi,w,t] = νw,t − νw,t−1 i ∈ ΩB ;w ∈ ΩR (8)

NB∑
i=1

[ϑi,w,t + ρi,w,t] ≤ 1 i ∈ ΩB ;w ∈ ΩR (9)

χi,w,t + νw,t ≤ 1 i ∈ ΩB ;w ∈ ΩR (10)

Constraint (11) ensures the arrival time from the depots to
the node in the initial hours. The constraints (12) and (13) are
required to ensure the arrival and departure time of resources
from the depot to the node, or vice versa. These conditions
are represented by TRM

i . Equations (14) and (15) guarantee
the final arrival and departure times of the resources from the
depot to the node or from the node to the depot, respectively.

TRM
i∑
t=1

λi,w,t = 0 i ∈ ΩB ;w ∈ ΩR (11)

ρi,w,t = λi,w,t+TRM
i −1 i ∈ ΩB ;w ∈ ΩR (12)

∀t = 1, ..., |T | − TRM
i + 1 ≥ 1



3

τi,w,t = ϑi,w,t+TRM
i −1 i ∈ ΩB ;w ∈ ΩR (13)

∀t = 1, ..., |T | − TRM
i + 1 ≥ 1

T∑
k=t

(1− λi,w,k − ρi,w,t) ≥ 0 i ∈ ΩB ;w ∈ ΩR (14)

1 ≤ ∀t = T − TRM
i + 1, ..., |T | ≤ T

T∑
k=t

(1− ϑi,w,k − τi,w,t) ≥ 0 i ∈ ΩB ;w ∈ ΩR (15)

1 ≤ ∀t = T − TRM
i + 1, ..., |T | ≤ T

Constraints (16) and (17) represent the time TD
w during

which the resources remain in the depot for refueling and
checking technical conditions. The constraints (18) and (19)
represent the recovery time of the nodes TR

i .

t+TD
w −1∑

k=t

νw,k ≥ TD
w

NB∑
i=1

ϑi,w,t i ∈ ΩB ;w ∈ ΩR (16)

∀t = 1, ..., |T | − TD
w + 1 ≥ 1

TD
w∑

k=t

(νw,k −
NB∑
i=1

ϑi,w,t) ≥ 0 i ∈ ΩB ;w ∈ ΩR (17)

1 ≤ ∀t = T − TD
w + 1, ..., |T | ≤ T

t+TR
i −1∑

k=t

χi,w,k ≥ TR
i λi,w,t i ∈ ΩB ;w ∈ ΩR (18)

∀t = 1, ..., |T | − TR
i + 1 ≥ 1

TR
i∑

k=t

(χi,w,k −
NB∑
i=1

λi,w,t) ≥ 0 i ∈ ΩB ;w ∈ ΩR (19)

1 ≤ ∀t = T − TR
i + 1, ..., |T | ≤ T

C. Nodes and lines restoration

Constraints (20) and (21) are used to determine the nodes
that are considered repaired when the crew departs the node.
In this context, constraint (20) restricts the affected node
to be repaired by only one crew. Constraint (21) indicates
that the restored component becomes available after it is
repaired and remains available in all subsequent time eval-
uation horizons. For instance, if τi,w,t = [0, 0, 1, 0, 0, 0] then
ψi,t = [0, 0, 1, 1, 1, 1] [10].

NR∑
w=1

τi,w,t ≤ 1 i ∈ ΩB (20)

ψi,t =

t...|T |∑
k=1

NR∑
w=1

τi,w,k i ∈ ΩB (21)

For the recovery of distribution lines, the line ij is assumed
to be available if the nodes i and j associated with the line
are also available. This is represented by the set of constraints
(22)-(24), in which the product of binary variables of node
availability is carried out.

γij,t ≤ ψi,t i 6= j ∈ ΩB , ij ∈ ΩL (22)
γij,t ≤ ψj,t i 6= j ∈ ΩB , ij ∈ ΩL (23)
γij,t ≥ ψi,t + ψj,t − 1 i 6= j ∈ ΩB , ij ∈ ΩL (24)

D. Thermal generating unit constraints
The thermal generation model presented in [11] is imple-

mented in this paper to model mobile generating units. Equa-
tion (25) corresponds to natural gas consumption ffueli,t , where
PMG
i,t is the output power from a mobile generating unit, uMG

is the energy density of the natural gas consumed in kWh/kg,
and ηMG is power efficiency. Equation (26) represents the
CO2 (ECO2 ) that depends on the carbon footprint for the
energy produced (KCO2 ). Finally, constraint (27) imposes
bounds on the mobile generating units and considers the state
of the mobile generator (χi,w,t) in the node.

ffuel
i,t =

PMG
i,t

uMGηMG
i ∈ ΩB (25)

ECO2
i,t = KCO2uMGffuel

i,t i ∈ ΩB (26)

0 ≤ PMG
i,t ≤

NMG∑
w=1

PMG,max
w χi,w,t i ∈ ΩB (27)

E. DC optimal power flow
The DC model presented in [12] is implemented in our

work to perform the PDS operation. Constraint (28) ensures
the generation-demand balance at each node of the system.
Constraint (29) defines that the ENS should not exceed the
connected demand at each bus to correctly quantify the ENS in
each bus. Equation (30) represents the constraint related to the
capacity limits of the transmission lines. Finally, equation (31)
models Kirchhoff’s second law based on the Big M disjunctive
technique, where M is a sufficiently large positive constant,
which decouples the voltage angles of the busbars associated
with the lines that are disconnected due to a contingency in
the system.

PGrid
i,t + PMG

i,t +
∑

ij∈ΩLT

P line
ij,t + ENSi,t = Di i ∈ ΩB (28)

0 ≤ ENSi,t ≤ Di i ∈ ΩB (29)

− γij,tPmax
line ≤ P line

ij,t ≤ Pmax
line γij,t ij ∈ ΩL (30)

−M(1− γij,t) +
δi,j − δj,t

xij
≤ P line

ij,t ≤
δi,t − δj,t

xij
+M(1− γij,t) i 6= j ∈ ΩB , ij ∈ ΩL (31)

IV. CASE STUDY AND RESULTS

To evaluate the efficiency of the proposed methodology, it
was applied in the IEEE 34-node test feeder and in two PDS:
San Rafael and Salcedo feeders in Cotopaxi, Ecuador. In both
PDS, the occurrence of lahars and their impact are modelled.
ENS costs are established for the load types depending on
their priority level. In addition, our proposed optimal model is
compared with the expert criteria model in which the recovery
nodes nearer the depot are recovered to reconnect to the main
grid.

A. IEEE 34-node test feeder
1) System: The IEEE 34-node test feeder presented in [13],

is composed of 33 branches and node loads. The loads are
characterized using representative residential, commercial, and
industrial daily load curves obtained from [14]. It is assumed
that the resources available are two crews and two mobile
generating units with a rated capacity of 100 and 500 kW.
Finally, node repair time is defined as five hours.
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2) Lahar event: Fig. 2 shows the illustrative case. The PDS
is assumed to be affected by volcanic lahars and impacts nodes
7, 15 and 23, forming four islanding systems.

1 2 3 4

5
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7 8 9
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15 16

18

21 22

17

20
19

23 25

26

27

28

29

30 31 32

33

34

14

24

I) III)

IV)

Industrial

Commercial

Residential

No load

Loads II)

Vulnerable node

Lahar       Depot

Fig. 2. IEEE 34-node test feeder and nodes unavailable after HILP event
occurs

3) Results: The results show that operational costs are
reduced from 9,349 USD to 8,880 USD when our proposed
optimal model is applied. The results of resource scheduling
applied to the IEEE 34-node test feeder are shown in Table I.
The mobile generating unit (G1 and G2) scheduling consider-
ing both approaches is carried out in the same way. However,
the crew scheduling (C1 and C2) is carried out differently.
For the expert criteria model, the recovery of nodes 7, 15
and 25 is carried out sequentially because the island systems
formed are reconnected to the main grid depending on how
the system is recovering. For the optimal model, the sequence
of node recovery is 7-25-15. This configuration allows faster
system recovery compared to applying expert criteria. Fig. 3
shows the system recovery. The results show that applying the
optimal model the system recovers 3 hours faster than with the
expert criteria model.

TABLE I
RESULTS OF RESOURCE SCHEDULING TO THE IEEE-34 NODE TEST

FEEDER

Case G1 G2 C1 C2
Node Time Node Time Node Time Node Time

Optimal 13 3-11 25 3-48 7 2-11 23 6-15
25 15-48 - - 15 15-24 - -

Expert 13 3-11 25 3-48 7 2-11 15 4-13
25 15-48 - - 23 18-27 - -

Table II shows the resilience metric obtained from IEEE
34-node test feeder after the HILP event occurs. These metric
are divided into three groups to visualize how the system
is affected by energy supply capacity, operation and infras-
tructure. Results show the energy supply capacity taking into
account the ENS during the time evaluation horizon applying
the optimal model is reduced by 0.2 MWh as compared with
the expert criteria model. On the other hand, the EIU for
industrial (EIUI ) and commercial (EIUC) loads is reduced
by 2.95% and 3%, respectively, while for residential loads
(EIUR) does not change. Furthermore, the Π resilience metric
indicates that our proposed optimal model recovered the PDS
faster than the expert criteria model in terms of operational
and infrastructure resilience.

B. San Rafael and Salcedo feeders
1) System: The data required to model the PDS was ob-

tained from the geoportal of the ELEPCO utility available
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Fig. 3. Evolution of the recovery of unsupplied energy applied to IEEE 34-
node test feeder

TABLE II
IEEE 34-NODE TEST FEEDER RESILIENCE METRIC RESULTS

Operational Infrastructure
resilience resilience

Case ENS
[MWh]

EIUI
[%]

EIUC
[%]

EIUR
[%]

Π-loads
[kW/h]

Π-nodes
[Nodes/h]

Optimal 17.34 14.56 23 34.5 6.05 0,12
Expert 17.54 17.51 26 34.5 5.41 0.11

at [15]. The feeders are represented with 71 electrical nodes.
Priority loads (hospitals, health centre, emergency shelters,
industries) were defined according to the Cotopaxi volcano
hazard map published in [16]. The resource depot is identified
in the system as shown in Fig. 4, in which there is a mobile
generator with rated power of 5 MW and five crews for system
recovery. In addition, the time evaluation horizon is fixed at
144 hours.

Substations

San Rafael nodes

Salcedo nodes

Priority loads

Depot

Lahar of Cotopaxi volcano

1
2

3 7

13

23

19

66

37

58

67

Fig. 4. San Rafael and Salcedo feeders one-line diagram considering lahar
impacts and critical loads.

2) Lahar event: The data of lahars that occurred in 1877
during the Cotopaxi volcano eruption was used [17] to define
the contingency scenarios. The one-line diagram of the San
Rafael and Salcedo PDSs and the lahar formed by the Cotopaxi
volcano eruption are shown in Fig. 4.

TABLE III
RESULTS OF RESOURCE SCHEDULING TO THE SAN RAFAEL AND

SALCEDO-FEEDERS

Optimal Expert Optimal Expert
Node Time Node Time Node Time Node Time

G 19 2-144 66 2-144 C3 13 24-53 3 2-53
- - - - 3 78-129 67 62-77

C1 23 4-59 13 3-18 C4 67 8-23 - -
- - 23 24-80 1 68-129 1 62-53

C2 7 2-129 7 2-129 C5 - - 2 2-57
- - - - 2 74-129 58 55-113
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3) Results: The results of resource scheduling applied in
two PDS — the San Rafael and Salcedo feeders — are shown
in Table III. The mobile generating unit (G) is scheduled for
both models in the same way. However, it is connected to
different nodes in the same islanding system. Likewise, the
crews (C1-C5) are scheduled differently for both models. For
the expert criteria model, the recovery of nodes is carried out
depending on the unavailable nodes nearer to the depot. In the
optimal model, the sequence of node recovery can improve
system recovery in comparison with the expert criteria, as
shown in Fig. 4. The energy demand being supplied is 88%
for both approaches at 144 hours. However, the optimal model
approach has better performance in the resilience metrics.
Table IV shows a recovery improvement at 50% for the
optimal model, a higher speed than the expert criteria model
with 5.10 kW/h and 1.31 Nodes/h, which significantly reduces
the ENS of 73 MWh and saves 23,079 USD in the operational
cost. Furthermore, the EIU to priority loads is reduced by 15%.
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Fig. 5. Evolution of the recovery of unsupplied energy applied to San Rafael
and Salcedo feeders

TABLE IV
SAN RAFAEL AND SALCEDO FEEDERS RESILIENCE METRIC RESULTS

Operational Infrastructure
resilience-loads resilience-nodes

Case ENS
[MWh]

EIUP
[%]

Π50%
[kW/h]

Π80%
[kW/h]

Π50%
[Nodes/h]

Π80%
[Nodes/h]

Optimal 331.55 19 5.10 1.28 1.31 1.10
Expert 404.55 34 3.44 1.28 0.88 1.10

V. CONCLUSIONS

This paper presents a novel methodology for resilience en-
hancement by optimizing resource and restoration scheduling
in power distribution system operations subsequent to an HILP.
The proposed methodology includes a mixed-integer linear
programming optimization problem in which a DC optimal
power flow model is solved. The methodology is applied
on the IEEE 34-node test feeder and in two PDS — the
San Rafael and Salcedo feeders in Cotopaxi-Ecuador — in
which the occurrence of lahars is considered. The results
show that the operational cost for the systems under study
is reduced when our optimal model is considered compared
to recovery using expert criteria. Furthermore, the resilience
metrics in terms of energy supply capacity, operational and
infrastructure resilience were improved demonstrating that our
proposed methodology enhances the resilience of the PDS
against natural hazards. We demonstrate the advantage of our
proposed methodology through case studies. Then, compared

to the expert criteria approach, we demonstrate that our
approach with optimized resource and restoration scheduling
has better performance in terms of resilience enhancement for
PDS operation.
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location of reclosers in distribution systems considering reliability in
communication channels,” in 2015 IEEE 6th Latin American Symposium
on Circuits Systems (LASCAS), pp. 1–4, 2015.

[6] G. H. Reddy, P. Chakrapani, A. K. Goswami, and N. B. D. Choudhury,
“Fuzzy based approach for restoration of distribution system during post
natural disasters,” IEEE Access, vol. 6, pp. 3448–3458, 2017.

[7] FICO, “FICO Xpress Optimization Suite.” http://www.fico.com/en/
products/, 2021. Online; accessed 29 January 2021.

[8] M. Saltos-Rodrı́guez, M. Aguirre-Velasco, A. Velásquez-Lozano,
D. Ortiz-Villalba, and A. Villamarı́n-Jácome, “Distributed generation
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